空间解析几何-第3章 常见的曲面3
高等数学(解析几何)图形
y2
z
L
投影柱面
x2 y2 1
得交线L:
1
所求投影曲线为
x2 y2 1 z 1
x2 y2 1
x2 y2 1 .
.
z 0
.
o
.
.
x
y
z =0
2
25. 空间曲线作为投影柱面的交线(1)
2 y2 z2 4x 4z
L:
y
2
3z 2
关于xoy面:
(x,y,z) (x,y,-z)
关于x轴:
(x,y,z) (x,-y,-z)
M(x,y,z)
y
P
(x,y,-z)
关于原点:
(x,y,z) (-x,-y,-z)
.
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
c
B A
A´
B´
c´
u
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
.
1. 空间直角坐标系
八个卦限
z
0 y
x
1. 空间直角坐标系
八个卦限
z
0 y
.
x
1. 空间直角坐标系
八个卦限
点的坐标
Ⅳ
Ⅲ
z z
Ⅱ
Ⅰ
M (x,y,z)
M (x,y,z)
0
y
y
.
x
N
x
Ⅵ
Ⅷ
Ⅴ
1. 空间直角坐标系
z
坐标和点
z
(x,y,z) M
M (x,y,z)
00
y
第三章_第一节 空间解析几何,李养成(新版),
它们的图像都是一条直线,z轴!
x y z a , 例3.1.4 讨论方程组 a 的图像. x y ax
x y z a 解:方程组的图像是球面 a a 与母线平行于z轴的圆柱面 x y 的交线
F x, y, z , G x, y, z
称为空间曲线的一般方程 注: (1)表示同一条曲线的方程不唯一。 (2)曲线上点的坐标都满足方程,
z
S1 S2
o
C
y
满足方程的点都在曲线上, x试考察方程
第3章 常见的曲面
本章在初步介绍空间图形与方程之间的一般关系 后,对柱面、锥面、旋转曲面以及二次曲面(包括椭球 面、单叶双曲面、双叶双曲面、椭圆抛物面和双曲抛 物面)进行讨论.
对于前三种曲面具有明显的几何特征,我们着重从 这些曲面的几何特性来建立它们的方程.
对于五种二次曲面,我们则从曲面的标准方程出 发来讨论它们的几何性质, 描述它们的几何形状.
z
点P 在该圆锥面上
L
cos OP, k cos
OP k OP k
cos
y
x
x y tan z , 整理得二次齐次方程
圆锥面的坐标式方程
习题8(1) 已知圆锥面的顶点为P0 (1, 2,3),轴垂直于 平面 x y z ,半顶角为 ,求这圆锥面的 方程. 解 圆锥面的轴过点 P0 , 方向向量 v 2,2, 1.
特别地,当 C0 是原点时,球面方程为
x2 y2 z 2 R2
表示上(下)球面 .
C0
解析几何练习之常见曲面
常见曲面习题11.证明:如果2220a b c d ++->,那么由方程2222220x y z ax by cz d ++++++=给出的曲面是一球面,求出它的球心坐标和半径。
证明:将方程配方得222222()()()x a y b z c a b c d +++++=++-,由2220a b c d ++->,得到方程表示球心是(,,)a b c ---2.求过三点(3,0,0),(0,2,0),(0,0,1)的圆的方程。
解:空间中的圆可由过三点(3,0,0),(0,2,0),(0,0,1)的一个球面和一个平面的交线表示,设过该三点的球面方程为2220x y z ax by cz d ++++++=,得到930,420,10a d b d c d ++=⎧⎪++=⎨⎪++=⎩球面方程为22294(1)032d dx y z x y d z d ++++---++=,其中d 任意。
过该三点的平面方程是132x yz ++=,所以所求圆的方程可以为 2226()2(9)3(4)6(1)60,23660x y z d x d y d z d x y z ⎧++-+-+-++=⎨++-=⎩ 其中d 任意。
3.证明曲线24224324,1,(,)1,1t x t t t y t t t t z t t ⎧=⎪++⎪⎪=∈-∞+∞⎨++⎪⎪=⎪++⎩在一球面上,并此球面方程。
证明:因为曲线满足2322222224242422242424()()()111()(1)11tt t x y z t t t t t t t t t t y t t t t++=++++++++=++==++++即22211()24x y z +-+=,所以曲线在一个球面上。
4.适当选取坐标系,求下列轨迹的方程(1)到两定点距离之比等于常数的点的轨迹; (2)到两定点距离之和等于常数的点的轨迹; (3)到定平面和定点等距离的点的轨迹。
空间解析几何中平面与曲面的性质判定
空间解析几何中平面与曲面的性质判定空间解析几何是数学中的一个重要分支,它研究的是空间中的点、直线、平面以及曲面之间的关系。
其中,平面和曲面是解析几何中的两个重要概念,它们在几何学和物理学中都有广泛的应用。
本文将探讨平面与曲面的性质判定方法。
一、平面的性质判定平面是空间中的一种特殊几何体,它具有以下性质:1. 平面上的任意两点都可以用一条直线连接起来。
这是平面的基本性质,也是平面与直线之间密切关系的体现。
2. 平面上的任意三点不共线。
这是平面的唯一性质,也是平面与点之间密切关系的体现。
3. 平面上的任意两条直线要么相交于一点,要么平行。
这是平面与直线之间的重要性质,也是平面与直线之间关系的判定条件。
在实际问题中,我们如何判定一个几何体是否为平面呢?一种常见的方法是通过已知条件进行推导,应用平面的性质进行判定。
另一种方法是使用向量法,即通过向量的线性组合来判定平面。
向量法的基本思想是,如果一个几何体上的所有点都可以由一个固定的点加上一个固定的向量得到,那么这个几何体就是平面。
二、曲面的性质判定曲面是空间中的另一种特殊几何体,它具有以下性质:1. 曲面上的任意一点的切线与曲面相切。
这是曲面的基本性质,也是曲面与切线之间密切关系的体现。
2. 曲面上的任意两点可以通过曲面上的一条曲线连接起来。
这是曲面的唯一性质,也是曲面与曲线之间密切关系的体现。
3. 曲面上的任意一点的法线与曲面垂直。
这是曲面与法线之间的重要性质,也是曲面与法线之间关系的判定条件。
曲面的性质判定方法主要有以下几种:1. 方程法:通过给定的方程来判定曲面。
例如,二次曲面的方程通常为二次多项式方程,可以通过方程的形式来判定曲面。
2. 参数方程法:通过给定的参数方程来判定曲面。
参数方程是一种将曲面上的点的坐标表示为参数的函数形式,通过参数方程的形式来判定曲面。
3. 投影法:通过曲面在不同平面上的投影来判定曲面。
例如,柱面在平面上的投影是一个圆,通过圆的性质来判定柱面。
空间解析几何的曲线与曲面的方程表示
空间解析几何的曲线与曲面的方程表示在空间解析几何中,曲线与曲面的方程表示是非常重要的概念。
通过方程,我们可以描述和研究曲线和曲面的特性、性质以及它们与其他几何对象之间的关系。
本文将介绍空间解析几何中曲线与曲面的方程表示方法。
一、曲线的方程表示在空间中,曲线可以通过参数方程、一般方程和轨迹方程进行表示。
1. 参数方程:曲线的参数方程表示为:x = f(t), y = g(t), z = h(t)其中,x,y和z分别是曲线上某一点的坐标,f(t),g(t)和h(t)是参数方程。
通过改变参数t的取值范围,我们可以得到曲线上的各个点坐标。
2. 一般方程:曲线的一般方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲线上的点(x, y, z)所满足的关系式。
3. 轨迹方程:曲线的轨迹方程表示为:F(x, y, z, k) = 0其中,(x, y, z)是曲线上的点,k是参数。
二、曲面的方程表示在空间中,曲面可以通过隐式方程、一般方程和参数方程进行表示。
1. 隐式方程:曲面的隐式方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲面上的点(x, y, z)所满足的关系式。
2. 一般方程:曲面的一般方程表示为:Ax + By + Cz + D = 0其中,A,B,C和D是常数,(x, y, z)是曲面上的点。
3. 参数方程:曲面的参数方程表示为:x = f(u, v), y = g(u, v), z = h(u, v)其中,(u, v)是参数,f(u, v),g(u, v)和h(u, v)是参数方程。
通过改变参数u和v的取值范围,我们可以得到曲面上的各个点坐标。
总结:通过以上介绍,我们了解了空间解析几何中曲线与曲面的方程表示方法。
曲线可以通过参数方程、一般方程和轨迹方程描述,而曲面可以通过隐式方程、一般方程和参数方程描述。
这些方程可以帮助我们研究曲线与曲面的性质、特性以及它们与其他几何对象之间的关系。
解析几何第三章知识点
第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。
第3节曲面及其方程
一般地 :
F ( x , y ) = 0, F ( y , z ) = 0, F ( x , z ) = 0
在空间都表示一个柱面 .
上面方程中缺少哪个变 量, 就 表示此柱面与哪个坐标 轴平行 .
19
四、二次曲面
曲面方程 :
F ( x, y, z ) = 0
如x + ( y − 1) + z = 1
y
d = x + y =| y1 |
将 z = z1 , y1 = ± x 2 + y 2 代入
F( y1, z1) = 0
9
将 z = z1 , y1 = ± x + y
2
2
得方程 F ±
所以
x + y , z = 0, F ( y , z ) = 0 绕 z 轴旋转曲面方程 旋转曲面方程.
2 2
( 2) a = b = c ,
x2 y2 z2 1 球面 2 + 2 + 2 = a a a
方程可写为 x 2 + y 2 + z 2 = a 2 .
24
(二)抛物面
x2 y2 + = z ( p 与 q 同号) 同号) 2 p 2q
椭圆抛物面 用截痕法讨论: 设 p > 0, q > 0 用截痕法讨论: (1)用坐标面 xoy ( z = 0) 与曲面相截 ) 截得一点, 截得一点,即坐标原点 O ( 0,0,0) 原点也叫椭圆抛物面的顶点 原点也叫椭圆抛物面的顶点. 顶点
2 2 2
二次曲面: 三元二次方程所表示的曲面称之. 二次曲面: 三元二次方程所表示的曲面称之.
相应地平面被称为一次曲面. 相应地平面被称为一次曲面. 一次曲面
第3讲空间解析几何—曲面、曲线及其方程
第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
空间解析几何教学大纲
《空间解析几何》课程教学大纲一课程说明1.课程基本情况课程名称:空间解析几何英文名称:Analytic geometry课程编号:2411207开课专业:数学与应用数学开课学期:第1学期学分/周学时:3/3课程类型:专业基础课2.课程性质(本课程在该专业的地位作用)本课程是数学与应用数学及信息与计算机科学专业的一门专业基础课,是初等数学通向高等数学的桥梁,是高等数学的基石,线性代数,数学分析,微分方程,微分几何,高等几何等课程的学习都离不开空间解析几何的基本知识及研究方法。
空间解析几何是用代数的方法研究几何图形的一门学科,是从初等数学进入高等数学的转折点,是沟通几何形式与数学关系的一座桥梁。
3.本课程的教学目的和任务通过本课程的学习,学生在掌握解析几何的基本概念的基础上,树立起空间观念。
使学生受到几何直观及逻辑推理等方面的训练,扩大知识领域,培养空间想象能力以及运用向量法与坐标法计算几何问题和证明几何问题的能力,并且能用解析方法研究几何问题和对解析表达式给予几何解释,为进一步学习其它课程打下基础;另一方面加深对中学几何理论与方法的理解,从而获得在比较高的观点下处理几何问题的能力,借助解析几何所具有的较强的直观效果提高学生认识事物的能力。
4.本课程与相关课程的关系、教材体系特点及具体要求本课程的教学,要求学生熟练掌握用代数的方法在空间直角坐标系下,研究平面、空间直线、柱面、锥面、旋转曲面和二次曲面等几何图形的性质,能对坐标化方法运用自如,从而达到数与形的统一。
了解二次曲线的一般理论和二次曲面的一般理论。
以培养学生掌握解析几何的基础知识为主,着力培养学生运用解析几何的思想和方法解决实际问题的能力,以及娴熟的矢量代数的计算能力和推理、演绎的逻辑思维能力,为后续课程的学习打下良好的基础。
5.教学时数及课时分配二教材及主要参考书1.李养成,《空间解析几何》,科学出版社。
2.吴光磊、田畴编,《解析几何简明教程》,高等教育出版社。
解析几何第三章习题及解答
第三章 常见曲面习题3.11.证明:如果2220a b c d ++->,那么由方程2222220x y z ax by cz d ++++++=给出的曲面是一球面,求出它的球心坐标和半径。
证明:将方程配方得222222()()()x a y b z c a b c d +++++=++-,由2220a b c d ++->,得到方程表示球心是(,,)a b c ---2.求过三点(3,0,0),(0,2,0),(0,0,1)的圆的方程。
解:空间中的圆可由过三点(3,0,0),(0,2,0),(0,0,1)的一个球面和一个平面的交线表示,设过该三点的球面方程为2220x y z ax by cz d ++++++=,得到930,420,10a d b d c d ++=⎧⎪++=⎨⎪++=⎩球面方程为22294(1)032d dx y z x y d z d ++++---++=,其中d 任意。
过该三点的平面方程是132x yz ++=,所以所求圆的方程可以为 2226()2(9)3(4)6(1)60,23660x y z d x d y d z d x y z ⎧++-+-+-++=⎨++-=⎩ 其中d 任意。
3.证明曲线24224324,1,(,)1,1t x t t t y t t t t z t t ⎧=⎪++⎪⎪=∈-∞+∞⎨++⎪⎪=⎪++⎩在一球面上,并此球面方程。
证明:因为曲线满足2322222224242422242424()()()111()(1)11tt t x y z t t t t t t t t t t y t t t t++=++++++++=++==++++即22211()24x y z +-+=,所以曲线在一个球面上。
4.适当选取坐标系,求下列轨迹的方程(1)到两定点距离之比等于常数的点的轨迹; (2)到两定点距离之和等于常数的点的轨迹; (3)到定平面和定点等距离的点的轨迹。
空间解析几何常见的曲面
o
y
代入得x,y轴上的截距为: x ? ? a ,y ? ? b ; x 在z轴上没有截距.
3 图形的范围
x2 a2
?
y2 b2
?
z2 c2
?
1
z
由方程
x2 a2
?
y2 b2
?1
知,即曲面存在于椭圆柱面
x2 a2
?
y2 b2
?1
之外,从而曲面与z轴无交点,
并且在xoy面的上,下半空间延到无穷远.
o
例如当 A ? 0, B ? 0, C ? 0 时,方程(1)可改写为
x2 a2
?
y2 b2
?
z2 c2
?
1,
其中
1 a2
?
1 A, b2
?
?
B,
1 c2
?
C ,这是单叶双曲面的标准方程 .
例 给定方程
x2 ? y2 ? z2 ? 1?A ? B ? C ? 0?,
,从而椭圆焦点坐标为
? ? ?
y
?
0,
a 2 ? b2
? ?1
?
?
h2 c2
? ?, ?
?? z ? h.
? ?
z
?
h.
消去参数
h
得
? ? ?
a
2
x2 ?
b2
? z2 c2
? 1,
??
?? y ? 0.
二、双叶双曲面
x2 a2
?
y2 b2
?
z2 c2
?
?1
双叶双曲面
特别的a=b 时
x2 a2
?
y2 ? b2
空间解析几何-第3章-常见的曲面2
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面
空间解析几何-第3章 常见的曲面2
单叶双曲面 双叶双曲面
抛物面
椭圆抛物面 双曲抛物面
二次曲面的定义: 三元二次方程所表示的曲面称之为二次曲面. 相应地平面被称为一次曲面. 讨论二次曲面形状的截痕法: 用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌. 以下用截痕法讨论几种特殊的二次曲面.
x2 y 2 h2 2 2 1+ 2 , Cz h: b c 椭圆 a z h.
z
O x y
结论:单叶双曲面可看作由一 个椭圆的变动(大小位置都改 变)而产生,该椭圆在变动中, 保持所在平面与xOy 面平行, 且两对顶点分别在两定双曲线 上滑动.
用平行于坐标面的平面截割
(1)双叶双曲面与x轴、y轴不交,而与 z轴交于(0,0,±c),此为其实顶点. (2)用x=0,y=0代入,得曲线在z轴上的 截距,而在x,y轴上无截距.
z
x
o
y
3 图形范围
x2 y 2 z2 2 1 2 2 a b c
,易知
所以曲面分成两叶,一叶在 z c 的上方,另一叶在 z c 平面的下方,曲面在面的上半空间下半空间延伸到无穷。
z
此时的单叶双曲面是双曲线
y2 z2 1, : b2 c2 x 0
o
b
y
绕虚轴(即 z 轴)旋转形成的 x .
单叶旋转双曲面
例 用一组平行平面 z h ( h 为任意实数)截割单叶双曲面
x2 y 2 z 2 2 2 1 a b 得一族椭圆,求这些椭圆焦点的轨迹. 2 a b c
(0,±b,0)而与z轴无实交点.
上述四点称为单叶双曲面的实顶点, 而与z轴的交点(0,0,±ci) 称为它的两个虚交点. (2)截距:分别用y=0,z=0和x=0,z=0,
第三节 空间曲面及方程
即
( x x0 )2 ( y y0 )2 ( z z0 )2 R
x2+y2+z2=R2
故球面方程为: (x-x0)2+(y-y0)2+(z-z0)2=R2 特别,当M0在原点时,球面方程为: 球面方程的一般式为: x2+y2+z2+Ax+By+Cz+D=0 其特征为: (1) x2, y2, z2系数相同; (2)无 xy , xz, yz项。 例: x2+y2+z2 -2x+4z -4=0 配方得(x-1)2+y2+(z+2)2=32
缺谁,母线平行谁
a
o
b y
y a o
x
x
14
柱面
z
(3) 抛物柱面: y2 =2x
母线平行于z 轴,
o x y z
准线为xoy 面上的抛物线:
(4) 平面: y-2z=0 母线平行于x 轴,
y2 =2x
。
y-2z=0
•
准线为yoz 面上的直线: y-2z=0 。
x
y
o
x2 y2 ——— =1 (1) 椭圆柱面: ——— + a2 b2
M•
任取曲面S上点M(x, y, z), 其点必是由曲线L上点M0(x0, y0, z0) 绕 z 轴转旋转而来. 则有: z=z0; x2+ y2 =y0; 因为f (y0, z0)=0, x
• M0
S
L
y
所以f ( x2+ y2 , z)=0.
6
旋转曲面
2、设yoz面上曲线 L: f (y, z)=0 绕 z 轴旋转一周, 所成曲面的方程为:
第三节 曲面及其方程 (1,2,3) (2,-1,4)
得到, 见书 P316 )
72
内容小结
1. 空间曲面
三元方程 F (x , y , z) = 0
• 球面 (x − x0 )2 + ( y − y0 )2 + (z − z0 )2 = R2
• 旋转曲面
如,
曲线
⎩⎨⎧
f (y, z) x=0
=
0
绕
z
轴的旋转曲面:
• 柱面
f (± x2 + y2 , z) = 0
(2) 不在曲面 S 上的点的坐标不满足此方程,
则 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
两个基本问题 :
F(x, y, z) = 0
z
S
(1) 已知一曲面作为点的几何轨迹时,
o x
y
求曲面方程.
(2) 已知方程时 , 研究它所表示的几何形状
l
的坐标也满足方程 x2 + y2 = R2
沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆
柱面.其上所有点的坐标都满足此方程,故在空间
x2 + y2 = R2 表示圆柱面
62
2
2013/3/1
定义. 平行定直线并沿定曲线 C 移动的直线 l 形成
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
2013/3/1
第三节 曲面及其方程
一、曲面方程的概念
二、旋转曲面 三、柱面 四、二次曲面
51
一、曲面方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 轨迹方程.
解:设轨迹上的动点为 M (x, y, z) , 则 AM = BM , 即
空间解析几何第三章
大 学 数 学(一)
—— 空间解析几何
第十讲 平面曲线的方程 空间曲面的方程 空间曲线的方程
脚本编写:
教案制作:
第一节
一、平面曲线与方程:
平面曲线的方程
定义:当平面上取定了标架之后, 定义:当平面上取定了标架之后,如果一个方程与一 条曲线有着关系: 条曲线有着关系: (1)满足方程的(x,y)必是曲线上某一点的坐标; )满足方程的 必是曲线上某一点的坐标; 必是曲线上某一点的坐标 (2)曲线上任何一点的坐标 满足这个方程; )曲线上任何一点的坐标(x,y)满足这个方程; 满足这个方程 则这个方程称为这条曲线的方程, 则这个方程称为这条曲线的方程,这条曲线称为 方程的图形。 方程的图形。 y 曲线的方程常表示为: 曲线的方程常表示为: xy=2 F(x,y)=0 或 y=f(x) o x
c
o
x
y
圆心在(1,2, c ),半径为 1 + c
的增大而增大. 图形上不封顶,下封底. 半径随c 的增大而增大 图形上不封顶,下封底.
以上几例表明研究空间曲面有两个基本问题: 以上几例表明研究空间曲面有两个基本问题: 两个基本问题 (1)求曲面方程. 求曲面方程.
(2)已知曲面方程,研究曲面形状. 已知曲面方程,研究曲面形状. 曲面方程
xoz 面上的投影曲线: 面上的投影曲线 投影曲线:
R( y , z ) = 0 x = 0
T ( x , z ) = 0 y = 0
x2 + y2 + z2 = 1 在坐标面上的投影. 例4 求曲线 1 在坐标面上的投影. z = 2
)消去变量z后得 解 (1)消去变量 后得 3 2 2 x +y = , 4 在xOy面上的投影为 面上的投影为
第三节 曲面空间曲线的方程
根据题意有 | MA || MB |,
x 12 y 22 z 32
x 2 y 1 z 4 ,
2 2 2
化简得所求方程 2 x 6 y 2 z 7 0.
2 2 z ( x 1 ) ( y 2 ) 1的图形是怎样的? 例4 方程
解
设 M ( x , y , z ) 是球面上任一点,
根据题意有
| MM0 | R
2 2 2
x x0 2 y y0 2 z z0 2 R
所求方程为 x x0 y y0 z z0 R 2 特殊地:球心在原点时方程为 x y z R
2 2
2
2
1 , 2
2
2 4 116 2 . 所求方程为 x y 1 z 3 3 9
例 3 已知 A(1,2,3) ,B( 2,1,4) ,求线段AB 的 垂直平分面的方程.
解
设 M ( x , y , z ) 是所求平面上任一点,
f y,
x 2 z 2 0.
例 5 直线 L绕另一条与 L相交的直线旋转一周, 所得旋转曲面叫圆锥面.两直线的交点叫圆锥面 的顶点,两直线的夹角 0 叫圆锥面的 2 半顶角.试建立顶点在坐标原点,旋转轴为 z 轴, 半顶角为 的圆锥面方程. z
(1 )曲面 S 上任一点的坐标都满足方程; (2 )不在曲面 S 上的点的坐标都不满足方程;
那么,方程 F ( x , y , z ) 0 就叫做曲面S 的方程, 而曲面 S 就叫做方程的图形.
以下给出几例常见的曲面.
R 例 1 建立球心在点M 0 ( x 0 , y0 , z 0 ) 、半径为 的球面方程.
解析几何全册课件
e
上一页
下一页
返回
例5 证明四面体对边中点的连线交于一点,且互相平分.
A
B
C
D
E
F
P1
e1
e2
e3
.
,
,
3
2
1
叫做空间向量的基底
这时
e
e
e
.
,
,
,
.
,
,
,
,
,
,
,
,
3
2
1
1
3
2
1
3
2
1
3
2
1
关系式
线性表示的
,
,
用
先求
取不共面的三向量
就可以了
三点重合
下只需证
两组对边中点分别为
其余
它的中点为
§1.5 标架与坐标
§1.7 两向量的数量积
§1.9 三向量的混合积
§1.8 两向量的向量积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.3 空间曲线的方程
第三章 平面与空间直线
§3.1 平面的方程
§3.3 两平面的相关位置
1
2
1
2
2
1
1
2
1
2
1
关的向量叫做线性无关
性相
叫做线性相关,不是线
个向量
那么
(
=
使得
个数
在不全为零的
,如果存
个向量
对于
定义
n
n
n
n
n
a
a
a
n
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/1/4
直纹面的应用
2017/1/4
室外探索乐园——广东科学中心
解法二:
设过点( 2,3, - 4)的直线方程为 x 2 lt y 3 mt z -4 nt l2 m2 n2 2 2 1 代入曲线方程得( )t (l m n)t 0① 4 9 16 3 2 由命题3.6.( 1 1)知过点( 2,3, - 4)有且仅有两条直母线 ,故①为一关于 t的恒等式 l2 m2 n2 有 0 4 9 16 2 1 和l m n 0 3 2 2x z 0 x20 解得l : m : n 1 : 0 ( : - 2)或0 : 3: (-4) , 从而母线方程为 { 与{ y 3 0 4 y 3z 0
平面是直纹面
二次柱面和二次锥面都是直纹面。
其它的二次曲面中,只有单叶双曲面和双曲抛 物面是直纹面。
2017/1/4
单叶双曲面是直纹面
x2 y2 z2 2 2 1 2 a b c
含两个直母线系 直纹面在建筑学上有意义 例如,储水塔、电视塔等 建筑都有用这种结构的。
2017/1/4
空间解析几何
第3章 常见的曲面3
2017/1/4
本章主要内容
1 2 3 4 5 6 7 8 9 柱面 锥面 旋转曲面 曲线与曲面的参数方程 椭球面 双曲面(单叶双曲面,双叶双曲面) 抛物面(椭圆抛物面,双曲抛物面) 二次直纹面 作图
五种典型的 二次曲面
§3.6 直纹面
由一簇直线构成的曲面叫直纹面,其中的直线 叫直纹面的母线。
双曲抛物面(马鞍面)是直纹面
x2 y2 2 z 2 a b
含两个直母线系2017/1/4 Nhomakorabea双曲抛物面是直纹面
x2 y2 双曲抛物面方程 2 2 2z a b
x y x y 即( )( ) 2z a b a b
z
x y ( ) z x y a b 用平面 2截曲面,截线为 a b x y 2 a b
单叶双曲面是直纹面(代数角度)
x2 y 2 z 2 单页双曲面方程 2 2 2 1 a b c x z x z y y 即( )( ) (1 )(1 ) a c a c b b
y x z ( ) ( 1 ) x z y a c b 用平面 ( ) (1 )截曲面,截线为 a c b ( x z ) (1 y ) b a c y x z ( ) ( 1 ) x z x y a c b 用平面 ( ) ( )截曲面,截线为 a c a b ( x z ) (1 y ) b a c
单叶双曲面的直母线性质
对单叶双曲面上的任意一点,两族直母线中各有唯
一一条直母线通过该点
异族的任意两条直母线共面 同族的任意两条直母线是异面直线 两族直母线无公共直线
单叶双曲面的直母线性质
对单叶双曲面上的任意一点,两族直 母线中各有唯一一条直母线通过该点 异族的任意两条直母线共面 同族的任意两条直母线是 异面直线 两族直母线无公共直线
o
x
y
用一族平行平面截
x y ( ) z x y a b 用平面 2截曲面,截线为 a b x y 2 a b
双曲抛物面的直母线性质
对双曲抛物面上的任意一点,两族直母线中各
有唯一一条直母线通过该点
异族的任意两条直母线必相交 同族的任意两条直母线是异面直线 两族直母线无公共直线 同族的所有直母线必平行于同一平面 (用平行平面得到的截痕)