石英晶体振荡电路
9.4 石英晶体正弦波振荡电路

9.4 石英晶体正弦波振荡电路
2020/6/4
1
石英晶体正弦波振荡电路
1. 石英晶体的特性 (1)结构与压电特性
① 结构与符号 ② 压电特性
当外加交变电场的频率与晶片的固有频率相等时产 生共振,称之为压电振荡,相应的频率称为谐振频率。
(2)等效电路与频率特性 ① 等效电路
很高
2020/6/4
当频率为1MHz时,LC并联 回路等效为感性。符合三点式振荡电路的组成原则,即 满足相位条件,有可能振荡。
(2)是电感三点式并联型石英晶体振荡电路。电路 的振荡频率即为石英晶体的固有频率。
2020/6/4
7
2
石英晶体正弦波振荡电路
② 石英晶体有两个谐振频率:
非
呈纯阻性
常
接
近
当
时,呈电感性,曲线很陡,利于稳频。
当
时,晶体电抗近似为零,可作为小电阻使用。
2020/6/4
3
石英晶体正弦波振荡电路
2. 石英晶体振荡电路 (1)并联型石英晶体振荡电路
并联型石英晶体振荡电 路是利用石英晶体作为一个 电感元件来组成 选频网络, 晶体工作在 fs 与 fp 之间。晶 体与C1、C2构成电容三点式 振荡电路。
振荡频率约等于石英晶体的并联谐振频率 fp2)串联型石英晶体振荡电路
串联型石英晶体振荡
电路是利用石英晶体串联
谐振时阻抗最小的特性组
成振荡电路,晶体工作在
fs 处,即电路的谐振频率 为 fs。
电阻Rf 的大小将影响正反馈强弱,若 Rf太大,则 正反馈过小,电路的幅值条件可能不满足;若Rf 太小, 则正反馈过大,可能导致振荡输出波形明显失真。
2020/6/4
晶体Crystal振荡电路原理、分类及设计

晶体Crystal振荡电路原理、分类及设计目录1.文档简介 (3)2.晶体振荡电路的工作原理 (3)2.1石英晶体特性 (3)2.2并联型晶体振荡电路 (4)2.3串联型晶体振荡电路 (6)3.时钟的重要参数 (6)4.晶体振荡器种类 (11)4.1普通晶体振荡器 (11)4.2温度补偿晶体振荡器 (12)4.3恒温晶体振荡器 (14)5.CRYSTAL(晶体)电路设计 (14)5.1晶体电路设计器件说明及选择 (15)5.2PCB布局设计 (16)6.晶体常见问题举例 (16)6.1不起振问题分析与解决 (16)6.2频偏过大 (17)7.总结 (17)附录一相关公式推导一 (18)附录二相关公式推导二 (20)1.文档简介本文主要介绍了晶体振荡电路的工作原理,时钟的重要参数,晶体振荡器的种类,晶体电路设计及晶体常见问题的举例。
2.晶体振荡电路的工作原理晶体(石英晶体)振荡电路主要由主振电路和石英谐振器组成,主振电路将直流能量转换成交流能量,振荡器频率主要取决于石英晶体谐振器。
振荡电路一般采用反馈型电路,按晶体在振荡电路中的作用,又可以分为串联型晶体振荡电路和并联型晶体振荡电路。
本章首先介绍石英晶体的特性,然后分别介绍并联型晶体振荡电路和串联型晶体振荡电路的结构及工作原理。
2.1石英晶体特性晶体(石英晶体)之所以能作为振荡器产生时钟,是基于它的压电效应:所谓的压电效应是指电和力的相互转化,即,如果在晶体的两端施加压缩或拉伸的力,晶体的两端会产生电压信号;同样的,在晶体的两端施加电压信号,晶体会产生形变。
而且这种转化在某特定的频率上效率最高,此频率(由晶片的尺寸和形状决定)即为晶体的谐振频率。
实际应用的晶片是由石英晶体按一定的方向切割而成的,晶片的形状可以各种各样,如方形、矩形或圆形等。
由于晶体的物理性质存在各向差异性,相同的晶体按不同晶格方向切下的晶片,会产生不同的物理特性。
因此,晶体的切割方法是非常重要的,对石英晶体来说,有AT/BT/DT/GT/IT/RT/FC/SC等不同的切法,要根据具体的需求选择相应的切法切割晶片,其中最常用的有AT切和SC切。
石英晶体振荡器与外围电路关系

石英晶体振荡器与外围电路关系一、三端式LC 振荡器三端式LC 振荡电路是经常被采用的,其工作频率约在几MHz 到几百MHz 的范围,频率稳定度也比变压器耦合振荡电路高一些,约为10–3~10–4量级,采取一些稳频措施后,还可以再提高一点。
三端式LC 振荡电路以分为电感三端式和电容三端式电容三端式又分为串联型电容三端式和并联型电容三端式(也有叫三点式)。
并联型电容三端式:电容反馈式振荡电路,如图1a 。
振荡频率)(212121210C C C C L LCf +≈=ππ(公式1)反馈系数21C C U FUf≈=∙∙∙(公式2)集电极等效负载:2//`∙=FR RR iL C(公式3)ab图1在这个电路中若要提高电容反馈式振荡电路的振荡频率,势必要减小C 1和C2的电容量和L 的电感量。
实际上不C1和C2的电容量减小到一定程度时,晶体管的极间电容和电路中的杂散电容将纳入C1和C2中,从而影响振荡频率。
这些电容等效为放大电路的输入电容Ci 和输出电容C 。
,如图1b 中所标注。
电路的优点:1. 电容反馈三端电路的优点是振荡波形好。
2. 电路的频率稳定度较高,适当加大回路的电容量,就可以减小不稳定因素对振荡频率的影响。
3. 电容三端电路的工作频率可以做得较高,可直接利用振 荡管的输出、输入电容作为回路的振荡电容。
它的工作频率可做到几十MHz,采用共基放大电路可做到几百MHz 的甚高频波段范围。
电路的缺点:调C 1或C 2来改变振荡频率时,反馈系数也将改变。
改进型电容反馈式振荡电路,如图2:图2在电感支路串联一个小容量电容C ,而且C <<C1,C <<C2,这样CC C C 111121≈++总电容约为C ,因面电路的振荡频率为:LCf π210≈(公式4)二、石英晶体振荡器1 、石英晶体的压电特性石英晶体所以能成为电谐振器,是利用了它所特有的正、反两种压电效应。
所谓正压电效应,就是当沿晶体的电轴或机械轴施以张力或压力时,就在垂直于电轴的两面上产生正、负电荷,呈现出电压。
石英晶体振荡电路石英谐振器

6.8 k
C1 120 p 200 (a )
C4为微调电容, 用来改变振荡 频率,不过频 率调节范围是 很小的。
37
石英谐振器
2.串联型晶体振荡电路
电路结构
等效电路
注:晶体相当于短路元件,常串接在正反馈支路中。
29
石英谐振器
二、石英晶体振荡电路
石英晶体在电路中可以起三种作用:
一是充当等效电感,晶体工作在接近于并联谐振频率 fp
的狭窄的感性区域内, 这类振荡器称为并联谐振型石英晶体 振荡器;
二是石英晶体充当短路元件,并将它串接在反馈支路内, 用以控制反馈系数,它工作在石英晶体的串联谐振频率fq上, 称为串联谐振型石英晶体振荡器; 三是充当等效电容,使用较少。
12
石英谐振器
(4)恒温控制式晶体谐振器(OCXO):将晶体和振荡电路置 于恒温槽中,以消除环境温度变化对频率的影响。OCXO频 率精度是10-7~10-8量级,对某些特殊应用甚至达到更高。主 要用于移动通信基地站、国防、导航、频率计数器、频谱和 网络分析仪等设备、仪表中。
13
石英谐振器
目前发展中的还有数字补偿 式晶体振荡器(DCXO)微机补偿
电 感 三点式
电 容 三点式 石英晶 体
10-2~10-4
10-3~10-4 10-5~10-11
差
好 好
几千赫~几十兆 赫
几兆赫~几百兆 赫 几百千赫~一百 兆赫
可在较宽范围内调节频率
只能在小范围内调节频率 (适用于固定频率) 只能在极小范围内微调频 率(适用于固定频率)
易起振,输出振 幅大
串联、并联石英晶体振荡电路中石英晶体的作用

串联、并联石英晶体振荡电路中石英晶体的作用
1、串联、并联石英晶体振荡电路中石英晶体的作用
石英晶体振荡电路是一种多种电子器件的组合,它可以提供定定的、可靠的频率。
石英晶体振荡电路可用于产生、调节、检测和锁定各种频率,如电视机的调谐器和声音的收音机等。
石英晶体和振荡电路中的其他电子器件是互相联系的,石英晶体的作用在于传输信号,控制振荡电路的频率。
串联石英晶体振荡电路是在振荡电路中使用的一种类型。
串联石英晶体振荡电路由电阻、电容、石英晶体和放大器构成,石英晶体在此种类型的振荡电路中填充放大器的输出电压,从而控制频率。
石英晶体振荡电路的频率取决于石英晶体的频率,当石英晶体的频率发生变化时,振荡电路的频率也会发生变化。
并联石英晶体振荡电路也是一种常用的类型,它由电阻、电容、双石英晶体以及一个放大器构成。
由于双石英晶体是并联的,因此对频率的控制是更为精确的。
并联石英晶体振荡电路的工作原理是,石英晶体向放大器输出信号,放大器将这些信号放大,从而产生振荡,使频率变得稳定。
综上所述,在串联、并联石英晶体振荡电路中,石英晶体的作用是传输信号,控制振荡电路的频率。
另外,串联石英晶体振荡电路的频率取决于石英晶体的频率,而并联石英晶体振荡电路的频率则由双石英晶体共同决定。
4-2LC、RC和石英晶体振荡电路

4-2 LC 、RC 和石英晶体振荡电路课 题:集成运算放大器的基本电路教学目的、要求:1、掌握三种选频振荡电路的工作频率 2、三种振荡电路的工作特点 教学重点、难点:1、LC 、RC 、石英晶体的谐振频率(重点)2、LC 、RC 、石英晶体振荡电路特点(难点)授 课 方 法:多媒体课件讲授,提纲及重点板书。
授 课 提 纲:教 学 内 容: 组织教学准备教学材料,清点学生人数。
(课前2分钟) 复习旧课正弦波振荡电路的起振条件(2分钟) 引入新课根据选用选频网络的不同,我们把正弦波振荡器分为LC 、RC 、石英晶体振荡电路。
这三种不同的选频网络所选择的频率也不一样。
(3分钟) 进入新课第四章 正弦波振荡电路4-2 LC 、RC 和石英晶体振荡电路【板书】 一、选频放大器介绍【板书】(10分钟)图1(a )为普通共射放大器电路图,若用LC 并联谐振回路来替代集电极负载电阻R3后,就构成了选频放大器,或称调谐放大器。
如图(b)所示,LC 并联谐振回路的阻抗特性如图(c )所示。
图1 选频网络既使选频放大器输入信号的频率很多,在它的输出端得到的输出信号却始终是频率等于f o 的正弦波信号。
由于LC 回路具有选频特性,故常称它为选频网络。
二、LC 振荡电路【板书】(15分钟)LC 振荡电路由放大器、LC 选频网络和反馈网络三部分组成。
按反馈方式可分为变压器反馈式振荡电路和三点式振荡电路两大类。
1、变压器反馈式LC 振荡电路【标题板书+内容多媒体】图2 变压器反馈式LC 振荡器优点:便于实现阻抗匹配,效率高、容易起振;调节频率方便,只要将谐振电容换成一个可变电容器,就可以实现调节频率的要求。
2、三点式LC 振荡电路【标题板书+内容多媒体】 ⑴电感三点式振荡电路图3 电感三点式LC 振荡电路(a)图为电感三点式振荡电路,又称哈特莱振荡电路。
若用瞬时极性法不易判其反馈极性。
现画出其交流通路,如(b)图所示,可见电感的三个端点分别接到晶体管的三个电极上(1端→集电极C ,2端→发射极E ,3端→基极B ),象这样:发射极两旁为电感,集电极—基极间为电容,称电感三点式振荡电路。
3225石英晶体振荡器的阻抗范围

文章标题:探究石英晶体振荡器的阻抗范围在现代科技领域中,石英晶体振荡器扮演着至关重要的角色。
它不仅被广泛应用于通信设备、计算机、电子钟表等领域,而且也深刻影响了人类社会的发展进程。
石英晶体振荡器之所以能够如此重要,与其阻抗范围息息相关。
本文将从深度和广度两个方面来探讨石英晶体振荡器的阻抗范围,以便读者能够更全面地理解这一主题。
一、石英晶体振荡器的基本原理要深入理解石英晶体振荡器的阻抗范围,首先需要对其基本原理有所了解。
石英晶体具有压电效应,即受到外界压力或拉伸时会产生电荷。
这一特性使得石英晶体可以用作振荡器的振动元件。
当电压施加于石英晶体上时,它会发生机械振动,产生特定的频率。
而这一频率与石英晶体的物理尺寸和机械特性有关,因此可以通过控制其尺寸和形状来实现不同的振荡频率。
二、阻抗范围对石英晶体振荡器的影响石英晶体振荡器的阻抗范围直接关系到其在电路中的应用。
阻抗范围广泛意味着石英晶体振荡器可以适用于不同的电路和系统,而阻抗范围受限则可能导致其应用范围收缩。
一般来说,石英晶体振荡器的阻抗范围包括了电阻、电感和电容等参数的范围变化。
在实际应用中,需要根据电路的要求选择具有适当阻抗范围的石英晶体振荡器,以确保电路的正常工作。
三、石英晶体振荡器的阻抗范围评估针对石英晶体振荡器的阻抗范围进行全面评估,需要考虑多个方面的因素。
首先是石英晶体振荡器的工作频率范围,它直接决定了石英晶体的振荡频率范围。
其次是石英晶体振荡器的稳定性和精度,这些参数与其阻抗范围密切相关,因为稳定性和精度的要求会对阻抗参数提出更高的要求。
四、石英晶体振荡器的实际应用石英晶体振荡器在通信设备、计算机、电子钟表等领域有着广泛的应用。
在这些应用中,石英晶体振荡器的阻抗范围会受到严格的要求。
在通信设备中,要求石英晶体振荡器具有较宽的阻抗范围,以适应不同的工作环境和电路条件。
在电子钟表中,对石英晶体振荡器的稳定性和精度要求较高,这也对其阻抗范围提出了更高的要求。
石英晶体Crystal振荡电路41页PPT

石英晶体Crystal振荡电路
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。—— 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
石英晶体振荡电路

第6章 波形发生器
图6-18 串联型晶体振荡电路
晶体接在VT1、VT2组成的正反馈电路中。当振荡频率 等于晶体的串联谐振频率fs时,石英谐振器的阻抗最小,且 为纯阻性,因此反馈最强,且相移为0,电路满足自激振荡
条件,振荡频率为fs。
6
6.4 石英晶体振荡电路
第6章 波形发生器
1
6.4 石英晶体振荡电路
第6章 波形发生器
6 .4.2 石英晶体的基本特性与等效电路
1.石英晶体的压电效应
石英晶体所以能做振荡电路是基于它的压电效应,从 物理学中知道,若在晶片的两个极板间加一电场,会使晶 体产生机械变形;反之,若在极板间施加机械力,又会在 相应的方向上产生电场,这种现象称为压电效应。如在极 板间所加的是交变电压,就会产生机械变形振动,同时机 械变形振动又会产生交变电场。一般来说,这种机械振动 的振幅是比较小的,其振动频率则是很稳定的。但当外加 交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等 时,机械振动的幅度将急剧增加,这种现象称为压电谐振, 因此石英晶体又称石英晶体谐振器。
7
6.4 石英晶体振荡电路
6 .4.1 正弦波振荡电路的频率稳定问题
第6章 波形发生器
振荡频率稳定度,是指振荡器在一定时间间隔(例如1 天、1周、1个月等等)和温度下,振荡频率的相对变化量。 此频率相对变化量可用下式表示
Sf
f
f0fLeabharlann f0 f0式中,Sf为振荡频率稳定度,f0为振荡器标称频率, f是经过一定时间间隔后振荡器的实际振荡频率。Sf值 越小,振荡器的振荡频率稳定度就越高。
2
6.4 石英晶体振荡电路
2.石英晶体的符号和 等效电路
高频振荡器实验-石英晶体振荡器

实
调整RW1电位器,使IC=2mA
验
调整时采用间接测量法。 :即用直流电压表测量晶体管发射极对
数
地电压,并将测量结果记录于表中。
据
BG1
Re=1K
记
Vb
Ve
Vce
Ic计算值
录
四、实验应会技能
实验内容二: 振荡器的频率与幅度调测
实验准备
SW1“右”(LC振荡) SW2“左”(RL=110K)
SW3“左”(C2=330Pf)
fo 1
2 LC
三、实验应知知识
6与.3考毕串兹联电型路相改进电容三端式振荡器(克拉泼电路)
比,电在路电组感成L如上图串示:
联特一点个是电在容考。毕但兹电路的基础上,
它用有一以电下容特C点3与:原电路中的电感L相 1可串、不。振影功荡响用频反主率馈要改系是变以增加回路总电 数容。和减小管子与回路间的耦合来
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理
-
•
Vo
正反馈网络
•
Vf
-
-
-
•
Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。
晶体振荡器电路原理

石英晶振的频域电抗特性
其中Fs的是当电抗Z=0时的串联谐频率(译注:它是Lm、Cm和Rm 支路的谐振频率),其表达式如下:
Fa是当电抗Z趋于无穷大时的并联谐振频率(译注:它是整个等 效电路的谐振频率),使用等式(1),其表达式如下:
在Fs到Fa的区域即通常所谓的:“并联谐振区”(图2中的阴 影部分),在这一区域晶振工作在并联谐振状态(译注:该区 域就是晶振的正常工作区域,Fa-Fs就是晶振的带宽。带宽 越窄,晶振品质因素越高,振荡频率越稳定)。在此区域晶 振呈电感特性,从而带来了相当于180 °的相移。其频率 FP(或者叫FL:负载频率)表达式如下:
使用表达式(2)、(3)和(4),我们可以计算出该晶振的Fs、Fa 及FP:
Fs = 7988768Hz,Fa = 8008102Hz
如果该晶振的CL为10pF,则其振荡频率为: FP = 7995695Hz。
要使其达到准确的标称振荡频率8MHz,CL应该为4.02pF
2. 振荡器原理
振荡器由一个放大器和反馈网络组成,反馈网络起到频率选择的作 用。图3通过一个框图来说明振荡器的基本原理。
4.1 反馈电阻RF 4.2 负载电容CL 4.3 振荡器的增益裕量 4.4 驱动级别DL外部电阻RExt计算
4.4.1 驱动级别DL计算 4.4.2 另一个驱动级别测量方法 4.4.3 外部电阻RExt计算 4.5 启动时间 4.6 晶振的牵引度(Pullability)
1. 石英晶振的特性及模型
–CL的表达式如下:
CL1和CL2计算实例: 例如,如果CL =15pF,并假定Cs = 5pF,则有:
即:CL1 = CL2 = 20pF
4.3 振荡器的增益裕量 增益裕量是最重要的参数,它决定振荡器是否能够正常起振, 其表达式如下:
单片机的晶振电路

单片机的晶振电路
单片机的晶振电路是单片机系统中非常重要的组成部分之一。
晶振电路一般由晶体振荡器、电容和电阻等元件组成,主要用于提供单片机系统的时钟信号,控制系统的时序和节拍,保证系统的稳定和可靠运行。
晶振电路的工作原理是利用晶体振荡器将电能转化为机械能,使晶体振荡器产生固定频率的振荡信号,然后将信号输入到单片机系统的时钟输入端,从而控制系统的运行。
晶体振荡器通常由石英晶体和电路元件组成,其精度和稳定性非常高,是单片机系统中最常用的时钟源。
晶振电路的设计需要考虑多种因素,包括时钟频率、电路稳定性、电源噪声等,通常需要根据系统的要求进行调试和优化。
同时,还需要注意晶振电路的布局和电路连接,以避免信号干扰和电磁辐射等问题。
总之,晶振电路是单片机系统中非常重要的组成部分,其设计和优化对系统的稳定性和可靠性具有重要意义。
在实际应用中,需要根据实际需求和技术要求进行优化和改进,以满足不同场合的需求。
- 1 -。
石英晶体LC振荡电路

二、 RC正弦波振荡电路
3.振荡电路工作原理
在右图中,集成运放组成一个同相放大器, 它的输出电压uo作为RC串并联网络的输入电 压,而将RC串并联网络的输出电压作为放大 器的输入电压,当f=f0时,RC串并联网络的相 位移为零,放大器是同相放大器,电路的总 相位移是零,满足相位平衡条件, 而对于其他 频率的信号,RC串并联网络的相位移不为零, 不满足相位平衡条件。 由于RC串并联网络在 f=f0 时的传输系数F=1/3,因此要求起振时, 应使 Au > 3,即:
f
i
f
i
f
i
一、振荡电路
3.电路的组成及振荡的建立过程
组成:放大电路、选频网络、正反馈网络和稳幅环节
振荡的建立过程
一、振荡电路
4.判断电路能否产生振荡的分析方法
(1)检查电路是否满足四个组成部分; (2)检查放大电路是否正常工作; (3)将电路在放大器输入端断开,利用瞬时极性法判 断电路是否满足相位平衡条件;
三、LC正弦波振荡电路
(三)三点式LC振荡电路
三点式LC振荡电路有电感三点式振荡电路、电容三点式振荡电路,仍然由 LC并联谐振电路构成选频网络,中间端的瞬时电位一定在首、尾端电位之间。 如图所示。 三点的相位关系是: A. 若中间点交流接地,则首端与尾端相位相反。 B. 若首端或尾端交流接地,则其他两端相位相同。
(4)分析是否满足振荡产生的幅度条件。 一般 略大于1。
AF
应
二、 RC正弦波振荡电路
1.电路组成 选频网络和正反馈网络是RC串并 联网络(由R2和C2并联后与R1和C1 串联组成); 放大电路由集成运放构成的同相 比例放大电路组成; 在实际应用中主要采用非线性元 件作为放大电路的负反馈元件,以实 现外稳幅。比如,R3可采用负温度 系数的热敏元件。
石英晶体振荡器

⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
石英晶体振荡电路

石英晶体振荡电路石英晶体谐振器, 简称石英晶体, 具有非常稳定的固有频率。
对于振荡频率的稳定性要求高的电路, 应选用石英晶体作选频网络。
一、石英晶体的特点将二氧化硅(SiO2)结晶体按一定的方向切割成很薄的晶片, 再将晶片两个对应的表面抛光和涂敷银层, 并作为两个极引出管脚, 加以封装, 就构成石英晶体谐振器。
其结构示意图和符号如右图所示。
1.压电效应和压电振荡在石英晶体两个管脚加交变电场时, 它将会产有利于一定频率的机械变形, 而这种机械振动又会产生交变电场, 上述物理现象称为压电效应。
一般情况下, 无论是机械振动的振幅, 还是交变电场的振幅都非常小。
但是, 当交变电场的频率为某一特定值时, 振幅骤然增大, 产生共振, 称之为压电振荡。
这一特定频率就是石英晶体的固有频率, 也称谐振频率。
2.石英晶体的等效电路和振荡频率石英晶体的等效电路如下图(a)所示。
当石英晶体不振动时, 可等效为一个平板电容C0, 称为静态电容;其值决定于晶片的几何尺寸和电极面积, 一般约为几到几十皮法。
当晶片产生振动时, 机械振动的惯性等效为电感L, 其值为几毫亨。
晶片的弹性等效为电容C, 其值仅为0.01到0.1pF, 因此, C<<C0。
晶片的磨擦损耗等效为电阻R, 其值约为100Ω, 理想情况下R=0。
当等效电路中的L、C、R支路产生串联谐振时, 该支路呈纯阻性, 等效电阻为R, 谐振频率谐振频率下整个网络的电抗等于R并联C0的容抗, 因R<<ω0C0, 故可近似认为石英晶体也呈纯阻性, 等效电阻为R。
当f<fs时, C0和C电抗较大, 起主导作用, 石英晶体呈容性。
当f>fs 时, L、C、R支路呈感性, 将与C0产生并联谐振, 石英晶体又呈纯阻性, 谐振频率石英晶体基础知识1、石英晶体的应用:a、石英钟 b、温度计 c、压力指示器(频率与应力)d、加速度计2、晶体的自然面及解理面平行于原子面3、石英的机械、电气、化学和温度等综合性能,都满足需要电气通讯领域。
石英晶体稳频的多谐振荡器

u2/3V 0 ttu 08.1 多谐振荡器本次重点内容:1.多谐振荡器的工作原理。
2.周期的计算方法。
教学过程一、 多谐振荡器特点1. 多谐振荡器没有稳定状态, 只有两个暂稳态。
2. 通过电容的充电和放电, 使两个暂稳态相互交替, 从而产生自激振荡, 无需外触发。
3.输出周期性的矩形脉冲信号, 由于含有丰富的谐波分量, 故称作多谐振荡器。
二、电路组成电路如图8.1 (a) 所示 , 定时元件除电容 C 之外 , 还有两个电阻 R1 和 R2 将高、低电平触发端 ( ⑥、②脚 ) 短接后连接到 C 与 R2 的连接处 , 将放电端 ( ⑦脚 ) 接到 R1与R2的连接处图8.1 (a) 电路组成 (b) 工作波形三、工作原理接通电源瞬间 t =to 时 , 电容 C 来不及充电 ,u c 为低电平 , 此时 ,555 定时器内 R =0,S=1, 触发器置 1, 即 Q =1, 输出u o 为高电平。
同时由于Q =0, 放电管 V 截止 , 电容 C 开始充电 , 电路进 入暂稳态。
一般多谐振荡器的工作过程可分为以下四个阶段 ( 见图 (b)):(1) 暂稳态 I(O ~t l): 电容 C 充电 , 充电回路为 V DD → R1 → R2 → C →地 ,充电时间常数为 为τ1=(R1+R2)C, 电容 C 上的电压 u c 随时间 t 按指数规律上升 , 此阶段内输出电压 uo 稳定在高电平。
(2) 自动翻转 I(t =tl): 当电容上的电压 uc 上升到了32V DD 时 , 由于 555 定时器内 S=0,R=1, 使触发器状态Q 由 1 变为 0, Q 由0变成 1, 输出电压 uo 由高电平跳变为低电平 , 电容 C 中止充电。
(3) 暂稳态 Ⅱ (t1~t2): 由于此刻Q ==1, 因此放电管 V 饱和导通 , 电容 C 放电 , 放电回路为 C → R2 →放电管 V →地 , 放电时间常数τ2=R 2C( 忽略 V 管的饱和电阻 ), 电容电压 u c 按指数规律下降 , 同时使输出维持在低电平上。
石英晶振原理

石英晶体谐振器From:欧阳联铂石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
一、石英晶体振荡器的基本原理1、石英晶体振荡器的结构石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的.为了防止Ag 电极被氧化,一般在封装时充入N2。
下图是一种金属外壳封装的石英晶体结构示意图。
图12、压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应,如图2 所示。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC 回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
图23、符号和等效电路石英晶体谐振器的符号和等效电路如图3 所示。
当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF 到几十PF。
当晶体振荡时,机械振动的惯性可用电感L 来等效。
一般L 的值为几十mH 到几百mH。
晶片的弹性可用电容C 来等效,C 的值很小,一般只有0.0002~0.1pF。
晶片振动时因摩擦而造成的损耗用R 来等效(与晶片表面光滑度成反比,粗糙平整度影响R 值,它决定了晶振80%的品质),它的数值约为100Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石英晶体振荡电路石英晶体谐振器, 简称石英晶体, 具有非常稳定的固有频率。
对于振荡频率的稳定性要求高的电路, 应选用石英晶体作选频网络。
一、石英晶体的特点)结晶体按一将二氧化硅(SiO2定的方向切割成很薄的晶片, 再将晶片两个对应的表面抛光和涂敷银层,并作为两个极引出管脚, 加以封装,就构成石英晶体谐振器。
其结构示意图和符号如右图所示。
1.压电效应和压电振荡在石英晶体两个管脚加交变电场时, 它将会产有利于一定频率的机械变形, 而这种机械振动又会产生交变电场, 上述物理现象称为压电效应。
一般情况下, 无论是机械振动的振幅, 还是交变电场的振幅都非常小。
但是, 当交变电场的频率为某一特定值时, 振幅骤然增大, 产生共振, 称之为压电振荡。
这一特定频率就是石英晶体的固有频率, 也称谐振频率。
2.石英晶体的等效电路和振荡频率石英晶体的等效电路如下图(a)所示。
当石英晶体不振动时, 可等效为一个平板电容C0, 称为静态电容;其值决定于晶片的几何尺寸和电极面积, 一般约为几到几十皮法。
当晶片产生振动时, 机械振动的惯性等效为电感L, 其值为几毫亨。
晶片的弹性等效为电容C, 其值仅为0.01到0.1pF, 因此, C<<C0。
晶片的磨擦损耗等效为电阻R, 其值约为100Ω, 理想情况下R=0。
当等效电路中的L、C、R支路产生串联谐振时, 该支路呈纯阻性, 等效电阻为R, 谐振频率谐振频率下整个网络的电抗等于R并联C0的容抗, 因R<<ω0C0, 故可近似认为石英晶体也呈纯阻性, 等效电阻为R。
当f<f s时, C0和C电抗较大, 起主导作用, 石英晶体呈容性。
当f>f s时, L、C、R支路呈感性, 将与C0产生并联谐振, 石英晶体又呈纯阻性, 谐振频率由于C<<C0, 所以f P≈f S。
当f>f P时, 电抗主要决定于C0, 石英晶体又呈容性。
因此, 石英晶体电抗的频率特性如上图所示, 只有在f<f<f P的情况下, 石英晶体才呈现感性;并且C0和C的容量相差愈悬殊, f s和f P s愈接近, 石英晶体呈感性的频带愈狭。
根据品质因数的表达式由于C和R的数值都很小, L数值很大, 所以Q值高达104~106。
频率稳定度Δf/f0可达10-6~10-8,采用稳频措施后可达10-10~10-11。
而LC振荡器的Q值只能达到几百, 频率稳定度只能达到10-5。
二、石英晶体正弦波振荡电路1.并联型石英晶体正弦波振荡电路如果用石英晶体取代LC振荡电路中的电感, 就得到并联型石英晶体正弦波振荡电路, 如左下图所示, 电路的振荡频率等于石英晶体的并联谐振频率。
2.串联型石英晶体振荡电路如右上图所示为串联型石英晶体振荡电路。
电容C b为旁路电容, 对交流信号可视为短路。
电路的第一级为共基放大电路, 第二级为共集放大电路。
若断开反管集电极动态电位为馈, 给放大电路加输入电压是, 极性上“+”下“-”;则T1管的发射极动态电位也为“+”。
只有在石英晶体呈纯阻性, 即产生串“+”, T2联谐振时, 反馈电压才与输入电压同相, 电路才满足正弦波振荡的相位平衡条件。
所以电路的振荡频率为石英晶体的串联谐振频率f S。
调整R f的阻值, 可使电路满足正弦波振荡的幅值平衡条件。
石英晶体基础知识1、石英晶体的应用:a、石英钟b、温度计c、压力指示器(频率与应力)d、加速度计2、晶体的自然面及解理面平行于原子面3、石英的机械、电气、化学和温度等综合性能,都满足需要电气通讯领域。
4、石英生长愈慢、质量愈佳。
5、大部分高质量石英晶体产自巴西。
6、结晶缺陷:a、晶格空位b、填隙原子c、夹杂原子d、生长位错7、BT切比AT切片厚50%8、现在通讯系统需要较宽温度范围,频率偏移要小。
9、典型晶体元件指标:a、工作频率:50MHzb、温度范围:-55~+105℃c、频率漂移:±50ppm10、天然石英与培育石英之间差别:a、杂质原子b、填隙原子c、晶格空位11、石英晶体的培育:居里温度点:>573℃贝他石英结构:六角形<573℃a石英结构:三角形12、高压釜典型尺寸长为3~5米;直径:半米或半米以上;壁厚:10~15cm;温度:约350℃;压力:约1400大气压13、石英压电晶体作用:对电气通讯中的载波记号频率进行控制和管理。
14、石英元件实现了压电振子的机械谐振频率同电路之间的耦合。
(机电换能器)15、压电理论:石英的机械特性与电路是通过压效应来实现耦合的。
石英晶体元件在振荡器电路中的功能是划分出等时间间隔,(稳定振荡频率)。
一维振动:只要起控制作用的那一维尺寸比其他维尺寸大得多或小得多,那么振动就能够被看成是近似一维的。
活动性下降:在压电振子的温度改变时,偶尔会有一种模的频率与振荡器频率重合,所产生的额外能耗减少了振荡(活动性)的幅度。
这种现象称为活动性下降。
当频率远离谐振频率时,石英片等效于简单的平行板电容器。
16、为了得到最大的稳定性,晶体元件应工作于最低振幅,即最低的激励电平。
17、AT和BT切石英晶体元件的主模频率取决于片子厚度,而大部分寄生模的频率则取决于侧面尺寸。
18、如果非活动带的宽度大于片子厚度20倍或20倍以上,它也可以成为支撑片的非活动区。
19、减小石英片表面的曲率半径,非谐波泛音模的频率就会向高处移动,而且泛音频谱也会变得更为疏散。
20、修外形对参数的影响:修整的不多:由于支架引起的阻尼损耗就会有所减少,而且由于寄生模与主模分开了,等效电阻值就会下降。
继续修下去:R值又会升高,因为振动面积缩小了。
L升高而C下降r=c0/c,也会受影响。
大而薄的AF片子:r理论值为154,测量值总是大于154,通过仔细调整与外形有关的电极区尺寸可以获得r值低达190。
21、影响谐振器频率稳定性因素:a、使用的原材料不当b、石英晶片表面层加工不良c、表层污染d、蒸发的银膜层附着性差22、石英谐振器的失效模式:a、开路(支架脱落、脱锡)b、短路(外壳封装系统机械损伤)c、频率稳定性差(石英晶片表面清洁处理不良,银膜层附着不牢以及晶片表面加工不佳)23、石英谐振器可等效成一个R、L、C组成的等效电路(在谐振频率附近),这些等效参数与很多因素有关,其中电极面积大小即为因素之一。
不连续银膜层使石英晶片电极的有效面积减小,从而影响频率稳定性。
24、石英晶片表面的缺陷:腐蚀时间、温度以及腐蚀液的浓度控制不严,将使石英晶片腐蚀强度过大,造成石英晶片表面粗糙度大,裂纹多等缺陷。
25、银膜表面斑痕是制造工艺中使用的水纯度低所致,通过提高水的纯度,提高了石英晶片的合格率。
26、石英晶片表面的粗糙度对银膜有很大影响,为了保证银膜层的连续性,一定要严格控制腐蚀工艺。
石英晶体是由水热法生长的一种功能材料,有优良的压电性能和光学性能,物理、化学性能稳定,具有左右旋结构特征,在0.15~4μm的范围内,有较好的透过率。
性能指标:品质因素:> 2.4×106包裹体:I 级, Ia级腐蚀隧道密度:< 200/cm2密度:2.65g/cm3熔点:1713℃莫氏硬度: 7杨氏模量: 97.2GPa(//Z), 76.5Gpa(⊥Z)应用范围:可用作棱镜、滤光片、偏振片、波片、旋光片等,可制成各种体波和声表面波振荡器、谐振器和滤波器石英晶体谐振器基础知识石英晶体谐振器基础知识(1)石英晶体谐振器(简称晶振)的结构石英晶体谐振器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。
(2)压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
(3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。
当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。
当晶体振荡时,机械振动的惯性可用电感L來等效。
一般L的值为几十mH到几百mH。
晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。
晶片振动时因摩擦而造成的损耗用R來等效,它的數值约为100Ω。
由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因數Q很大,可达1000~10000。
加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。
(4)谐振频率从石英晶体谐振器的等效电路可知,它有两个谐振频率,即a、当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。
串联谐振频率用f s表示,石英晶体对于串联谐振频率f s呈纯阻性。
b、当频率高于f s时L、C、R支路呈感性,可与电容C发生并联谐振,其并联频率用f d 表示。
根据石英晶体的等效电路,可定性画出它的频率特性曲线图所示。
可见当频率低于串联谐振频率f s或者频率高于并联谐振频率f d时,石英晶体呈电容性。
仅在f s<f<f极窄的范围内,石英晶体呈电感性。
d晶体符号等效电路频率特性曲线图石英晶体谐振器外形图片石英晶体谐振器的分类及特点石英晶体谐振器是由品质因素极高的石英晶体振子(即谐振器和振荡电路)组成。
晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定谐振器的性能。
国际电工委员会(IEC)将石英晶体谐振器分为4类:普通晶体振荡(TCXO),电压控制式晶体谐振器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡( OCXO)。
目前发展中的还有数字补偿式晶体损振荡(DCXO)等。
(1)普通晶体谐振器(SPXO)可产生10-5~10-4量级的频率精度,标准频率—100MHZ,频率稳定度是±100ppm。
SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。
封装尺寸范围从21×14×6mm及5×3.2×1.5mm。