电气传动自动控制系统课程设计

合集下载

电气传动控制系统课程设计解密版-电气传动控制系统

电气传动控制系统课程设计解密版-电气传动控制系统

电气传动控制系统课程设计解密版|电气传动控制系统电气传动控制系统课程设计一、引言 MATLAB作为一个强大的数学及仿真软件,在科研与工程中被广泛使用。

对于我们自动化系的学生而言,不论是专业发展、学术科研还是今后参加工作,认真学习MATLAB都是有很大必要的。

利用MATLAB/Simulink验证“直流电动机转速/电流双闭环PID控制方案”可以熟悉MATLAB以及Simulink的使用方法,并掌握利用MATLAB分析控制系统性能的技巧。

二、实验原理与建模 1.系统建模 (1) 额定励磁下的直流电动机的动态数学模型图1给出了额定励磁下他励直流电机的等效电路,其中电枢回路电阻R和电感L包含整流装置内阻和平波电抗器电阻与电感在内,规定的正方向如图所示。

图1 直流电动机等效电路由图1可列出微分方程如下:(主电路,假定电流连续)(额定励磁下的感应电动势)(牛顿动力学定律,忽略粘性摩擦)(额定励磁下的电磁转矩)定义下列时间常数:——电枢回路电磁时间常数,单位为s;——电力拖动系统机电时间常数,单位为s;代入微分方程,并整理后得:式中,——负载电流。

在零初始条件下,取等式两侧得拉氏变换,得电压与电流间的传递函数(1)电流与电动势间的传递函数为(2) a) b) c) 图 2 额定励磁下直流电动机的动态结构图 a) 式(1)的结构图 b)式(2)的结构图 c)整个直流电动机的动态结构图 (2) 晶闸管触发和整流装置的动态数学模型在分析系统时我们往往把它们当作一个环节来看待。

这一环节的输入量是触发电路的控制电压Uct,输出量是理想空载整流电压Ud0。

把它们之间的放大系数Ks看成常数,晶闸管触发与整流装置可以看成是一个具有纯滞后的放大环节,其滞后作用是由晶闸管装置的失控时间引起的。

下面列出不同整流电路的平均失控时间:表 1 各种整流电路的平均失控时间(f=50Hz)整流电路形式平均失控时间Ts/ms 单相半波 10 单相桥式(全波) 5 三相全波 3.33 三相桥式,六相半波1.67 用单位阶跃函数来表示滞后,则晶闸管触发和整流装置的输入输出关系为按拉氏变换的位移定理,则传递函数为(3)由于式(3)中含有指数函数,它使系统成为非最小相位系统,分析和设计都比较麻烦。

电气传动课程设计

电气传动课程设计

黄石理工学院毕业设计(论文)第一部分直流调速系统摘要近年来由于微型机的快速发展,数字交直流调速系统得到广泛应用。

由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响。

其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。

所以微机数字控制系统在各个方面的性能都远远优于模拟控制系统且应用越来越广泛。

本设计是用8031单片机构成的数字化直流调速系统。

特点是用单片机取代模拟触发器、电流调节器、速度调节器及逻辑切换等硬件设备。

最后进行软件编程、调试以及计算机仿真。

实时控制结果表明,本数字化直流调速系统实现了电流和转速双闭环的恒速调节,并具有结构简单,控制精度高,成本低,易推广等特点,而且各项性能指标优于模拟直流调速系统,从而能够实际的应用到生产生活中,满足现代化生产的需要。

关键词:单片机双闭环直流调速系统数字方式ABSTRACTW ITH THE RAPID DEVELOPMENT OF MICROCOMPUTER RECENT YEARS,THE DIGITIZATION OF OVERSEA AC/DC SPEED R EGULATION SYSTEM HAS ACHIEVED TO A PRACTICAL STAGE.A S THE HARDWARE CIRCUIT OF DIGITAL CONTROL SYSTEM CENTERED ON MICROPROCESSOR POSSESSES THE ADVANTAGES THAT IT HAS HIGHER STANDARDIZATION AND LOWER COST,AND IT WON’T BE INFLUENCED BY THE TEMPERATURE DRIFT OF DEVICES.F URTHERMORE,THE CONTROL SOFTWARE OF DIGITAL CONTROL SYSTEM CAN CARRY OUT LOGICAL JUDGMENT AND SOPHISTICATED CALCULATION,AND IT CAN MAKE THE CONTROL RULES WHICH ARE DIFFERENT FROM THE OPTIMALITY,ADAPTIVE TRAIT,NONLINEAR AND INTELLIGENCE OF THE ORDINARY LINEAR ADJUSTABILITY COME TRUE.S O THE FUNCTION OF DIGITAL CONTROL SYSTEM IS MUCH MORE SUPERIOR TO ANALOG CONTROL SYSTEM IN EVERY ASPECTS, AND IS BEING USED WIDELY.T HIS DESIGN IS A DIGITAL DC SPEED R EGULATION SYSTEM CONSTITUTED OF 8031SINGLE-CHIP COMPUTER,THE CHARACTERISTIC IS THE SINGLE-CHIP COMPUTER REPLACED THE HARDWARE DEVICES SUCH AS THE ANALOG TRIGGER, CURRENT REGULATOR,ROTATION REGULATOR,AND LOGICAL HANDOFF .F INALLY PUTTING TOGETHER THE SOFTWARE,TESTING AND COMPUTER SIMULATION.T HE RESULT OF REAL TIME CONTROL INDICATES THAT THE DIGITAL DC SPEED R EGULATION SYSTEM REALIZED THE CONSTANT SPEED ADJUSTABILITY OF THE DOUBLE CLOSED-LOOP OF ELECTRIC CURRENT AND ROTATE SPEED.T HIS SYSTEM ALSO HAS THE SPECIALTIES SUCH AS SIMPLE STRUCTURE,HIGH CONTROL ACCURACY,LOW COST AND EASINESS TO BE SPREAD.I N ADDITION,ITS ENTIRE PERFORMANCE INDEX IS BETTER THAN THAT OF ANALOG DC SPEED R EGULATION SYSTEM.A S A RESULT,THE DIGITAL DC SPEED R EGULATION SYSTEM COULD BE APPLIED INTO PRODUCTION AND ORDINARY LIFE TO MEET THE NEEDS OF MODERN MANUFACTURE.K EYWORDS:S INGLE-CHIP COMPUTER;D OUBLE CLOSED-LOOP ;DC SPEED R EGULATION SYSTEM;D IGITAL MODEL1 引言早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

电气传动控制系统课程设计09(1)

电气传动控制系统课程设计09(1)

课程设计任务书2012~2013学年第一学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目:直流调速系统设计及仿真和交流调速系建模与仿真二、课程设计内容(含技术指标)1.设计目的及要求《电气传动课程设计》是继“电气传动控制系统”课之后开设的实践性环节课程。

由于“控制系统”课程本身是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。

为了培养学生的实践能力,而设置电气传动控制系统的课程设计。

它将起到从理论过渡到实践的桥梁作用。

通过该环节训练,达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。

2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。

3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。

通过课程设计,使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。

并提高正确查阅和使用技术资料、标准手册等工具书的能力,提高独立分析问题、解决问题及独立工作的能力。

通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。

培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。

2.课程设计基本要求本课程设计应根据设计任务书以设计技术规程及规定进行。

1、根据设计课题的技术指标和给定条件,能独立而正确地进行方案论证和设计计算,要求概念清楚、方案合理、方法正确、步骤完整。

2、要求掌握直流调速系统的设计内容、方法、步骤和交流调速系统建模与仿真。

3、学会查阅有关参考资料和手册,并能正确选择有关元器件和参数。

电气传动系统课程设计

电气传动系统课程设计

一、调速方案选择转速调节器的作用1.转速调节器是调速系统的主导调节器,它使转速n很快的跟随给定电压u的变化稳态时可减小转速误差,如果采用pi调节器,则可实现无静差。

2.对负载变化起抗扰作用。

3.其输出限幅值决定电动机允许的最大电流。

1、电动机供电方案的选择:1)晶闸管三相桥式全控整流电路相对于其他的优点:和旋转变流机组和离子拖动变流装置相比较,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。

晶闸管可控整流器的功率放大倍数在以上,其门极电流可以直接用电子控制,不再像直流发电机那样需要较大功率的放大器。

在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级,这将会大大提高系统的动态性能。

2)采用脉宽调制方式的电源相对于晶闸管三相全桥相比的优点:1、开关频率高,电流容易连续,谐波少,电极损耗及发热都较少;2、主电路线路简单,需用的功率器件少;3、若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;4、低速性能好,稳速性能高,调速范围宽,可达1:10000左右;5、直流电源采用不控整流时,电网功率因数比相控整流器高。

6、功率开关器件工作在开关状态,导通损耗少,当开关频率适当时,开关损耗也不大,因而装置效率较高;2、系统结构选择:1)采用带转速负反馈的闭环直流调速系统比开环系统的优点:闭环调速系统可以获得比开环调速系统硬的多的稳态特性,从而保证在一定静差率的要求下,能够提高调速范围,为此所需付出的代价是,必须增设电压放大器以及检测与反馈装置。

2)采用电流截止负反馈的优点如下:有些生产机械的电动机可能会遇到堵转问题,由于闭环系统的静特性很硬,若无限流环,硬干下去,电流将远远超过允许值。

直流电机全电压启动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是可能造成损坏。

为了解决这两个问题,系统中必须有自动限制电枢电流的环节。

电气传动课程设计

电气传动课程设计

电气传动自动控制系统专业:自动化学生:指导老师:摘要:综述了一种在给定系统设备的情况下,设计并调试双闭环直流调速系统使其满足要求的性能指标的工程方法。

主要包括原始设备参数的测量、系统模型的建立及简化处理、调节器的设计与仿真、系统的综合调试。

关键词:双闭环直流调速系统、控制系统模型、调节器的设计与仿真Abstract:An over view of a specific engineering method to design and set double closed loop DC speed regulating system to meet required performance index with given system equipment. Mainly includes measure given equipment, build and simplify mathematic models, design and simulate controllers, systematic integrated setting.Keywords: double closed loop DC speed regulating system, system models, design and simulate controllers目录电气传动自动控制系统 (1)一、设计任务 (2)1.1、性能指标 (2)1.2、已知条件 (3)1.3、待测参数 (3)1.4、设备清单 (3)1.5、系统结构图 (4)二、系统建模 (4)2.1、电枢内阻与电感电阻的测量 (4)2.2、电势转速系数的测量 (5)2.3、电枢回路电磁时间常数的测量 (5)2.4、机电时间常数的测量 (5)2.5、电源的传递特性 (6)2.6、电机的建模 (8)三、系统设计 (8)3.1、电流调节器的设计 (9)3.2、转速调节器的设计 (10)3.3、Matlab 仿真 (10)四、系统调试 (11)4.1、单元调试 (11)4.2、系统调试 (11)4.2.1、电流环整定: (11)4.2.2、转速环整定: (12)4.3、系统性能测定: (12)4.3.1、动态性能 (12)4.3.2、静态性能 (13)五、系统评估 (14)5.1、系统实际性能评价 (14)5.3、实验中出现的一些问题 (15)六、结束语 (15)一、设计任务1.1、性能指标在给定的实验装置上,设计并调试一个双闭环直流调速系统使被控电机的转速能迅速跟随设定值,要求其满足下列性能指标:静差率:s% ≤ 5% 调速范围: D = 3电流超调量:% ≤ 5% 转速超调量:% ≤ 10%1.2、已知条件最大速度给定= 5V最大电流给定= 5V最大电枢电流= 1.4A电流反馈强度β= 5V/ 1.4A速度反馈强度α= 5V/ 1450rpm调节器输入电阻= 20KΩ调节器输入滤波电容 =0.224μF1.3、待测参数电动机电枢内阻 Ra电势转速系数 Ce整流电源等效内阻 Rn放大系数 Ks平波电感直流内阻 Rd电枢回路总电阻 R∑= Ra+ Rn+ Rd电磁时间常数 TL机电时间常数 Tm1.4、设备清单实验仪器名称型号主要参数主要功能电力电子电气传动教学实验台MCL—Ⅲ容量1.5KVA体积1.6*0.75*1.6m³质量150kg提供各类实验挂箱GW Instek数字万用表GDM-8145 最高可精确到0.01监测晶闸管的极性,测量给定电压的大小Tektronix双通道示波器TDS 1012带宽100MHz最高采样速率:1GS/s显示电流Id和转速n的波形双通道示波器DS 1102E带宽100MHz最高采样速率:1GS/s 显示电流Id和转速n的波形直接测量电感、电容值DM6243LC电感、电容表METER1.5、系统结构图系统主要由转速给定电位器RP1、转速调节器ASR、电流调节器ACR、电力电子变换器UPE、电流互感器、被控直流电机以及转速计组成。

电气传动自动控制系统课程设计.doc

电气传动自动控制系统课程设计.doc

课程设计报告书题目:电气传动自动控制系统报告人:王宗禹学号:1043031325班级:2010级34班指导教师:肖勇完成时间:2013年7月日同组人:王大松秦缘龚剑电气信息学院专业实验中心一.设计任务1.设计目标:(1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作(2)已知条件:(3)稳态/动态指标:静态:s% ≤ 5% D = 3动态:σi% ≤ 5% σn% ≤ 10%(4)期望调速性能示意说明:静差率小于5%,调速范围D=3.(5)系统电路结构示意图:2.客观条件:(1)使用设备列表清单及主要设备功能描述:二.系统建模(系统固有参数测定实验内容)1.实验原理(1)变流电源内阻Rn的测定:a.电路示意图如下:可以等效如下:b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。

(2)电枢内阻 Ra、平波电感内阻 Rd的测定:a.电路示意图如下:b.实验方法步骤:◆电机静止,电枢回路外串限流电阻◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点)◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra ,Rd 的平均值.(3)电动机电势转速系数 Ce的测定:a.实验原理:由公式可以推导出Ce的测定公式:b.实验方法步骤:◆空载启动电机并稳定运行(I d0大小基本恒定)◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据(4)整流电源放大系数 Ks的测定:a.实验原理:Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。

故可以通过公式测定Ks.b.实验方法步骤:◆分级调节控制信号U ct大小,并保持I d≤1A◆在U d0有效范围内,测量每一组U ct,U d,I d,数据应大于10 组以上,测量上限不低于最大理想空载整流输出电压U d0max◆按U d0 = U d+I d×R n 作出电源输入-输出特性曲线(用Excel生成)◆取线性段3段以上斜率,求其平均值得Ks(5)电枢回路电磁时间常数 TL的测定:a.电路示意图:b.实验原理:可以根据公式L=Ld+La与TL=L/R∑求得TLc.实验方法步骤:◆断开电枢回路连线◆使用电感表测量电枢回路总电感量 L(6)电枢回路机电时间常数Tm的测定:a.实验原理:由下列公式可以推导出Tm的公式b.实验方法步骤:◆电机空载,突加给定,并使起动峰值电流达到系统设定最大电流I dm◆记录 id 波形,由下列公式计算Tm2.原始数据(1)Ud1 214V Id1 0.5AUd2 207V Id2 1.0AUrd Ura Id11.88V 20.68V 1A11.82V 20.59V 1A11,88V 20.65V 1A(3)Ud(V) n(r/min)78 537144 999(4)Ud(V) Id(A) Uct(V)286 0.80 4.585268 0.75 3.444251 0.70 2.825233 0.65 2.359213 0.60 1.991195 0.55 1.729178 0.50 1.521157 0.45 1.306138 0.40 1.141118 0.35 0.989102 0.30 0.87884 0.25 0.77367 0.20 0.656Ld La671mH 345mH(6)实验波形如下:3.数据处理(1)Rn=(Ud2-Ud1)/(Id1-Id2)=(207-214)/(0.5-1.0)Ω=14Ω(2)Rd=1/3*(11.88V/1A+11.82V/1A+11.88V/1A)=11.86ΩRa=1/3*(20.68V/1A+20.59V/1A+20.65V/1A)=20.64Ω(3)Ce=(Ud2-Ud1)/(n2-n1)=(144-78)/(999-537)V*min/r=0.1428 V*min/r(4)用Excel处理:可以用公式Ud0=Ud+Id*Rn直接生成Ud0这一列的结果,表格如下:Ud(V) Id(A) Ud0(V) Uct(V)286 0.80 297.2 4.585268 0.75 278.5 3.444251 0.70 260.8 2.825233 0.65 242.1 2.359213 0.60 221.4 1.991195 0.55 202.7 1.729178 0.50 185 1.521157 0.45 163.3 1.306138 0.40 143.6 1.141118 0.35 122.9 0.989102 0.30 106.20.87884 0.25 87.5 0.77367 0.20 69.8 0.656再用Excel插入散点图功能生成如下图形:取图中线性段四段求斜率如下:Ks1=(106.2-69.8)/(0.878-0.656)≈164Ks2=(143.6-106.2)/(1.141-0.878)≈142Ks3=(185-143.6)/(1.521-1.141)≈109Ks4=(221.4-185)/(1.991-1.521)≈77求得平均值:Ks=(164+142+109+77)/4=123(5)L=Ld+La=671mH+345mH=1016mHTL=L/R∑=L/(Rn+Ra+Rd)=1016mH/(14Ω+20.64Ω+11.86Ω)=21.8ms=0.0218s (6) 通过作图工具处理如下:可以知道s的面积是10.75*(1.4/8A)*50ms=94.0625A*ms由此可以计算出Tm=s/(Idm-Idz)=94.0625A*ms/[7*(1.4/8A)]≈0.0767s4.实验结果电动机电枢内阻 R a20.64Ω电势转速系数 Ce 0.1428 V*min/r整流电源等效内阻 R n14Ω放大系数 Ks 123平波电感直流内阻 R d11.86Ω电枢回路总电阻 R∑= R a+ R n+ R d46.5Ω电磁时间常数 T L0.0218s机电时间常数 T m0.0767s三.系统设计1.系统理论设计内容(系统传递函数结构图,设计步骤、PI参数计算及电路实现结果等)(1)系统设计理论:控制系统的动态性能指标:➢动态性能指标总结:(1)跟随性能超调量 (%)反映系统的动态调节稳定性能上升时间 tr 反映系统的动态调节快速性能调节时间 ts 反映系统的动态调节过渡周期(2)抗扰性能动态降落比△C max% 反映系统扰动引起的最大动态误差恢复时间 tr 反映系统的动态抗扰调节快速性能上述指标对应的给定和扰动均为阶跃信号◆调节器的工程设计方法:➢工程设计方法:在设计时,把实际系统校正或简化成典型系统,可以利用现成的公式和图表来进行参数计算,设计过程简便得多。

电气传动自动控制系统第1章

电气传动自动控制系统第1章

电力传动自动控制系统2013-03-30第1章电力传动系统基础1.1 电力传动系统的目的、要求和分类主要讨论电力传动系统的基本概念及其发展概况。

一.电力传动及其基本组成1.传动以原动机带动生产机械运行,完成一定的生产任务。

古代动力的来源是人力、畜力。

后来出现了借助于风力、水力传动的生产机械。

再以后,发明了热机(蒸汽机、内燃机、柴油机),就以高温蒸汽为动力。

直到十九世纪出现了电能,就以电能为动力带动生产机械,从此,人类从繁重的体力劳动中解放出来。

气动、液压传动、电动(电力传动或电气传动)电力传动以电动机作为原动机,带动生产机械运行。

早期的机械能来源于水力、蒸汽。

比如,水车、蒸汽机车等。

电、电机出现以后,由于电能具有变换、传输、分配、使用和控制都非常方便、经济,而且易于大量生产、集中管理和实现自动控制的优点,就由电力传动代替了水力和蒸汽。

在现代工业生产中,大量的生产机械采用电力传动,电力传动极为普遍,约占80%。

如机床、汽车、电车等。

2.电力传动系统的基本组成电力传动系统是电气与机械综合的系统。

由以下四部分组成:1)电动机及其供电电源——把电能转换成机械能2)传动机构——把机械能转化成所需要的运动形式并进行传递与分配3)工作机构——完成生产工艺任务(或称为执行机构)4)电气控制装置——控制系统按照生产工艺的要求来工作,并对系统起保护作用或进行更高层次的自动化控制。

工作机械的运动形式是多种多样的。

车床的主轴做旋转运动,龙门刨床的工作台做直线往复运动,吊车的卷扬机构做上下直线运动,冲剪床的执行机构做简谐运动。

在电力传动系统中,原动机是电动机,一般做旋转运动。

通过传动机构可获得各种不同形式的运动。

以车床为例的电力传动系统如图1-1所示。

图1-1 车床的电力传动系统示意图绘成方框图如图1-2所示。

— 1 —图1-2 电力传动系统方框图随着生产的发展,生产工艺对电力传动系统在准确性、快速性、经济性、先进性等方面提出愈来愈高的要求,因此,需要不断地进行改进和完善电气控制设备,使电力传动自动化得到不断发展。

电气传动控制系统设计报告

电气传动控制系统设计报告

目录1 设计任务书 (2)1.1 设计内容及要求 (2)1.2 设计参数 (2)1.3 设计目的 (2)2变频调速控制系统概述 (2)3 方案设计 (3)3.1 变频器选型及概述 (3)3.2 功能图及变频器参数设置 (7)3.3 变频调速控制系统的硬件、软件配置 (10)3.4 变频调速控制系统的网络结构 (10)4 S7-300 PLC控制程序的设计 (11)4.1 硬件组态 (11)4.2 控制程序设计 (13)5 Wincc组态 (15)5.1 变量组态 (15)5.2 画面组态 (16)5.3 变量连接 (17)6 程序调试 (18)6.1 PLC调试方法与结果 (18)6.2 Wincc调试方法与结果 (18)7 技术小结 (19)参考文献 (21)附录1:S7-300控制程序清单 (22)交流调速开环控制程序 (22)基于Wincc的交流调速控制系统程序 (23)1 设计任务书1.1 设计内容及要求1、变频调速控制系统硬件设计2、网络系统设计3、变频器功能预置,参数设定4、PLC硬件组态及程序设计5、Wincc组态及程序设计6、系统调试1.2 设计参数电机额定转速 2840r/min;电机额定频率 50HZ;电机额定电压380V;电机额定功率 1.0KW;调速范围>1001.3 设计目的通过本次课程设计,旨在让学生掌握工程型变频器的基本结构,基本参数以及通讯功能,学会设置6SE70变频器的基本参数,了解标准设备基本元器件型号及参数等,学会电机参数的设置及优化,掌握6SE70通过PMU面板设置参数的方法,实现变频器通过端子排启/停以及调速,掌握变频器通过PROFIBUS通讯的方法以及参数设置,熟悉变频器通讯时所需的硬件配置,最后实现基于Wincc的变频调速控制。

2变频调速控制系统概述对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。

这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计电力拖动自动控制系统课程设计是电力工程专业的一门重要课程。

该课程旨在培养学生的电力拖动系统设计与控制能力,为学生今后从事相关工作打下坚实的基础。

本文将对电力拖动自动控制系统课程设计进行详细介绍。

1.课程设计目标:本课程设计旨在通过理论与实践相结合的方式,培养学生综合运用所学知识进行电力拖动控制系统的设计与调试的能力。

重点培养学生的动力电气控制技术、电动机的控制与保护技术、传感器与信号处理技术以及自动化控制系统的设计与实现能力。

2.课程设计内容:本课程设计主要包括以下几个方面的内容:(1)电力拖动系统的基本原理与构成要素。

(2)电动机的类型、特性及其控制方法。

(3)传感器与信号处理技术在电力拖动控制系统中的应用。

(4)自动化控制系统的设计与实现。

(5)电力拖动系统的运行与维护。

3.课程设计过程:(1)学生通过自主学习,查阅相关资料,掌握电力拖动系统的基本原理与构成要素。

(2)学生根据所学知识,设计一套电力拖动自动控制系统。

(3)学生搭建实验平台,完成电力拖动自动控制系统的硬件连接与软件编程。

(4)学生进行实验测试,对系统进行调试与优化,确保系统的正常运行。

(5)学生撰写课程设计报告,详细介绍自己设计的电力拖动自动控制系统的原理、设计过程与实验结果。

4.课程设计评价:学生的课程设计成绩将根据以下几个方面进行评价:(1)设计方案的合理性与可行性。

包括电力拖动系统的设计思路、硬件选型与连接方案等。

(2)实验结果的准确性与稳定性。

包括系统调试过程中的测试数据与系统运行的稳定性。

(3)报告内容的完整性与条理性。

包括设计思路的论述、实验步骤的说明以及实验结果的分析等。

综上所述,电力拖动自动控制系统课程设计是一门重要的实践性课程。

通过该课程的学习和实践,学生将能够全面掌握电力拖动系统的设计与调试技术,并具备工程实践能力。

同时,本课程也为学生今后从事相关工作提供了一定的实践基础和理论指导。

电力拖动自动控制系统课程设计(25页)

电力拖动自动控制系统课程设计(25页)

图2 模型编辑窗 口
■ (3)修改模块参数:
双击模块图案,则出现关于该图 案的对话框,
通过修改对话框内容来设定模块 的参数。
描述加法器 三路输入的 符号,|表示 该路没有信 号,用|+-取 代原来的符 号。得到减 法器。
图3 加法器模块对话 框
图4 传递函数模块对话框
分子多项式 系数
分母多项式 系数
■ 设计要求:系统中各个参数计算过程 双闭环调速系统的仿真模型 ASR、ACR的仿真模型 转速、电流波形图 转速超调量的验证
■ 设计说明书内容 1 目录
2 正文(可分几章来写) 3 总结 4 参考文献
转速反馈控制直流调速系统的仿真
■ MATLAB下的SIMULINK软件进行系 统仿真是十分简单和直观的,
例如,0.002s+1是 用向量[0.002 1]来 表示的。
阶跃时刻, 可改到0 。
阶跃值,可 改到10 。
图5 阶跃输入模块对话框
填写所需要 的放大系数
图6 增益模块对话框
图7 Integrator模块对话框
积分饱和值, 可改为10。
积分饱和值,可 改为-10。
(4)模块连接
■ 以鼠标左键点击起点模块输出端,拖动鼠标至 终点模块输入端处,则在两模块间产生“→” 线。
图 SIMULINK模块浏览 器窗口
■ (1)打开模型编辑窗口:通过单击SIMULINK工具栏 中新模型的图标或选择→Model菜单项实现。
■ (2)复制相关模块:双击所需子模块库图标,则可打 开它,以鼠标左键选中所需的子模块,拖入模型编 辑窗口。
■ 在本例中拖入模型编辑窗口的为:Source组中的 Step模块;Math Operations组中的Sum模块和Gain 模块;Continuous组中的Transfer Fcn模块和 Integrator模块;Sinks组中的Scope模块;

电气传动控制系统课程设计

电气传动控制系统课程设计

电⽓传动控制系统课程设计⽬录第1篇直流电动机调速系统的设计⽬录 (1)1 前⾔ (2)1.1 研究背景及意义 (2)2 总体结构设计和系统⽅案选择 (3)2.1总体结构设计 (3)2.2调速⽅案的选择 (3)3主电路设计与参数计算 (5)3.1整流变压器的设计 (5)3.2晶闸管元件的选择 (7)3.3晶闸管保护环节的计算 (8)3.4平波电抗器的计算 (9)3.5励磁电路元件的选择 (11)4 触发电路选择 (12)4.1 晶闸管触发⽅法 (12)5 双闭环的动态设计和校验 (15)5.1电流调节器的设计和校验 (15)5.2 转速调节器的设计和校验 (16)6 控制电路的设计与计算 (18)6.1 给定环节的选择 (18)6.2 控制电路的直流电源 (18)6.3 反馈电路参数的选择与计算 (19)7 直流调速系统电⽓原理总图 (20)8 系统MATLAB仿真 (21)8.1 系统的建模与参数设置 (21)8.2 系统仿真结果的输出及结果分析 (22)第2篇交-交变频调速系统建模及仿真9 交-交变频调速系统建模与仿真 (23)9.1 交-交变频调速原理 (23)9.2 逻辑切换装置DLC封装 (23)9.3 逻辑⽆环流单相交-交变频器的建模及仿真 (24)9.4 异步电动机交-交变频器调速系统的建模与仿真 (25)10 课程⼩结 (26)11 参考⽂献 (27)1湖北理⼯学院课程设计报告摘要本⽂实现了转速电流双闭环直流调速系统的设计,实验结果可以准确直观的观察转速-电流双闭环调速系统的启动过程,可⽅便的设计各种不同的调节器参数及控制策略并分析其多系统性能的影响,取得了很好的效果。

但怎样处理好转速控制和电流控制之间的关系呢?经过反复研究和实践,终于发现,如果在系统中设置两个调节器,分别调节转速和电流,两者之间实⾏串联连接,即以转速调节器的输出作为电流调节器ACR的输⼊,再⽤电流调节器的输出作为晶闸管触发装置的控制电压,那么这两种调节作⽤就能互相配合,相辅相成了。

电气自动化技术专业自动控制原理课程优秀教案范本PLC控制系统设计与应用

电气自动化技术专业自动控制原理课程优秀教案范本PLC控制系统设计与应用

电气自动化技术专业自动控制原理课程优秀教案范本PLC控制系统设计与应用电气自动化技术专业自动控制原理课程优秀教案范本——PLC控制系统设计与应用一、引言自动控制是电气自动化技术专业中的重要课程,它涉及到自动化系统的设计、开发和应用。

PLC(可编程逻辑控制器)作为一种常见的自动化控制设备,在现代工业生产中扮演着重要的角色。

本教案旨在介绍PLC控制系统的设计与应用,使学生们能够理解PLC的工作原理,掌握PLC的编程和调试技巧,并能够独立设计和应用PLC控制系统。

二、基本概念1. 可编程逻辑控制器(PLC)的定义与作用可编程逻辑控制器(PLC)是一种专用计算机,用于控制生产过程中的各种自动化设备,如电机、传感器和执行器等。

PLC通过接收输入信号,根据预设的程序进行逻辑运算,并输出控制信号,从而实现对各种工业设备的自动控制。

2. PLC控制系统的组成PLC控制系统由输入模块、输出模块、中央处理器(CPU)和编程设备组成。

输入模块用于接收外部信号,输出模块用于输出控制信号,CPU负责执行逻辑控制程序,编程设备用于编写、调试和下载控制程序。

三、PLC控制系统的设计与应用1. PLC编程语言PLC控制系统使用多种编程语言进行程序编写,常见的有梯形图、指令表和结构化文本等。

学生们应该熟悉这些编程语言的基本语法和使用方法,以便能够根据实际需求编写出正确的控制程序。

2. PLC控制系统的设计步骤PLC控制系统的设计包括需求分析、硬件选型、电路设计、程序编写和系统调试等步骤。

学生们应该学会根据实际需求进行系统设计,选用适当的硬件设备,并能够按照设计流程进行电路设计和程序编写。

3. PLC控制系统的应用案例PLC控制系统广泛应用于各个领域,如工厂自动化、交通管制、环境监测等。

学生们可以通过学习相关案例,了解PLC在实际应用中的具体功能和效果,从而增强对PLC的理解和应用能力。

四、实验教学安排1. 实验目标通过实验,使学生们能够熟悉PLC的基本操作,掌握PLC编程和调试的技巧,并能够独立完成简单的PLC控制系统设计和应用。

电拖自控课程设计

电拖自控课程设计

电拖自控课程设计一、教学目标本课程旨在通过学习电拖自控相关知识,使学生掌握电动机的拖动原理和自控系统的基本构成,培养学生运用专业知识解决实际问题的能力。

具体目标如下:1.知识目标:了解电动机的类型、结构和工作原理,掌握电动机的启动、制动和调速方法;理解自控系统的功能、分类和基本组成,熟悉常用的自控元件及其功能。

2.技能目标:学会使用相关仪器仪表进行电动机和自控系统的调试和维护;能够运用所学知识分析和解决电动机和自控系统运行中出现的问题。

3.情感态度价值观目标:培养学生对电动机和自控系统的兴趣,增强学生运用专业知识服务社会的责任感。

二、教学内容本课程的教学内容主要包括电动机的基本原理和拖动方式,自控系统的组成和功能。

具体安排如下:1.电动机部分:介绍直流电动机、异步电动机和同步电动机的结构和工作原理,分析各种电动机的启动、制动和调速方法。

2.拖动控制部分:讲解电动机的机械特性,探讨电动机的拖动原理和控制方法,介绍常用的拖动控制电路。

3.自控系统部分:阐述自控系统的功能、分类和基本组成,分析常用的自控元件(如传感器、执行器、控制器等)的原理和应用。

三、教学方法为提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:用于传授电动机和自控系统的理论知识,帮助学生建立系统的知识体系。

2.案例分析法:通过分析实际案例,使学生了解电动机和自控系统在工程应用中的具体做法。

3.实验法:学生进行电动机和自控系统的实验操作,培养学生的动手能力和实际问题解决能力。

四、教学资源为实现教学目标,我们将充分利用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习材料。

2.参考书:推荐学生阅读相关参考书籍,拓展知识面。

3.多媒体资料:制作精美的PPT课件,直观展示电动机和自控系统的原理和应用。

4.实验设备:准备完善的实验设备,为学生提供实践操作的机会。

5.网络资源:引导学生利用网络资源,了解电动机和自控系统的最新发展动态。

电气传动的课程设计

电气传动的课程设计

直流调速系统引言早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。

采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。

本文通过对转速、电流双闭环直流调速系统的组成及其静特性分析,对双闭环直流调速系统进行数学建模并进行动态性能的分析,设计出了电流调节器和转速调节器,最终形成了转速、电流双闭环直流调速系统。

本次设计的直流调速体统主要包括:直流电机的确定,电动机供电方案的选择,系统的结构选择及直流调速系统的总体机构的结构确定。

总体结构主要包括主电路和控制回路。

主电路由晶闸管构成,控制回路主要由检测电路,驱动电路构成,检测电路又包括转速检测和电流检测等部分。

如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。

这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。

12第一章 转速、电流双闭环直流调速系统——方案选择 本次设计选用的电动机型号Z2-91型,其具体参数如下表1-1所示表1-1 Z2-91型电动机具体参数(一) 电动机供电方案的选择直流调速系统用的主要方法是变压器调速,调节电枢供电电压所需的可控制电源通常有旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。

旋转变流机组简称G-M 系统,适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。

电气传动课程设计实验指导书

电气传动课程设计实验指导书

4
电气传动课程设计实验指导书
第一章 绪论
一、课程设计概述 1.设计性实验是一种介于基本教学实验和实际科学实验之间的、具有对科 学全过程进行初步训练特点的教学实验, 课题和项目的内容必须根据实验室的具 体情况经过精心的挑选,使它具有综合性,典型性和探索性。同时,要考虑实验 者有可能在给定的教学时间内独立完成。 设计性教学实验的核心是设计,选择实验方案,并在实验中检验方案的正确 性和合理性。 设计时一般包括下列几个方面:根据研究的要求与实验准确度的要 求,确定应用原理;选择实验方法与测量方法;选择测量条件与配套仪器以及测 量数据的合理处理等。 开设设计性实验的目的,是想通过更灵活、更具独立思考的一些实验题目, 进一步培养学生分析问题和解决问题的能力, 根据给定的实验任务、 要求和仪器, 学生应在课前认真进行准备,设计好实验线路,估算出线路参数,拟定出主要的 实验步骤,画好记录实验数据的表格。在课上将实验方案跟教师进行讨论,经同 意后进行实验。 这次实验是以做过的一些电力电子实验和电磁控制元件实验为基 础的。 电气传动自动控制系统实验的特点和要求, 电气传动自动控制系统实验课的 目的在于培养学生掌握基本的实验方法和操作技能, 特别着重于对学生能力的培 养,包括自学能力、动手能力、组织能力、数据分析处理能力、运用理论解决实 际问题的能力、初步科研实验能力、文字表达能力等。本课程的特点是综合性和 实践性强、涉及面广,试验时不宜一人单独进行,须分组协同工作,它配合直流 拖动自动控制系统, 是理论教学的补充与继续, 而理论教学又是实验教学的基础, 实验中学生可灵活运用所学自动控制理论及自动控制系统的知识, 学会分析和解 决实际系统中出现的问题,培养实践动手能力,同时验证理论,加强理论与实践 的统一,实践—理论—再实践,可使认识不断提高、深化,进一步能有所发现, 有所创新。 2.本课程的目的与作用 (1) 电气传动课程设计与综合实验是工业电气自动化专业的一门专业课程, 它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告书题目:电气传动自动控制系统报告人:王宗禹学号:1043031325班级:2010级34班指导教师:肖勇完成时间:2013年7月日同组人:王大松秦缘龚剑电气信息学院专业实验中心一.设计任务1.设计目标:(1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作(2)已知条件:(3)稳态/动态指标:静态:s% ≤ 5% D = 3动态:σi% ≤ 5% σn% ≤ 10%(4)期望调速性能示意说明:静差率小于5%,调速范围D=3.(5)系统电路结构示意图:2.客观条件:(1)使用设备列表清单及主要设备功能描述:二.系统建模(系统固有参数测定实验内容)1.实验原理(1)变流电源内阻Rn的测定:a.电路示意图如下:可以等效如下:b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。

(2)电枢内阻 Ra、平波电感内阻 Rd的测定:a.电路示意图如下:b.实验方法步骤:◆电机静止,电枢回路外串限流电阻◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点)◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra ,Rd 的平均值.(3)电动机电势转速系数 Ce的测定:a.实验原理:由公式可以推导出Ce的测定公式:b.实验方法步骤:◆空载启动电机并稳定运行(I d0大小基本恒定)◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据(4)整流电源放大系数 Ks的测定:a.实验原理:Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。

故可以通过公式测定Ks.b.实验方法步骤:◆分级调节控制信号U ct大小,并保持I d≤1A◆在U d0有效范围内,测量每一组U ct,U d,I d,数据应大于10 组以上,测量上限不低于最大理想空载整流输出电压U d0max◆按U d0 = U d+I d×R n 作出电源输入-输出特性曲线(用Excel生成)◆取线性段3段以上斜率,求其平均值得Ks(5)电枢回路电磁时间常数 TL的测定:a.电路示意图:b.实验原理:可以根据公式L=Ld+La与TL=L/R∑求得TLc.实验方法步骤:◆断开电枢回路连线◆使用电感表测量电枢回路总电感量 L(6)电枢回路机电时间常数Tm的测定:a.实验原理:由下列公式可以推导出Tm的公式b.实验方法步骤:◆电机空载,突加给定,并使起动峰值电流达到系统设定最大电流I dm◆记录 id 波形,由下列公式计算Tm2.原始数据(1)Ud1 214V Id1 0.5AUd2 207V Id2 1.0AUrd Ura Id11.88V 20.68V 1A11.82V 20.59V 1A11,88V 20.65V 1A(3)Ud(V) n(r/min)78 537144 999(4)Ud(V) Id(A) Uct(V)286 0.80 4.585268 0.75 3.444251 0.70 2.825233 0.65 2.359213 0.60 1.991195 0.55 1.729178 0.50 1.521157 0.45 1.306138 0.40 1.141118 0.35 0.989102 0.30 0.87884 0.25 0.77367 0.20 0.656Ld La671mH 345mH(6)实验波形如下:3.数据处理(1)Rn=(Ud2-Ud1)/(Id1-Id2)=(207-214)/(0.5-1.0)Ω=14Ω(2)Rd=1/3*(11.88V/1A+11.82V/1A+11.88V/1A)=11.86ΩRa=1/3*(20.68V/1A+20.59V/1A+20.65V/1A)=20.64Ω(3)Ce=(Ud2-Ud1)/(n2-n1)=(144-78)/(999-537)V*min/r=0.1428 V*min/r(4)用Excel处理:可以用公式Ud0=Ud+Id*Rn直接生成Ud0这一列的结果,表格如下:Ud(V) Id(A) Ud0(V) Uct(V)286 0.80 297.2 4.585268 0.75 278.5 3.444251 0.70 260.8 2.825233 0.65 242.1 2.359213 0.60 221.4 1.991195 0.55 202.7 1.729178 0.50 185 1.521157 0.45 163.3 1.306138 0.40 143.6 1.141118 0.35 122.9 0.989102 0.30 106.20.87884 0.25 87.5 0.77367 0.20 69.8 0.656再用Excel插入散点图功能生成如下图形:取图中线性段四段求斜率如下:Ks1=(106.2-69.8)/(0.878-0.656)≈164Ks2=(143.6-106.2)/(1.141-0.878)≈142Ks3=(185-143.6)/(1.521-1.141)≈109Ks4=(221.4-185)/(1.991-1.521)≈77求得平均值:Ks=(164+142+109+77)/4=123(5)L=Ld+La=671mH+345mH=1016mHTL=L/R∑=L/(Rn+Ra+Rd)=1016mH/(14Ω+20.64Ω+11.86Ω)=21.8ms=0.0218s (6) 通过作图工具处理如下:可以知道s的面积是10.75*(1.4/8A)*50ms=94.0625A*ms由此可以计算出Tm=s/(Idm-Idz)=94.0625A*ms/[7*(1.4/8A)]≈0.0767s4.实验结果电动机电枢内阻 R a20.64Ω电势转速系数 Ce 0.1428 V*min/r整流电源等效内阻 R n14Ω放大系数 Ks 123平波电感直流内阻 R d11.86Ω电枢回路总电阻 R∑= R a+ R n+ R d46.5Ω电磁时间常数 T L0.0218s机电时间常数 T m0.0767s三.系统设计1.系统理论设计内容(系统传递函数结构图,设计步骤、PI参数计算及电路实现结果等)(1)系统设计理论:控制系统的动态性能指标:➢动态性能指标总结:(1)跟随性能超调量 (%)反映系统的动态调节稳定性能上升时间 tr 反映系统的动态调节快速性能调节时间 ts 反映系统的动态调节过渡周期(2)抗扰性能动态降落比△C max% 反映系统扰动引起的最大动态误差恢复时间 tr 反映系统的动态抗扰调节快速性能上述指标对应的给定和扰动均为阶跃信号◆调节器的工程设计方法:➢工程设计方法:在设计时,把实际系统校正或简化成典型系统,可以利用现成的公式和图表来进行参数计算,设计过程简便得多。

➢调节器工程设计方法所遵循的原则是:(1)概念清楚、易懂;(2)计算公式简明、好记;(3)不仅给出参数计算的公式,而且指明参数调整的方向;(4)能考虑饱和非线性控制的情况,同样给出简单的计算公式;(5)适用于各种可以简化成典型系统的反馈控制系统。

➢在典型系统设计的基础上,利用MATLAB/SIMULINK进行计算机辅助分析和设计,可设计出实用有效的控制系统。

➢控制系统的开环传递函数都可以表示成:(3-9)➢分母中的s r项表示该系统在s= 0处有r重极点,或者说,系统含有r个积分环节,称作r型系统。

➢为了使系统对阶跃给定无稳态误差,不能使用0型系统(r=0),至少是Ⅰ型系统(r =1);当给定是斜坡输入时,则要求是Ⅱ型系统(r =2)才能实现稳态无差。

➢选择调节器的结构,使系统能满足所需的稳态精度。

由于Ⅲ型(r =3)和Ⅲ型以上的系统很难稳定,而0型系统的稳态精度低。

因此常把Ⅰ型和Ⅱ型系统作为系统设计的目标。

◆典型Ⅰ型系统:➢作为典型的I型系统,其开环传递函数选择为(3-10)式中,T——系统的惯性时间常数;K——系统的开环增益。

➢对数幅频特性的中频段以-20dB/dec的斜率穿越零分贝线,只要参数的选择能保证足够的中频带宽度,系统就一定是稳定的。

➢只包含开环增益K和时间常数T两个参数,时间常数T往往是控制对象本身固有的,唯一可变的只有开环增益K 。

设计时,需要按照性能指标选择参数K的大小。

➢典型Ⅰ型系统的对数幅频特性的幅值为:得到➢相角裕度为➢K值越大,截止频率ωc也越大,系统响应越快,相角稳定裕度γ越小,快速性与稳定性之间存在矛盾。

➢在选择参数K时,须在快速性与稳定性之间取折衷。

◆动态跟随性能指标:⏹典型Ⅰ型系统的闭环传递函数为⏹过阻尼动态响应较慢,一般把系统设计成欠阻尼,即 0< < 1。

⏹超调量(3-13)⏹上升时间(3-14)⏹峰值时间(3-15)⏹当调节时间在、误差带为的条件下可近似计算得(3-16)⏹截止频率(按准确关系计算)(3-17)⏹相角稳定裕度(3-18)◆动态抗扰性能指标:➢影响到参数K的选择的第二个因素是它和抗扰性能指标之间的关系,➢典型Ⅰ型系统已经规定了系统的结构,分析它的抗扰性能指标的关键因素是扰动作用点,➢某种定量的抗扰性能指标只适用于一种特定的扰动作用点。

➢电压扰动作用点前后各有一个一阶惯性环节,➢采用PI调节器➢在计算抗扰性能指标时,为了方便起见,输出量的最大动态降落ΔC max用基准值C b的百分数表示,➢所对应的时间t m用时间常数T的倍数表示,➢允许误差带为±5%C b时的恢复时间t v也用T的倍数表示。

➢取开环系统输出值作为基准值,即C b=Fk2 (3-21)◆典型Ⅱ型系统:➢典型Ⅱ型系统的开环传递函数表示为:(3-22)➢典型II型系统的时间常数T也是控制对象固有的,而待定的参数有两个:K 和 。

➢定义中频宽:(3-23)➢中频宽表示了斜率为20dB/sec的中频的宽度,是一个与性能指标紧密相关的参数。

图3-13 典型Ⅱ型系统(a)闭环系统结构图 (b)开环对数频率特性➢(3-24)➢改变K相当于使开环对数幅频特性上下平移,此特性与闭环系统的快速性有关。

➢系统相角稳定裕度为:➢τ比T大得越多,系统的稳定裕度就越大。

➢采用“振荡指标法”中的闭环幅频特性峰值最小准则,可以找到和两个参数之间的一种最佳配合。

(3-25)(3-26)➢在确定了h之后,可求得:(3-29)(3-30)◆动态跟随性能指标:➢按Mr最小准则选择调节器参数,典型Ⅱ型系统的开环传递函数为:➢系统的闭环传递函数 :➢当R(t)为单位阶跃函数时,,则:(3-31)◆动态抗扰性能指标:➢在扰动作用点前后各有一个积分环节,用作为一个扰动作用点之前的控制对象➢取➢于是(3-33)(3-32)➢在阶跃扰动下,,按M rmin准则确定参数关系(3-34)➢取2T时间内的累加值作为基准值 C b = 2FK2T (3-35)➢由表3-5中的数据可见,h值越小,也越小,tm都短,因而抗扰性能越好。

相关文档
最新文档