双曲线的几何性质

合集下载

双曲线的简单几何性质课件

双曲线的简单几何性质课件

1(λ≠0,-b2<λ<a2).
x2 y2
x2 y2
(4) 与 双 曲 线 a2 - b2 = 1 具 有 相 同 渐 近 线 的 双 曲 线 方 程 可 设 为 a2 - b2 =
λ(λ≠0).
(5)渐近线为 ax±by=0 的双曲线方程可设为 a2x2-b2y2=λ(λ≠0).
求满足下列条件的双曲线的标准方程. (1)以直线 2x±3y=0 为渐近线,过点(1,2);
b
b
b2
程求解,另一种方法是消去 c 转化成含a 的方程,求出a 后利用 e= 1+a2 求
离心率.
2.求离心率的范围技巧 (1)根据条件建立 a,b,c 的不等式. (2)通过解不等式得ca 或ba 的范围,求得离心率的范围.
(2)双曲线离心率对曲线形状有何影响? x2 y2
提示:以双曲线a2 -b2 =1(a>0,b>0)为例.
c
a2+b2
b2
b
b
e=a = a = 1+a2 ,故当a 的值越大,渐近线 y=a x 的斜率越大,双
曲线的开口越大,e 也越大,所以 e 反映了双曲线开口的大小,即双曲线的离心
率越大,它的开口就越大.
巧设双曲线方程的方法与技巧
x2 y2 (1)焦点在 x 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
y2 x2 (2)焦点在 y 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
x2
y2
x2
y2
(3) 与 双 曲 线 a2 - b2 = 1 共 焦 点 的 双 曲 线 方 程 可 设 为 a2-λ - b2+λ =
B.y=±34 x

双曲线的简单几何性质(经典)

双曲线的简单几何性质(经典)

双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且(4)=1中的1(5)(6)e =2(7)注意:且λ(2)与椭圆2a +2b =1(a >b >0)共焦点的曲线系方程可表示为λ-2a -λ-2b =1(λ<a 2,其中b 2-λ>0时为椭圆,b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。

5、求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.【知识点2】弦长与中点弦问题(1).直线和圆锥曲线相交时的一般弦长问题:一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB ,A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的(2)设A(x 1;对于y 2【变1变4】7、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A,B 两点,若|AB|=4,这样的直线有几条?【题型2】双曲线离心率的求法一、根据离心率的范围,估算e :即利用圆锥的离心率的范围来解题,有时可用椭圆的离心率e ∈()01,,双曲线的离心率e >1,抛物线的离心率e =1来解决。

双曲线的几何性质

双曲线的几何性质

双曲线的几何性质
双曲线是几何学中非常有趣的一类曲线,它形状十分壮观,常被广泛应用到许多不同的领域,例如机械设计、工业设计和计算机图形学等。

双曲线之所以能受到人们的独特关注,是因为它具有着独特的几何性质,这些性质具体如下:
1、双曲线无论在何处取一点,边缘上总是相同的准则来决定它的方向,因此称之为曲线的确定性性质。

这种性质决定了双曲线的方向跟某一点的距离是固定的,任何时候对曲线做相同的位移等价于对某一点做相同的位移,因而看起来双曲线的每一段都是一模一样的。

2、双曲线的另一种性质是它的宽度性质。

在双曲线上确定一点,然后在此点向两方平行平移某一个距离,不可能让它离原点越来越远,如果再加上长度性质,可以发现双曲线不会变宽。

3、另外,双曲线是没有重复部分的,也就是说双曲线是一种不局限的曲线,具有无限性质,永远不会重复。

4、双曲线具有反射性,这就是说可以以一个定点作为基准点,以这个点左右对称地折叠,双曲线的两端点可以映射到另一条线上。

5、最后,双曲线的斜率具有渐变性质,斜率逐渐增加,直到极限是无穷大。

双曲线拥有非常独特的几何性质,而这些性质也使得双曲线在很多不同的领域有着重要的应用价值。

根据上述描述可以知道,双曲线不仅独特,而且还有多种优越的特性,有很大的实用价值。

《双曲线几何性质》课件

《双曲线几何性质》课件

生活中的双曲线应用
总结词
双曲线在日常生活中也有很多应用,如建筑设计、工程制造和艺术创作等。
详细描述
在建筑设计中,双曲线用于构建优美的曲线形状,如桥梁、建筑物的外观和内部结构。在工程制造中 ,双曲线用于制造各种零部件和工具,如机械零件、光学仪器等。在艺术创作中,双曲线用于创作优 美的图案和造型,如绘画、雕塑和音乐作品等。
双曲线的轴对称性
总结词
双曲线的轴对称性是指以通过双曲线中心的直线为对称轴,双曲线上的任意一 点关于该对称轴的对称点也在双曲线上。
详细描述
对于双曲线上的任意一点P,关于通过双曲线中心的直线(称为对称轴)的对称 点P'也在双曲线上。这种对称性使得双曲线在对称轴两侧保持一致的形状和方 向。
04
双曲线的面积与周长
这两个定点称为双曲线的焦点,焦点之间的距离称为焦距。
双曲线的标准方程
焦点在x轴上
$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$ ,其中$a > 0$,$b > 0$,$c = sqrt{a^2 + b^2}$。
VS
焦点在y轴上
$frac{y^2}{a^2} - frac{x^2}{b^2} = 1$ ,其中$a > 0$,$b > 0$,$c = sqrt{a^2 + b^2}$。
双曲线的面积
总结词
详细描述
总结词
详细描述
双曲线的面积可以通过特定 的公式进行计算,该公式基 于双曲线的参数方程和定义 域。
双曲线的面积计算公式为 (A = piab),其中 (a) 和 (b) 分 别是双曲线的实半轴和虚半 轴长度。这个公式基于双曲 线的参数方程和定义域,通 过积分运算得出。

双曲线的简单几何性质课件

双曲线的简单几何性质课件
A1(- a,0),A2(a,0)
e c (e 1) a
y b x a
例3:
x2 y2 1 16 9
1、双曲线 9x2-16y2=144的实半轴长
等于 4 虚半轴长等于 3 顶点坐
标是 4,0 渐近线方是y
3 4
x (或 x
4
y
.3
0)
5
离心率e= 4 。
2、离充心要率e=条件2 是。双(曲用线“为充等分轴条双件曲”线“的必要 条件”“充要条件”填空。)
双曲线定义的简单几何性质
定义
图象
方程 范围 对称性 顶点 离心率 渐近线
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
F1
o
F2
x
x
F1
x2 a2
y2 b2
1
x≤-a或x≥a
y2 a2
x2 b2
1
y≤-a或y≥a
关于坐标轴、原点对称(实轴、虚轴、中心)
(-a, 0) (a, 0)
法二 由双曲线的渐近线方程为 y=±12x, 可设双曲线方程为x222-y2=λ(λ≠0), ∵A(2,-3)在双曲线上, ∴2222-(-3)2=λ,即 λ=-8. ∴所求双曲线的标准方程为y82-3x22 =1.
5 离心率
与椭圆类似,双曲线的焦距与实轴长的比 c , a
叫做双曲线的离心率.因为c a 0,所以双
2 2
y2 b2
1
渐进线方程
k
b a
B2
b
k
y
(a,b)
b a
yb x a
可由双曲线

双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质
A.x—y=1B.x—y=2C
2 2
x y
解析:由题意,设双曲线方程为2—2=
a a
例2、根据以下条件,分别求出双曲线的标准方程.
(1)过点P(3,-.2),离心率e5
2
⑵F1、F2是双曲线的左、右焦点,P是双曲线上一点,双曲线离心率为2且
F1PF260,SpRF212 3.
解:(1)依题意,双曲线的实轴可能在x轴上,也可能在y轴上,分别讨论如下.
A.4
2
x
m212
1表示双曲线,则
k的取值范围是
B.
C.
D.
2
y
2
4 mB.2双Fra bibliotek线学a1的焦距是
C.
D.
m有关
2
_
k b2k
1与双曲线笃
a
判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数
的符号,焦点在系数正的那条轴上•
3.双曲线的简单几何性质:
标准方程
2 2
xy‘
——1(a0,b0)ab
yx2
—2-21(a 0, b 0)
ab
图象
9
I
a, b,c关系
2 . 2 2a b c
范围
|x| a,y R
| y | a, x R
个数来确定。
(1)通常消去方程组中变量y(或x)得到关于变量x(或y)的一元二次方程,考虑该一
元二次方程的判别式,则有:0直线与双曲线相交于两个点;0直线与
双曲线相交于一个点;0直线与双曲线无交点.
(2)若得到关于x(或y)的一元二次方程,则直线与双曲线相交于一个点,此时直线平 行于双曲线的一条渐近线.

双曲线的几何性质

双曲线的几何性质


解:
的双曲线方程。 3 y = 0 的双曲线方程。 椭圆的焦点在x轴上, 椭圆的焦点在 轴上,且坐标为 轴上
∴ 双曲线的焦点在x轴上,且c = 2 2
3 ∵ 双曲线的渐近线方程为 y = ± x 3 b 3 ∴ = , 解出 a 2 = 6, b 2 = 2 2 2
F1 ( − 2 2,), F 2 2 2,) 0 ( 0
双曲线与渐近线无限接近,但永不相交。 双曲线与渐近线无限接近,但永不相交。
5、离心率 、 c 双曲线的焦距与实轴长 的比 e = ,叫做 (1)定义: )定义: a 双曲线的 离心率。
(2)e的范围 ) 的范围:
∵ c>a>0 ∴
2
e >1
思考:离心率可以刻画椭圆的扁平程度,双曲线 思考:离心率可以刻画椭圆的扁平程度, 的离心率刻画双曲线的什么几何特征呢? 的离心率刻画双曲线的什么几何特征呢? e是用来刻画双曲线开口大小的一个量, e越大开口越大。
等轴双曲线的离心率为
2
,反之成立. 反之成立
焦点在y 焦点在y轴上的双曲线的几何性质口答
双曲线标准方程: 双曲线标准方程: 双曲线性质: 双曲线性质: 1.范围: 范围: 范围
y2 x2 − 2 =1 2 a b
y A2 B1 o A1 B2 x
y≥a或y≤-a 或
2.对称性: 关于坐标轴和原点对称 对称性: 对称性 3.顶点: 顶点: 顶点 A1(0,-a),A2(0,a) , A1A2为实轴,B1B2为虚轴 为实轴,
M F2 x
F
O
1
F
2
x
O
F1
x y − 2 =1 2 a b
2
2

高二数学双曲线的几何性质1

高二数学双曲线的几何性质1

5、渐近线方程:y
a
2 2

x2 b2
0
a ob
A1 F2
6、离心率: e=c/a
B2 X
练习:
1.双曲线 9y2-16x2 = 144 的半实 轴长是 4 , 半虚轴长 3 ,
焦点坐标是 (0, -5) 、(0, 5)
,
离心率为
5 4
,渐近线方程

y4x .
3
2.双曲线的一条渐近线方程为 y 1 x ,
且过点 P (3, 1 ),
2
则它的标准方程

x2

y2
2
1
82
.
3.求与双曲线x2 y2 1共渐近线且 16 9
过点A(2 3,3)的双曲线方程。
4、若双曲线的渐近线方程是
y 3 x ,求离心率。
5.
4
设双曲线
x2 a2

y2 b2
1(0
a
b)

半焦距为c,直线L过(a,0),(0,b)
叫做双曲线的离心率.
双曲线的离心率的取值范围是 (1, +∞).
焦点在y轴上的双曲线的几何性质
双曲线标准方程: 双曲线性质:
y2 a2

x2 b2
1
y
1、范围: y≥a或y≤-a
F2
A2
2、对称性:关于x轴,y轴,原点对称。
3、顶点 A1(0,-a),A2(0,B1a)
4、轴:实轴 A1A2 ; 虚轴 B1B2
a2 b2
1. 范围 双曲线在不等式 x≤-a与 x≥a所表示 的区域内.
X=-a X=a
双曲线 x 2 y 2 1(a>0,b>o)的几何性质

双曲线的简单几何性质

双曲线的简单几何性质

(2)∵双曲线的焦点与椭圆的焦点相同, c 2 ∴c=4.∵e= =2,∴a=2,∴b =12, a ∴b=2 3. ∵焦点在 x 轴上,∴焦点坐标为(± 4,0), b 渐近线方程为 y=± x,即 y=± 3x,化 a 为一般式为 3x± y=0.
【答案】 (1)D (2)(± 4,0) 3x± y=0
双曲线的标准方程
求双曲线的标准方程也是从“定形”“定
式”和“定量”三个方面去考虑.“定形”是
指对称中心在原点,以坐标轴为对称轴的情况
下,焦点在哪条坐标轴上;“定式”根据“形”
设双曲线方程的具体形式;“定量”是指用定
义法或待定系数法确定a,b的值.
根据下列条件,求双曲线的标准方程. 5 (1)虚轴长为 12,离心率为 ; 4 3 (2)顶点间距离为 6,渐近线方程为 y=± x; 2 (3)过点(2,-2)且与双曲线 x2-2y2=2 有公共渐近 线.
【规律方法】 若不能明确双曲线的焦点在哪 条坐标轴上,可设双曲线方程为: mx2+ny2=1(mn<0).
双曲线的几何性质
(1)双曲线的几何性质的实质是围绕双曲线中的“六
点”(两个焦点、两个顶点、两个虚轴的端点)、“四 线”(两条对称轴、两条渐近线)、“两形”(中心、 焦点以及虚轴端点构成的三角形,双曲线上一点和 两焦点构成的三角形)来研究它们之间的相互联系, 明确a、b、c、e的几何意义及它们的相互关系,简 化解题过程.
变式练习
1.(2010 年高考安徽卷)双曲线方程为 x2-2y2=1, 则它的右焦点坐标为( C ) 2 5 A. B. ,0 2 2 ,0 6 C. D.( 3,0) ,0 2
2.(教材习题改编)已知双曲线的离心率为 2, 焦点是(-4,0)、(4,0),则双曲线的方程为( x 2 y2 A. - =1 4 12 x y C. - =1 10 6

双曲线的几何性质

双曲线的几何性质

双曲线的几何性质
双曲线是二次曲线的一种,其几何性质如下:
1. 双曲线有两个分支,分布在两侧于中心对称的轴线上。

轴线与曲线没有交点。

2. 双曲线的两个分支无限延伸,没有端点。

两个分支之间的距离称为双曲线的焦距,记作2c。

3. 双曲线具有对称性质,即关于x轴、y轴及原点对称。

4. 双曲线的两个分支与其对称轴之间的距离称为双曲线的半轴长,记作a。

半轴长的大小决定了双曲线的形状。

5. 双曲线具有渐近线性质,即两个分支无限接近于直线,称为双曲线的渐近线。

渐近线的方程为y = ±(a/c)x。

6. 双曲线与椭圆和抛物线不同,它没有顶点或焦点。

7. 双曲线的离心率(eccentricity)为大于1的实数,其值决定了曲线的形状。

离心率越大,曲线越扁平。

8. 双曲线的方程一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数,且满足
B^2 - 4AC < 0,且A和C异号。

这些性质描述了双曲线的形状、对称性、渐近线以及与其他曲线的区别。

双曲线在几何学、物理学和工程学等领域中有广泛的应用。

3、双曲线概念及几何性质

3、双曲线概念及几何性质

双曲线的概念与几何性质一、知识梳理1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质3.重要结论1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a . 2.离心率e =ca =a 2+b 2a =1+b 2a 2.3.等轴双曲线的渐近线互相垂直,离心率等于 2.二、例题精讲 + 随堂训练1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( ) (3)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn =0.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( ) 解析 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案 (1)× (2)× (3)× (4)√ (5)√2.经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.解析 设双曲线方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.答案 x 28-y 28=13.已知双曲线x2-y216=1上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于________.解析设双曲线的焦点为F1,F2,|PF1|=4,则||PF1|-|PF2||=2,故|PF2|=6或2,又双曲线上的点到焦点的距离的最小值为c-a=17-1,故|PF2|=6.答案64.(2018·浙江卷)双曲线x23-y2=1的焦点坐标是()A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析由题可知双曲线的焦点在x轴上,又c2=a2+b2=3+1=4,所以c=2,故焦点坐标为(-2,0),(2,0).答案B5.(2017·全国Ⅲ卷)双曲线x2a2-y29=1(a>0)的一条渐近线方程为y=35x x,则a=________.解析由题意可得3a=35,所以a=5.答案56.(2018·北京卷)若双曲线x2a2-y24=1(a>0)的离心率为52,则a=________.解析由题意可得,a2+4a2=⎝⎛⎭⎪⎫522,即a2=16,又a>0,所以a=4.答案4考点一双曲线的定义及应用【例1】(1)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos ∠F1PF2=()A.14B.35C.34D.45(2)(2019·济南调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________. 解析 (1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).答案 (1)C (2)x 2-y 28=1(x ≤-1)【训练1】 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( ) A.215a 2 B.15a 2 C.30a 2D.15a 2(2)(2019·杭州质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A.8B.10C.4+37D.3+317解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =c a =2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a , ∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时,|PF ′|+|P A |有最小值,为|AF ′|=3,故△P AF 的周长的最小值为10. 答案 (1)B (2)B考点二 双曲线的标准方程【例2】 (1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )81045C.x 25-y 24=1D.x 24-y 23=1(2)(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1D.x 29-y 23=1 解析 (1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点, 易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1. 答案 (1)B (2)C规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值. 2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).【训练2】 (1)(2019·海南二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( ) A.x 212-y 2=1B.x 29-y 23=132332(2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为________________.解析 (1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得⎩⎪⎨⎪⎧2a 2-3b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,∴双曲线C 的标准方程是x 2-y 23=1.(2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.答案 (1)C (2)y 243-x 23=1考点三 双曲线的性质 角度1 求双曲线的渐近线【例3-1】 (2018·全国Ⅱ卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A.y =±2x B.y =±3x C.y =±22xD.y =±32x解析 法一 由题意知,e =ca =3,所以c =3a ,所以b =c 2-a 2=2a ,即b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x .法二 由e =ca =1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±ba x =±2x . 答案 A角度2 求双曲线的离心率【例3-2】 (1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B.2C. 3D.2(2)(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,233 B.⎝ ⎛⎭⎪⎫233,+∞ C.(1,2)D.(2,+∞)解析 (1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.(2)由双曲线方程可得其渐近线方程为y =±ba x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎪⎫1,233. 答案 (1)C (2)A角度3 与双曲线有关的范围(最值)问题【例3-3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36C.⎝⎛⎭⎪⎫-223,223 D.⎝⎛⎭⎪⎫-233,233 解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 答案 A【训练3】 (1)(2019·上海崇明区调研)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为( ) A.43B.54C.169D.2516(2)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.解析 (1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1),则|b -2a |a 2+b2=1,得3a =4b , 所以9a 2=16b 2=16(c 2-a 2),则e 2=2516, 又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎨⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 答案 (1)B (2)(0,2)三、课后练习1.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( ) A.y =±2x B.y =±12x C.y =±22xD.y =±2x解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎨⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x . 答案 D2.已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎢⎡⎦⎥⎤π12,π6,则该双曲线的离心率的取值范围是( ) A.[2,2+6] B.[2,3+1] C.[2,2+6]D.[2,3+1]解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈⎣⎢⎡⎦⎥⎤π12,π6,∴sin 2β∈⎣⎢⎡⎦⎥⎤12,32, ∴e 2=11-sin 2β∈[2,(3+1)2]. 又e >1,∴e ∈[2,3+1].答案 D3.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析 设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝ ⎛⎭⎪⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭=4±23,∴e 椭=3+1(舍去)或 e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点A ⎝ ⎛⎭⎪⎫c 2,3c 2,∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2. 答案3-1 24.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA→·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 5.已知椭圆x 24+y 2m =1与双曲线x 2-y 2n =1的离心率分别为e 1,e 2,且有公共的焦点F 1,F 2,则4e 21-e 22=________,若P 为两曲线的一个交点,则|PF 1|·|PF 2|=________.解析 由题意得椭圆的半焦距满足c 21=4-m ,双曲线的半焦距满足c 22=1+n ,又因为两曲线有相同的焦点,所以4-m =1+n ,即m +n =3,则4e 21-e 22=4×4-m 4-(1+n )=3-(m +n )=0.不妨设F 1,F 2分别为两曲线的左、右焦点,点P 为两曲线在第一象限的交点, 则⎩⎨⎧|PF 1|+|PF 2|=4,|PF 1|-|PF 2|=2.解得⎩⎨⎧|PF 1|=3,|PF 2|=1,则|PF 1|·|PF 2|=3.答案 0 3。

双曲线的几何性质

双曲线的几何性质
4 3 5 4
21
练习 P53
x2 y2 3.求以椭圆 1 的焦点为顶点,以椭圆 8 5
的顶点为焦点的双曲线的方程.
22
练习 P53
4.对称轴都在坐标轴上的等轴双曲线的一个 焦点是 F1 (6, 0) ,求它的标准方程和渐近线方程. 5.求下列直线和双曲线的交点坐标:
x2 y2 (1) 2 x y 10 0 , 1 ; 20 5 x2 y 2 (2) 4 x 3 y 16 0 , 1 . 25 16
与椭圆类似,双曲线的焦距与实轴长的比
c ,叫做双曲线的离心率,因为 c a 0 ,所以 a c 双曲线的离心率 e 1 , 即双曲线的离心率的 a
范围是 e (1, ) .
8
双曲线的几何性质
标准 方程
x2 y 2 2 1(a 0, b 0) 2 a b
y
y 2 x2 2 1(a 0, b 0) 2 a b
解 :设椭 圆上 两点 A( x1 , y1 ) 、 B( x2 , y2 ) 关 于直 线 显然 x1 x2 , 线段 AB 中点 M ( x0 , y0 ) 则 y 4 x m 对称,
x12 y12 1 4 3

2 2 x2 y2 1 4 3

31
3.点差法
①-②整理得 k AB
复习提问
类比椭圆几何性质的研究方法,我们根据双曲线
x2 y 2 的标准方程 2 2 1(a 0, b 0) a b

研究它的几何性质.
2
本节内容
一、范围 二、对称性 三、顶点
四、渐近线 五、离心率
3
一、范围
观察双曲线,可以看出它在不等式 x a 与 x a 表示的区域内.下面利用双曲线的方程求出它的范围. 这说明双曲线在不等式 x a 与 x a 表示的区 域内.

双曲线的性质

双曲线的性质

双曲线的性质【要点梳理】要点一、双曲线的简单几何性质双曲线22221x y a b-=(a >0,b >0)的简单几何性质范围22221x x a ax a x a即或≥≥∴≥≤- 双曲线上所有的点都在两条平行直线x=-a 和x=a 的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x≤-a 或x≥a.对称性对于双曲线标准方程22221x y a b -=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b-=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

顶点①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线22221x y a b-=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。

③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。

实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。

a叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。

①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

②双曲线的焦点总在实轴上。

③实轴和虚轴等长的双曲线称为等轴双曲线。

离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a==。

②因为c >a >0,所以双曲线的离心率1ce a=>。

由c 2=a 2+b 2,可得b a ===b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。

所以离心率可以用来表示双曲线开口的大小程度。

③等轴双曲线a b =,所以离心率2=e 。

双曲线的简单几何性质

双曲线的简单几何性质
§2.3.2 双曲线的简单几何性质 一
2.椭圆的图像与性质:
标 准 x2 y2 方 程 a2 b2 1
范围
|x|a,|y|≤b
对称性
顶点
关于X,Y轴, 原点对称
±a,0 , 0,±b
焦点
±c,0
A1 F1
长轴、
短轴 A1A2 ; B1B2
离心率
e c a
Y
B2
o
B1
A2
F2
X
课堂新授
一、研究双曲线
法一:直接设标准方程,运用待定系数法
⑵解:设双曲线方程为
x2 a2
y2 b2
1 (a>0,b>0)
a2 b2 20

(3 2)2 22 a2 b2
1
解之得
a b
2 2
12 8
或设
x2 m2
y2 20 m2
1,
∴双曲线方程为 x2 y2 1 12 8
求得m2 12(30舍去)
y2 x2 a2b2 1(a0,b0)
x≥ a,或 x≤ a, y R y≥ a,或 y≤ a, x R
对称性 关于x轴、y轴、原点对称 关于x轴、y轴、原点对称
顶点 A1 - a,0 ,A2 a,0
离心率 渐近线
e c (e 1) a
y b x a
A1 0,-a ,A2 0,a
e c (e 1) a
顶A 点 1 ( a ,0 )、 是 A 2 (a ,0 )
(2)线段 A 1 A 2 叫双曲线的实轴,长为2a,a为实半轴长;
线段B 1 B 2叫双曲线的虚轴,长为2b,b为虚半轴长 y
(3)实轴与虚轴等长的双曲线 叫等轴双曲线,即a=b

双曲线的几何性质课件

双曲线的几何性质课件

焦距
定义
双曲线的两个焦点之间的距离称 为焦距,记为2c。
性质
焦距是双曲线几何量中最基本的量 之一,它决定了双曲线的形状和大 小。
计算
焦距2c可以通过半长轴a和半短轴b 计算得出,c = sqrt(a^2 + b^2)。
焦点距离公式
定义
焦点距离公式是指双曲线上的任 意一点P到两个焦点的距离之差
的绝对值等于常数2a。
离心率的计算公式
离心率 = 根号下(分母的 平方 - 分子) / 分母。
离心率的物理意义
离心率越大,双曲线开口 越大,反之则越小。
离心率与双曲线的关系
当离心率大于1时,双曲线的开口方向为水平方向;当离心率小于1时,双曲线的 开口方向为垂直方向。
离心率的大小决定了双曲线的形状和开口大小,是双曲线几何性质中非常重要的 一个参数。
实轴与虚轴
总结词
实轴是双曲线与x轴的交点形成的线段,虚轴是双曲线与y轴的交点形成的线段 。
详细描述
实轴是双曲线与x轴的交点形成的线段,长度为 $2a$。虚轴是双曲线与y轴的交 点形成的线段,长度为 $2b$。
渐近线
总结词
双曲线有两条渐近线,它们是连接顶点和原点的线段。
详细描述
双曲线的渐近线方程是 $y = pm frac{b}{a} x$。这些线是连接顶点和原点的线段 ,随着x的增大或减小,双曲线会逐渐接近这些线,但永远不会与其相交。
离心率的变化范围
对于给定的双曲线,离心率有一 个变化范围。这个范围取决于双
曲线的标准方程和焦点位置。
在标准方程下,离心率的变化范 围是大于0小于等于根号下2。
当离心率等于根号下2时,双曲 线成为一条直线;当离心率等于 0时,双曲线成为以原点为中心

双曲线的简单几何性质 课件

双曲线的简单几何性质   课件
【要点2】双曲线有两个顶点?双曲线的焦点能在虚轴上吗? 【剖析】两个.不能,焦点只能在实轴上.
题型1 双曲线的几何性质
例1:求双曲线 9y2-16x2=144 的半实轴长、半虚轴上、
焦点坐标、离心率和渐近线方程.
题型2 利用几何性质求标准方程
思维突破:双曲线焦点可能在 x 轴上,也可能在 y 轴上.
顶点
(-a,0),(a,0)
(0,-a),(0,a)

实轴长 2a,虚轴长 2b
离心率
渐近线
续表
a
a
实轴和虚轴
y=±x
双曲线
双曲线的准线
【要点1】椭圆与双曲线几何性质的比较.
【剖析】(1)双曲线只有两个顶点,而椭圆有四个顶点,这 与椭圆不同.不能把双曲线的虚轴与椭圆的短轴混淆. (2)椭圆的焦点总在长轴上,双曲线的焦点总在实轴上. (3)椭圆离心率越大(即越接近于 1),椭圆就越扁平;而双曲 线的离心率越大,双曲线的形状从扁狭逐渐变得开阔,就是说 双曲线的“张口”逐渐增大.
解答时要分两类情况.
题型3 求双曲线的离心率
双曲线的简单几何性质Fra bibliotek 标准 方程图形
性 质
焦点
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦距
|F1F2|=2c(c2=a 2+b 2)
1.双曲线的几何性质.
标准 方程
性 质
范围
|x|≥____,y∈R
|y|≥______,x∈R
对称
关于 x 轴、y 轴成轴对称,关于原点成中心对称

双曲线的几何性质课件

双曲线的几何性质课件
双曲线的渐近线方程为y=±b/a*x,其中a和b是双曲线的半焦距。
双曲线的
标准方程


x^2/a^2 -
y^2/b^2 =
1
a和b是双 曲线的半 轴长, a>b
双曲线的
标准方程
可以表示


x^2/a^2 -
y^2/b^2 =
1
双曲线的
标准方程
可以表示


x^2/a^2 -
y^2/b^2 =
1
双曲线的
双曲线关于x轴对称
双曲线关于原点对称
添加标题
添加标题
双曲线关于y轴对称
添加标题
添加标题
双曲线关于直线y=x对称
顶点:双曲线有两个顶点,分 别位于x轴和y轴上
中心:双曲线的中心位于顶点 连线的中点
顶点坐标:顶点的坐标可以通 过双曲线的方程求解得到
中心坐标:中心的坐标可以通 过顶点的坐标和双曲线的方程 求解得到
双曲线的离心率与焦点距离成反比 离心率越大,焦点距离越短 离心率越小,焦点距离越长 双曲线的离心率决定了焦点距离的大小
离心率:双曲线 的离心率是双曲 线的性质之一, 决定了双曲线的 形状和位置
开口大小:双曲 线的开口大小是 指双曲线的两个 焦点之间的距离, 与离心率有关
关系:双曲线的 离心率越大,开 口越小;离心率 越小,开口越大
双曲线的渐近 线与直线的交 点称为渐近线 与直线的交点
渐近线与直线 的交点性质是 双曲线的几何
性质之一
渐近线与直线 的交点性质决 定了双曲线的
形状和位置
渐近线与直线 的交点性质是 双曲线的重要
特征之一
确定双曲线的渐近线方程 计算渐近线与直线的交点坐标 判断交点是否在双曲线上 应用交点坐标求解双曲线的参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2

由∠PF2Q=90° → 求出离心率 建立a,b,c的关系
课前探究学习
课堂讲练互动
活页规范训练
[精解详析]
设 F1(c,0),
由|PF2|=|QF2|,∠PF2Q=90° , 知|PF1|=|F1F2|=2c,|PF2|=2 2c. 由双曲线的定义得 2 2c-2c=2a. c 2 ∴e=a= =1+ 2. 2 2-2 所以所求双曲线的离心率为 1+ 2.
课前探究学习 课堂讲练互动 活页规范训练
Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相 离. 注意:直线和双曲线只有一个公共点时,直线不一定与双
曲线相切,当直线与双曲线的渐近线平行时,直线与双曲
线相交,只有一个交点. (2)弦长公式: 斜率为 k 的直线 l 与双曲线相交于 A(x1,1), y
课堂讲练互动
活页规范训练
课前探究学习
课堂讲练互动
活页规范训练
x y [例 3] 已知 F1,F2 是双曲线 2- 2=1(a>0,b>0)的两个焦点, a b PQ 是经过 F1 且垂直于 x 轴的双曲线的弦.如果∠PF2Q=90° ,求双曲 线的离心率.
[ 思 路 点 拨 ] 设F1c,0,将焦点F1 求出P的纵 → 的横坐标代入方程 坐标及|PF1|
x2 y2 解 (1)法一 设双曲线方程为 - =1(mn>0). m n 2 ∵双曲线过点 P( 6,2),且点 P 在直线 y= x 的上方, 3 ∴m<0,n<0,即焦点在 y 轴上, 2 又渐近线斜率 k=± , 3
课前探究学习 课堂讲练互动 活页规范训练
6 4 - =1, m=-3, m n ∴ -n 解得 4 2 n=-3. = , -m 3 y2 x2 故所求双曲线方程为 - =1. 4 3 3 2 法二 由于双曲线的渐近线方程是 y=± x, 所以可设双曲线方程 3 x2 y2 为 - =λ(λ≠0). 9 4 6 4 1 ∵双曲线过点 P( 6,2).∴ - =λ,λ=- . 9 4 3 y2 x2 ∴故所求双曲线方程为 - =1. 4 3 3
课前探究学习
课堂讲练互动
活页规范训练
名师点睛
1.双曲线几何性质的理解 x2 y2 x2 y2 (1)范围:以 2- 2=1(a>0,b>0)为例,由于 2=1+ 2≥1,即 a b a b x2≥a2,∴|x|≥a,即双曲线位于 x≤-a 和 x≥a 所表示的区 域内.
(2)顶点:双曲线与它的对称轴的交点叫双曲线的顶点,
y2 x2 解 把方程 16x2-9y2=-144 化为标准方程 2- 2=1, 4 3 由此可知,半实轴长 a=4, 半虚轴长 b=3,c= a2+b2=5.
课前探究学习 课堂讲练互动 活页规范训练
c 5 焦点坐标为(0,-5),(0,5);离心率 e= = ; a 4 顶点坐标为(0,-4),(0,4); 4 渐近线方程为 y=± x. 3
焦距
范围 对称性 性 质 顶点 轴长 离心率 渐近线 |x|≥a,y∈R
|F1F2|=2c _________ |y|≥a,x∈R
关于x轴、y轴、原点对称
A1(-a,0)、A2(a,0) ___________________ A1(0,-a)、A2(0,a) ___________________
2a 2b 实轴长=___,虚轴长=___ c a e=___(e>1)
x y ± =0 a b ________
课前探究学习
x y ± =0 b a ________
课堂讲练互动 活页规范训练
试一试:尝试用a,b表示双曲线的离心率.
提示 c e= = a a2+b2 = a2 b2 1+ 2. a
课前探究学习 课堂讲练互动 活页规范训练
4 9 ∵A(2,-3)在双曲线上,∴ 2- 2=1. a b 由①②联立,无解. 若焦点在 y 轴上,设所求双曲线的标准方程为 y2 x2 a 1 - =1(a>0,b>0),则b= . a2 b2 2 9 4 ∵A(2,-3)在双曲线上,∴ 2- 2=1. a b 由③④联立,解得 a2=8,b2=32. y 2 x2 ∴所求双曲线的标准方程为 - =1. 8 32
课前探究学习 课堂讲练互动 活页规范训练
自学导引
双曲线的几何性质
x2 y2
标准方程
a
2
- 2=1
b
(a>0,b>0)
y2 x2 - =1 a2 b2 (a>0,b>0)
图形
课前探究学习
课堂讲练互动
活页规范训练
续表 焦点 F1(-c,0)、F2(c,0) ___________________ F1(0,-c)、F2(0,c) ___________________
把①代入②得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0. ①当b2-a2k2=0时,直线l与双曲线的渐近线平行,直线 与双曲线C相交于一点. ②当b2-a2k2≠0时,Δ>0⇒直线与双曲线有两个公共点,此 时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线 相切;
规律方法
已知双曲线的标准方程确定其性质时,一定要
弄清方程中的a,b所对应的值,再利用c2=a2+b2得到c, 从而确定e.若方程不是标准形式的先化成标准方程,再确
定a、b、c的值.
课前探究学习
课堂讲练互动
活页规范训练
【变式1】 求双曲线x2-3y2+12=0的实轴长、虚轴长、焦点 坐标、顶点坐标、渐近线方程、离心率.
B(x2 , y2) , 则 |AB| = (x1+x2)2-4x1x2. 1+k2 |x1 - x2| = 1+k2
课前探究学习
课堂讲练互动
活页规范训练
题型一
已知双曲线的标准方程求其几何性质
【例1】 求双曲线16x2-9y2=-144的半实轴长、半虚轴长、 焦点坐标、离心率、顶点坐标和渐近线方程. [思路探索] 可先把方程化成标准方程,确定a,b,c,再 求其几何性质.
2 2
课前探究学习

② ③
课堂讲练互动
活页规范训练
17 可得 b =- (舍去). 2 所以双曲线的焦点只能在 x 轴上,其方程为 x2-4y2=1. y2 即 x2- =1. 1 4 规律方法 根据双曲线的几何性质求双曲线的标准方程,
2
一般用待定系数法.首先,由已知判断焦点的位置,设出双 曲线的标准方程,再用已知建立关于参数的方程求得.当双 曲线的焦点不明确时,方程可能有两种形式,此时应注意分 类讨论,为了避免讨论,也可设双曲线方程为mx2得.如本题中已知渐近线方程ax+by
=0,可设所求双曲线方程为a2x2-b2y2=λ(λ≠0)非常简捷.
课前探究学习 课堂讲练互动 活页规范训练
【变式2】 求适合下列条件的双曲线的标准方程:
13 (1)一个焦点为(0,13),且离心率为 ; 5 1 (2)渐近线方程为 y=± x,且经过点 A(2,-3). 2
2.3.2 双曲线的简单几何性质
【课标要求】
1.掌握双曲线的简单的几何性质. 2.了解双曲线的渐近性及渐近线的概念.
3.掌握直线与双曲线的位置关系.
【核心扫描】
1.双曲线的几何性质的理解和应用.(重点) 2.与双曲线离心率,渐近线相关的问题.(难点) 3.经常与方程、三角、平面向量、不等式等内容结合考查学 生分析问题的能力.
审题指导 本题主要考查直线与双曲线的位置关系、向量 知识及方程思想的应用.
课前探究学习
课堂讲练互动
活页规范训练
x2 2 [规范解答] (1)将 y=-x+1 代入双曲线方程 2-y =1(a>0)中 a 得(1-a2)x2+2a2x-2a2=0. 2分
1-a2≠0, 依题意 4 2 2 Δ=4a +8a (1-a )>0,
课前探究学习
课堂讲练互动
活页规范训练
题型二
根据双曲线的几何性质求标准方程
【例2】 根据下列条件,求双曲线的标准方程.
(1)双曲线的渐近线的方程为 2x± 3y=0 且经过 P( 6,2); 5 (2)经过点 P(3,- 2),离心率 e= . 2
[思路探索] 可设出双曲线的标准方程,依题意建立待定 参数的方程或方程组求解.
y2 x2 解 将方程 x -3y +12=0 化为标准方程 - =1, 4 12 ∴a2=4,b2=12,
2 2
∴a=2,b=2 3,∴c= a2+b2= 16=4. ∴双曲线的实轴长 2a=4,虚轴长 2b=4 3. 焦点坐标为 F1(0,-4),F2(0,4),顶点坐标为 A1(0,-2), 3 A2(0,2),渐近线方程为 y=± x,离心率 e=2. 3

③ ④
课前探究学习
课堂讲练互动
活页规范训练
1 法二 由双曲线的渐近线方程为 y=± x, 2 x2 2 可设双曲线方程为 2-y =λ(λ≠0), 2 ∵A(2,-3)在双曲线上, 22 ∴ 2-(-3)2=λ,即 λ=-8. 2 y2 x2 ∴所求双曲线的标准方程为 - =1. 8 32
课前探究学习
课前探究学习 课堂讲练互动 活页规范训练
(2)若双曲线的焦点在 x 轴上, x2 y2 设其方程为 2- 2=1(a>0,b>0), a b 5 c2 5 由 e= 得, 2= 2 a 4 又点 P(3,- 2)在双曲线上, 9 2 ∴ 2- 2=1 a b 又 a2+b2=c2, 1 由①②③可得 a =1,b = , 4 若双曲线的焦点在 y 轴上, y2 x2 设其方程为 2- 2=1(a>0,b>0). a b c2 5 2 9 由 2= 和 2- 2=1 及 a2+b2=c2, a 4 a b
相关文档
最新文档