三角形中考总复习专题训练精华

合集下载

专题06 三角形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

专题06  三角形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题06三角形综合的压轴真题训练一.全等三角形的判定与性质1.(2022•淄博)如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为()A.6B.7C.8D.9【答案】B【解答】解:如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10﹣x=x﹣4,∴x=7,∴BE=7.故选:B.2.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.18【答案】B【解答】解:∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.3.(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B 重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)【答案】①②③【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接P A,AC.∵A,A1关于DE对称,∴P A=PA1,∴P A1+PC=PA+PC≥AC=,∴P A1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.4.(2022•朝阳)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD 为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.【答案】3或.【解答】解:如图,E点在AD的右边,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD=2,∵BD=2CD,∴CD=1,∴BC=BD+CD=2+1=3,∴等边三角形ABC的边长为3,如图,E点在AD的左边,同上,△BAE≌△CAD(SAS),∴BE=CD,∠ABE=∠ACD=60°,∴∠EBD=120°,过点E作EF⊥BC交CB的延长线于点F,则∠EBF=60°,∴EF=BE=CD,BF=BE=CD,∴CF=BF+BD+CD=CD,在Rt△EFC中,CE=2,∴EF2+CF2=CE2=4,∴+=4,∴CD=或CD=﹣(舍去),∴BC=,∴等边三角形ABC的边长为,故答案为:3或.5.(2022•日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P 是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是.【答案】2【解答】解:方法一:∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P1O=F1O=,∴P1A=P1F1=AF1=,∴点F1的坐标为(,0),如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,﹣4),∵tan∠OF1F2===,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x﹣4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=,在Rt△OF1F2中,设点O到F1F2的距离为h,则×OF1×OF2=×F1F2×h,∴××4=××h,解得h=2,即线段OF的最小值为2;方法二:如图,在第二象限作等边三角形AOB,连接BP、AF,过点B作BP′⊥x轴于点P′,∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,∠PAF=60°,∵△AOB是等边三角形,∴AB=AO=OB=4,∠BAO=60°,∴∠BAP=60°+∠OAP=∠OAF,在△BAP和△OAF中,,∴△BAP≌△OAF(SAS),∴BP=OF,∵P是x轴上一动点,∴当BP⊥x轴时,BP最小,即点P与点P′重合时BP=BP′最小,∵∠BOP′=30°,∠BP′O=90°,∴BP′=OB=×4=2,∴OF的最小值为2,故答案为2.二.勾股定理6.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【答案】48【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.7.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt △DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A 重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【答案】21【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F 作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.8.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【答案】80【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI 于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.三.等腰直角三角形(共2小题)9.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D 在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【答案】B【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC =∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.10.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC =45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为.【答案】【解答】解:过点D作DF⊥AC于点F,∵AC⊥BC,∠ABC=45°,∴AC=BC=AB=2,∵∠ADC=90°,CD=2,∴AD=,∵,∴DF=,∴AF=,∴CF=,∵DF∥BC,∴△DEF∽△BEC,∴,即,∴EF=,∴AE=,∴.故答案为:.11.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【答案】B【解答】解:如图,不妨假设点P在AB的左侧,+S△ABC=S△PBC+S△P AC,∵S△P AB∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF =GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.13.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3【答案】C【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.14.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.【答案】C【解答】解:过C作CD⊥x轴于点D,CE⊥y轴于点E,如图:∵CD⊥x轴,CE⊥y轴,∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD===,在Rt△AOB中,OB===,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.三.等腰直角三角形(共1小题)15.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C 为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN 交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.【答案】7【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.四.等边三角形的性质(共2小题)16.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×∴△AOB与△BOC的面积之和为S△BOC12+=,故选:C.17.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC 上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【答案】【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.五.含30度角的直角三角形(共1小题)18.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:≈1.7).【答案】370【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△DCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.六.等腰直角三角形(共2小题)19.(2022•长沙)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.【答案】B【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.20.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D 为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P 的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.【答案】或【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.。

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

专题训练(一)
类型二 证明两线垂直
3.如图1-ZT-3,在五边形ABCDE中,AB=AE,BC=ED, ∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.
图1-ZT-3
专题训练(一)
证明:如图,连接AC,AD. 在△ABC和△AED中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS), ∴AC=AD. 又∵AF是CD边上的中线, ∴AF⊥CD.
第一章 三角形的证明
专题训练(一) “三线合一”的灵活应用
第一章 三角形的证明
专题训练(一)
“三线合一”的灵活应用
专题训练(一)
等腰三角形“顶角的平分线、底边上的高线、底边上的中线”只 要知道其中“一线”,就可以说明是其他“两线”.运用等腰三 角形“三线合一”的性质证明角相等、线段相等或垂直关系,可 减少证全等的次数,简化解题过程.
类型一 证明线段相等或求线段的长
1.如图1-ZT-1,已知AD=AE,BD=CE,试探究AB和AC的 大小关系,并说明理由.
图1-ZT-1
专题训练(一)
解: AB=AC. 理由:∵AD=AE, ∴△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是 △ADE的中线,又是△ADE底边上的高,即AF⊥DE,DF=EF. 又∵BD=CE, ∴BD+DF=CE+EF,即BF=CF, ∴AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得 AB=AC.
谢 谢 观 看!
专题训练(一)
类型三 证明角度之间的关系
4.已知:如图 1-ZT-4,AB=AC,BD⊥AC 于点 D.求证:∠DBC =12∠B过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF, ∴∠DBC=12∠BAC.

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。

2023年中考九年级数学高频考点专题训练--三角形综合

2023年中考九年级数学高频考点专题训练--三角形综合

2023年中考九年级数学高频考点专题训练--三角形综合1.如图,在△ABC中,AB=AC,DE垂直平分AC,CE△AB,AF△BC,(1)求证:CF=EF;(2)求△EFB的度数.2.如图,在△ABC中,∠B=60°,AB=8,BC=10,动点P从点A出发以每秒1个单位的速度沿AB匀速运动,同时动点Q从点B出发,以每秒2个单位的速度沿BC匀速运动,点Q到达点C后,立即以每秒4个单位的速度沿CB返回,当点Q返回到点B时,P、Q两点都停止运动,设点Q运动时间为t秒.(1)当t=3时,BQ=,当t=7时,BQ=.(2)如图,当点P运动到AB的中点时,猜想PQ与AB的位置关系,并证明你的结论.(3)在点P、Q运动过程中,若△BPQ是等边三角形时,求t的值.3.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.动点P以2cm/s的速度沿射线BC运动,同时,点Q从点C出发,以acm/s的速度向终点A运动,当Q点停止运动时,P点也随之停止运动,设点P的运动时间为t(s)(t>0).(1)用含t的代数式表示PC的长;(2)若点Q的运动速度为1cm/s,当△CQP是以△C为顶角的等腰三角形时,求t的值;(3)当点Q的运动速度为多少时,能使△BPD与△CQP在某一时刻全等.4.如图,在ΔABC中,∠C=90°,将ΔACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠CAE的度数;(2)当AC=6,AB=10时,求线段DE的长.5.如图,△ABC由两个全等的含45°的直角板拼成,其中,∠ACB=90°,AC=BC,AB= 8,点D是AB边长的中点,点E时AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD于点G.(1)当点E在点D的左侧运动时,(图).求证:△ACE≌△CBG;(2)当点E在点D的右侧运动时(图)(1)中的结论是否成立?请说明理由:(3)当点E运动到何处时,BG=5,试求出此时AE的长.6.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD= AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想:图1中,线段NM、NP的数量关系是,∠MNP的大小为;(2)探究证明:把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由.7.如图,△ABC 中,AB=AC,△BAC <60°,将线段AB 绕点A逆时针旋转60°得到点D,点 E 与点D 关于直线BC 对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE 的形状,并证明;(3)请问在直线CE上是否存在点P,使得PA - PB =CD 成立?若存在,请用文字描述出点P 的准确位置,并画图证明;若不存在,请说明理由.8.如图,点M是△ABC的边AB上一点,连接CM,过A作AD⊥CM于点D,过B作BE⊥CM于点E.(1)如图①,若点M为AB的中点时,连接AE,BD,求证:四边形ADBE是平行四边形;(2)如图②,若点M不是AB的中点,点O是AB上不与M重合的一点,连接DO,EO,已知点O在DE的垂直平分线上,求证:AO=BO.9.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围是(2)问题解决:如图②,在△ABC中D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,△B+△D=180°,CB=CD,△BCD=140°,以C为顶点作一个70角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.10.在平面直角坐标系中,O为坐标原点,直线y=mx+m交x轴于点A,交y轴的正半轴于点B,点C在x轴的正半轴上,连接BC,tan∠BAO=3tan∠BCO.(1)求点A,C的坐标;(2)如图1,点P在第一象限内,横坐标为t.PD⊥y轴于点D,PA⊥BC于点E,AP= BC,求m与t之间的函数关系式(不必写出自变量t的取值范围)(3)如图2,在(2)的条件下,设BC交DP于点F,当BF=PE时,求m的值.11.综合与实践问题情境:在数学课上老师出了这样一道题:如图1,在△ABC中AB=AC=6,∠BAC=30°,求BC的长.(1)探究发现:如图2,勤奋小组经过思考后,发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质即可求解,请你根据勤奋小组的思路,求BC的长;(2)探究拓展:如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度在不断变化,直接写出AF的最大值和最小值.12.综合与实践.特例感知.两块三角板△ADB与△EFC全等,△ADB=△EFC=90°,△B=45°,AB=6.(1)将直角边AD和EF重合摆放.点P、Q分别为BE、AF的中点,连接PQ,如图1.则△APQ的形状为.(2)操作探究若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=▲ ;②PF与DC的位置关系为▲ ;③求PQ的长;(3)开放拓展若△EFC绕点C旋转一周,当AC△CF时,△AEC为.13.在Rt△ABC中,△ACB=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB 上,连接BD,过点D作DF△AC于点F.(1)如图1,当点F与点A重合时,求△ABC的度数;(2)若△DAF=△DBA,①如图2,当点F在线段CA上时,求△ABC的度数;②当点F在线段CA的延长线上,且BC=7时,请直接写出△ABD的面积.14.在△ABC中,AB=AC,△BAC=90,BD平分△ABC交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE△BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,△EFC= 12△ABC,CE△EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.15.如图,在菱形ABCD中,△ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE△BC,△EAF=△ABC时,①求证:AE=AF;②连结BD,EF,若EFBD=25,求S△AEFS菱形ABCD的值;(2)当△EAF=12△BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.16.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.答案解析部分1.【答案】(1)证明:∵DE垂直平分AC,∴AE=CE,∵CE△AB,∴△ACE是等腰直角三角形,△BEC=90°,∵AB=AC,AF△BC,∴BF=CF,即F是BC的中点,∴Rt△BCE中,EF= 12BC=CF;(2)解:由(1)得:△ACE是等腰直角三角形,∴△BAC=△ACE=45°,又∵AB=AC,∴△ABC=△ACB= 12(180°−45°)=67.5°,∴△BCE=△ACB-△ACE=67.5°-45°=22.5°,∵CF=EF,∴△CEF=△BCE=22.5°,∵△EFB是△CEF的外角,∴△EFB=△CEF+△BCE=22.5°+22.5°=45°. 2.【答案】(1)6;2(2)解:PQ⊥AB,理由如下:在BQ上截取BE=BP,∵点P运动到AB的中点,∴AP=PB=4,∴t=41=4s,∴BQ=4×2=8,∵PB=BE=4,∠B=60°,∴△PEB是等边三角形,∴PE=BE=4,∠EPB=∠PEB=60°,∴QE=PE=4,∴∠EPQ=∠EQP,∵∠EPQ+∠EQP=∠PEB=60°,∴∠QPE=30°,∴∠QPE+∠EPB=90°=∠QPB,∴PQ⊥AB;(3)解:当0≤t≤5,BQ=2t,当5<t≤152,BQ=10−4(t−5)=30−4t,∵△BPQ是等边三角形,∴BP=BQ,∴8−t=2t或8−t=30−4t,∴t=83或t=223.3.【答案】(1)解:∵点P的运动速度为2cm/s,∴BP=2t,∴PC=10−2t;(2)解:△CQP以∠C为顶角的等腰三角形,则PC=CQ,PC=10−2t,CQ=t,即10−2t=t,解得:t=10 3,∴当t=103s时,△CQP是以∠C为顶角的等腰三角形;(3)解:①当BP=CQ时,BD=CP,此时△BPD≅△CQP,根据题意可得:BP=2t,CQ=at,BD=13AB=6,PC=10−2t,∴2t=at,6=10−2t,解得:a =2,t =2, ②当BP ≠CQ 时,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =CP =12BC =5,BD =CQ =6,∴t =52s ,∴a =CQ t =125cm/s , 综上可得:当Q 的速度为2cm/s 或125cm/s 时,△BPD 与△CQP 在某一时刻全等.4.【答案】(1)∵∠C =90° , ∠B =28°∴∠CAB =90−∠B =90°−28°=62°由折叠的性质可知 ∠CAE =∠EAB∴∠CAE =12∠CAB =31° (2)∵∠C =90° , AC =6 , AB =10 ∴BC =√AB 2−AC 2=√102−62=8由折叠的性质可知 AC =AD,CE =DE,∠EDA =∠C =90°∴∠EDB =180°−∠EDA =180°−90°=90°设 DE =x ,则 BE =8−x,DB =10−6=4 在 Rt △EDB 中, ED 2+DB 2=EB 2 ∴x 2+42=(8−x)2 解得 x =3 ∴DE =35.【答案】(1)证明:在 Rt △ABC 中,∵AC =BC ,∴∠A =∠ABC =45° .∵点 D 是 AB 的中点,∴∠BCG =12∠ACB =45° ,∴∠A =∠BCG .∵BF ⊥CE ,∴∠CBG +∠BCF =90° . ∵∠ACE +∠BCF =90° , ∴∠CBG =∠ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (2)解:结论仍然成立,即△ACE△△CBG . 理由如下:在Rt△ABC 中, ∵AC=BC ,∴△A=△ABC=45°.∵点D 是AB 的中点,∴△BCG= 12 △ACB=45°,∴△A=△BCG .∵BF△CE ,∴△CBG+△BCF=90°. ∵△ACE+△BCF=90°, ∴△CBG=△ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (3)解:在Rt△ABC 中, ∵AC=BC ,点D 是AB 的中点, ∴CD△AB ,CD=AD=BD= 12AB=4,在Rt△BDG 中, DG =√BG 2−BD 2=√52−42=3 , 点E 在运动的过程中,分两种情况讨论: ①当点E 在点D 的左侧运动时,CG=CD-DG=1, ∵△ACE△△CBG , ∴AE=CG=1;②当点E 在点D 的右侧运动时,CG=CD+DG=7, ∵△ACE△△CBG , ∴AE=CG=7. 故答案为:1或7.6.【答案】(1)NM =NP ;60°(2)解:△MNP 是等边三角形.理由如下:由旋转可得,△BAD =△CAE ,又∵AB =AC ,AD =AE ,∴△ABD△△ACE (SAS ),∴BD =CE ,△ABD =△ACE ,∵点M 、N 、P 分别为DE 、BE 、BC 的中点.∴MN =12BD ,PN =12CE ,MN△BD ,PN△CE ,∴MN =PN ,△ENM =△EBD ,△BPN =△BCE,∴△ENP=△NBP+△NPB=△NBP+△ECB,∵△EBD=△ABD+△ABE=△ACE+△ABE,∴△MNP=△MNE+△ENP=△ACE+△ABE+△EBC+△EBC+△ECB=180°−△BAC=60°,∴△MNP是等边三角形.7.【答案】(1)解:如图即为所求,(2)解:△CDE是等边三角形.如图,连接BD、CE,由点D与点E关于直线BC对称可知BF垂直平分DE,∴CD=CE,BD=BE由旋转可知AB=AD,∠BAD=60°,∴△ABD为等边三角形∴AB=BD=AD,∠BAD=∠ABD=60°∴∠CAD=60°−∠BAC∵AB=AC∴∠ABC=180°−∠BAC2=90°−∠BAC2,BE=BD=AB=AC∴∠FBD=∠ABC−∠ABD=90°−∠BAC2−60°=30°−∠BAC2∴∠EBD=2∠FBD=60°−∠BAC∴∠CAD=∠FBD在△ACD和△BED中,{AD=BD ∠CAD=∠EBD AC=BE∴△ACD≅△BED(SAS)∴CD=ED∴CD=ED=CE∴△CDE是等边三角形;(3)解:存在,如图,将△BCD绕点B逆时针旋转60°得到△ABC′,延长AC′交直线CE于点P,连接BP,由(2)得△CDE是等边三角形,∴∠DCE=60°∴∠DCF=∠ECF=30°∴∠BCD=150°由旋转可得CD=C′A,∠C′BC=60°,∠BC′A=∠BCD=150°,∴∠BC′P=30°∵PA−PB=CD,PA−PC′=C′A=CD∴PB=PC′∴∠C′BP=∠BC′P=30°∴∠PBC=30°∵∠BCP=∠ECF=30°∴∠PBC=∠BCP∴BP=CP所以直线CE上存在点P,使得PA - PB =CD 成立,点P在点C左边距离为CE长的位置. 8.【答案】(1)证明:证法一:∵AD⊥CM,BE⊥CM.∴AD∥BE,∴∠ADM=∠BEM=90°(或∠DAM=∠EBM)∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴AD=BE∴四边形ADBE是平行四边形证法二:∵AD⊥CM,BE⊥CM.∴∠ADM=∠BEM=90°∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴DM=EM∴四边形ADBE是平行四边形(2)证明:延长DO交BE于F,∵AD⊥CM,BE⊥CM.∴AD∥BE,∠BEM=90°∴∠DAO=∠EBO,∠ODE+∠OFE=∠DEO+∠FEO=90°∵点O在DE的垂直平分线上,∴DO=EO∴∠ODE=∠DEO∴∠OFE=∠FEO∴FO=EO∴DO=FO∵∠AOD=∠BOF∴△ADO≌△BFO∴AO=BO.9.【答案】(1)2<AD<6(2)解:如图2,延长FD至点M,使DM=DF,连接BM、EM同(1)得:△BMD≅△CFD(SAS)∴BM=CF∵DE⊥DF,DM=DF∴DE是MF的垂直平分线∴EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM∴BE+CF>EF;(3)解:BE+DF=EF;证明如下:如图3,延长AB至点N,使BN=DF,连接CN∵∠ABC+∠D=180°,∠NBC+∠ABC=180°∴∠NBC=∠D在△NBC和△FDC中,{BN=DF ∠NBC=∠D CB=CD∴△NBC≅△FDC(SAS)∴CN=CF,∠NCB=∠FCD ∵∠BCD=140°,∠ECF=70°∴∠BCE+∠FCD=70°∴∠BCE+∠NCB=70°∴∠ECN=70°=∠ECF在△NCE和△FCE中,{CN=CF ∠ECN=∠ECF CE=CE∴△NCE≌△FCE(SAS)∴EN=EF∵BE+BN=EN∴BE+DF=EF.10.【答案】(1)解:∵直线y=mx+m交x轴于点A,交y轴的正半轴于点B,当x=0时,y=m,∴B(0,m)当y=0时,mx+m=0,解得x=-1∴A(-1,0)∴OA=1,OB=m∵tan∠BAO=OBOA=m1=m,tan∠BCO=OBOC=mOC又tan∠BAO=3tan∠BCO∴3mOC=m∴OC=3∴C(3,0)(2)解:过点P作PH△x轴于点H,则△PHA=90°=△BOC∴△PAH+△APH=90°∵AP△BC∴△AEC=90°∴△PAH+△BCO=90°∴△APH =△BCO∵AP=BC∴△APH△△BCO,∴PH=OC=3,AH=BO,∴t-(-1)=m,则m=t+1;(3)解:过点E作EM△x轴于点M,延长ME交BD于N,则△NMO=90°∵△APH△△BCO,PH=3=OC,BD=m-3∴△DBF =△PAH,∵PD△y轴∴△PDO =△PHO=△DOH =△NMO=90°∴△NPE =△PAH=△DBF∵BF=PE∴△BDF△△PNE,∴BD=NP= m-3=MH,∵OH=t∴OM=OH-MH=OH-MH=t-(m-3)=t-m+3又OC=3∴CM=OC-OM=3-(t-m+3)=m-t∵m=t+1∴CM=m-t=1∴AM=AH-MH=(1+t)- (m-3)=1+t-m+3=3∵△CEM =△EAM∴1EM=EM3故EM= √3∴tan△EAM= tan△CBO∴EM AM=√33=3m,∴m=3 √3.11.【答案】(1)解:如图4,延长CB、DE交于点H.∵△ABC绕点A顺时针旋转90°得到△ADE∴△ABC≌△ADE,∠CAE=∠BAD=90°,△H=90°,∴AB=AD=6,AC=AE=6,∠DAE=∠BAC,DE=BC ∵AB=AC=6,∠BAC=30°∴△ABC是等腰三角形,∠BAE=∠CAE−∠BAC=60°∴∠ABC=180°−∠BAC2=75°,∵AE=AB=6∴△AEB是等边三角形∴BE=AB=6,∠ABE=60°∴∠EBH=180°−∠ABE−∠ABC=45°∴△EBH是等腰直角三角形∴HE=HB.∵AD=AB,∠DAB=90°.∴△ABD是等腰直角三角形,∠BDA=45°.在Rt△EBH中,由勾股定理,得HE2+HB2=BE2.∴HE2+HB2=62=36.∴HE2=HB2=18∴HE=HB=√18=3√2.在△BDH中,∠H=90°,∠BDH=∠EDA−∠BDA=∠ABC−∠BDA=30°.在Rt△BDH中,BH=12BD=3√2.∴BD=6√2.在Rt△BDH中,tan∠BDH=BH DH,∴3√2 DH=√3 3,∴DH=3√6.∴DE=DH−EH=3√6−3√2.∵DE=BC,∴BC的长是3√6−3√2.(2)解:四边形ADFC是菱形.理由如下:∵△ABC绕点A顺时针旋转120°得到△ADE,AB=AC,∠BAC=30°,∴△ABC≌△ADE,∠BAD=∠CAE=120°.∴AC=AE,AB=AD,∠BAC=∠DAE=30°.∴AC=AE=AB=AD.∴△ACE是等腰三角形∴∠ACE=∠AEC=180°−∠CAE2=30°.同理可得:∠ABD=∠ADB=30°.∵∠ACB=180°−∠BAC2=75°.∴∠BCG=∠ACB−∠ACE=45°,∠FBC=∠ABC+∠ABF=105°.∴在△BFC中,∠BFG=180°−∠FBC−∠BCG=30°.∴∠BFG=∠ACF,∠BFG=∠ADB.∴DB∥AC,FC∥AD.∴四边形ADFC是平行四边形.∵AD=AC,∴四边形ADFC是菱形.(3)解:如图5,作AH△BD于点H,则∠AHB=90°∵△ABC绕点A顺时针旋转120°得到△ADE,∴△ABC≌△ADE,∠BAD=120°∴AB=AD=6∴△ABD是等腰三角形∴BH=DH=12BD∴∠ABD=∠ADB=180°−∠BAD2=30°.在Rt△ABH中,△AHB=90°,△ABH=30°,AB=6∵BHAB=cos∠ABH=cos30°∴BH=3√3∴BD=2 BH=6√3由(2)知四边形ADFC是菱形∴DF=AD=6∴BF=BD-DF=6√3-6当△BGF绕点B顺时针旋转,在旋转过程中,当旋转到A、B、F第一次三点共线时,如图6,△BGF≌△BG″F″,∴BF=BF″此时AF有最小值,此时AF=AF″=AB-BF″=AB-BF=6-(6√3-6)=12-6√3当旋转到A、B、F第二次三点共线时,如图7,△BGF≌△BG′F′,∴BF=BF′此时AF有最大值,此时AF=AB+BF′=AB+BF=6+6√3-6=6√3故AF的最大值是6√3,AF的最小值是12−6√3 12.【答案】(1)等腰直角三角形(2)①∵AB=6,△B=45°,△ADB=90°,∴√AD2+BD2=AB,∴AD=BD= 3√2,∴EF= 3√2,∵△BFC=△BAC=90°,∴△GFE=△BAG,∵△AGP=△EGF,∴△ABQ=△GBF,∴△EGF△△BGA,∴FGAG=EFAB,∴FGAG=EFAB=3√26=√22=1√2故答案为:1:√2;②如图,过P作PM//BC交CE与点M,∴EMCM=EPBP=11,∴EM=CM∴FM//BC,∴F在PM上,∴PF△CD,故答案为:平行;③∵BP=PE,BD=CD,∴DP为△BCE的中位线,∴PD//CE,∵CE△BC,∴PD△BC,又∵AD△BC,∴P在AD上,△APF=△ADC=90°,∵Q 为AF 的中点, ∴PQ= 12AF ,又∵△B=45°,△ADB=90°,∴EF =√22AB =3√2 ,∴FC=EF= 3√2 , ∴AF=AC-CF=6- 3√2 ,∴PQ= 12AF = 3−3√22;(3)22.5°或67.5°13.【答案】(1)解:由旋转的性质可得△ABC△△ADE∴△BAC=△DAE∵DF△AC ,点F 与点A 重合, ∴△CAD=90° ∴△BAC=△DAE=45° ∵△ACB=90°∴△ABC=90°-△CAB=45°;(2)①∵△ABC△△ADE ,则△BAC=△DAE=12△DAF∵△DAF=△DBA , ∴△DAE=12△DAF=12△DBA∵△ABC△△ADE ∴AB=AD∴△DBA=△BDA ,设△BAC=△BAD-x ,则△DBA=△BDA-2x ∵△BAD+△ABD+△ADB=180° ∴x+2x+2x=180°解得:x=36° ∴△BAC=36°∴△ABC=90°-△BAC=54°; ②493√3 14.【答案】(1)证明:∵BD 平分△ABC ,∵BA=BF,BE=BE,∴△ABE△△FBE(SAS),∴AE=FE,△AEB=△FEB= 12× 180°=90°,∴BD垂直平分AF.(2)解:BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE△BD,△ABE=△FBE,∴GE=2CE=2GE,∵△CED=90°=△BAD,△ADB=△EDC,∴△ABD=△GCA,又AB=AC,△BAD=△CAG,∴△BAD△△CAG(ASA),∴BD=CG=2CE,(3)解:FM=2 CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH= 12FM,∴△NMH=△NBH,∵△EFC= 12△ABC=22.5°,∴△MNC=2△NFH=2× 12△ABC=△ABC,∵AB=AC,△BAC=90,∴△ABC=△ACB=△MNC=45°,∵△EMC=△MFC+△MCF=22.5°+45°=67.5°,∴△ECM=90°-△EMC=22.5°,∴△NFH=△MCE,又∵△FHN=△E=90°,∴△FNH△△CME(AAS),∴FH=CE,∴FM=2FH=2CE.15.【答案】(1)解:①∵菱形ABCD,∴AB=AD,△ABC=△ADC,AD△BC,∵AE△BC,∴AE△AD,∴△EAF+△DAF=△BAE+△ABE=90°,∵△EAF=△ABC,∴△DAF=△BAE,在△ABE和△ADF中{∠ABC=∠ADC AB=AD ∠DAF=∠BAE∴△ABE△△ADF(ASA)∴AE=AF.②连接AC,∵菱形ABCD,∴AB=BC=CD,AC△BD,∵△ABE△△ADF,∴BE=CF , ∴CE=CF ∵AE=AF ∴AC△EF ∴BD△FE , ∴△CEF△△CBD , ∴EC BC =EF BD =25设EC=2a ,则AB=BC=5x ,BE=3a , ∴AE =√25a 2−9a 2=4a , ∵AE AB =AF BC ,△EAF=△ABC , ∴△AEF△△BAC ,S △AEF S △ABC =(AEAB)2=(4a 5a)2=1625S △AEFS 菱形ABCD=S △AEF 2S △ABC=12×1625=825.(2)解:∵菱形ABCD , ∴△BAC=12△BAD ,∵△EAF=12△BAD ,∴△BAC=△EAF , ∴△BAE=△CAM , ∵AB△CD , ∴△BAE=△ANC ,同理可知:△AMC=△NAC , ∴△MAC△△ANC , ∴AC CN =AM NA; 当△AMN 时等腰三角形, 当AM=AN 时,在△ANC和△MAC中{∠ANC=∠CAM AM=AN ∠AMC=∠NAC∴△ANC△△MAC(ASA)∴CN=AC=2,∵AB△CN,∴△CEN△△BEA,∴CEBE=CNAB=24=12∵AB=BC=4∴CE4−CE=12解之:CE=43;当NA=MN时△NMA=△NAM,∵AB=BC,∴△BAC=△BCA,∵△BAC=△EAF,∴△NMA=△NAM=△BAC=△BCA,∴△ANM△△ABC,∴AMAN=ACAB=12∴AC CN =AM NA =12 ∴CN=2AC=4=AB 解之:AC=2∵△CEN△△BEA (AAS ) ∴CE=BE=2; 当MA=MN 时,易证△MNA=△MAN=△BAC=△BCA , ∴△AMN△△ABC ∴AM AN =AB AC =42=2 ∴CN=12AC=1∵△CEN△△BEA , ∴CE BE =CN AB =14 ∴CE 4−CE =14 解之:CE =45;∴当CE 为43或2或45时,△AMN 是等腰三角形.16.【答案】(1)OC =OD(2)解:数量关系依然成立.证明(方法一):过点O 作直线 EF//CD ,交BD 于点F ,延长AC 交EF 于点E .∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.证明(方法二):延长CO交BD于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠A=∠B,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(ASA),∴OC=OE,∵∠CDE=90°,∴OD=OC.(3)解:①数量关系依然成立.证明(方法一):过点O作直线EF//CD,交BD于点F,延长CA交EF于点E.∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.10分证明(方法二):延长CO交DB的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠ACO=∠E,∴点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴OC=OE,∵∠CDE=90°,∴OD=OC.②AC+BD=√3OC。

中考《三角形认识》复习练习题及答案

中考《三角形认识》复习练习题及答案

中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。

中考数学总复习三角形42考点含答案

中考数学总复习三角形42考点含答案

中考数学复习三角形42考点(含答案)一、三角形基础知识(一)课本常识1.三角形的概念及分类定义:由_____________直线上的三条线段首尾顺次相接所组成的图形是三角形. 三角形的分类: (1)按角分:(2)按边分:三角形⎩⎪⎨⎪⎧锐角三角形直角三角形钝角三角形三角形⎩⎪⎨⎪⎧不等边三角形(三条边均不相等)等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形【智慧锦囊】(1)三角形的三条中线的交点在三角形的内部; (2)三角形的三条角平分线的交点在三角形的内部;(3)锐角三角形的三条高的交点在三角形的内部;直角三角形的三条高的交点是直角顶点;钝角三角形的三条高所在直线的交点在三角形的外部. 2.三角形三边的关系(1)三角形任意两边的和________第三边; (2)三角形任意两边的差________第三边. 3.三角形内角和定理:三角形的内角和等于__________.推论:(1)三角形的外角________与它不相邻的两个内角的和; (2)三角形的一个外角_______任意一个和它不相邻的内角. 【智慧锦囊】任一三角形中,最多有三个锐角,最少有两个锐角;最多有一个钝角;最多有一个直角. 4.三角形的中位线三角形的中位线__________于第三边,并且等于第三边的一半. (二)必会2 方法1.三角形内外角性质的运用技巧进行三角形角度计算时,常常利用方程求解. 2.构造三角形中位线有关中点问题,常作辅助线构造三角形中位线,利用三角形中位线解决问题.【点悟】 三角形的中位线定理在证明两线平行关系和计算两线段数量关系时有着重要应用,因此,题目中有“中点”,要学会寻找或构造中位线,从而为解题创造条件.(三)必明3 易错点1.判断三条线段能否构成三角形时,要注意不能只考察任意两边之和大于第三边就下结论,应该要按照较小两边的和大于最大边来判断;2.三角形的中位线与中线的区别:三角形的中线是连结顶点与对边中点的线段,而中位线是连结三角形两边中点的线段.3.不同类型的三角形的三条高所在的位置各不相同,因此涉及三角形的高的问题时,常常需要分类讨论高在“形内”“形上”还是“形外”.考点1 三角形的三边关系1、 现有3 cm ,4 cm ,7 cm ,9 cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是 ( )A .1B .2C .3D .42.[2015·巴中]若a ,b ,c 为三角形的三边,且a ,b 满足a 2-9+(b -2)2=0,则第三边c 的取值范围是___________.3、已知三角形的两边长分别是4和7,则这个三角形的第三条边的长可能是 ( ) A .12 B .11 C .8 D .3考点2 三角形的内角和定理的运用1、如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n -1BC 的平分线与∠A n -1CD 的平分线交于点An.设∠A =θ,则∠A 1=_______,∠An =_______2、如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连结AD.下面结论不正确的是 ( )A .∠BAC =70°B .∠DOC =90° C .∠BDC =35°D .∠DAC =55°考点3 三角形中位线的性质运用1、如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连结DH ,则 线段DH 的长为______.2、如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC =10,则PQ 的长为( )A.52B.52 C .3 D .43、如图,在△A 1B 1C 1中,已知A 1B 1=7,B 1C 1=4,A 1C 1=5,依次连结△A 1B 1C 1三边中点,得△A 2B 2C 2,再依次连结△A 2B 2C 2的三边中点得△A 3B 3C 3,…,则△A 5B 5C 5的周长为______.二、全等三角形(一)课本常识1.全等图形及全等三角形 全等图形:能够_________的两个图形称为全等图形. 全等三角形:能够_________的两个三角形叫全等三角形. 2.全等三角形的性质 性质:全等三角形的对应边_________,对应角________; 拓展:全等三角形的对应边上的高_________,对应边上的中线_________,对应角的平分线_________. 3对应相等的元素 三角形是否一定全等 一 般两边一角两边及其夹角 一定(SAS ) 两边及其中一边的对角不一定4. 三角形的稳定性三角形具有稳定性实际就是利用的“SSS”.5.角平分线的性质性质:角平分线上的点到角两边的___________;判定:角的内部,到角两边的距离相等的点在____________.6.命题与证明命题:判断某一件事情的句子叫做命题.组成:命题通常写成“如果…,那么…”的形式.命题的真假:命题有真命题和假命题;定理是用推理的方法判断为正确的命题.互逆命题:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.把其中一个命题叫做原命题,另一个命题叫做它的逆命题;互逆定理:如果一个定理的逆命题能被证明是真命题,那么就称它为原定理的逆定理,这两个定理叫做互逆定理.【智慧锦囊】(1)改写命题时,要明确命题的条件和结论,有时语言要重新组合,可添上命题中被省略的词语;(2)用举反例的方法说明一个命题是假命题,就是举出一个符合命题题设而不符合命题结论的例子,举反例也可以通过画图的形式说明.(二)必会3 方法1.证明的基本方法综合法:从已知条件入手,探索解题途径的方法;分析法:从结论出发,用倒推来寻求证题的思路方法;两头“凑”法:综合应用以上两种方法才能找到证题思路的方法.2.反证法先假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定假设不正确,从而得到原命题成立.(1)有些用直接证法不易证明的问题可尝试考虑用反证法;(2)证明唯一性和存在性问题常用反证法.3.全等三角形证明规律(1)出现角平分线时,常在角的两边截取相等的线段,构造全等三角形;(2)过角平分线上一点向角两边作垂线;(3)公共边是对应边,公共角是对应角;(4)若有中线时,常加倍中线,构造全等三角形.(三)必明2 易错点1.两边和其中一边对角对应相等的两个三角形不全等,即“SSA”不全等.2.满足下面条件的三角形也是全等三角形:(1)有两边和其中一条边上的中线对应相等的两个三角形全等;(2)有两边和第三条边上的中线对应相等的两个三角形全等;(3)有两角和其中一个角的平分线对应相等的两个三角形全等;(4)有两角和第三个角的平分线对应相等的两个三角形全等;(5)有两边和其中一条边上的高对应相等的两个锐角(或钝角)三角形全等;(6)有两边和第三条边上的高对应相等的两个锐角(或钝角)三角形全等.考点4三角形全等的证明1、如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.2.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD =BC.3、如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.4、一节数学课后,老师布置了一道课后练习:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O.点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E.求证:△BPO≌△PDE.(1)理清思路,完成解答:本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程;(2)特殊位置,证明结论:若BP平分∠ABO,其余条件不,求证:AP=CD;(3)知识迁移,探索新知:若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)考点5三角形全等的开放探究型问题1、如下图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是________________________________________________ (不添加辅助线).2.如下图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( ) A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3、如图22-9,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.4、如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图①,过点A作AF⊥AB,并截取AF=BD,连结DC,DF,CF,判断△CDF的形状并证明;(2)如图②,E是直线BC上一点,且CE=BD,直线AE,CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.考点6 利用全等三角形设计测量方案1、课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25 cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).2、小明不小心把一块三角形形状的玻璃打碎成了三块,如图中的①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A.① B.② C.③ D.①和②考点7 角平分线1、如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADE的面积.2、如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( )A. 3 B.2 C.3 D.3+2三、等腰三角形(一)课本常识1.等腰三角形的概念和性质定义:有两_______相等的三角形是等腰三角形.性质:(1)等腰三角形是______________,顶角平分线所在直线是它的对称轴;(2)等腰三角形的两个底角相等(简称______________);(3)等腰三角形的顶角__________,底边上的________和高线互相重合(简称等腰三角形三线合一).【智慧锦囊】等腰三角形常见结论:(1)等腰三角形两腰上的高相等;(2)等腰三角形两腰上的中线相等;(3)等腰三角形两底角的平分线相等;(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半;(5)等腰三角形顶角的外角平分线与底边平行;(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高;(7)等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高.2.等腰三角形判定判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形.(简称等角对等边) 拓展:(1)一边上的高与这边上的中线重合的三角形是等腰三角形;(2)一边上的高与这边所对角的平分线重合的三角形是等腰三角形;(3)一边上的中线与这边所对角的平分线重合的三角形是等腰三角形.3.等边三角形的性质定理:等边三角形的各个角都等于60°.4.等边三角形的判定:判定定理:(1)三个角都相等的三角形是等边三角形;(2)有一个角等于60°的________三角形是等边三角形.5.线段的垂直平分线性质:线段垂直平分线上的点到线段两端的距离_______.判定:到线段两端距离相等的点在这条线段的______________上.【智慧锦囊】(1)等腰三角形的性质常用于证明角相等、线段相等、直线垂直,其用途较广,题型变化多;(2)已知等腰三角形,常添的辅助线是作底边上的高(或顶角平分线或底边上的中线);(3)等腰三角形是轴对称图形,对称轴是底边的垂直平分线.(二)必会2 方法1.分类讨论在等腰三角形中,若条件中没有明确底和腰时,一般应从某一边是底还是腰进行讨论,还要注意构造三角形的条件,满足三边关系;同样在条件中没有明确底角和顶角时,也要进行分类讨论.2.方程思想与等腰三角形有关的角度计算,常用方程思想,结合三角形内角和等于180°来解,是中考的热点考题.(三)必明3 易错点1.等边三角形是等腰三角形,但等腰三角形不一定是等边三角形;2.解答等腰三角形的有关问题时,常作辅助线,构造出“三线合一”的基本图形,在添加辅助线时,要根据具体情况而定,表达辅助线的语句不能限制太多,如“作一边上的高并且要平分这条边”“作一个角的平分线并且垂直对边”等,这些都是不正确的;3.在解有关等腰三角形问题时,不要总认为腰大于底,实际上底也可以大于腰,此时也能构成三角形.考点8 等腰三角形的性质1、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为 ( )A.30°B.36°C.40°D.45°2、如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.考点9 等腰三角形的性质与线段的垂直平分线的结合1、如图,等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连结BE,则∠EBC的度数为__________.2.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )A.8 B.9 C.10 D.113.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得锐角为50°,则∠B=________________. 4、如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=________.考点10 等腰三角形的判定1、如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.2、已知:如图23-10,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.考点11 等边三角形的性质与判定1、如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.2、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点(1)求∠F的度数;(2)若CD=2,求DF的长.3、如图在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.四、直角三角形(一)课本常识1.直角三角形定义:有一个角是直角的三角形是直角三角形.直角三角形性质:(1)直角三角形的两个锐角________;(2)直角三角形的斜边上的中线等于斜边的_________;(3)在直角三角形中,30°的角所对的边等于斜边的_________.直角三角形判定:有两个角互余的三角形是_________三角形.拓展:(1)S Rt△ABC=12ch=12ab,其中a,b为两直角边,c为斜边,h为斜边上的高;(2)Rt△ABC内切圆半径r=a+b-c2,外接圆半径R=c2,即等于斜边的一半.2.勾股定理勾股定理:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2+b2=_______.【智慧锦囊】勾股定理的作用:(1)已知直角三角形的两条边,求第三边;(2)已知直角三角形的一边,确定另外两边的关系;(3)证明带有平方关系的问题;(4)把实际问题转化为直角三角形中应用勾股定理的问题.3.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长分别为a,b,c,满足a2+b2=c2,那么这个三角形是________三角形.勾股数:能构成直角三角形的三条边长的三个正整数,称为勾股数.【智慧锦囊】勾股定理逆定理的应用:(1)判断三角形的形状;(2)证明两条线段垂直;(3)实际应用.(二)必会2 方法1.面积法用面积法证明是常用的技巧之一,勾股定理的证明通常用面积法.即利用某个图形的多种面积求法或面积之间的和差关系列出等式,从而得到证明的结论.2.数形结合思想在一些实际问题中,如解决立体图形侧面两点的距离问题,折叠问题,航海问题,梯子下滑问题等,常直接或间接运用勾股定理及其逆定理,在解决这些问题时,充分体现了数形结合思想,是中考的热点考题.(三)必明3 易错点1.在利用勾股定理时,确定所给的边是直角边还是斜边,如果题中未说明,需要分类讨论.2.在已知三角形三边的前提下,判断这个三角形是否为直角三角形,首先要确定三条边中的最大边,再根据勾股定理的逆定理来判定.解题时,往往受思维定式的影响,误认为如果是直角三角形,则c是斜边,从而造成误解.3.直角三角形斜边上的中线等于斜边的一半,这个性质定理常用于证明一条线段是另一条线段的一半的数量关系.注意直角三角形这一前提条件.考点12 直角三角形的性质的运用1、如图24-3,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为 ( )A.6 B.6 3C.9 D.3 32、如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为( )A. 3 B.1C. 2 D.2考点13 勾股定理的应用1、如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300 m是盆景园B,从盆景园B向左转90°后直行400 m到达梅花阁C,则点C的坐标是______________.2、如下图,有两棵树,一棵高12 m,另一棵高6 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行_______m.考点14 勾股定理与拼图1、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于_______.2、如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2015的值为 ( )A.⎝⎛⎭⎪⎫22 2 012B.⎝ ⎛⎭⎪⎫22 2 013 C.⎝ ⎛⎭⎪⎫122 012D.⎝ ⎛⎭⎪⎫122 013考点15 平面展开最短线段问题1、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是 ( )A .13 cmB .261 cm C.61 cm D .234 cm2、如图是一块长、宽、高分别是6 cm ,4 cm 和3 cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 点相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是 ( )A .(3+213)cm B.97 cm C.85 cm D .9 cm3、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图24-13所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是______尺.考点16 勾股定理的逆定理1、如图,点E是正方形ABCD内的一点,连结AE,BE,CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=__________.2、如图,已知AB=4,BC=3,AD=12,DC=13,∠B=90°,则四边形ABCD的面积为_______.五、锐角三角形课本常识1.锐角三角函数定义三角函数:Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,则∠A的正弦,余弦,正切分别是:sinA=____,cosA=____,tanA=____,它们统称为∠A的锐角三角函数.2.特殊锐角的三角函数值α30°45°60°sinαcosαtanα1特殊角的三角函数的记忆方法3.解直角三角形定义:在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形.解直角三角形依据:在Rt△ABC中,∠C=90°,则(1)三边关系:a2+b2=_____; (2)两锐角关系:∠A+∠B=_______;(3)边与角关系: sinA=cosB=____;cosA=sinB=____;tanA=____;方程思想解直角三角形时,在运用三角函数的定义时常常建立方程求解,选好三角函数是关键.选三角函数一般规律是“有斜用弦(正、余弦),无斜用切(正切)”.此类问题是中考的热点考题.考点17 锐角三角函数的概念1.[2014·巴中]在Rt △ABC 中,∠C =90°,sin A =513,则tan B的值为 ( ) A.1213 B.512 C.1312 D.1252、如图,在△ABC 中,∠B =90°,BC =2AB ,则cosA = ( )A.52 B.12 C.255 D.553、如图,已知△ABC 的三个顶点均在格点上,则cosA 的值( )A.33B.55C.233D.255考点18 特殊角的三角函数值2.[2015·乐陵模拟]计算:2sin60°-4cos 230°+sin45°· tan60°.考点19 解直角三角形1、如图,在Rt △ABC 中,∠C =90°,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF). (1)求证:△ACE ≌△AFE ; (2)求tan ∠CAE 的值.2、如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4.求BC 的长(结果保留根号).(1)BC 的长;(2)sin ∠ADC 的值.六、解直角三角形(一)课本常识解直角三角形应用的常用知识仰角和俯角:如图,在视线与水平线所成的角中,视线在水平线上方的叫做_________,视线在水平线下方的叫做________.坡度和坡角:如图,通常把坡面的铅直高度h和水平宽度l之比叫_______,用字母i表示,把坡面与水平面的夹角叫做_______,记做α,于是i=____=tanα,显然,坡度越大,α角越大,坡面就越陡.方向角:如图,指北或指南的方向线与目标方向线所成的小于90°的角叫做方向角.(二)必会方法解直角三角形应用的基本图形在实际测量高度、宽度、距离等问题中,常结合视角知识构造直角三角形,利用三角函数或相似三角形的知识来解决问题.常见的构造的基本图形有如下几种:①如图,不同地点看同一点:②如图,同一地点看不同点:③如图,利用反射构造相似:考点20 利用解直角三角形测量物体的高度(或宽度)1、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1 m).备用数据:3≈1.7,2≈1.4.2、学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,如图,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C,D与B在同一直线上,且C,D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5 m,并测得CD之间的距离为288 m;已知红军亭的高度为12 m,请根据测量数据求出凤凰山与中心广场的相对高度AB(3取1.732,结果保留整数).考点21 利用解直角三角形解决航海问题如图,港口B位于港口O正西方向120 km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以v km/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60 km/h 的速度驶向小岛C,在小岛C用1 h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1 h,求v的值及相遇处与港口O的距离.考点22 利用直角三角形解决坡度问题1、[2015·黔南]如图35-15是一座人行天桥的示意图,天桥的高度是10 m,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=3∶3.若新坡角下需留3 m宽的人行道,问离原坡角(A点处)10 m的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732)2、如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6 m,BG=0.7 m,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=8 m,点A,B,C,D,F,G在同一平面内,则此时小船C到岸边的距离CA的长为_________ m.(结果保留根号)七、轴对称与中心对称(一)课本常识1.轴对称与轴对称图形轴对称图形:如果把一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做_________.轴对称图形的性质:对称轴垂直平分连结两个对称点的线段.图形的轴对称:一般地,由一个图形变为另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做_________. 图形的轴对称的性质:成轴对称的两个图形是__________. 2. 中心对称与中心对称图形中心对称图形:如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相______,那么这个图形叫做中心对称图形,这个点叫做__________.中心对称:把一个图形绕着一个点O 旋转180°后,能够与另外一个图形__________,那么就说这两个图形关于这个点O 成中心对称.中心对称图形的性质:对称中心平分连结两个对称点的线段. (二)必会3 方法1.轴对称图形与中心对称图形的识别轴对称图形的判断:判断一个图形是否是轴对称图形,关键是看能否找到至少有1条直线,使该图形沿着直线对折后,两旁能够完全重合;若找得到,则是轴对称图形,反之不是轴对称图形;中心对称图形的判别:判断一个图形是否是中心对称图形,关键是看能否找到一点,使这个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合;若找的到,则是中心对称图形,反之不是中心对称图形. 2.镜面对称镜子中的像和原来的物体关于镜面成轴对轴,即“垂直于镜面上下对称,平行于镜面左右对称”. 3.求最短线路问题利用轴对称可以解决在直线上找一点,使它到直线同侧两点距离之和最小问题.此类题型是中考的热点考题. (三)必明3 易错点1.成轴对称的图形是处于特殊相对位置的两个全等形,但全等形不一定是轴对称图形. 2.折叠问题实质是轴对称问题,折叠就是轴对称,折叠前后对应边相等,对应角相等. 3.等边三角形不是中心对称图形.中心对称 中心对称图形 区别 中心对称是指两个全等图形之间的相互位置关系 中心对称图形是指具有特殊形状的一个图形联系 把中心对称的两个图形看成一个整体,就是中心对称图形 把中心对称图形中对称的两个部分看成两个图形就是中心对称。

初中三角形总复习+中考几何题证明思路总结

初中三角形总复习+中考几何题证明思路总结

初中三角形总复习【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。

4.⋅S SABE∆基础。

5. 三角形边角关系、性质的应用【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020︒<<︒∠B B. 2030︒<<︒∠B C. 3045︒<<︒∠B D. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。

例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。

解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆ABC 中,AB AC ≤12,求证:∠∠C B <12。

2024年中考数学复习重难点精讲练专题15 三角形(教师版)

2024年中考数学复习重难点精讲练专题15 三角形(教师版)

知识点01:三角形的角平分线、中线和高【高频考点精讲】1、从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高。

2、三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与交点间的线段叫做三角形的角平分线。

3、三角形一边的中点与此边所对顶点的连线叫做三角形的中线。

4、三角形有3条中线,3条高线,3条角平分线,它们都是线段。

知识点02:三角形的面积【高频考点精讲】=×底×高。

1、三角形的面积等于底边长与高线乘积的一半,即S△2、三角形的中线将三角形分成面积相等的两部分。

知识点03:三角形三边关系【高频考点精讲】1、三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边。

2、只要两条较短的边长之和大于第三边的长度就可以判定这三条线段能构成一个三角形。

知识点04:三角形内角和定理与外角性质【高频考点精讲】1、三角形的内角和等于180°。

2、三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形共有六个外角,其中有公共顶点的两个相等。

3、三角形外角的性质(1)三角形的外角和为360°。

(2)三角形的一个外角等于和它不相邻的两个内角的和。

(3)三角形的一个外角大于和它不相邻的任何一个内角。

知识点05:全等三角形的判定与性质【高频考点精讲】1、三角形全等的判定(1)三组对应边分别相等的两个三角形全等(SSS)。

(2)有两边及其夹角对应相等的两个三角形全等(SAS)。

(3)有两角及其夹边对应相等的两个三角形全等(ASA)。

(4)有两角及一角的对边对应相等的两个三角形全等(AAS)。

2、全等三角形的性质(1)全等三角形的对应边相等;全等三角形的对应角相等。

(2)全等三角形的周长、面积相等。

(3)全等三角形的对应边上的高对应相等。

(4)全等三角形的对应角的角平分线相等。

(5)全等三角形的对应边上的中线相等。

知识点06:等腰(等边)三角形的判定与性质【高频考点精讲】1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形。

中考数学复习考点题型专题练习10---《三角形》

中考数学复习考点题型专题练习10---《三角形》

中考数学复习考点题型专题练习《三角形》1.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.2.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC中,点I是∠ABC、∠ACB的平分线的交点,点D是∠MBC、∠NCB平分线的交点,BI、DC的延长线交于点E.(1)若∠BAC=50°,则∠BIC= °;(2)若∠BAC=x°(0<x<90),则当∠ACB等于多少度(用含x的代数式表示)时,CE∥AB,并说明理由;(3)若∠D=3∠E,求∠BAC的度数.3.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数;(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示);(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).4.如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.(1)若∠A=80°,则∠BDC的度数为 ;(2)若∠A=α,直线MN经过点D.①如图2,若MN∥AB,求∠NDC﹣∠MDB的度数(用含α的代数式表示);②如图3,若MN绕点D旋转,分别交线段BC,AC于点M,N,试问在旋转过程中∠NDC﹣∠MDB的度数是否会发生改变?若不变,求出∠NDC﹣∠MDB的度数(用含α的代数式表示),若改变,请说明理由;③如图4,继续旋转直线MN,与线段AC交于点N,与CB的延长线交于点M,请直接写出∠NDC与∠MDB的关系(用含α的代数式表示).5.如图,在平面直角坐标系中,O为原点,点A(0,10),点B(m,0),且m>0,把△AOB绕点A逆时针旋转90°,得到△ACD,点O,B旋转后的对应点分别为点C,D. (1)点C的坐标为 ;(2)①设△BCD的面积为S,用含m的代数式表示S,并直接写出m的取值范围;②当S=12时,请直接写出点B的坐标.6.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.7.如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q 从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.8.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为 .(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD; (3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.9.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.10.情景观察:(1)如图1,在△ABC中,AB=AC,∠BAC=45°,CD⊥AB于D,AE⊥BC于E,CD与AE相交于点F.①写出图1中两对全等三角形 ;②线段AF与线段CE的数量关系是 .问题探究:(2)如图2,在△ABC中,AB=BC,∠BAC=45°,AD平分∠BAC,且AD⊥CD 于D,AD与BC交于点E.求证:AE=2CD.拓展延伸:(3)如图3,在△ABC中,AB=BC,∠BAC=45°,点D在AC上,∠EDC=∠BAC,DE⊥CE于E,DE与BC交于点F.求证:DF=2CE.11.已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作CE⊥BC于点C,且CE=BD(点E与点A在射线BC同侧),连接AD,ED.(1)如图1,当点D在线段BC上时,请直接写出∠ADE的度数.(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED与AC相交于点P,若AB=2,直接写出CP的最大值.12.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.13.如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC. (1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE. (1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF.(3)在(2)的条件下,若∠BAC=45°,判断△CFE的形状,并说明理由.15.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.16.如图所示,△ABC为等边三角形,点D,点E分别在CA,CB的延长线上,连接BD,DE,DB=DE.(1)如图1,若CA:AD=3:7,BE=4,求EC的长;(2)如图2,点F在AC上,连接BE,∠DBF=60°,连接EF,①求证:BF+EF=BD;②如图3,若∠BDE=30°,直接写出的值.17.问题提出:(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当∠ABC= 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示).问题探究:(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.18.数学活动课上,老师出示了一个问题:如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC,现将△ABC与△DEF按如图所示的方式叠放在一起,现将△ABC保持不动,△DEF运动,且满足点E在边BC边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC交于M点.求证:△ABE ∽△ECM.(1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转,使DE、EF分别交AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似,小明的猜想正确吗?请你作出判断并说明理由;(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.19.在△ABC中,AC=BC,∠ACB=90°,D为AB边的中点,以D为直角顶点的Rt△DEF的另两个顶点E,F分别落在边AC,CB(或它们的延长线)上.(1)如图1,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC互相垂直,则S△DEF+S△CEF=S△ABC,求当S△DEF=S△CEF=2时,AC边的长;(2)如图2,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,S+S△CEF=S△ABC,是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,△DEFS△ABC之间的数量关系;(3)如图3,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,且点E在AC的延长线上,点F在CB的延长线上,S△DEF+S△CEF=S△ABC是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系.参考答案1.(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.2.解:(1)∵点I是两角B、C平分线的交点,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90+∠BAC=115°.故答案为115.(2)当∠ACB等于(180﹣2x)°时,CE∥AB.理由如下: ∵CE∥AB,∴∠ACE=∠A=x°,∵CE是∠ACG的平分线,∴∠ACG=2∠ACE=2x°,∴∠ABC=∠ACG﹣∠BAC=2x°﹣x°=x°,∴∠ACB=180°﹣∠BAC﹣∠ABC=(180﹣2x)°.(3)由题意知:△BDE是直角三角形∠D+∠E=90°若∠D=3∠E时,∠E=22.5°,设∠ABE=∠EBG=x,∠ACE=∠ECG=y,则有,可得∠A=2∠E=45°.3.解:(1)∵∠ABC=70°,∠ACD=100°,∴∠A=100°﹣70°=30°,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°,∴∠P=50°﹣35°=15°;(2)∠A=2n°.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC),∠A+∠ABC=2∠P+2∠PBC,∠A+∠ABC=2∠P+∠ABC,∴∠A=2∠P,∴∠A=2n°;(3)(Ⅰ)如图②延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°.(Ⅱ)如图③,延长AB交DC的延长线于F.∵∠F=180°﹣∠A﹣∠D,∠P=∠F,∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).∴∠A+∠D=180°﹣2n°综上所述:∠A+∠D=180°+2n°或180°﹣2n°.4.解:(1)如图1中,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,∵∠A=80°,∴∠BDC=120°.故答案为120°.(2)①如图2中,∵MN∥AB,∴∠A=∠DNC,∠ABD=∠BDM,∴∠NDC﹣∠BDM=180°﹣∠A﹣∠ACB﹣∠ABC=180°﹣α﹣(180°﹣α)=90°﹣α.②结论不变.理由:如图3中,∵∠NDC﹣∠BDM=∠DMC+∠DCM﹣∠BDM=∠DBM+∠BDM+∠DCM﹣∠BDM=∠ABC+∠ACB=(180°﹣α)=90°﹣α,∴结论成立.③结论:如图4中,∠NDC+∠MDB=90°﹣α.理由:∵∠NDC+∠BDM=180°﹣∠BDC,∠BDC=90°+α,∴∠NDC+∠BDM=90°﹣α.5.解:(1)∵点A(0,10),∴AO=10,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=10,∠OAC=90°,∴C(10,10),故答案为:(10,10);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是正方形,∴DE⊥x轴,OE=AC=10,如图1,当点E在线段OB上时,BE=OB﹣OE=m﹣10,∴S=DC•BE=m(m﹣10),即S=m2﹣5m(m>10),如图2,当点E在线段OB的延长线上(点B不与O,E重合)时, 则BE=OE﹣OB=10﹣m,∴S=DC•BE=m(10﹣m),即S=﹣m2+5m(0<m<10),当点B与E重合时,即m=10,△BCD不存在,综上所述,S=m2﹣5m(m>10)或S=﹣m2+5m(0<m<10);②当S=12,m>10时,m2﹣5m=12,解得:m1=﹣2(舍去),m2=12,当S=12,0<m<10时,﹣m2+5m=12,解得:m3=4,m4=6,∴点B的坐标为(12,0)或(4,0)或(6,0).6.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC, 在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).7.解:(1)如图1中,∵AD是高,∴∠ADC=90°,∵BE是高,∴∠AEB=∠BEC=90°,∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,∴∠EAO=∠EBC,在△AOE和△BCE中,,∴△AOE≌△BCE,∴AO=BC=5.(2)∵BD=CD,BC=5,∴BD=2,CD=3,由题意OP=t,BQ=4t,①当点Q在线段BD上时,QD=2﹣4t,∴S=•t(2﹣4t)=﹣2t2+t(0<t<).②当点Q在射线DC上时,DQ=4t﹣2,∴S=•t(4t﹣2)=2t2﹣t(<t≤5).(3)存在.①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴5﹣4t═t,解得t=1,②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴4t﹣5=t,解得t=.综上所述,t=1或s时,△BOP与△FCQ全等.8.证明:(1)①如图1,连接DA,并延长DA交BC于点M,∵点C关于直线l的对称点为点D,∴AD=AC,且AB=AC,∴AD=AB=AC,∴点B,C,D在以点A为圆心,AB为半径的圆上②∵AD=AB=AC∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α ∴∠BDC=故答案为:α(2)如图2,连接CE,∵∠BAC=60°,AB=AC∴△ABC是等边三角形∴BC=AC,∠ACB=60°,∵∠BDC=∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,∵在△BOF中,BO+OF≥BF,∴当点O,点B,点F三点共线时,BF最长, 如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC,∴BC=AC,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴OC=HC,∵点O是AC中点,∴AC=2HC,∴BC=4HC,∴BH=BC﹣HC=3HC∴tan∠FBC==9.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3, 理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.10.解:情景观察:(1)①∵AB=AC,AE⊥BC,∴BE=EC=BC,且AB=AC,AE=AE∴△ABE≌△ACE(SSS)∵CD⊥AB,∠BAC=45°∴∠BAC=∠ACD=45°∴AD=CD,∵AE⊥BC,CD⊥AB,∴∠B+∠BAE=90°,∠B+∠BCD=90°,∴∠BAE=∠BCD,且∠ADC=∠BDC=90°,AD=CD,∴△ADF≌△CDB(ASA)故答案为:△ABE≌△ACE,△ADF≌△CDB; ∵△ADF≌△CDB∴BC=AF∴AF=2CE故答案为:AF=2CE;问题探究:(2)如图,延长AB、CD交于点G,∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠BAC=∠BCA=45°∴∠ABC=90°=∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ADC≌△CBG(ASA),∴AE=CG=2CD拓展延伸:(3)如图,作DG⊥BC于点H,交CE的延长线于G,∵∠BAC=45°,AB=BC,∴∠BAC=∠ACB=45°,∴AB⊥BC,且DG⊥BC,∴DG∥AB,∴∠GDC=∠BAC=45°,∵∠EDC=∠BAC,∴∠EDC=∠BAC=22.5°=∠EDG,∴DH=CH,又∵DE⊥CE,∴∠DEC=∠DEG=90°,在△DEC和△DEG中,,∴△DEC≌△DEG(ASA),∴DC=DG,GE=CE,∵∠DHF=∠CEF=90°,∠DFH=∠CFE,∴∠FDH=∠GCH,在△DHF和△CHG中,,∴△DHF≌△CHG(ASA),∴DF=CG=2CE.11.解:(1)如图1,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC, ∴∠B=∠ACB=45°.∵CE⊥BC,∴∠BCE=90°.∴∠3=45°.∴∠B=∠3.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=45°.(2)补全图形,如图2所示,结论成立.证明:如图,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC, ∴∠B=∠1=45°.∵CE⊥BC,∴∠BCE=90°.∴∠2=45°.∴∠B=∠2.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=∠3=45°.(3)由(1)知,△ADE是等腰直角三角形,∵AB=2,∴AC=2,当AP最小时,CP最大,即:DE⊥AC时,AP最小,∵∠ADE=45°,∠ACB=45°,∴AD⊥BC,AD=BC=×AB=,在Rt△ADP中,AP=AD=1,∴CP=AC﹣AP=1.即:CP的最大值为1.12.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°, ∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°, ∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形 13.解:(1)∵∠ACB=90°,BE∥AC,∴∠CBE=90°,∴△ABC和△DEB都是直角三角形,∵AC=BC,点D为BC的中点,∴AC=BD,又∵AB=DE,∴Rt△ABC≌Rt△DEB(HL);(2)①由(1)得:△ABC≌△DEB,∴BC=EB,又∵∠CBE=90°,∴∠BCE=45°,∴∠ACE=90°﹣45°=45°,∴∠BCE=∠ACE,∴CE是∠ACB的角平分线.②△ABE是等腰三角形,理由如下:在△ACE和△DCE中∵,∴△ACE≌△DCE(SAS),∴AE=DE,又∵AB=DE,∴AE=AB,∴△ABE是等腰三角形.14.证明:(1)∵AB=AC,D是BC的中点, ∴∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠CAD+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠CAD=∠CBF;(3)△CEF是等腰直角三角形,理由:∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,在△AEF和△BCF中,∴△AEF≌△BCF(ASA),∴EF=CF,∵∠CFE=90°,∴△CFE为等腰直角三角形.15.解:(1)结论BM+CN=BD成立,理由如下: 如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°, ∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下: 如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.16.解:(1)如图1,延长CB至H,使EH=BC,连接DH,∵DB=DE,∴∠DBE=∠DEB,∴∠DEH=∠DBC,且DE=DB,EH=BC,∴△DEH≌△DBC(SAS)∴DH=AC,∵△ABC是等边三角形,∴∠C=60°,AC=BC,∴△DHC是等边三角形,∴DC=CH,∵CA:AD=3:7,∴设AD=7a,AC=3a=BC=EH,∴CD=CH=10a,∴BE=CH﹣EH﹣BC=4a=4,∴a=1,∴EC=EB+BC=7a=7;(2)①如图2,延长CB至H,使EH=BC,连接DH,延长BF至G,使BG=BD,由(1)可得△DEH≌△DBC,△DHC是等边三角形,∴∠HDE=∠BDC,∠HDC=60°,∴∠HDB=∠EDF,∵BG=BD,∠DBF=60°,∴△DBG是等边三角形,∴DB=BG=DG,∠BDG=∠HDC=60°,∴∠HDB=∠FDG,∴∠EDF=∠FDG,且DE=BD=DG,DF=DF,∴△DEF≌△DGF(SAS)∴EF=FG,∠DEF=∠DGB=60°,∴BF+EF=BF+FG=BG=BD;②如图3,过点F作FM⊥BC于M,作∠EFN=∠FEC,交BC于N,∵∠BDE=30°,DE=BD,∴∠DEB=∠DBE=75°,∵∠DEF=∠DGB=60°,∴∠FEC=15°,∴∠EFN=∠FEC=15°,∴EN=FN,∠FNC=30°,且FM⊥BC,∴FN=2FM,NM=FM,∴EN=2FM,∴EM=(2+)FM,∴EF==()FM,∵∠DBC=∠BDE+∠DEB=105°,∠DBF=60°,∴∠FBC=45°,且FM⊥BC,∴BF=FM,∴==1+.17.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b, ∴∠ABC=180°,故答案为:180°,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=3+6=9;(3)①如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).18.(1)证明:如图1中,∵△ABC≌△DEF,∴∠B=∠DEF,∵AB=AC,∴∠B=∠ECM,∵∠AEC=∠B+∠BAE=∠DEF+∠CEM,∴∠CEM=∠BAE,∴△ABE∽△ECM.(2)结论正确.理由:如图2中,∵∠NEC=∠B+∠ENB=∠NEF+∠CEM,∠NEF=∠B, ∴∠ENB=∠CEM,∵∠B=∠ECM,∴△BNE∽△CEM,∴=,∵BE=EC,∴=,∴=,∵∠NEM=∠C,∴△NEM∽△ECM.(3)结论:直线MN与⊙E相切.理由:如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.由(2)可知△BNE∽△CEM,△NEM∽△ECM.∴∠BNE=∠CEN=∠ENM,∵AB是⊙E的切线,∴EG⊥NB,∵EH⊥NM,∴EG=EH,∴NM是⊙E的切线.19.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形DECF是矩形,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∵D为AB边的中点,∴DE是△ABC的中位线,∴DE=BC,AC=2CE,同理:DF=AC,∵AC=BC,∴DE=DF,∴四边形DECF是正方形,∴CE=DF=CF=DE,∵S△DEF=S△CEF=2=DE•DF=DF2,∴DF=2,∴CE=2,∴AC=2CE=4;(2)S△DEF+S△CEF=S△ABC成立,理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD, ∴∠DCE=∠B,∠CDB=90°,S△ABC=2S△BCD,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF.S△CDE=S△BDF.∴S△DEF+S△CEF=S△CDE+S△CDF=S△BCD=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°,∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

中考数学备考专题复习三角形及其性质(含解析)

中考数学备考专题复习三角形及其性质(含解析)

三角形及其性质一、单选题(共12题;共24分)1、等腰三角形的两边长分别为3、6,则该三角形的周长为()A、12或15B、9C、12D、152、不一定在三角形内部的线段是()A、三角形的角平分线B、三角形的中线C、三角形的高D、三角形的中位线3、△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法中,错误的是()A、如果∠C﹣∠B=∠A,那么∠C=90°B、如果∠C=90°,那么c2﹣b2=a2C、如果(a+b)(a﹣b)=c2,那么∠C=90°D、如果∠A=30°∠B=60°,那么AB=2BC4、如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C´的位置,则图中的一个等腰直角三角形是( )A、△ADC′B、△BDC′C、△ADCD、不存在5、如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A、△ABC中,AD是边BC上的高B、△ABC中,GC是边BC上的高C、△GBC中,GC是边BC上的高D、△GBC中,CF是边BG上的高6、如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A、1cm2B、2cm2C、8cm2D、16cm27、下列图形中具有稳定性的有()A、2个B、3个C、4个D、5个8、工人师傅要将边长为4m和3m的平行四边形框架固定,现有下列长度的木棒,在木棒的两端钉上达到固定平行四边形的目的,不符合要求的是()A、2mB、3mC、4mD、8m 9、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A、50°B、51°C、51。

5°D、52.5°10、(2016•自贡)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A、15°B、25°C、30°D、75°11、(2016•北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A、45°B、55°C、125°D、135°12、如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B 出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C 停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH 的解析式为;④若△ABE与△QBP 相似,则t=秒.其中正确的结论个数为()A、4B、3C、2D、1二、填空题(共5题;共5分)13、半径等于12的圆中,垂直平分半径的弦长为________.14、在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=________度。

中考专题复习解直角三角形(含答案)

中考专题复习解直角三角形(含答案)

中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。

2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。

4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。

5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。

7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。

第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。

依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。

2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。

(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。

⽤字母表⽰,即。

坡度⼀般写成的形式,如等。

把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。

【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。

中考数学专题复习之《三角形》试题集

中考数学专题复习之《三角形》试题集

9.1 三角形(2) 同步练习◆课堂测控测试点三角形的三条重要线段1.锐角三角形的三条高在三角形_________,钝角三角形有______条高在三角形外,直角三角形有两条高恰好是_________.2.如图1,BD=DE=EF=CF,图中共有_______个三角形,AF是△______的中线,AE是△_______的中线.(1) (2) (3)3.如图2,∠AEB=90°,则AE是______个三角形的高,它们分别是______.4.如图3,△ABC中BC边上的高是________,△ACD中CD边上的高是_____,以CF为高的三角形是________.5.关于三角形的角平分线和中线,下列说法正确的是()A.都是直线 B.都是射线 C.都是线段 D.可以是射线或线段6.如果一个三角形的三条高的交点恰是一个三角形的顶点,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定7.下列说法正确的是()A.三角形的角平分线、中线、高都在三角形的内部;B.三角形的角平分线、高都在三角形的内部;C.三角形的高、中线都在三角形的内部;D.三角形的角平分线、中线在三角形的内部8.在图4中第一个三角形中作三条中线、在第二个三角形作三条角平分线,在第三个三角形中作三条高线.◆课后测控1.如图5,AD为△ABC的中线,AE•是△ABC•的角平分线,•若BD=•2cm,•则BC=_____cm,若∠BAC=80°,则∠CAE=________.(5) (6) (8)2.如图6,∠ACB=90°,CD⊥AB于D,则BC边上的高是______,AC•边上的高是______,AB边上的高是______,三条高的交点是______.3.如图7,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD与△BCD•的周长差为_______cm.4.如图,画△ABC的AB边上的高,正确的是()5.下面的说法:①三角形一边的对角也是另外两边的夹角;②三角形的角平分线就是三角形的内角的平分线;③三角形的中线就是顶点和它的对边中点的连线段;④△ABC中,顶点A就是∠A,其中正确的说法是()A.①②③④ B.①②③ C.①② D.①③6.下面说法正确的是()A.三角形的高就是顶点到对边垂线段的长 B.直角三角形有且仅有一条高C.三角形的高都在三角形的内部 D.三角形三条高至少有一条高在三角形内部7.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形 B.面积相等的三角形C.直角三角形 D.周长相等的三角形8.如图,在△ABC中,AD⊥BC且AD平分∠BAC,若∠1=30°,则∠C为多少度?∠B呢?△ABC是什么三角形?9.如图,已知:D是△ABC的BC边延长线上一点,DF⊥AB于点F,交AC于E,•∠A=40°,∠D=30°,求∠ACB的度数.10.如图,△ABC中,∠C=90°,AD平分∠CAB,与∠ABC的角平分线BE 相交于点D,求∠ADE的度数.答案:回顾探索1.中线 2.顶点与垂足间的线段2.顶点与交点之间的线段课堂测控1.内两两直角边2.10 AEC ADF和△ABC3.三△ADE,△ ABE,△ACE4.AD AD △BCF和△ACF5.C 6.B 7.D 8.画图略课后测控1.4 40°2.AC BC CD C3.2(点拨:由BD是中线知AD=CD)4.D 5.B 6.D 7.B8.60°,60°,等边三角形9.80°(点拨:根据三角形内角和等于180°先求∠B=60°,再求∠ACB=80°)10.45°(点拨:由∠C=90°,AD、BE是∠CAB、∠CBA的平分线可得∠BAD+•∠ABD=45°,又∠ADE=∠BAD+∠ABD)学校 班级 姓名…………………………………密………………………封………………………线……………………………中考专题训练 三角形(一)一、选择题1.(2013德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是(). A . 5. 5 B .5 C .4.5 D .4 是一个三角形的边长的是(). 2.(2013温州)下列各组数可能A .1,2,4 B .4,5,9 C .4,6,8 D .5,5,113.(2013宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为().A .5B .6C .7D .8 4.(2013陕西)如图,在四边形中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有(). A .1对B .2对 C .3对D .4对5.(2011泸州)如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,AC=10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是(). A .B .C .D .6.(2012贵阳)如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交于BC 的延长线于点F ,若∠F=30°,DE=1,则EF 的长是(). A .3 B .2 C .D .17.(2012宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为().B C DAO第4题图第5题图第6题图A .90B .100C .110D .1218.(2013牡丹江)如图,在△ABC 中∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是().A .1个B .2个C .3个D .4个 二、填空题9.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=度.10.(2013黔西南州)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD , DF=DE ,则∠E=度.11.(2012四川南充)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是cm .12.(2012山东枣庄)如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB=5,BC =8,则EF 的长为_.13.(2012甘肃白银)如图,由四个边长为1的小正方形构成一个大正方形,连接第7题图 第8题图第9题图第10题图第11题图第12题图小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是.第13题图第14题图14.(2012山东临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.三、解答题15.(2012广东广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.16.(2012湖南湘西)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.17.(2012重庆市)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(2012广东肇庆)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.(2012北京市)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,∠DCE=900,DE=,BE=2.求CD的长和四边形ABCD的面积.20.(2012浙江绍兴)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.21.(2012山东滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.22.(2011广东河源)如图,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.(1)当△APC与△PBD的面积之和取最小值时,AP=;(直接写结果)(2)连结AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图,若点P固定,将△PBD绕点P按顺时针方向旋转α的大小是否发生变化?(旋转角小于180°),此时(只需直接写出你的猜想,不必证明)23.(2011吉林长春)探究:如图①,在的形外分别作等腰直角△ABF和等腰直角△ADE,,连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.应用:以的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL,若的面积为5,则图中阴影部分四个三角形的面积和为________.24.(2013常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.北师大版七年级下第五章三角形一、三角形三边关系和角关系1、三角形任意两边之和大于第三边。

三角形常见模型综合(解析版) -- 中考数学专题训练

三角形常见模型综合(解析版) -- 中考数学专题训练

三角形常见模型综合中考直击本考点是中考五星高频考点,难度中等及中等偏上,在全国各地市的中考试卷中都有考查。

1(2022年鄂尔多斯中考试卷第14题)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD= 10,BE=132,则AB的长是 .【模型】倍长中线类模型:∥+中点→三角形全等【分析】延长BE交AD于点F,由“ASA”可证△BCE≌△FDE,可得DF=BC=5,BE=EF,由勾股定理可求AB的长.【解答】解:如图,延长BE交AD于点F,∵点E是DC的中点,∴DE=CE,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠D=∠BCE,∵∠FED=∠BEC,∴△BCE≌△FDE(ASA),∴DF=BC=5,BE=EF,∴BF=2BE=13,在Rt△ABF中,由勾股定理可得AB=12.故答案为:12.点评:本题考查了全等三角形的判定和性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键。

教材方位三角形常见模型是解决中考数学问题的有效“捷径”,因为各个模型总结了不同类题的问题特征,并且给予了问题的解决方向,熟悉模型能有效提高做题速度,节约考试时间。

本考点是中考五星高频考点,难度中等或较大,个别还会以压轴题出现,在全国各地市的中考试卷中均有考查。

技法指引全等常见模型:①K型图:图形条件与结论辅助线注意事项条件:AC=BC,AC⊥BC 结论:分别过点A、B作ADK型图可以和等腰直角三角板结合,也可以和正方12△ADC ≌△CEB (AAS )⊥l ,BE ⊥l形结合K 型全等模型变形--三垂定理:如图,亦有△ADC ≌△CEB (AAS )总结:当一个直角放在一条直线上时,常通过构造K 型全等来证明边相等,或者边之间的数量关系②手拉手:模型名称几何模型图形特点具有性质全等型手拉手AD =AEAB =AC ∠BAC =∠DAE连结BD 、CE ①△ABD ≌△ACE②△AOB ∽△HOC ③旋转角相等(即∠1=∠2=∠3)④A 、B 、C 、D四点共圆⑤AH 平分∠BHE③倍长中线:基本图形辅助线条件与结论应用环境延长AD 到点E ,使DE =AD ,连接CE条件:△ABC ,AD =BD结论:△ABD ≌△CED (SAS )①倍长中线常和△三边关系结合,考察中线长的取值范围②倍长中线也可以和其他几何图形结合,考察几何图形的面积问题相似常见模型:①A 字图:变型当DE ⎳BC 时,△ADE ∾△ABC 性质:①AD AB =AE AC=DE BC ②AD DB =AE EC当∠ADE =∠ACB 时△ADE ∽△ACB 性质:AD AC =AE AB=DEBC3②8字图:AB CD =JA JC=JBJD 变型③一线三等角常用结论:1.易得△左∽△右;2.如图②,当DE =DF 时,△BDE ≌△CFD ;3.中点型“一线三等角”中,可得三个三角形两两相似如右图,若∠1=∠2=∠3,且BD =DC ,则△1∽△2∽△一般地:当动点E 运动到底边的中点时,CF 有最大值组合常见模型:①知2得1:②勾股定理面积应用:当AB ∥CD 时△AOB ∽△DOC 性质:AB CD =OA OD =OBOC当∠A =∠C 时△AJB ∽△CJD 性质:AB CD =JA JC=JBJD ①AD 为角平分线;②DE ∥AB ;③AE=ED 若以上3个条件中有2个成立,则剩余的那个就会成立。

最新人教中考总复习知识点专题三角形证明三线合一

最新人教中考总复习知识点专题三角形证明三线合一

专题训练(一)
应用三 证明角度之间的关系
4.如图 1-ZT-4,∠A=∠D=90°,AB=DC,AC 与 BD 相交于点 F,E 是 BC 的中点.求证:∠BFE=∠CFE.
图 1-ZT-4
专题训练(一)
证明:在△ABF 和△DCF 中,∵∠AFB=∠DFC,∠A=∠D,AB=DC, ∴△ABF≌△DCF,∴BF=CF, ∴△BCF 是等腰三角形. 又∵E 是 BC 的中点, ∴FE 是∠BFC 的平分线, ∴∠BFE=∠CFE.
∵AB=AC,∴BP=PC. ∵AD=AE,∴DP=PE, ∴BP-DP=PC-PE, 即 BD=CE.

专题训练(一) 2.如图 1-ZT-2,在△ABC 中,∠BAC=90°,AB=AC,若 D 为 BC 的中点,过点 D 作∠MDN=90°,分别交 AB,AC 于点 M,N.求 证:DM=DN.
专题训练(一)
应用二 证明两线垂直
3.如图 1-ZT-3 所示,在五边形 ABCDE 中,AB=AE,BC=ED,∠ABC =∠AED,F 是 CD 的中点.求证:AF⊥CD.
图 1-ZT-3
专题训练(一)
证明:连接 AC,AD. 在△ABC 和△AED 中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS),∴AC=AD. 又∵在△ACD 中,AF 是 CD 边上的中线, ∴AF⊥CD.
专题训练(一) 5.已知:如图 1-ZT-5,AB=AC,BD⊥AC 于点 D.求证:∠DBC= 12∠BAC.
图 1-ZT-5
专题训练(一)
证明:过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF,∴∠DBC=12∠BAC.

中考“三角形”专题练习

中考“三角形”专题练习

1.三角形考点:理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。

关键是正确理解有关概念,学会概念和定理的运用。

应用方程知识求解几何题是这部分知识常用的方法。

精典例题:【例1】已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( )A 、b L a 33>>B 、a L b a 2)(2>>+C 、a b L b a +>>+262D 、b a L b a 23+>>- 分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。

答案:B变式与思考:在△ABC 中,AC =5,中线AD =7,则AB 边的取值范围是( )A 、1<AB <29 B 、4<AB <24C 、5<AB <19D 、9<AB <19 评注:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。

【例2】如图,已知△ABC 中,∠ABC =450,∠ACB =610,延长BC 至E ,使CE =AC ,延长CB 至D ,使DB =AB ,求∠DAE 的度数。

分析:用三角形内角和定理和外角定理,等腰三角形性质,求出∠D +∠E 的度数,即可求得∠DAE 的度数。

略解:∵AB =DB ,AC =CE∴∠D =21∠ABC ,∠E =21∠ACB ∴∠D +∠E =21(∠ABC +∠ACB )=530∴∠DAE =1800-(∠D +∠E )=1270探索与创新:【问题一】如图,已知点A 在直线l 外,点B 、C 在直线l 上。

(1)点P 是△ABC 内任一点,求证:∠P >∠A ;(2)试判断在△ABC 外,又和点A 在直线l 的同侧,是否存在一点Q ,使∠BQC >∠A ,并证明你的结论。

nm∙ll问题一图CBACBA分析与结论:(1)连结AP ,易证明∠P >∠A ;(2)存在,怎样的角与∠A 相等呢?利用同弧上的圆周角相等,可考虑构造△ABC 的外接⊙O ,易知弦BC 所对且顶点在弧A m B ,和弧A n C 上的圆周角都与∠A 相等,因此例2图ED C B A点Q 应在弓形A m B 和A n C 内,利用圆的有关性质易证明(证明略)。

中考数学 三角形专题复习

中考数学 三角形专题复习

中考数学 三角形专题复习1一、三角形的基本概念 三角形的概念:如图,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角.三角形的主要线段:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.这里我们要注意两点:一是一个三角形有三条角平分线,并且相交于三角形内部一点;二是三角形的角平分线是一条线段,而角的平分线是一条射线.在三角形中,连结一个顶点和它对边的中点的线段叫做三角形的中线.这里我们要注意两点:一是一个三角形有三条中线,并且相交于三角形内部一点;二是三角形的中线是一条线段.从三角形一个顶点向它对边画垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).这里我们要注意三角形的高是线段,而垂线是直线. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性.三角形的这个性质在生产和生活中应用很广,需要稳定的东西都制成三角形的形状. 二、 三角形的特性与表示 三角形有下面三个特性:①三角形有三条线段;②三条线段不在同一条直线上;③首尾顺次连接.以上三点表明三角形是封闭图形,如图就不是三角形. “三角形” 用符号“∆” 表示,顶点是C B A ,,的三角形记作“ABC ∆” ,读作“三角形ABC ” . 三、 三角形的分类及角边关系3.1. 三角形的分类三角形按边的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形角形底和腰不相等的等腰三等腰三角形不等边三角形三角形 三角形按角的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧)()()(形有一个角为钝角的三角钝角三角形形三个角都是锐角的三角锐角三角形斜三角形形有一个角为直角的三角直角三角形三角形 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形.它是两条直角边相等的直角三角形.注意:一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个钝角;最多有一个直角.3.2. 三角形的三边关系定理及推论三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形两边之差小于第三边. 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形.②当已知两边时,可确定第三边的范围. ③证明线段不等关系.3.3. 三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180.推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的两个内角的和. ③三角形的一个外角大于任何一个和它不相邻的内角.注意:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角. 3.4. 三角形的面积三角形的面积=21×底×高. 4. 全等三角形4.1. 全等三角形的概念能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.夹边就是三角形中相邻两角的公共边.夹角就是三角形中有公共端点的两边所成的角.4.2. 全等三角形的表示和性质下图中的两个三角形能够完全重合,就是全等三角形,“全等”用符号“≌”来表示,读作“全等于” .下图中的ABC ∆和C B A '''∆全等,记作“ABC ∆≌C B A '''∆” .注意:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上.因为能够重合的两条线段是相等的线段,能够重合的两个角是相等的角,所以全等三角形的对应边相等,对应角相等.这是全等三角形的性质.4.3. 三角形全等的判定 三角形全等的判定公理:三角形全等的判定公理有下面几个:(1)边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ” ).(2)角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ” ).这个公理还有下面的推论:有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ” ).(3)边边边公理:有三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ” ). 直角三角形全等的判定:对于特殊的直角三角形,判断它全等时,还有HL 公理即斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写为“斜边、直角边”或“HL ”). 注意:①HL 公理是直角三角形独有的,它对一般三角形不成立;而一般三角形的全等判定公理同样适用于直角三角形.②有两边和其中一边的对角(直角或钝角)对应相等,则这两个三角形全等.4.4. 全等变换只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.全等变换包括以下三种:①平移变换:把图形沿某条直线平行移动的变换叫做平移变换.如图1,把ABC ∆沿直线BC 移动到C B A '''∆和C B A ''''''∆位置就是平移变换.②对称变换:将图形沿某直线翻折180,这种变换叫做对称变换.如图2,将ABC ∆翻折180到ABD ∆位置的变换就是对称变换.③旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.如图3,将ABC ∆绕过A 点旋转180到ADE ∆的位置,就是旋转变换.这里我们应该知道,无论是平移变换,对称变换还是旋转变换,变换前后的两个图形全等,具有全等的所有性质.图1 图2 图35. 等腰三角形 5.1. 等腰三角形的性质等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角).即:在ABC ∆中,若AC AB =,则C B ∠=∠.推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合.推论2:等边三角形的各个角都相等,并且每个角都等于60.等腰三角形的其它性质:1、等腰三角形的三线合一性:等腰三角形的顶角平分线,底边上的中线,底边上的高互 相重合.即只要知道其中一个量,就可以知道其它两个量.2、等腰直角三角形的两个底角相等且等于45.3、等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可以为钝角(或直角).4、等腰三角形的三边关系:设腰长为a ,底边长为b ,则a b<2. 5、等腰三角形的三角关系:设顶角为A ∠,底角为C B ∠∠,,则有:B A ∠-=∠2180,2180A C B -=∠=∠ .5.2. 等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成:等角对等边).这个判定定理常用于证明同一个三角形中的边相等. 推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角是60的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半. 注意:推论1,推论2常用于证明一个三角形是等边三角形;推论3常证明线段的倍分. 证明一个三角形是等腰三角形的方法:1、利用定义证明,有两边相等的三角形是等腰三角形.2、等腰三角形的判定定理:等角对等边. 证明一个三角形是等边三角形的方法:1、利用定义证明:证明三条边相等.2、证明三角形三个角相等.3、证明它是等腰三角形并且已有一个角是60.补充:轴对称图形等腰三角形的性质与判定: 等腰三角形性质等腰三角形判定中线 1、等腰三角形底边上的中线垂直底边,平分顶角2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等1、两边上中线相等的三角形是等腰三角形2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线1、等腰三角形顶角平分线垂直平分底边2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点距离相等 1、如果三角形的顶角平分线垂直于这个角的对边(平分对边)那么这个三角形是等腰三角形2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形高线 1、等腰三角形底边上的高平分顶角、平分底边2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等 1、如果一个三角形一边上的高平分这条边(平分这条边的对角)那么这个三角形是等腰三角形2、有两条高相等的三角形是等腰三角形 角 等边对等角等角对等边边 底的一半<腰长<周长的一半 两边相等的三角形是等腰三角形练习1、如图,在钝角△ABC 中,点D 、E 分别是边AC 、BC 的中点, 且DA =DE ,那么下列结论错误的是( )A.∠1=∠2B.∠1=∠3C.∠B =∠CD.∠B =∠1 2、已知:如图,AB //DE ,且AB =DE . (l )请你只添加一个条件,使△ABC ≌△DEF , 你添加的条件是 . (2)添加条件后,证明△ABC ≌△DEF .3. 如图,在中,平分且与BC 相交于点, ∠B = 40°,∠BAD = 30°,则的度数是( ) A .70° B .80° C .100° D .110°4、如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A .13B .14C .15D .16ADE B C5.如图,在R t △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)6、如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.7、如图,在∆ABC 中,∠︒B=67,∠︒C=33,AD 是∆ABC 的角平分线,则AD ∠C 的度数为 .A 40︒ B. 45︒C. 50︒D. 55︒8、如图,在ABC ∆中,90C ∠=︒ ,点D 是AB 边上的一点,DM AB ⊥,且DM AC =, 过点M 作ME BC ∥交AB 于点E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形》专题训练
一、选择题
1.若等腰三角形底角为72°,则顶角为( )。

A .108°
B .72°
C .54°
D .36°
2.等腰三角形的两边长分别为5和6,则这个三角形的周长是( )。

A .16
B .17
C .13
D .16或17
3. 下列条件能确定△ABC 是直角三角形的条件有( )。

(1) ∠A+∠B=∠C ; (2) ∠A:∠B:∠C=1:2:3;
(3) ∠A=90°-∠B ; (4)∠A=∠B=2
1∠C A .1个 B .2个 C .3个 D .4个
4. 正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )
A .60°
B .90°
C .120°
D .150°
5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )。

A .60°
B .120°
C .60°或150°
D .60°或120°
6. 下面给出的几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;
(3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为60°的等腰三角形。

其中一定是等边三角形的有( )。

A .4个
B .3个
C .2个
D .1个
7.已知△ABC ,⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°21 ∠A ; ⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A ; ⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-2
1∠A 。

上述说法下确的个数是( )。

A .0个 B .1个 C .2个 D .3个
8.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )。

A.两点之间线段最短
B.矩形的对称性
C.矩形的四个角都是直角
D.三角形的稳定性
9.如图5,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,如果EF =2,那么菱形ABCD 的周长是( )。

A .4
B .8
C .12
D .16
10.如图6,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12 , BD=10, AB=m ,那么m 的取值范围是( )。

<m<12 <m<22 C.1<m<11 <m<6
图4 图5 图6
12.若有一条公共边的两个三角形称为一对“共边三角形”,则图7中以BC 为公共边的“共边三角形”有( )。

A .2对
B .3对
C .4对
D .6对
13.如图8,△ABC 、△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点.若AB =4时,则图形ABCDEFG 外围的周长是( )。

A .12
B .15
C .18
D .21
图7 图 8
14.一个等腰三角形底边上的高是4,周长是16,则三角形的面积是( )。

A .24
B .12
C .10
D .8
二、填空题
1. 在△ABC 中,若∠A :∠B :∠C=2:3:4,则∠C=_________。

2. 三角形的三边长为3,a,7,则a 的取值范围是________________。

3.如图9,在△ABC 中,∠AB C=90°,∠A=50°,BD ∥AC ,则∠C BD 的度数是_________。

4. 如图10, 已知△ABC 中,AB =AC ,∠BAC 与∠ACB 的平分线交于D 点,∠ADC=130°,那么∠CAB 的大小是_________。

图9 图10
5.如图11所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是_________。

6. 如图12,△ABC 中,AB =AC ,∠A=36°,BD 平分∠ABC,DE∥BC,则图形中共有_________个等腰三角形。

7.如图13,在△ABC 中,AB=AC ,∠BAD=20,且AE=AD ,则∠CDE=_________。

图11 图12 图13
8.在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形. 如图14,在4×4的方格纸上,以AB 为边的格点三角形ABC 的面积为2个平方单位,则符合条件的C 点共有_________个。

9. 如图15是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a ,则六边形的周长是_________。

10.如图16,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为_________,∠APB =_________。

图14 图15 图16
11. 已知:x :y=1:2,则 (x+y):y=_______
A
B A E D
C B 20°
12. 若32=b a ,则 b
a a - =__________ 13.△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC 。

若AD :AB =1:2,则S △ADE :S △ABC =_
14.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 位置,图中旋转中心是点 ,旋转角度是 度,△ADP 为 三角形.
15.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是 度.
三、解答下列各题
1. 如图,已知△ABC 中,∠ABC=∠ACB=2∠A ,且BD ⊥AC ,垂足为D ,
求∠DBC 的度数。

2.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,
则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
3如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;
③判断△CFH•的形状并说明理由.
4.已知:如图,AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点。

A D
5.已知:如图,AB=AD, CB=CD,E,F分别是AB,AD的中点.求证:CE=CF 。

6.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。

求证:(1)AD⊥EF ;
(2)当有一点G从点D向A运动时,DE⊥AB于E,DF⊥AC于F,此时上面结论是否成立
7.两个全等的含300, 600角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC.试判断△EMC的形状,并说明理由.
8.某同学想测量旗杆的高度,他在某一时刻测得1m长的竹杆竖直放置时的影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上。

他测得落在地面上的影长为21m,留在墙上的影高为2m。

你能帮助他求出旗杆的高度吗。

相关文档
最新文档