第67讲 图论问题(一)

合集下载

图论1—图论基础PPT课件

图论1—图论基础PPT课件

的度减去最小点的度,将最小点
的度设为0。
如果最后得到全0序列,则输出
yes,否则输出no
42 2
31
22 0
20
00 0
例题:给出一个非负整数组 成的有限序列s,s是否是某 个简单图的度序列?
332211 Yes
3331 No
首先利用图论第一定理。
然后把所有顶点排序,将最大点
的值设为0,然后将其后部最大点
在图G中,与顶点v相关联的边的总数 称为是v的度,记为deg v
图论第一定理
deg v 2m
vV (G)
证明:在计算G中所有顶点度的和时,每一条 边e被计数了两次。
例题:给出一个非负整数组 成的有限序列s,s是否是某 个图(无自环)的度序列?
242 Yes
31 No
首先利用图论第一定理。
然后把所有顶点排序,用最大点
图, 记 为G = (V, E ), 其中
① V称为G的顶点集, V≠, 其元素称为顶点或
结点, 简称点; ② E称为G的边集, 其元素称为边, 它联结V 中
的两个点, 如果这两个点是无序的, 则称该边为无 向边, 否则, 称为有向边.
如果V = {v1, v2, … , vn}是有限非空点集, 则称G 为有限图或n阶图.
如果某个有限图不满足(2)(3)(4),可在某条 边上增设顶点使之满足.
定义2 若将图G的每一条边e都对应一个实数F (e), 则称F (e)为该边的权, 并称图G为赋权图(网络), 记为G = (V, E , F ).
定义3 设G = (V, E)是一个图, v0, v1, …, vk∈V, 且1≤i≤k, vi-1vi∈E, 则称v0 v1 … vk是G的一条通路. 如果通路中没有相同的边, 则称此通路为道路. 始 点和终点相同的道路称为圈或回路. 如果通路中 既没有相同的边, 又没有相同的顶点, 则称此通路 为路径, 简称路.

第一章(图论的基本概念)

第一章(图论的基本概念)

第二节 图的顶点度和图的同构(4)
图序列:简单图的度序列. (d1, d 2 , , d p )(d1 d 2 d p ) 定理4 非负整数序列 是图序列当 p 且仅当 d i 是偶数,并且对一切整数k, 1 k p 1, 有
i 1
第二节 图的顶点度和图的同构(1)
定义1 设G是任意图,x为G的任意结点,与结点x关联的 边数(一条环计算两次)称为x的度数.记作deg(x)或d(x). 定义2 设G为无向图,对于G的每个结点x,若d(x)=K,则 称G为K正则的无向图.设G为有向图,对于G的每个结点 x,若d+(x)=d-(x), 则称G为平衡有向图.在有向图G中, 若 (G) (G) (G) (G) K , 则称G为K正则有向图. 定理1(握手定理,图论基本定理)每个图中,结点度数的 总和等于边数的二倍,即 deg(x) 2 E .

A
N
S
B
欧拉的结论 • 欧拉指出:一个线图中存在通过每边一次仅一次 回到出发点的路线的充要条件是: • 1)图是连通的,即任意两点可由图中的一些边连 接起来; • 2)与图中每一顶点相连的边必须是偶数. • 由此得出结论:七桥问题无解. 欧拉由七桥问题所引发的研究论文是图论的开 篇之作,因此称欧拉为图论之父.
xV
定理2 每个图中,度数为奇数的结点必定是偶数个.
第二节 图的顶点度和图的同构(2)
• 定理3 在任何有向图中,所有结点入度之和等于所有结 点出度之和. • 证明 因为每条有向边必对应一个入度和出度,若一个结 点具有一个入度或出度,则必关联一条有向边,因此,有向 图中各结点的入度之和等于边数,各结点出度之和也等 于边数. • 定义 度序列,若V(G)={v1,v2,…,vp},称非负整数序列 (d(v1),d(v2),…,d(vp))为图G的度序列.

高中数学图论的实际应用与教学探讨

高中数学图论的实际应用与教学探讨

高中数学图论的实际应用与教学探讨在高中数学的广袤领域中,图论宛如一颗璀璨的明珠,虽然它并非高中数学课程的核心部分,但其在实际生活中的应用广泛,且对于培养学生的逻辑思维和解决问题的能力具有重要意义。

本文将深入探讨高中数学图论的实际应用,并对其教学方法进行分析。

一、图论的基本概念图论是研究图的性质和应用的数学分支。

所谓“图”,并不是我们日常所理解的图像或图画,而是由一些顶点(节点)和连接这些顶点的边所组成的结构。

例如,一个城市的交通网络可以用图来表示,顶点代表城市中的各个地点,边代表道路。

在图论中,有许多重要的概念,如顶点的度(与该顶点相连的边的数量)、路径(从一个顶点到另一个顶点经过的边的序列)、回路(起点和终点相同的路径)、连通图(任意两个顶点之间都存在路径)等。

二、图论在实际生活中的应用1、交通规划城市的交通规划是图论应用的一个重要领域。

通过将城市道路网络抽象为图,可以分析交通流量,确定关键的道路节点和拥堵路段,从而优化交通信号灯设置、规划新的道路建设等,以提高交通效率,减少拥堵。

2、网络通信在计算机网络中,图论用于描述网络拓扑结构。

通过分析网络中的节点和连接关系,可以优化数据传输路径,提高网络的可靠性和性能。

3、物流配送物流企业在规划货物配送路线时,可以利用图论来找到最短路径,降低运输成本,提高配送效率。

例如,快递员在派送多个地点的包裹时,通过图论算法可以找到最优的派送顺序。

4、任务分配在项目管理中,将各项任务视为顶点,任务之间的依赖关系视为边,可以使用图论来合理安排任务的执行顺序,确保项目按时完成。

5、电路设计电子电路的设计中也会用到图论。

电路中的元件可以看作顶点,元件之间的连接看作边,通过分析电路图的拓扑结构,可以优化电路设计,提高电路的性能和可靠性。

三、高中数学图论教学的重要性1、培养逻辑思维能力图论问题的解决需要学生进行逻辑推理和分析,通过构建图、寻找路径、判断连通性等操作,锻炼学生的思维严谨性和逻辑性。

图论问题选讲答案

图论问题选讲答案
⑷把数1,2,3,4,5任意分成两组,试证明:在这两组数中,总有一组数中存在两个数,它们的差(的绝对值)也在这一组中.
解:任取6个点,分别标上1,2,3,4,5,6.每两点连一条线,并在这条线上注上这两点差的绝对值.就得到一个K4,且每条线上所注数字只能是1,2,3,4,5.
若数1,2,3,4,5已分成了A、B两组,某条线上的数分入了A组,则把这条线染红,分入了B组,则相应的线染蓝,由于K6的线二染色,必出现同色三角形,即该同色三角形上的三个数分入了同一组,设这个同色三角形的三个顶点的数为a、b、c(a>b>c),则三条线上的数为a-b,b-c,a-c.于是a-b,b-c,a-c分入同一组,即这三个数满足题目要求.
若相邻两个方格中填的数相差<5,则差≤4,于是图G中所填两个数的差≤14×4=56.但图中填了1与64,此二数必有一条链相连,此链的长≤14.即其差≤56,与64-1=63矛盾.
例5.⑴证明:有n个顶点且不含三角形的图G的最大边数为 .
证明:设v1是G中具有最大度数的顶点,d(v1)=d.又设与v1相邻的d个顶点为vn,vn-1,…,vn-d+1.由于G不含三角形,所以vn,vn-1,…,vn-d+1均互不相邻.故G的边数e≤(n-d)d≤ .
现取出现的一个圈,从该圈的任一顶点出发,沿圈走一圈回到起点,由于每经过一条边,到新一个顶点时,都与原顶点有一个题目的差异,且经过不同的边,对错的题目不同.这样回到原起点时,对错的情况不可能还原,这就引出矛盾.(例如v1与v2间连线上注的题号为1,则若v1第一题正确,则v2第一题错误,后面的边上都没有注题号1,故以后每个vi的第1题对错情况都不变,即,第1题都错.到沿此圈前进一圈回到v1,应得v1的第一题错,与初始状态的假定“第1题正确”矛盾.

图论例讲问题解答

图论例讲问题解答

图论例讲(问题解答) 陶平生1、设有2n 阶简单图G ,若其每个顶点的度数皆不小于n ,证明:从G 中必可选出n 条边,其端点互不相同.证:我们最大限度地选出k 条两两无公共端点的边,若k n =,则命题已得证; 现在设k n <,这k 条边记为1234212k k PP P P P P - ,,,,在剩下的其它边中,必须是每条边至少有一个端点与122,k P P P ,,中的一个点重合,不然的话,我们又可以将这样的一条边添加进去,使得这种边数多于k 条,与k 的最大性矛盾!今考虑图G 在上述端点集{}122,k P P P ,,之外的一对顶点,A B ,它们本身不会相连,由于每个顶点的度数皆不小于n ,而1n k ≥+,即点,A B 共同向点集{}122,k P P P ,,至少发出了22k +条边(称这种边为红边),于是k 条边1234212k k PP P P P P - ,,,中必有一条,它的两个端点关联了至少三条红边(如果这k 条边中的每一条边都至多关联两条红边,那么红边的总条数将不超过2k ,矛盾!).现在设,边212k k P P -关联了三条红边,得到两种关联模式,如图所示.每种模式下,我们都可以去掉边212k k P P -以及一条红边,而保留两条无公共端点的红边,这样,图G 中两两无公共端点的边成为1k +条,又与k 的最大性矛盾!因此k n <的假设被否定,所以k n =,结论得证.2、某地网球俱乐部的20名成员举行14场单打比赛,每人至少上场一次,证明:必有六场比赛,其中的12名参赛者各不相同.(美国1989)证:用20个点1220,,,V V V 表示这20名成员,如果两名成员比赛过,则在相应的两点之间连一条边,于是得到图G .据题意,G 有14条边,设顶点i V 的度数为i d ,则1,1,2,,20i d i ≥= ,而122021428d d d +++=⨯= .在每个顶点i V 处抹去1i d -条边(或者说,在每点i V 所发出的边中取1i d -条染成红色),由于同一条边可能被其两个端点所抹去(染红),所以抹去的边(红边)至多有1220(1)(1)(1)28208d d d -+-++-=-= 条,因此在抹去这些边后,所得的图G '中至少含有1486-=条边,且图G '中每个顶点的度数至多是1,从而这6条边所邻接的12个顶点各不相同,即这6条边所对应的6场比赛,其中的12名参赛者各不相同.3、设G 为n 阶图,且没有长为4的圈;证明:其边数(14n q ⎡⎤≤⎢⎥⎣⎦. 证明:设G 的顶点为12,,,n V V V ⋅⋅⋅,且设顶点j V 的度为j a ,1,2,,j n =⋅⋅⋅,则12n j j aq ==∑.现考察与顶点j V (1,2,,j n =⋅⋅⋅)相邻的任两个顶点所构成的顶点对,则对B2k-12k2k 2k-1于每个顶点j V ,这样不同的顶点对有2ja C 个,并且任两个顶点对互不相同(事实上,若对于i j ≠,顶点i V 的某顶点对与j V 的某顶点对相同,则存在,k l V V k l ≠与,i j V V 均相邻,这样i k j l VV V V 形成一个长度为4的圈,与题意矛盾.),而总的顶点对至多为2n C 个,故221j n a n j C C =≤∑,故()222211111122n n n n j j j j j j j j n n a a a a q q n n ====⎛⎫-≥-≥-=- ⎪⎝⎭∑∑∑∑ 即((1144n n q ≤≤, 而q 为整数,故(14n q ⎡⎤≤⎢⎥⎣⎦. 4、任意给定() 2n n ≥个互不相等的n 位正整数,证明:存在{}1,2,,k n ∈ ,使得将它们的第k 位数字都删去后,所得到的n 个1n -位数仍互不相等.证:设这n 个n 位数为12,,,n a a a .用反证法,若对于每个{}1,2,,k n ∈ ,删去这组数的第k 位数字后,所得到的n 个1n -位数12,,,k k nk a a a 中,都至少有两个数相等,设ik jk a a =,因原来相应的两数i j a a ≠,则, i j a a 被删去的第k 位数字必不相同,称这样的一对数, i j a a 为“具有性质k P ”(, i j a a 只有第k 位数字不同,其它位置上的数字对应相同).今用n 个点12,,,n v v v 分别表示这n 个数,若某一对数, i j a a 具有性质k P ,{}1,2,,k n ∈ ,则令相应的点, i j v v 相邻,于是得n 阶图G .据反证法所设知,图G 中至少有n 条边,故必有圈,不妨设此圈为121r v v v v ,(否则可将这n 个数重新编号;又对于互不相等的若干个n 位正整数,同时将每个数的第, i j 位数字对换位置,并不改变本题的性质),那么前r 个数为:112341 r r n a x x x x x x x -=212341 r r n a y x x x x x x -=312341 r r n a y y x x x x x -=412341 r r n a y y y x x x x -=…… …… …………112341r r r n a y y y y x x x --=12341 r r r n a y y y y y x x -=这里,不同的字母表示不同的数字,据此知,删去各数(自左向右)的第r 位数字后,所得的两个1n -位数rr a 与1r a 并不相等,其中,123411 rr r r n a y y y y y x x -+= ,1123411r r r n a x x x x x x x -+=也就是说,圈121r v v v v 中的边1r v v 并不存在,矛盾.因此,图G 中不可能有圈,故图G 中的边至多有1n -条,这与反证法的假设相矛盾,从而结论得证.5、设G 为n 阶图()5n ≥,其边数4e n ≥+,证明G 中存在两个无公共边的圈. 证:对n 归纳,当5n =时,9e ≥,这相当于从5k 中至多去掉一条边,结论显然成立. 设()6n k k <≥时结论成立,当n k =时,k 阶图G 的边数4e k ≥+,由于G 的边数≥顶点数,其中必有圈.若G 中存在一个长为3或4的圈1C ,则从图G 中删去圈1C 上所有的边,剩下的k 阶子图1G 中,依然满足:边数≥顶点数,其中又有圈2C ,显然,1C 与2C 都是G 中的圈,且无公共边.以下假设,G 中的每个圈长至少为5.若G 中有点0v ,其度数()01d v ≤,则删去点0v 以及它所关联的边,剩下的1k -阶子图2G 中,有1k -个顶点,至少()14k -+条边,据归纳假设,2G 中有不含公共边的两个圈,它们当然也是G 中的圈.若G 中有点0v ,其度数()02d v =,设与0v 邻接的两个点是12, v v ,显然12, v v 不相邻(因G 中无三角形),此时,删去点0v 及其所发出的两条边,同时添加边12v v ,所得的图3G 中,有1k -个顶点,至少()14k -+条边,据归纳假设,3G 中有不含公共边的两个圈1C 与2C . 再将边12v v 去掉,恢复被删去的点0v 及其所发出的两条边0102, v v v v ,回到图G ,则G 中也有不含公共边的两个圈(这是由于,若3G 中的这两个圈1C 与2C 都不含边12v v ,则这两个圈1C 与2C 也是G 中的圈;若3G 中的这两个圈中有一个,例如2C ,含有边12v v ,从该圈中去掉12v v ,并代之以边0102, v v v v ,得到圈0C ,则0C 与1C 是G 中不含公共边的两个圈).若G 中所有的点i v ,其度数()3i d v ≥,1,2,,i k = ,如果G 的边数4k >+,我们就从G 中删去一些边,使得边数恰好为4k +,记此图为4G .在图4G 中,若4G 中有一顶点的度数3<,则据前面的讨论,结论已经得证;若4G 中每个顶点的度数皆3≥,则4G 中各顶点的度数之和3k ≥,故4G 中的边数32k ≥,即有342k k +≥,由此得,8k ≤. 而在此时,只要能证得,在4G 中必有三角形或四边形,这种三角形或四边形当然也在G 中,这将与原先的假设(G 中的每个圈长至少为5)相矛盾.事实上,由于4G 中的边数4k +≥顶点数k ,故4G 中必有圈,设C 为极小圈,则圈C 的点与点之间不能再有其它边相连,否则圈C 将被分成更小的圈,矛盾;设极小圈C 的长为r ,则2r k ≤-.(由于每个顶点的度数皆3≥,若r k =,则圈C 的点与点之间将有其它边相连,于是圈C 被分成更小的圈,矛盾;若1r k =-,圈121r C vv v v = 上的每个点都要与圈外的一点0v 相邻,于是得到三角形012v v v ,矛盾);于是,当5k =或6k =时,4G 中的极小圈C 的长4r ≤.当7k =时,有5r ≤,若极小圈C 为五边形12345v v v v v ,另两点为,u v ,五边形的五个顶点共向,u v 发出至少5条边,则,u v 中必有一点,例如u ,要向五边形的顶点发出至少3条边,其中必有两个相邻顶点,例如12v v 都与u 相邻,于是得到三角形12uv v (更小的圈),矛盾,因此4r ≤;当8k =时,有6r ≤,若极小圈为六边形123456v v v v v v ,六个顶点共向圈外的两点,u v 发出至少6条边,则其中有一点,例如u ,要向六边形的顶点发出至少3条边,于是点u 要向顶点组{}{}135246,,, ,,v v v v v v 中的一组发出至少2条边,设u 与13,v v 相邻,则得到四边形123v v v u ,矛盾;若极小圈C 为五边形12345v v v v v ,另三点为,,u v w ,五边形的五个顶点共向,,u v w 发出至少5条边,必有一点,例如u ,要向五边形的顶点发出至少2条边,由于五边形的任两个顶点,要么相邻,要么中间只隔一个顶点,因此得到一个含有点u 的三角形或者四边形,矛盾,因此4r ≤.综合以上讨论,可知本题结论成立.6、若简单图G 有21n +个顶点,至少31n +条边(2)n ≥,证明:G 中必有偶圈. 证:由于图G 的边数不小于顶点数,则G 中必有圈,今逐次这样地去掉图中的一些边: 使得每去掉一条边,就破坏一个圈,这样的操作至少可以进行1n +次,也就是至少可以去掉1n +条边,破坏至少1n +个圈,即是说,图G 中的圈至少有1n +个.这1n +个圈中,必有两个圈有公共边,事实上如果任两个圈都无公共边,由于每个圈至少有3条边,则图G 至少有3(1)33n n +=+条边,矛盾!今设12,C C 是图G 中两个有公共边的圈,则1C 至少有一条边不在2C 中,2C 至少有一条边不在1C 中,若12,C C 含有公共边e 的最长公共道路为0()C A B = ,若设道路0C 有r 条边,圈1C 有1r 条边(包括公共路),圈2C 有2r 条边(包括公共路),(即圈12,C C 的长分别是12,r r ). 若去掉道路0()C A B = 间的所有的边(即圈12,C C 的上述公共边),则圈12,C C 的剩下部分仍可合并为一个圈,记为*C ,圈*C 的长为122r r r +-;注意三个圈*12,,C C C 长的和等于122()r r r +-,它是一个偶数,故三个加项12,r r 和122r r r +-中必有一个是偶数,即G 中有偶圈.7、一次足球邀请赛共安排了n 支球队参加,每支球队预定的比赛场数分别是12,,,n m m m ,如果任两支球队之间至多安排了一场比赛,则称12(,,,)n m m m 是一个有效安排;证明:如果12(,,,)n m m m 是一个有效安排,且12n m m m ≥≥≥ ,则可取掉一支球队,并重新调整各队之间的对局情况,使得112312(1,1,,1,,,)m m n m m m m m ++--- 也是一个有效安排.证:设预定比赛i m 场的队为i A ,1,2,,i n = ;(01)、如果1A 的1m 场比赛,其对手恰好就是1231,,,m A A A + ,那么,直接去掉1A (当然1A 所参与的所有比赛也就被取消了),则剩下的队23,,,n A A A 之间的比赛,以 112312(1,1,,1,,,)m m n m m m m m ++--- 为有效安排.(02)、如果球队23,,,n A A A 中,有些队并未安排与1A 比赛,设在1231,,,m A A A + 中,自左至右,第一个未安排与1A 比赛的队是j A ,由于1A 要赛1m 场,那么在1231,,,mA A A + 之外必有一个队安排了与1A 比赛,设为1,(1)k A m k n +<≤,由于j k m m >,故必有一个队s A ,它被安排了与j A 比赛而未安排与k A 比赛,如图所示. 今对原安排作如下调整:取消1,k A A 两队间、,j s A A 两队间的比赛,改为1,j A A 两队间,,s k A A 两队间进行比赛,其它比赛安排不变;s j k js k经过这一次调整之后,所有球队的比赛场数不变,且是一个有效安排.而第一个不与1A 比赛的队的序号,至少后移了一个位置;故经有限次这样的调整之后,就化成了情形(01),因此结论得证.8、十个城市之间有两个航空公司服务,其中任意两个城市之间都有一条直达航线(中间不停),所有航线之间都是可往返的.证明:至少有一个航空公司可以提供两条互不相交的环形旅行线路,其中每条线路上的城市个数都为奇数.(与其等价的图论说法是:10阶完全图10K 的边红蓝2-染色,则必存在两个无公共顶点的同色奇圈(顶点个数为奇数的圈,且这两个圈的边或者同为红色,或者同为蓝色)).证:首先注意,六阶完全图的边红蓝2-染色,据拉姆赛定理,必存在单色三角形123VV V ,除去这个三角形外,在余下的七点之中,又有一个单色三角形456V V V ,若这两个三角形具有相同的颜色,证明已经完成;不然的话,若这两个三角形,一个是红色的,一个是蓝色的,在这两个三角形的顶点之间有9条连线,其中至少有5条同色,设为蓝色;因此,有一个红色三角形,从它的某个顶点发出两条蓝边,蓝边的端点是蓝色三角形的两个顶点;这样,我们找到两个三角形,其中,一个是红色边的,一个是蓝色边的,它们具有一个公共的顶点,(总共佔用了5个顶点);今考虑剩下的5个顶点:若它们组成的完全图5K 中含有一个单色三角形,则证明已经完成;若此完全图5K 中不含单色三角形,我们来证明,此时5K 的10条边,必定形成一个红色五边形和一个蓝色五边形.这是由于,5K 中不含单色三角形,则每点必定都是发出两条红边,两条蓝边;因为,若点A 发出三条蓝边 ,,AB AC AD ,则点,,B C D 之间便不能再有蓝边,于是得到红色三角形BCD ,矛盾! 现在设点发出的两条蓝边是,AB AE ,则边BE 必为红色;而点B 还需再发出一条蓝边,一条红边,设BC 为蓝,BD 为红;由此即推得,AC 必为红,DE 必为蓝;于是AD 为红, CD 为蓝,CE 为红.于是得蓝色五边形ABCDE 和红色五边形ACEBD .从而命题得证.9、在一次学术讲演中有五名数学家参加,会上每人均打了两次旽,且每两人均有同时在打旽的时刻,证明:一定有三人,他们有同时在打旽的时刻.证:以1210,,,V V V 这10个点表示五位数学家的十次打旽,当,i j V V 两个旽有共同的时刻,则令点,i j V V 相邻,这样我们就得到一个10阶图G ,由于每两个数学家都有同时打旽的时刻,从而图G 的边数至少是2510C =,而G 的顶点数为10,故G 中必有圈. E设在此圈中,k V 是最先结束的一个旽,与k V 相邻的两个顶点是11,k k V V -+,因11,k k V V -+这两个旽与k V 有共同的时刻,故当旽k V 结束的前一瞬间,11,k k V V -+这两个旽还在继续,这表明,三个旽11,,k k k V V V -+有共同进行的时刻,而这三个旽显然是属于三个人的(若两个旽属于同一个人,又有共同的时刻,只能算成一个旽,矛盾!).10、() 2n n n ⨯≥矩阵A 中,每行及每列的元素中各有一个1和一个1-,其余元素皆为0;证明:可以通过有限次行与行的交换以及列与列的交换,化为矩阵B ,使得 0A B +=.(即A 中的每个数都变成了其相反数)证:2n =时结论显然成立;以下考虑3n ≥时的情况.记n n ⨯矩阵第i 行、j 列交叉位置上的元素为{} ,0,1,1ij ij a a ∈-,又用i V 表示矩阵的第i 行,j e 表示第j 列,( ,i j V e 仅表示位置,不代表具体元素与向量),今构作一个以12,,,n V V V 为顶点,12,,,n e e e 为边的有向图G 如下:当第k 列的1在第i 行,1-在第j 行,(即 1, 1ik jk a a ==-),则连一条由点i V 指向点j V 的有向边k e ,于是,G 的每个顶点都恰好具有1个出度和1个入度(即发出一个箭头和收到一个箭头),因此,从图G 的任一顶点出发,沿箭头方向前进,必将回到原出发点,(这是由于,除出发点外,每经过一个点,就将耗去一个入度和一个出度,因此不能回到途经的点). 这样,图G 或者本身是一个n 阶有向圈,或者是若干个不交的有向圈的并,(其中k 个点的有向圈恰有k 条有向边,3k ≥.当3n ≥时,这种图G 与适合条件的矩阵A 一一对应). 若后者情况出现时,如果删去某个圈所涉及的行和列,并不影响其余圈的状态;或者说,若仅对某个圈所涉及的行和列进行所述的变换,不会改变其它行和列中1和1-的位置. 于是我们仅须考虑只有一个圈(即G 为n 阶圈)的情况.示例如下:对应的圈1C 为:我们注意到:()1. 每当交换矩阵中的两行位置,等价于圈中仅交换相应两个顶点的位置,(边的位置保持不动); ()11. 每当交换矩阵中的两列位置,等价于圈中仅交换相应两条边的位置,(仅交换两条边的代号,边的箭头方向以及顶点的位置保持不动).于是,我们可先对圈1C 的顶点作两两对换,得到圈2C ,使得沿箭头方向前进时,所经历的各点恰与圈1C 中各点的方向相反.(例如在圈1C 中,诸点的顺序为1243651VV V V V V V ;而6V 534 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 11 0 0 0 0 1A -⎛ - -=---⎝⎫⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭在圈2C 中,诸点的顺序为1563421VV V V V V V ).圈2C : 圈3C :再对圈2C 的边作两两对换,(每次仅交换一对边的代号,边的箭头方向及顶点的位置保持不动).使得每条边所关联的顶点与圈1C 中的情况相同.于是得到圈3C .与圈3C 所对应的矩阵B ,其每个元素恰为矩阵A 中相应位置上元素的相反数.因此 0A B +=. 即所证的结论成立.11、有七种颜色的珍珠,共计14颗,其中每种颜色的珍珠各两颗;今把这些珍珠分装于七个珠盒中,使得每个珠盒中各有一对不同颜色的珍珠;(1)、证明:不论各盒中的珍珠怎样搭配,总可以将这七个珠盒分别放置于一个正七边形的七个顶点之上,使得七边形的任两个相邻顶点处所放置的盒中,四颗珍珠互不同色.(2)、如将以上条件与待证结论中的“七”一律改为“五”,14改为10,则情况如何?(1)、证:用点127,,,v v v 分别表示这七种颜色,如果一个i v 色的珍珠和一个j v 色的珍珠装在同一盒中(i j ≠),则在点i v 与j v 间连一条边,这样就得到一个图G ,(点i v 与j v 之间有可能连出两条边),由于同一色的珍珠有两颗,每颗珠都需与一颗其它颜色的珍珠共盒,则图G 的每点恰好发出两条边;自G 的任一点A 出发,沿一条边走到点B ,再由B 沿另一条边走到C ,…,如此下去,最后必定回到出发点A ,(这是由于,途中经过的每个点P 都有两条边,若能沿一条边进入点P ,则必沿另一条边可离开点P ,而由点P 不能再回到途中已经过的点,因为这种点所发出的两条边都已走过,因此只能到达新点或回到出发点,而新点终将逐渐耗尽,最后必定回到出发点A ),这样就得到一个圈.去掉这个圈,若剩下还有点,依上述方法,又将得到新的圈,若称两点的圈为“两边形”,则图G 的结构只有如下四种情况:()01、一个七边形: ()02、一个五边形,一个两边形: B 6v 47543v 74V 364V 36()03、一个四边形,一个三角形: ()04、一个三角形,两个两边形: 对于每种情况,我们都对相应的边作出适当编号,并将这些边所对应的珠盒放置于七边形的顶点之上,如右图所示.因此所证结论成立. (2)、当14颗七色珠改为10颗五色珠后,结论不成立,例如,对于五色12345,,,,v v v v v ,我们若将10颗珠这样装盒: ()()()()()112223331445545,,,,,,,,,e v v e v v e v v e v v e v v =====,则无论怎样摆放于正五边形的顶点上,都不能满足条件.(因为123,,e e e 中,任两盒都有同色的珠,无论怎样摆放于正五边形的顶点上,必有两盒相邻).12、给定31个正整数1231,,,a a a ,若其中至少有94对数互质,证明:其中必存在四个数,,,a b c d ,满足:(,)(,)(,)(,)1a b b c c d d a ====.证:用点1231,,,A A A 分别代表这31个正整数,若(,)1i j a a =,则令相应点,i j A A 相邻,于是得31阶简单图G ,设点i A 的度数为i d ,据条件,图G 至少有94条边,不妨设,图G 恰有94条边,否则我们就去掉其中一些边,并不影响问题的性质; 与点i A 相邻的点有i d 个,它们构成2(1)2i i i d d d C -=个“点对”,据条件, 1231294188d d d +++=⨯= ;若记 3121i d i M C ==∑,则 31312111122i i i i M d d ===-∑∑ 31211942i i d ==-∑,由柯西不等式,31312222111112()1889422316231i i i i d d ==≥=⋅=⋅⨯∑∑, 因此,223129415793155313094943131312M C ⨯⨯⨯≥⋅-=>==, 故在1231,,,A A A 中必有两个点,A C ,其所邻接的点中, 具有相同的一个“点对”,设为,B D ,即ABCD 为四边形,从而,(,)(,)(,)(,)1a b b c c d d a ====.6e 46e 73v 43673764672C13、奥运会排球预选赛有n 支球队参加,其中每两队比赛一场,每场比赛必决出胜负,如果其中有k (3k n ≤≤)支球队12,,,k A A A ,满足:1A 胜2A ,2A 胜3A ,…,1k A -胜k A ,k A 胜1A ,则称这k 支球队组成一个k 阶连环套;证明:若全部n 支球队组成一个n 阶连环套,则对于每个k (3k n ≤≤)及每支球队i A ()1i n ≤≤,i A 必另外某些球队组成一个k 阶连环套.证明:以12,,,k A A A 为顶点,如球队i A 胜j A ,则在两点间连一有向边:i j A A →,如此得n 阶竞赛图G .据条件,G 的n 个顶点可以排成一个n 阶有向圈,设为: 121n A A A A →→→→ ,于是G 的任两点可沿箭头方向相互到达.先证明,任一球队i A 必在某个三阶连环套中,用,i i S T 分别表示被i A 击败了的球队集合和击败了i A 的所有球队集合,由于G 双向连通,必有,j i k i A S A T ∈∈,使j k A A →,于是,,i j k A A A 组成三阶连环套;假若已证得,对于()3k k n ≤<,图中存在以i A 为一顶点的k 阶连环套()121i k C A A A A A = ,圈C 之外的点的集合为M ;若M 中有一点P ,它所表示的球队既击败了圈C 中的某个队k A ,又被圈C 中的另一个队j A 所击败,点,k j A A 把圈C 分成两条有向路12,C C ,其中一条,例如1C ,它与有向路j k A P A →→组成有向圈,如图所示.依次考虑路2C :12,,,,j j j k A A A A ++ 上各点与点P 间的邻接情况,必有相邻的两点1,j r j r A A +++,满足j r A P +→而1j r P A ++→,今去掉边1j r j r A A +++→,而将路1j r j r A P A +++→→插入其间,便得到一个含有顶点i A 的1k +阶连环套;若M 中的任一点P ,它所表示的球队要么击败了圈C 中的每个队,要么被圈C 中的每个 队所击败,则集M 可分为两个不交的子集S 与T ,其中S 中的任一队,战胜了圈C 中所有的队,而T 中的任一队,负于圈C 中所有的队;由于图G 双向连通,故在集T 中必有点u ,集S 有点v ,使v u →,今在圈C 中任意去掉一个点j A ,()j i A A ≠,而用路v u →代替,便得到一个含有顶点i A 的1k +阶连环套;故结论对于1k +成立,由归纳法,结论成立. 14、某公司有17个人,每个人都正好认识另外的4个人,证明:存在两个人,他们彼j此不相识且没有共同的熟人.(第26届独联体数学奥林匹克)证明:以17个点表示公司的17个人,如果两人,x y 相识,则令其相邻,于是得到17阶简单图G ;据条件,对于每个顶点x ,()4d x =,我们需证明,存在顶点,P Q ,满足: ,P Q 不相邻,且不同与第三顶点相邻.反证法,假设G 中的任意两点,或者相邻,或者同与第三点相邻,今考察其中任一点x , 因为()4d x =,故有点,,,A B C D 与x 相邻,讨论不同的情况:01、如果,,,A B C D 四点之间有某两点相邻,例如AB 相邻,因()4d x =,与A 相邻的另两点是,E F (允许是,C D ),此外至少有10个点与A 不相邻,它们构成集合M ,P M ∀∈,因,P A 不相邻,则由假设,它们应同与第三点相邻,但与A 相邻且度数尚未满4的点只有,,B E F ,故P 必与,,B E F 之一相邻;因为P 是M 中的任意点,故M 中的10个点必与,,B E F 之间至少连出10条边,从而 ,,B E F 中有一点至少向M 中的点发出4条边,这样,该点的度数5≥(因该点也与A 相邻),发生矛盾!02、据01的讨论知,,,,A B C D 中的任两点不相邻,又若,,,A B C D 四点中有某两点,例如,A B ,它们除了都与x 相邻外,还都与另一点y 相邻,因为()4d A =,与A 相邻的另外两点是,E F ,此外至少有9点与A 不相邻,它们构成集合M ,P M ∀∈,P 必与,E F , Y 之一相邻,但()4d Y =,故与Y 相邻的点,除,A B 外,至多还有M 中的两点,因此,M 中至少有7点要向,E F 之一发出边,于是,E F 中必有一点向M 引出至少4条边,则该点的度数大于4,矛盾!据01,02的讨论可知,,,,A B C D 四点之间两两不相邻,且除与x 相邻外,它们两两22Fx M y x也不同与另外的点相邻,但,,,A B C D 的度数皆为4,因此除与x 外,它们各与另外三个不同的点相邻,如图二,这样已有16条边,其余还有17416182⨯-=条边,并且图中已有17个顶点,不会再有另外的顶点,而且据与01相同的讨论可知,与A 相邻的四点(包括x 及另三个未标记号的点123,,A A A ),彼此之间不能相邻.因此,这18条边的每一条,只能在,,,i i i i A B C D 间连结,每连一条,便得到一个含有5条边,且经过x 的圈,这样共得18个圈(每圈都过x ),由于顶点x 的任意性,经过其余16个点中任一个点也有18个那样的圈(共1718⨯个),每一个圈过5个顶点,因此每个圈重复计算了五遍. 于是圈的个数等于17185⨯,这不可能,故所设不真,从而证得了命题. 15、若8阶简单图不含四边形,那么,其边数的最大值是多少?(92CMO -) 解一:右图是具有八个顶点,十一条边的简单图,其中没有四边形,今证明,11便是合于条件的最大值.为此,只要证,具有12条边的简单图中必存在四边形.先指出两个事实:01、如果点A 与点12,,,k V V V 都相邻,B 是异于A 的一个顶点(B 也可以是{}12,,,k V V V 中的点),如果在{}12,,,k V V V 中有某一“点对”与B 相邻,则图中有四边形.02、四个顶点的图中,如有五条边,就必有四边形.(相当于一个四面体中去掉一条边). 现在设,G 具有八个顶点,十二条边的简单图,我们来证明,G 中必有四边形. 反证法,假若G 中没有四边形,用128,,,d d d 分别表示G 中八个顶点的度数, 注意到,8121224i i d==⨯=∑,则有{}128max ,,,3d d d ≥ .讨论不同的情况:情形一、若{}128max ,,,3d d d = ,这时G 中每个顶点的度数都是3,任取一个顶点1A , 与1A 有边相邻的顶点设为234,,A A A ,其余四个顶点为1234,,,B B B B ;据01及反证法假设,{}1234,,,B B B B 中的点与{}234,,A A A 中的点之间相连的边至多只有四条,而{}234,,A A A 中的点相连的边至多只有一条,,所以在{}1234,,,B B B B 这些点中相连的边至少有123414---=条(由02可知,也只能有四条),我们只考虑这四个顶点以及连结它们的4条边,这时其中必有某一顶点的度数是1(如果这四个顶点的度数都是2,就成为一个四边形),从而有顶点度数为3,即{}1234,,,B B B B 中必有一点(不妨设为1B ),与其它三点都有边相连,而{}1234,,,B B B B 中的点与{}234,,A A A 中的点相连的边数为4,1B 必与{}234,,A A A 中的某一点有边相连,这样,图G 中1B 的度数将是4,这与假设矛盾!情形二、{}128max ,,,4d d d = ,取一个度数为4的顶点A ,设与A 有边相连的顶点为 1234,,,A A A A ,其余三顶点为123,,B B B ,据01及反证法假设,{}1234,,,A A A A 内部的边至多是2条,点集{}123,,B B B 与{}1234,,,A A A A 之间的边至多3条,而{}123,,B B B 内部的边也显然至多3条,由于总的边数是12条,因此上述各种边数恰为2,3,3;于是,在{}1234,,,A A A A 内部的边恰好是2条,且这两条边不能有公共顶点(否则将出现四边形),不妨设这两条边为112l A A =,234l A A =;{}123,,B B B 中的每一点都与{}1234,,,A A A A 中的某一点有边相连,这种边有三条,称为“红边”,且因121323,,B B B B B B 都是G 的边,这三条红边中,必有两条的端点同时落在12,l l 两边之一上,设为1l 上, 它收到来自12,B B 发来的边;如果这两条红边都关联1l 上的同一点(例如1A ),那么1123A B B B 构成四边形;如果这两条红边关联1l 上的不同点12,A A ,那么1212A A B B 构成四边形;都与所设矛盾!情形三、{}128max ,,,4d d d > ,取一个度数最大的顶点A ,与A 邻接的点集记为S ,其余顶点集记为T ,令{}128max ,,,k S d d d == ,m T =,,S T 之间的边数至多m 条,T 内部的边至多2m C 条,S 内部的边至多2k ⎡⎤⎢⎥⎣⎦条,这样,图G 的边数不超过 22722m m k k k m C C ⎡⎤⎡⎤+++=++⎢⎥⎢⎥⎣⎦⎣⎦,当5,6,7k =时,都不可能使边数为12. 综上,知所求的最大值为11.解二、将n (4)n ≥阶简单图中,没有四边形的图的边数的最大值记为n S ,易见44S =, 下面考虑5n =的情况,在有5个顶点,6条边的简单图中,由于各顶点的度数之和为12, 必有某顶点的度数不大于2,如果其中有一个顶点的度数为1,则可去掉这个顶点,化为有23A4。

图论第一章课后习题解答

图论第一章课后习题解答

bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。

高中竞赛数学讲义第68讲图论问题(二)

高中竞赛数学讲义第68讲图论问题(二)

第68讲图论问题(二)本讲主要内容:本讲将继续研究用图来解决问题的方法.偶图取图G=(V,E),如果V=X∪Y,X∩Y=,其中X={x1,x2,…,x n},Y={y1,y2,…,y m},且x i及x j(1≤i<j≤n),y s 及y t (1≤s<t≤m)均互不相邻,则称G为偶图.色数:将图G的顶点涂上颜色,如果至少要k种颜色才能使任意两个相邻的顶点颜色不同,则称G的色数为k.显然,偶图的色数≤2.即偶图色数不超过2.A类例题例1 在空间中给定2n个不同的点A1,A2,…,A2n,n>1,其中任意三点不共线.设M是n2+1条以给定的点为端点的线段的集合.⑴证明:存在一个三角形,其顶点为给定的点,其边都属于M.⑵证明:若集合M的元素不超过n2个,则这样的三角形可能不存在.(1973年奥地利数学竞赛)分析可以从简单的情况开始试验,发现规律再证明.从K4(4阶完全图,见67讲)共有多少条线及多少个三角形、擦去1条线去掉几个三角形入手得出结论,对于K5、K6也能用此法得到结论,但对于p>6,K p难用此法,如何过渡到一般情况?可以用数学归纳法.证明:n=2时,在4个点间连了5条线,由于4阶完全图在4个点间共可连出6条线,这6v3v4v32k条线连出了4个以此4点中的某3点为顶点的三角形.而每条线的两个端点及(除这条线的两个端点外的)另两个顶点可以连出共2个三角形,故去掉任何一条边都使连出三角形数减少2,于是在4个点间连5条线必连出了以此4点中的3点为顶点的三角形.设n=k时,2k个点间连有k2+1条线时,必有三角形出现.则当n=k+1时,2(k+1)个点间连了(k+1)2+1条线.此时,任取两个相邻的顶点v1,v2,如果在其余的顶点中有某个顶点及v1,v2都连了线,例如v3及v1,v2都连了线(图4(1)),则出现了三角形.如果其余所有的点及此二点都至多连出1条线(图4(2)),则去掉点v1,v2及及这两点相邻的边,此时,余下2k个点,至多去掉了2k +1条边,余下至少(k+1)2+1-(2k+1)=k2+1条边,由归纳假设知,其中必有三角形.综上可知,命题成立.说明若2n个点间连了n2条边,可以把这2n个点分成两组,每组n个点,规定同组的点间都不连线,不同组的任何两点都连1条线,这样得到了一个完全偶图K n,n,此时共计连了n2条线,但任取三点,必有两点在同一组,它们之间没有连线,于是不出现三角形.例2 一个舞会有n(n≥2)个男生及n个女生参加,每个男生都及一些女生(不是全部)跳过舞,而每个女生都至少及1名男生跳过舞,证明,存在男生b1,b2及女生g1,g2,其中b1及g1跳过舞,b2及g2跳过舞.但b1及g2没有跳过舞,b2及g1没有跳过舞.分析 就是要给出一种选择方法,按此方法操作,即可选出满足要求的两个男生及两个女生.可以用极端原理来证明这样的存在性命题.证明 取所有男生中及女生跳舞人数最多的一个,设是b 1.b 1至少及1名女生没有跳过舞,取没有及b 1跳过舞的一名女生为g 2,g 2至少及1名男生跳过舞,设为b 2,显然b 1不是b 2,现在考虑所有没有及b 2跳过舞的女生,她们不能都没有及b 1跳过舞,(否则没有及b 1跳舞的女生人数就比没有及b 2跳舞的人数多,b 1就不是及女生跳舞人数最多者).即至少有1个女生没有跟b 2跳过舞但跟b 1跳过舞.这个女生即为g 1. 说明 这里就得到了一个偶图{b 1,b 2}∪{g 1,g 2}.(图中,括号内的数字表示证明中出现的先后顺序).极端原理常用于证明存在性命题.情景再现1.求证:顶点多于1的树是偶图.2.证明 偶图的色数≤2,反之,色数≤2的图是偶图. B 类例题例3 某镇有居民1000人,每人每天把昨天听到的消息告诉自己认识的人,已知任何消息只要镇上有人知道,都会经过这样的方式逐渐地为全镇的人所知道.证明可以选出90名代表,使得同时向他们报告一个消息,经过10天,这一消息就为全镇的人知道.(4)(3)(2)(1)21b分析就是要给出一个把1000个点的连通图分成90个子图的方法,使每个点都在其中一个子图中,且每个子图的最长的链的长度不超过10.这样,只要把每个子图的最长链的一个端点选为“代表”,就能完成这个任务.证明用1000个点代表1000个居民,两名居民相识,则在两点之间连一线,如此可得一图,依条件,这个图是连通图.若图中有圈,则我们去掉圈中的一边使圈被破坏而不影响图的连通性,经过有限次这种手续,可得树T1000.在T1000中取一条主干v1v2…v n,取v11作为1个代表,把边v11v12去掉,则此图分成了2个连通分支,在含有v1的一棵树中,每点到v11的路的长度都不超过10,否则v1v2…v n在T1000中不是主干,故v11知道的消息在10天内可以传遍它所在分支的点集所代表的居民;余下另一分支再取其主干,又按此法得出第二个代表v22,依此类推,则T1000分割成若干棵树:同样,在含v22,v33,…的树中,v22,v33,…知道的消息在10天内都能传遍树的点集所代表的居民;由于1000=11×89+21,且每一个小分支树可能还有分支,从而其顶点数可能超过11,所以这样分法,至多分出89棵树并余下一个至多有21个点的树,该树的链长≤20,取此链的中心v,则该链上每个点到v的距离都≤10.现在取v11,v22,v33,…为代表,最后一棵树取其中心v为第90名代表,只要将消息告诉这些代表,则在10天之后,每个分支树的点集所表示的居民全都知道这个消息,问题已获解决.说明 注意每次在最长链上截去一段后,余下的链的主干不一定就是原来主干的截剩部分,所以每次都要重新确定主干.例4 一个国家的国王打算建n 个城市且修(n -1)条道路,使每条道路连接两个城市而不经过其他城市.而每两个城市都可以互相到达,其间的最短距离恰是1,2,…,C 2n =12n (n -1)这些数,问在下列情况下,国王的打算能否实现:(1)n =6;(2)n =1998.分析 就是要画一个树,使任两个顶点的距离都不能相同.对于顶点数少的情况估计是可能存在的,而要得到n =6图可以用构造法.对于n =1998,估计不会存在,所以可以用反证法证明.为了得到n =6的情形,长度为1及2的线段是要取的,否则得不到1,2,这两条线段连结可以得到长度3,为得到距离为15、14、…的线段,可以取某两个城市间距离为8(15的一半),此时8+7=15,8+6=14,8+5=13可以通过增加一条长度为5的线段如图得到,再增加一条长为4的线即可得到全部的15个数.解 (1) n =6时,国王的打算可以实现,城市和道路的分布可依据图所示.⑵ n =1998时,国王的打算不能实现,因为符合要求的道路网存在的必要条件是:n 或(n -2)是完全平方数,证明如下: v 5v 648521v 1v 2v 4v v 58521v 1v 2v 4v用点表示城市,用线表示连接城市的道路,得到一个图G .由题设,知G 是n 阶连通图,又其线的数目恰为(n -1),故G 是n 阶树,因而G 的任两点之间只存在唯一的通道.把G 的顶点二染色:任取一个点A ,对于图中任一点,若它沿唯一的通道到A 的距离是一个偶数,则把此点染红(A 也应染红,因A 到A 的距离为0,0是偶数),否则染蓝.设红点的数目为x ,则蓝点的数目为y =n -x .考虑距离为奇数的点对,易知:两点之间的距离为奇数,当且仅当这两个点一红一蓝.由一个红点和一个蓝点组成的点对有xy 个.又在1,2,…,12n (n -1)中,当12n (n -1)为偶数时,其中的奇数有14n (n -1)个;当12n (n -1)为奇数时,奇数有14[n (n -1)+2]个.于是,如果国王的打算可以实现,则必须满足xy =14n (n -1) ① 或 xy =14[n (n -1)+2] ②. 此时,对于①,有4x (n -x )=n (n -1),即 4x 2-4nx +n 2-n =0, 解得 x =n ±n2,相应的y =n ∓n2.同样,对于②: 有x =n ±n -22,y =n ∓n -22. 故只有n 或(n -2)是完全平方数时,国王的愿望才可能实现.但1998和1998-2=1996都不是完全平方数,故当n =1998时,国王的打算不可能实现.说明 我们只证明了这个条件是必要条件,没有证明这个条件是充分的.对于n=6,有6-2=4是完全平方数,有可能存在满足要求的图,再通过构造出满足要求的图,才能确定解存在.例5证明:任意的9个人中,必有3个人互相认识或4个人互相不认识.分析即证明,在任意的K9中,把边涂成红或蓝两种颜色,则必存在红色K3或蓝色的K4.或在一个有9个顶点的图G中,必存在K3,或在其补图中,存在K4.证明⑴ 如果存在一个顶点,从这点出发的8条线中,有至少4条为红色,设从v1引出的4条线为红色,引到v2,v3,v4,v5.若此4点中的某2点间连了红色线,则存在红色K3,若此4点间均连蓝线,则存在蓝色K4.⑵ 如果从任一点出发的8条线中,红色线都少于4条.于是从每点出发的蓝色线都至少5条.但由于任何图中的奇顶点个数为偶数,故不可能这9个顶点都引出5条蓝线.于是至少有一个顶点引出的蓝线≥6条,例如从v1到v2,v3,…,v7都引蓝线,则在v2,v3,…,v7这6个点的图中,必存在红色三角形或蓝色三角形,于是G中必有红色K3,或蓝色K4.链接拉姆赛(Ramsey)问题本题实际上说的是:在有n个顶点的图G中,有一个K3,或在其补图-G中(在K9中去掉G的所有边后余下的图即G的补图)有一个K4,二者必有一成立.n=9是保证这一个结论成立的n的最小值.一般的,在一个有t个顶点的图中存在K m,或在其补图中存在K n ,t 的最小值是多少?这就是拉姆赛问题.记满足上述要求的t 的最小值为r (m ,n ).则有 r (m ,n )=r (n ,m ),r (1,n )=r (m ,1)=1,r (2,n )=n ,r (m ,2)=m .并可证:定理一 在m ≥2,n ≥2时,r (m ,n )≤r (m ,n -1)+r (m -1,n ).现在已经求出的r (m ,n )有:r (3,3)=6,r (3,4)=9,r (3,5)=14,r (3,6)=18,r (3,7)=23;r (4,4)=18.定理二 设完全图K N 的边涂了n 种颜色,则在N 充分大时,K N 中必有一个同色三角形.设r n 是使K N 中有同色三角形存在在N 的最小值,则⑴ r 1=3,r 2=6,r 3=17;⑵ r n ≤n (r n -1-1)+2;⑶ r n ≤1+1+n +n (n -1)+…+n !2!+n !1!+n !. 上述两个定理都是拉姆赛定理的特例,更一般的结论请参阅单墫教授的有关图论的著作.例如《趣味的图论问题》等 情景再现3.平面α上有n 条直线,把α分成若干区域,证明:可以用两种颜色就可使相邻的区域都涂上不同的颜色.4.在8×8的棋盘上填入1~64的所有整数,每格填一个数,每个数填一次.证明:总能找到两个相邻的格子(有公共边的两个方格就是相邻的方格),这两个方格中填的数相差不小于5.5.证明:任意14人中,必有3人互相认识或有5人互相不认识.C类例题例6 1990个人分成n组,满足(a) 每个组中没有人认识同组的所有的人;(b) 每个组中,任意三人中至少有两人互不认识;(c) 每个组中两个互不认识的人,必可在同组中恰好找到一个他们都认识的人.证明:在每一组中,各人在该组中认识的人数都相同.并求分组个数n的最大值.(1990亚洲及太平洋地区数学竞赛)分析条件都是针对某一组的,所以证明应在某个组内进行,由于两点或连线,或未连线,故可以分两点未连线及两点已连线的情况证明.要求组数最多,应使每组的人数最少.故求应每组人数的最小值.解取其中一组M,设|M|=m,用m个点表示组M中的人,若两人认识,则在相应点间连一条线.于是题设条件可写为:(a) M中任何一点,及M中其余的点没有都连线,即设x∈M,用d(x)表示x在M中的次数.则d(x)≤m-1.(b) M中没有连出三角形;(c) 设x,y∈M.若x,y未连线,则存在唯一z∈M,及x,y均连线.原题即求证:M 中每个点向M 中点连的线数均相等.由于M 中没有点及其余所有的点都连了线,故存在x ,y ∈M ,且x ,y 未连线.由(c )存在惟一z ∈M ,且z 及x ,y 都连了线.⑴ 记M 中除z 外及x 连线的点集为A ,及y 连线的点集为B ,由(c ),A ∩B =,且由(b ),A 、B 中任何两点均不相邻.对于p ∈A ,由于p 及y 不相邻,则有唯一点及p 及y 都相邻,此点必在B 中,设为q ,同样,B 中任何一点q ,也必及A 中唯一点p 相邻.且若p 1、p 2∈A ,则在B 中及它们相邻的点q 1、q 2互不相同,否则及(c )矛盾(p 1、p 2若及B 中的q 都连线,则它们及两个不同的点x 及q 都连了线).这说明A 及B 的元素有一一对应关系,|A |=|B |.则d (x )=d (y ).⑵ 若x ,y 连线,则由(a ),存在u ∈M ,u 及x 未连线,则d (x )=d (u ).若u 及y 也未连线,则由上证,d (u )=d (x )=d (y ).若u 及y 连线,则存在v ∈M ,v 及y 未连线,d (v )=d (y ),当v 及x 未连线时,d (x )=d (v )=d (y );当v 及x 连线时,由(c ),v 及u 必不连线,于是d (v )=d (u ),从而d (x )=d (y ).故每组中的人认识本组的人数相同.⑶ 为了求分组个数的最大值,应找出满足条件的组中人数的最小值,由(a ),有x ,y ∈M ,x 及y 不相邻.于是由(c ),存在z ∈M ,及x 、y 都相邻.由(a ),必还有u ,u 及z 不相邻(否则z 及A B x y z p q同组的点都相邻);于是由(c),u必及x、y之一相邻,设u及x 相邻,于是u及y不相邻.故又存在v及u、y相邻.这样就有了5个点.从而每组至少5个点.而图中5个点满足全部要求.于是至多可分出1990÷5=398组.例7 给定平面上的点集P={P1,P2,…,P1994}, P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).(1)求m(G)的最小值m0;(2)设G*是使m(G*)=m0的一个图案,若G*中的线段(指以P 的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.(1994年全国高中数学联赛)分析估计当各组点数尽可能接近时三角形个数最少.因此只要证明当两组点数差≥2时,不能达到最小值.可以用逐步调整法来证明.第⑵小问可以用构造法来解.注意K5的边2染色时,可以找到不存在同色三角形的染色法,于是可以据此构造出满足要求的图来.解:设G中分成的83个子集的元素个数分别为n i(1≤i≤83),i =1∑83n i =1994.且3≤n 1≤n 2≤…≤n 83. 则m (G )= i =1∑83C n i3.即求此式的最小值. 设n k +1>n k +1.即n k +1-1≥n k +1.则C n k +13 +C n k +1-13 -(C n k 3+C n k +13 )=C n k 2-C n k +1-12 <0.这就是说,当n k +1及n k 的差大于1时,可用n k +1-1及n k +1代替n k +1及n k ,而其余的数不变.此时,m (G )的值变小.于是可知,只有当各n i 的值相差不超过1时,m (G )才能取得最大值.1994=83×24+2.故当81个组中有24个点,2个组中有25个点时,m (G )达到最小值.m 0=81C 3 24+2C 3 25=81×2024+2×2300=168544.⑵ 取5个点为一小组,按图1染成a 、b 二色.这样的五个小组,如图2,每个小圆表示一个五点小组.同组间染色如图1,不同组的点间的连线按图2染成c 、d 两色.这25个点为一组,共得83组.染色法相同.其中81组去掉1个点及及此点相连的所有线.即得一种满足要求的染色.例8有n 人聚会,已知每人至少认识其中的⎣⎢⎢⎡⎦⎥⎥⎤n 2个人.而对任意图1图2c d c d c d a b a b d b c a d b a b c a的⎣⎢⎢⎡⎦⎥⎥⎤n 2个人,或者其中有两人认识,或者余下的n -⎣⎢⎢⎡⎦⎥⎥⎤n 2人中有两人相识.证明:当n ≥6时,这n 个人中必有3人两两认识.(1996年全国联赛)分析 本题及例6类似,要通过分析连线的情况找出三角形来.由于题中给出了⎣⎢⎢⎡⎦⎥⎥⎤n 2,故应分n 为偶数或奇数的情况分别讨论.证明 作一个图,用n 个点表示这n 个人,凡二人认识,则在表示此二人的点间连一条线.问题即,在题设条件下,存在以这n点中的某三点为顶点的三角形.设点a 连线条数最多,在及a 连线的所有点中点b 连线最多,及a 连线的点除b 外的集合为A ,及b 连线的点除a 外的集合为B .1° 设n =2k ,则每点至少连k 条线,集合A 、B 中都至少有k -1个点.⑴若存在一点c ,及a 、b 都连线,则a 、b 、c 满足要求;⑵若没有任何两点及a 、b 二点都连线(图1),则由A ∩B =,|A ∪B |≤2k -2,|A |≥k -1,|B |≥k -1, 故得 |A |=|B |=k -1,且图中每点都连k 条线.若A 中任何两点间均未连线,B 中任两点也未连线,则A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.及已知矛盾.故在A (或B )中必存在两点,这两点间连了一条线,则此二点及a (b )连出三角形,2° 设n =2k +1.则每点至少连k 条线,A 、B ΦA B 2k 个点图1b a k-1k-1A B Φkk-1中都至少有k -1个点.⑴若存在一点c ,及a 、b 都连线,则a 、b 、c 满足要求; ⑵若没有任何两点及此二点都连线,且|A |≥k ,则由|B |≥k -1(图2),A ∩B =,|A ∪B |≤2k -1,可得|A ∪B |=2k -1,|A |=k ,|B |=k -1,若A 中任何两点间均未连线,B 中任两点也未连线,则A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.及已知矛盾.故A (或B )中存在两点,这两点间连了一条线,则此二点及a 连出三角形,⑶若没有任何两点及此二点都连线,且|A |=k -1,即每点都只连k 条线.这时,必有一点及a 、b 均未连线,设为c (图3).c 及A 中k 1个点连线,及B 中k 2个点连线,k 1+k 2=k ,且1≤k 1,k 2≤k -1.否则若k 2=0,则A ∪{b }中各点均未连线,B ∪{a ,c }中各点也未连线.矛盾.故k 1,k 2≥1.且由于n ≥6,则k 1+k 2≥3,故k 1,k 2中至少有一个不小于2,不妨设k 1≥2,现任取B 中及c 连线的一点b 1,由于b 1及B 中其余各点均未连线,若b 1及A 中的所有及c 连线的点均未连线,则b 1连线数≤2+k -1-k 1≤k -1,矛盾,故b 1至少及此k 1个点中的一点连线.故证.情景再现6.在正整数n 及δ满足什么条件时,可以作出一个n 阶δ正则图.即是:已知n 个点,其中某些点间连了一条线,且每个点都恰Φk 2k 1c B A k-1ba k-1图32k +1个点好及δ个点连了线.问δ可以取什么样的数值?7.某次体育比赛,每两名选手赛一场,每场一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件为:对任何其他选手B,或A胜B,或存在选手C,有A胜C而C胜B.如果按这个条件确定的优秀选手只有1名.求证:这名选手胜所有其余的选手.(1988年中国数学冬令营)8.给定空间中的9个点,任意4点不共面,每两点间连一线段.求最小的n值,使当对其中任意n条线段用红、蓝两色之一任意染色时,都一定出现一个三边同色的三角形.(1992中国数学奥林匹克)习题131.⑴如果在偶图G=(X,Y,E)中,|X|>|Y|,且X中每个顶点的次数都不小于δ,求证:Y中至少有一个顶点的次数>δ.⑵若图G为偶图,且G有圈,则G的圈的长为偶数.反之,若图G有圈,且所有的圈长为偶数,则G为偶图.2.设C是100阶3正则图,现用红、白两色给这100个点着色,其中红点40个,白点60个,如果一条线的两个端点都是红色,则将这条线也染成红色;如果一条线的两个端点都是白色,则将这条线也染成白色,现已知红色线有38条,问白色线有多少条?3.若干人相聚,其中有些人彼此认识,若⑴如果某两个人认识的人数相等,则他们没有共同的熟人;⑵有一个人至少有100个熟人.证明:可以找到一个参加聚会的人,他恰好有100个熟人.4.有2n个学生,每天出去散步,每两人一组,如果每一对学生只在一起散步一次,这样的散步至多可以持续多少天?5.20名选手参加14场单打比赛,每名选手都至少参加过1场.证明:必有某6场比赛的参赛者是12名不同的选手.(1989年美国数学竞赛)6.在n n棋盘的方格中分别填写1,2,…,n2(n≥2),每格一个数.证明:必有两个相邻方格(有公共边的方格),方格中的两个数的差至少为n.(1988年捷克数学竞赛)7.把K n中的每条线段染上红色或蓝色.把某一点出发引出两条同色线段组成的角叫做同色角.证明:同色角的总数不小于14n(n -1)(n-3).8.用黑白两种颜色去涂正九边形的顶点,每个顶点只涂黑、白两色之一,证明:在以这九点为顶点的所有三角形中,必有两个顶点同色的全等三角形.9.⑴将完全图K5中的10条线段进行染色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑵将完全图K2n中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑶证明:将完全图K2n-1中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用2n-1种颜色.10.某团体中任意两个认识的人都没有共同的熟人,而任意两个不认识的人都恰有两个彼此共同的熟人.证明:该团体中每个人认识的人数都相同.(1975南斯拉夫数学竞赛)11.某次体育比赛,每两名选手各赛一场,无平局.通过比赛确定优秀选手.设A为选手,如果对其他任意选手B,要么A胜B,要么存在选手C,使得A胜C,C胜B,则A即是优秀选手.证明:如果按上述规则选出的优秀选手只有1名,则这名选手胜其他所有的选手.(1987年中国数学奥林匹克)12.排球比赛中,每两队都各比赛一场.对两个球队A及B,如果A胜B,或者存在某个球队C,使得A胜C,C胜B,则称A 优于球队B.比赛结束后,优于其他所有球队的球队即被授予冠军称号.比赛结束后能否恰有两个冠军队?(1988年前苏联数学竞赛)本节“情景再现”解答:1.证明任取树T的一个悬挂点v1,把v1涂红,所有及v1距离为奇数的顶点都涂蓝,所有及v1距离为偶数的顶点都涂红,所有涂红的顶点组成集合X,所有涂蓝的顶点组成集合Y,则得到一个二色图,即为偶图.2.证明设G=(X,Y,E)是偶图,把X中的点全部涂成红色,把Y中的点全部涂成蓝色,则所得的图中,相邻的顶点涂色都不同,即只用2色即可涂完G的所有顶点,使相邻的顶点涂色不同.又如果G没有边,则只用1种颜色即可把G的所有顶点涂好,且没有任何相邻的顶点同色(因没有顶点相邻),故偶图的色数≤2.反之若图G的色数≤2,若色数=1,表示G中任何两顶点都不相邻,即G没有边,此时,设G为n阶的,可把G中k(1≤k≤n -1)个点涂成一种红色,另外n-k个点涂成蓝色,即得一个二色图,涂红的点集为X,涂蓝的点集为Y,即为偶图.若色数=2,即用两种颜色可以把所有顶点涂色,且同色点都不相邻,则取涂一种颜色的点的集合为X,涂另一种颜色的点的集合为Y,则得到一个偶图.即色数≤2的图是偶图.3.证明n=1时,1条直线把平面分成2部分,可用两种颜色涂.设n=k时,k条直线把平面分成的区域有满足题意的涂色法,当n=k+1时,先画出其中k条直线,而暂把第k+1条直线擦去.这时k条直线把平面分成的区域可以涂色.涂好色后,把第k+1条直线画出,凡在这条直线某一侧的部分,涂色不动,而在直线另一侧的部分,把涂的色全部改为另一色,则所得涂色满足题意.即n=k+1时,命题成立.综上可知,命题成立.4.证明取每个方格的中心,凡是相邻的两个方格,就把相应的中心连一条线.这样得到了一个图G(图中红线组成的图即为图G).图G的的直径=14,,故图G中任意两点的距离≤14.若相邻两个方格中填的数相差<5,则差≤4,于是图G 中所填两个数的差≤14×4=56.但图中填了1及64,此二数必有一条链相连,此链的长≤14.即其差≤56,及64-1=63矛盾.5.证明:以点表示人,红色线表示认识,蓝色线表示不认识. ⑴ 若存在一个点,从这点引出了至少5条红线,例如从v 1向v 2,v 3,…,v 6引出了5条红线,若v 2,v 3,…,v 6间有某两点间连了红线,则这两点及v 1组成红色三角形,否则此五点间全部连蓝色线,为一蓝色五边形.⑵ 若从任一点引出的红线都少于5条,则每点引出的蓝色线都至少9条.由例如从v 1到v 2,v 3,…,v 10均连蓝色线,则由例5可知v 2,v 3,…,v 10中或存在红色三角形或存在蓝色四边形,于是原图中或有红色三角形,或此蓝色四边形及v 1合成一蓝色五边形.故证.6.证明:由于共计连了12n δ条线.故δ应是不超过n -1且使12n δ为整数的那些正整数值. 1,且使12反之若正整数δ不超过n -n δ为整数,可构造一种连法:取一圆分成n 等分.任取一数i ,满足1≤i ≤⎣⎢⎢⎡⎦⎥⎥⎤n 2,把圆上这n 个点中,距离为i 的16阶5正则图点都连起来,这时当i≠n2时,每个点都连了2条线,当n为偶数,且i=n2时,每个点都连了1条线.如果n为奇数,则δ必须为偶数:δ=2k,如果n为偶数,则δ可为奇数,也可为偶数.若δ=2k<n,依次取i=1,2,…,k,按上法连线,则得到每个点都连了2k条线;若δ=2k+1<n,则按上法连了2k条线,后再取i=n2连线,此时每个点又连了1条线,即每个点都连了2k+1条线.于是可知,可以连出满足要求的图.如图示即是一个16阶5正则图,分别取i=2,4,8画出.7.证明:取A为胜场最多者,若A胜所有选手,此时A为优秀选手.若A未全胜,则A必负于某个选手B,此时若找不到C,使A 胜C而C胜B,即所有负于A的选手都负于B,则B比A胜场更多,矛盾.故必存在这样的C胜B.故此时A为优秀选手.若只有1名优秀选手,即优秀选手只有A,于是其余选手均不是优秀选手.若A负于B,由于B不是优秀选手,则存在D,D胜A及B,若D不存在.即其余所有选手或负于A,或负于B,则B 也为优秀选手.故D必存在.现D胜A、B,由于D不是优秀选手,同理,故必能找到E,胜A、B、D,…,这样一直下去,最后必有一人胜所有其余的人,为优秀选手,及只有1名优秀选手矛盾.故A全错误!未定义书签。

图论——连通图

图论——连通图

图论——连通图Tyvj 2059 元芳看电影描述神探狄仁杰电影版⾸映这天,狄仁杰、李元芳和狄如燕去看电影。

由于⼈实在是太多了,⼊场的队伍变得⼗分不整齐,⼀个⼈的前⾯可能会出现并排的好多⼈。

“元芳,这队伍你怎么看?”“⼤⼈,卑职看不出这队伍是怎么排的!但是卑职看出了⼀些两个⼈之间的前后关系!”“那么我们可以写个程序计算出来⼀定没有和其它⼈并排的⼈数。

”“⼤⼈/叔⽗真乃神⼈也!”输⼊格式第⼀⾏两个数N、M,表⽰队伍⼀共有N个⼈,元芳看出了M对关系。

接下来M⾏每⾏两个数a、b,表⽰a在b的前⾯(不⼀定正好在b的前⾯,ab之间可能有其他⼈)。

输出格式有多少个⼈⼀定没有和其他⼈并排。

测试样例1输⼊3 21 21 3输出1备注对于100%的数据,1<=N<=100,0<=M<=4500。

数据保证M对关系不出现⽭盾。

sjynoi思路:floyd传递闭包,如果所有⼈除了⾃⼰都在都在⾃⼰的前或后,就⼀定不并排1 #include<iostream>2 #include<cstdio>3 #include<string>4 #include<cstring>5 #include<algorithm>6 #include<vector>7using namespace std;8const int maxn = 105;9const int maxint = 100000000;10int n,m,g[maxn][maxn],tg[maxn][maxn],ans,nowans;11void input(){12 cin>>n>>m;13int u,v;14for(int i = 1;i <= m;i++){15 cin>>u>>v;16 g[u][v] = 1;17 }18 }19void build(){20for(int k = 1;k <= n;k++){21for(int i = 1;i <= n;i++){22for(int j = 1;j <= n;j++){23if(k != i && k != j && i != j) g[i][j] = g[i][j] || (g[i][k] && g[k][j]);24 }25 }26 }27for(int i = 1;i <= n;i++){28 nowans = 0;29for(int j = 1;j <= n;j++){30if(g[i][j]) nowans++;31if(g[j][i]) nowans++;32 }33if(nowans == n-1) ans++;34 }35 cout<<ans<<endl;36 }37int main(){38 input();39 build();40 }View CodeTyvj 1139 向远⽅奔跑(APIO 2009 抢掠计划)描述在唐⼭⼀中,吃饭是⼀件很令⼈头疼的事情,因为你不可能每次都站在队伍前⾯买饭,所以,你最需要做的⼀件事就是——跑饭。

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。

答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。

答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。

答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。

答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。

答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。

答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。

2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。

四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。

答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。

图论方法

图论方法
第三阶段是二十世纪中叶以后是二十世纪中叶以后由生产管理由生产管理军事军事交通交通运输运输计算机网络等方面提出计算机网络等方面提出实际问题实际问题以及大型计算机使大规模问题的以及大型计算机使大规模问题的求解成为可能求解成为可能特别是以特别是以fordford和和fulkersonfulkerson建立的网络流理论建立的网络流理论与线性规划与线性规划动态规划动态规划等优化理论和方法相互渗透等优化理论和方法相互渗透促进了图论对促进了图论对实际问题的应用实际问题的应用
法。下面通过例子来说明此法的基本思想。
条件:所有的权数 lij 0
思路:逐步探寻。
v2 5
v4
9
v6
4
4
1 75
v1
6
4
5
v8
1
v3
7
v5
6
v7
v2 5
v4
9
v6
4
4
v1 (0)
1
75
5
v8

64
1
v3
7
v5
6
v7
下求 v1 到 v8 的最短路: 1)从 v1 出发,向 v8 走。首先,从 v1 到 v1 的距离为0,给 v1
(v6 , v7 ), (v6 , v8 ).
min{ k47 , k57 , k67 , k68} min{16,14,18,14} 14
① 同时给 (v5, v7 ), (v6 , v8 )划成粗线。 ② 分别给 v7 , v8 标号(14)。
v1 (0)
v2 (4) 5
4 4
v4(9)
第三阶段是二十世纪中叶以后,由生产管理、 军事、交通、运输、计算机网络等方面提出 实际问题,以及大型计算机使大规模问题的 求解成为可能,特别是以Ford和Fulkerson 建立的网络流理论,与线性规划、动态规划 等优化理论和方法相互渗透,促进了图论对 实际问题的应用。

图论经典问题

图论经典问题

图 论哥尼斯堡七桥问题:图论发源于18世纪普鲁士的哥尼斯堡。

普雷格河流经这个城市,河中有两个小岛,河上有七座桥,连接两岛及两岸。

如图所示,当时城里居民热衷于讨论这样一个问题:一个人能否走过这七座桥,且每座桥只经过一次,最后仍回到出发点。

将上面问题中的两座小岛以及两岸用点表示,七座桥用线(称为边)表示,得到下图:于是,上述问题也可叙述为:寻找从图中的任意一个点出发,经过所有的边一次且仅一次并回到出发点的路线。

注意:在上面的图中,我们只关心点之间是否有边相连,而不关心点的具体位置,边的形状以及长度。

一、基本概念:图:由若干个点和连接这些点中的某些“点对”的连线所组成的图形。

顶点:上图中的A ,B,C,D .常用表示。

n 21 v , , v , v 边:两点间的连线。

记为(A,B),(B,C).常用表示。

m 21e , , e , e次:一个点所连的边数。

定点v的次记为d(v).图的常用记号:G=(V,E),其中,}{v V i =,}{e E i =子图:图G的部分点和部分边构成的图,成为其子图。

路:图G中的点边交错序列,若每条边都是其前后两点的关联边,则称该点边序列为图G的一条链。

圈(回路):一条路中所含边点均不相同,且起点和终点是同一点,则称该路为圈(回路)。

有向图:,其中(,)G N A =12{,,,}k N n n n = 称为的顶点集合,A a 称为G 的弧集合。

G {(,)ij i j }n n ==若,则称为的前驱, 为n 的后继。

(,)ij i j a n n =i n j n j n i 赋权图(网络):设是一个图,若对G 的每一条边(弧)都赋予一个实数,称为边的权,。

记为。

G (,,)G N E W =两个结论:1、图中所有顶点度数之和等于边数的二倍; 2、图中奇点个数必为偶数。

二、图的计算机存储:1. 关联矩阵简单图:,对应(,)G N E =N E ×阶矩阵()ik B b =10ik i k b ⎧=⎨⎩点与边关联否则简单有向图:,对应(,)G N A =N A ×阶矩阵()ik B b =110ik ik ik a i b a i ⎧⎪=−⎨⎪⎩弧以点为尾弧以点为头否则2. 邻接矩阵简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =10ij i j a ⎧=⎨⎩点与点邻接否则简单有向图:,对应(,)G N A =N N ×阶矩阵()ij A a =10ij i ja ⎧=⎨⎩有弧从连向否则5v 34v01010110100101011110101000110111101065432166654321⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=×v v v v v v A v v v v v v3. 权矩阵:简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =ij ij i j a ω⎧=⎨∞⎩点与点邻接否则123456781234567802130654.5061002907250473080 v v v v v v v v v v v v v v v v 48∞∞∞∞⎡⎤⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞∞⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞∞∞⎢⎥⎣⎦三、图的应用:例:如图,用点代表7个村庄,边上的权代表村庄之间的路长,现在要在这7个村庄中布电话线,如何布线,使材料最省?分析:需要将图中的边进行删减,使得最终留下的图仍然连通,并且使总的权值最小。

图论习题及答案

图论习题及答案

图论习题及答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, i122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w= {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32,i22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。

第67讲 图论问题(一)竞赛教案

第67讲 图论问题(一)竞赛教案
第67讲图论问题(一)
本节主要内容是:把一个具体问题用图形表示出来,利用图形的直观性可能更有利于问题的解决.
有关的一些概念:由若干个不同的点及连接其中某些点对的线所组成的图形就称为图.图中的点的集合称为图的点集,记为V:V={v1,v2,…,vn,…};图中的线的集合称为图的线集(边的集合),记为E:E={vivj}(vi,vj∈V).故一个图由其点集V和线集E所决定,若用G表示图,则记为G=G(V;E).含有n个点的图称为n阶图.
由于14个点中的每个点原来都与(14-1-5=)8个点不相邻.在又打3局连出了6条边以后,至多有12个点又连了线,所以至少还有2个点,每个点仍与8个点不相邻.设其中一点为v1.与v1不相邻的点集为S.
下面证明:S中必有一点v2至少与7个点不相邻.反设不存在这样的点,则此8点中,每个点都至多与6个点不相邻,故此8个点都至少连了(14-6-1=)7条边,于是此8点中的每个点又都新连了至少2条边,故又新连出了8×2÷2=8条边(除以2是因为每条边可能在两个点端点处被计算了2次).这与只连了6条边矛盾,所以存在S中的一点v2,至少与7个点不相邻.
证明w+w+…+w=e+e+…+e.
分析根据竞赛图的特点可知:⑴每点的出次与入次的和都等于n-1,⑵所有点的出次的和与入次的和相等.由此可以推出:所有点的出次和与入次和都等于n(n-1).这是两个基本的性质.在要证的式子中把ek用n-1-wk代替.
证明对于每个点,出次与入次的和都是n-1,即
wk+ek=n-1(k=1,2,…,n),①
反设从任一点出发的线中没有同色的线,由于每个人至多会用三种语言.即degvi≤3,于是v1至少与5个点不邻接,设为v2、…、v6,同样,v2至少与5个点不相邻接,于是v3、…、v6中至少有一点与v2不相邻接.设为v3,于是v1、v2、v3不相邻接.与已知“任三人中都至少有两人能用同一种语言对话”矛盾.故证.

图论中几个典型问题的求解

图论中几个典型问题的求解
§1 图的基本概念
图是一种直观形象地描述已知信息的方 式,它使事物之间的关系简洁明了,是分 析问题的有用工具,很多实际问题可以用 图来描述。
一、图的定义
图论是以图为研究对象的数学分支,在图论 中,图由一些点和点之间的连线所组成.
称图中的点为顶点(节点),称连接顶点的 没有方向的线段为边,称有方向的线段为弧.
具有n个顶点的无向连通图是树的充分必要条 件是它有n-1条边.连通图G的子图T,如果它的 顶点集与G的顶点集相同,且T为树,则称T是图 G的生成树,又称支撑树。如果图的边有权(对 应于边的实数),则生成树上各边权的总和称为
生成树的权,生成树并不唯一,权达到最小的生
成树称为最小生成树(Minimal Spanning Tree, 简称MST),最小生成树不一定唯一.
end
%以上循环调整候选边集合,入选该集合的 边数等于当前白点数,对每一个白点入选一条边, 该边通过比较连接该白点到红点的边的权值大小 确定,小者入选。该循环是程序的关键和核心部 分。
end
T,e 以上程序以文件名prim.m存盘。
例2 以2007年研究生数学建模竞赛C题为例, 已知县邮政局X1和16个邮政支局的初始距离矩 阵,求该运输图的最小生成树。
for j=2:n
b(1,j-1)=1;
b(2,j-1)=j;
b(3,j-1)=a(1,j);
end %以上一段程序生成3行n-1列的矩阵,存储初 始候选边及其权值信息,该矩阵的第一行都是1, 表示第一个红色点是1号顶点,第二行表示白色 点依次为2,3,…,n,第三行表示所有连接红点和 白点的边的权值
while size(T,2)<n-1 %只要最小生成树的边数 小于n-1就循环

《提优教程》教案:第67讲图论问题

《提优教程》教案:第67讲图论问题

第67讲图论问题(一)本节主要内容是:把一个具体问题用图形表示出来,利用图形的直观性可能更有利于问题的解决.有关的一些概念:由若干个不同的点及连接其中某些点对的线所组成的图形就称为图.图中的点的集合称为图的点集,记为V:V={v1,v2,…,v n,…};图中的线的集合称为图的线集(边的集合),记为E:E={v i v j}(v i,v j∈V).故一个图由其点集V和线集E所决定,若用G 表示图,则记为G=G(V;E).含有n个点的图称为n阶图.在一个图中,如果某点v共连了k条线,则说此点的“次数”(或“度数”)为k,记为deg v=k.如果一个p阶图的每两个顶点间都连且只连了1条线,则称该图为p阶完全图,记为K p.若对每条线确定一个方向(即确定了线的两个端点中一个为“起点”,另一个为“终点”.这时,线是点的“有序对”),则得到“有向图”;对有向图的一个顶点v,deg v=k,若v是其中n条边的起点,m条边的终点(m+n=k),则称v的出次为n,入次为m.链:若在一个图G=(V;E)中取n+1个顶点v1、v2、…、v n+1,每两个相邻的顶点v i、v i+1间连有一条边l i,则边l1,l2,…,l n就称为从v1到v n+1的一条链.n称为链的长度.A类例题例1⑴证明任意的六人中一定有三个人互相认识或互不认识(约定甲认识乙就意味着乙认识甲).⑵K6的边染成红蓝两色,求证:其中必有两个三角形,其三边同色.分析⑴以点表示人,连红、蓝两色的线分别表示“认识”与“不认识”,问题转化成图的问题.要会把题目的语言转译成图的语言:“三人互相认识”就表示三点间都连红线,“三人互不认识”就表示三点间都连蓝线.⑵考虑每个异色三角形的三个角,其中两个角是异色角,而同色三角形的三个角都是同色角.证明⑴用6个点v1,v2,…,v6表示这6个人,如果某两人相互认识,则在表示此二人的点间连一条红线,否则连一条蓝线.于是问题转化为证明此6点间一定连出了三边均为红色或蓝色的三角形.在点v1连出的5条线中,由抽屉原理知,必有某色线连有3条或3条以上.不妨设红线连了至少3条.设v1与v2、v3、v4连的红线.现考虑点v2、v3、v4连线的情况,如果此三点间有任两点连的红线,则出现红色三角形(例如v2v3连红线,则v1v2v3是红色三角形),如果这三点间都不连红线,则出现蓝色三角形(v2v3v4是蓝色三角形).故证.⑵考虑K6共连了C26=15条线,共得到C36=20个三角形.设第i个顶点连了r i(0≤i≤5)条红线,5-r i条蓝线.由于r i(5-r i)≤6.所以,连出的异色角个数≤6×6=36个.由于每个异色的三角形有2个异色角,所以图中异色三角形个数≤18,故图中同色三角形个数≥20-18=2.说明题⑴是早期匈牙利的一个图论竞赛题.解这类“实际问题”时,重要的是会用图的语言解释题意,把实际问题改写为图的问题.⑵用异色角来解相关问题是较好的方法.例2由5人组成一个公司,其中任意三人总有2人彼此认识,也总有2人彼此不认识.证明:这五人可以围桌而坐,使每人两旁都是他认识的人.(1978年保加利亚数学竞赛) 证明用5个点表示这5个人,若两人互相认识,则在表示这2个人的点间连1条线.题目的条件即是:任三点间至少连1条线,但不能连3条线.首先,每点都至少连了2条线,若点v 1只连出1条线,则它至少与某三点(设为v 2、v 3、v 4)未连线,则此3点间都要连线(若v 2与v 3没有连线,则v 1与v 2、v 3就都没有连线,与已知矛盾).出现了以v 2、v 3、v 4为顶点的三角形,矛盾.其次,若某点连出了3条线,则此三点间都不能连线,与已知矛盾. 故知:每点都恰连2条线.它不能连成三角形,也不能连成四边形,否则余下的点无法连线,故只能如图所示,证毕.说明 仔细体会上述两例的特点,明白什么时候应该用图来解相关的题:当涉及多个元素的某些相互关系时,就可能用图来解释.情景再现1.在例1中,把6个人改为5个人,结论是否一定成立?2.图G 有n 个顶点,n +1条边,证明:图G 至少有一个顶点的次数≥3.B 类例题例3设竞赛图(每两个点都连了1条线的有向图)中,点A k 的出次与入次分别为w k 与e k (k =1,2,…,n ),证明 w 21+w 22+…+w 2n =e 21+e 22+…+e 2n .分析根据竞赛图的特点可知:⑴ 每点的出次与入次的和都等于n -1,⑵ 所有点的出次的和与入次的和相等.由此可以推出:所有点的出次和与入次和都等于12n (n -1).这是两个基本的性质.在要证的式子中把e k 用n -1-w k 代替.证明对于每个点,出次与入次的和都是n -1,即w k +e k =n -1(k =1,2,…,n ), ①所有出次的和与所有入次的和相等,且都等于图中弧的条数:w 1+w 2+…+w n =e 1+e 2+…+e n =12n (n -1).②所以 e 21+e 22+…+e 2n=(n -1-w 1)2+(n -1-w 2)2+…+(n -1-w n )2=n (n -1)2+w 21+w 22+…+w 2n -2(w 1+w 2+…+w n )(n -1)=w 21+w 22+…+w 2n +n (n -1)2-2 12(n -1)(n -1)= w 21+w 22+…+w 2n .说明 本题的证明方法与《奇偶分析》中的例6相似.例4平面上给定7个点,用一些线段连接它们,每三个点中至少有两点相连,问至少要有多少条线段?试给出一个图.(1989蒙古数学竞赛)分析首先找到连线条数的下界(即至少要连出多少条线),再寻找是否可能达到这个下界,可以分别枚举可能的连线方法,讨论每种方法的连线条数,得到最小的结果.解 7个点中共有三点组C 37=35个.每条线段共与其余5点组成5个三角形.故线段条数≥355=7条. 线,要C 26=15条.如果有一个点没有连线,则其余6点两两都必须连连线数>C 25=10如果有一点只连了一条线,其余5点必须两两连线,条.设某点只连了2条线,如点A 只连了AB 、AC 这2条线,则其余4点均未与A 连线,于是它们必须两两互连,应连C 24==6条.此时,取B 、C 两点及其余4点中的任一点,尚不满足条件,故BC 应连线,此时连了9条线,所得图形满足题目要求.若每点都至少连出3条线,则总度数≥21,即至少连了[212]+1=11条线.所以,至少连9条线.例5九名数学家在一次国际会议上相遇,发现他们中的任三人中至少有两人能用同一种语言对话,如果每个数学家至多会用三种语言.证明:至少有三人可用同一种语言对话.(1978年美国数学竞赛)分析 9个人用9个点表示.证法1中,多种语言则用多种颜色的线来表示,转译结论“三人可用同一种语言对话”时,应注意:如果从一点向另两点连出了同色的两条线,表示另两人也能用相应的语言对话,从而就出现了同色三角形.所以,只要证明从一点一定引出了同色的线即可.而在证法2中,改设若二人不能对话就连1条线(即不存在二人都会的语言).此时结论就应转译为“存在三点,两两都没有连线”.证法1用9个点表示这9个人,某二人如能用第r 种语言交谈,则在表示此二人的点间连一条线,并涂上第r 种颜色,于是,本题即是证明,存在一个同色的三角形.首先,若v 1与v 2、v 1与v 3间都连了第k 种颜色线,则v 2与v 3间也要连第k 种颜色线.此时即出现同色的三角形.所以只要证明从其中某一点出发的线中必有两条线的颜色相同.反设从任一点出发的线中没有同色的线,由于每个人至多会用三种语言.即deg v i ≤3,于是v 1至少与5个点不邻接,设为v 2、…、v 6,同样,v 2至少与5个点不相邻接,于是v 3、…、v 6中至少有一点与v 2不相邻接.设为v 3,于是v 1、v 2、v 3不相邻接.与已知“任三人中都至少有两人能用同一种语言对话”矛盾.故证.证法2取9个点v 1,v 2,…,v 9表示9个人,如果某二人不能对话,则在表示此二人的点间连一条线,于是在任何三点间,都有两个点不相邻,即不存在三角形.如果有人至少与4个点不连线,由于他最多只能讲三种语言,则他必与其中某两人讲同一种语言.于是相应三人可以用同一种语言来对话.下面证明存在一点,其度不大于4.从而该点至少与4点不相邻.如果deg v 1≤4,则v 1即为所求.若deg v 1>4,则至少deg v 1=5,即至少有5个点与之连线,设为v 2,…,v 6,由于这些点不能连出三角形,故v 2,…,v 6的任何两个之间都不能连线,从而v 2与v 3,…,v 6均无连线,于是deg v 2≤4.即可证得原题.说明两点间连了1条线,则说这两点相邻.本题的两种证明方法从两个方向出发,一种是两人可用同一种语言通话,就在相应两点间连一条边,证法2是反过来,两人不能通话时则连一条边,都能应用图解决问题.例6 俱乐部里有14个人想打桥牌,已知过去每个人都与其中的5个人合作过,现在规定4个人中必须任两个人都没有合作过才准许在一起打1局桥牌,这样打了3局就无法再打下去了,如果这时又来了一人,他与原来的14个人都没有合作过,证明:一定可以再打1局.分析 打桥牌时,4人分成合作的两对,合作的两人坐在相对的位置打牌.于是每局桥牌,都有两对人合作.把题目的条件与结论都转述为图的语言,并找出结论的等价命题是:找到三个人互相都没有合作过,即存在3个点互不相邻.证明 用14个点表示这14个人,若某两人合作过,则在表示这两人的点间连一条线,于是,题目条件即:其中每个点都已连出了5条线,且在此14个点中,可以找出3组点(每组4个点),这三组点间,两两未连线,若这3组点之间共连出6条线后,对于任意4点,都至少有两点连了线.(14个点间一共连了41条线),证明此时一定存在3个点,两两都没有连线(从而添入第15个点后,可与此3点合成4点,两两无连线).由于14个点中的每个点原来都与(14-1-5=)8个点不相邻.在又打3局连出了6条边以后,至多有12个点又连了线,所以至少还有2个点,每个点仍与8个点不相邻.设其中一点为v 1.与v 1不相邻的点集为S .下面证明:S 中必有一点v 2至少与7个点不相邻.反设不存在这样的点,则此8点中,每个点都至多与6个点不相邻,故此8个点都至少连了(14-6-1=)7条边,于是此8点中的每个点又都新连了至少2条边,故又新连出了8×2÷2=8条边(除以2是因为每条边可能在两个点端点处被计算了2次).这与只连了6条边矛盾,所以存在S 中的一点v 2,至少与7个点不相邻.但8+7=15>14,必有一点v3与v 1,v 2均未连线.此三点即为所求.链接v 3存在是根据容斥原理:把这14个人的集合记为S ,与v 1相邻的点集记为A ,与v 2相邻的点集记为B ,则A ∪B S .故card(A ∪B )≤card(S ).而 card(A ∪B )=card(A )+card(B )-card(A ∩B ),故 card(A )+card(B )-card(A ∩B )≤card(S ),现card(A )+card(B )=15,card(S )=14,于是card(A ∩B )>0.情景再现3.⑴右面的有向图由4个顶点及一些弧(有向线段)组成,指出各点的出次(引出的弧的条数)与入次(引入的弧的条数).⑵求出上题中所有各点的出次的和与入次的和,它们与弧的条数有什么关系?⑶证明:任一有向图中,出次的和与入次的和相等.4.在n (n ≥3)个点的竞赛图中,一定有两个点的出次相同吗?5.在集合S 的元素之间引入关系“→”.⑴ 对于任意两个元素a ,b ∈S ,要么a →b ,要么b →a ,二者有且只有一个成立;⑵ 对任意三个元素a ,b ,c ,如果a →b ,b →c ,则c →a .问集合S 中最多能有多少个元素?(1972年英国数学竞赛)6.证明:⑴ 如果竞赛图中各点的出次不等, 那么可将这些点排成一列,排在前面的点有弧到达排在后面的任一点(即排在前面的选手胜排在后面的所有选手).⑵ 如果点数n ≥3的竞赛图中有三角形回路,那么,图中必有两点的出次相等.C 类例题例7某足球赛有16个城市参加,每市派出2个队,根据比赛规则,每两队之间至多赛一场,同城两队之间不进行比赛.赛过一段时间后,发现除A 城甲队外,其他各队已赛过的场数各不相同.问A 城乙队已赛过几场?证明你的结论.分析注意分析“各队赛过场次各不相同”的含义,即能推知比赛场次的取值情况.再从比赛场次最多的队开始讨论,与之比赛的队是哪些队? 证明 用32个点表示这32个队,如果某两队比赛了一场,则在表示这两个队的点间连一条线.否则就不连线.由于,这些队比赛场次最多30场,最少0场,共有31种情况,现除A 城甲队外还有31个队,这31个队比赛场次互不相同,故这31个队比赛的场次恰好从0到30都有.就在表示每个队的点旁注上这队的比赛场次.考虑比赛场次为30的队,这个队除自己与同城的队外,与不同城的队都进行了比赛,于是,它只可能与比赛0场的队同城;再考虑比赛29场的队,这个队除与同城队及比赛0场、1场(只赛1场的队已经与比赛30场的队赛过1场,故不再与其它队比赛)的队不比赛外,与其余各队都比赛,故它与比赛1场的队同城;依次类推,知比赛k 场的队与比赛30-k 场的队同城,这样,把各城都配对后,只有比赛15场的队没有与其余的队同城,故比赛15场的队就是A 城乙队.即A 城乙队比赛了15场.说明 有些题的已知条件讨论起来头绪纷繁,如果利用图来讨论则可以化繁为简.利用点与线的相邻与否来研究这一类题目需要一定的技巧,也需要相当的抽象概括能力与逻辑推理能力.请大家多做些练习.例8n (n >3)名乒乓球选手单打若干场后,任意两个选手已赛过的对手恰好都不完全相同,试证明:总可以从中去掉一名选手,而使在余下的选手中,任意两个选手已赛过的对手仍然都不完全相同.(1987年全国高中数学联赛)分析 本题的求证暗示要用反证法,设去掉任一个选手,都会有两个选手赛过的对手完全相同.于是这两人组成一个点对.这样就会得到n 个点对.每个点对连一条线,n 个点连出了n 条线,就可用图的性质得到圈,使问题得证.这是证法1的思路.每个选手的对手可以组成集合,研究对手集的性质,用最小数原理来证明,这是证法2的思路.证法1把这些选手编为1至n 号,以n 个点表示这n 个人,各点也相应编为1至n 号. 反设去掉任何一个选手后,都有两个选手的已赛过的对手完全相同.于是,如果先去掉1号选手,则有两个选手的已赛过的对手完全相同,设为第i 号与第j 号,在表示此二人的点间连一条线,并在线上注上“1号”.这说明,此二人在去掉1号选手之前必是一人与1号赛过,另一人与1号没有赛过.而且不可能在去掉1号后有三人都相同,否则,此三人与1号选手A 城乙队A 城比赛的情况只有两种:赛过或没有赛过,如果去掉1号后,此三人的情况完全相同,则去掉1号之前必有2人赛过的对手完全相同.(如果去掉1号后有不止一对选手的已赛过对手完全相同,则只任取其中的一对连线,其余的对则不连线.)同样,如果再依次去掉2号、3号,…,直至n 号,每去掉1个选手,都会在某两点之间连1条线.这样,就在n 个点间连了n 条线.且这些线上分别注了1至n 号,每条线注了1个号码,每个号码只注在1条线上.由于在10个点间连了10条线,故图中必存在一圈.现从圈上一点i 出发,经过点j 、k 、…最后回到点i .注意到点i 与点j 所代表的两个选手中1个是与1号比赛的,另一个是没有与1号比赛的,不妨设i 号没有与1号比赛过,j 号与1号比赛过.而j 与k 所连线上注的号码不是1,故j 与k 与1号比赛的情况相同,即k 号与1号比赛过,…,这样沿线走一圈后回到i ,就应该得出i 号与1号比赛过,矛盾.故证.证明2 用A 、B 、…表示选手,而用α(A )、α(B )表示A 、B 已赛过的对手集合.显然,若A ∈α(B ),则B ∈α(A ). 设A 是对手集中元素最多的的选手. 若命题不成立,则存在两个选手B 、C 使去掉A 后,B 、C 的对手集相同,由于α(B )≠α(C ),故A 必属于α(B )与α(C )之一.不妨设A ∈α(B ),于是,B ∈α(A ),C ∉α(A )且α(C )=α(B )\{A }.(在α(B )中去掉它的一个元素A 后的集合表示为α(B )\{A })同样对于选手C 后,存在D 、E ,使去掉C 后,D 、E 的对手集相同,即去掉C 后,α(D )=α(E ),又设C ∈α(D )且C ∉α(E ),于是D ∈α(C ),E ∉α(C ).由于A ∉α(C ),D ∈α(C ),故D ≠A :又D ∈α(C ),故D ∈α(B ),即B ∈α(D ) =α(E )∪{C },从而B ∈α(E ),C ∉α(E ),而去掉A 后,B 、C 的对手集相同,从而E =A .于是α(A ) =α(E ) =α(D )\{C },即α(A )比α(D )少一个元素C ,这与A 是“对手集中元素最多的”矛盾.故证.说明 证法1是根据如下结论:如果n 个点间连了n 条线,则必出现“圈”:即从某一点出发,沿边前进,最后还能回到出发点.证法2用最小数原理对集合的元素进行讨论,较难理解,可对照图理解相应的结论.D C BA=Eα(E)=α(A)α(D)α(C)α(B)情景再现7.某个团体有1982个人,其中任意4人都至少有一人认识其他三个人,认识其他所有人的人数最少是多少?(1982年美国数学竞赛)8.⑴在一所房子里有10个人,其中任意3人中至少有2人互相认识,证明:其中有4人,他们任意2人都互相认识.(1980英国数学竞赛)⑵如果把⑴中的数10改为9,结论仍成立否?(1977年波兰数学竞赛)习题131.如果每个点的出次都是2,那么,一个点经过两条弧就可以到达的点至多有几个?经过一条弧或两条弧可以到达的点至多有几个?2.在竞赛图中必有一个点,从它到其它的顶点,只需经过一条弧或两条弧.3.一个有n 个点的竞赛图,各点的出次为w 1≥w 2≥…≥w n .如果w 1=n -1,w 2=n -2,…,w k -1=n -(k -1),但w k ≠n -k (1≤k ≤n ).证明:w k <n -k .4.⑴ 如果在点数n ≥3的竞赛图中,有两个点的出次相等.证明,图中必有三角形回路(即有三个选手A 、B 、C ,其中A 胜B ,B 胜C ,C 又胜A ).⑵ 在一个n 人参加的循环赛中,每两人比赛一场,如果没有平局,参赛者赢的场数分别是w 1,w 2,…,w n .求证:出现三个参赛者A ,B ,C ,满足A 胜B ,B 胜C ,C 胜A 的充分必要条件是w 21+w 22+…+w 2n <(n -1)n (2n -1)6. 5.亚洲区足球小组赛,每组有4个队,进行循环赛,每两个队赛一场,胜者得3分,负者得0分,平局各得1分,赛完后,得分最高的前两名出线.如果几个队得分相同,那么便抽签决定这些队的名次,问一个队至少要得多少分,才能保证一定出线?6.条件同上题,问一个队如果出了线,它至少得了多少分?7.在8×8棋盘上填入1~64的所有整数,每格一数,每数只填一次, 证明:总可以找到两个相邻的方格(具有公共边的两个方格叫相邻), 在此两个方格中填入的数的差不小于5?8.平面上有n 条直线,把平面分成若干个区域.证明:用两色就足以使相邻的区域都涂上不同的颜色.9.在某个国家,任意两个城市之间用下列交通工具之一进行联络:汽车,火车和飞机.已知没有一个城市拥有这三种交通工具,并且不存在这样三个城市,其中任意两个在联络时都用同一种交通工具.而且这个国家用了这三种工具.这个国家最多有多少个城市?(1981年保加利亚,美国数学竞赛)10.一个大三角形的三个顶点分别涂红、黑、兰三色,在三角形内部取若干点也任意涂红、黑、兰三色之一,这些点间连有一 些线段,把大三角形分成若干互相没有重叠部分的一些小三角形.求证:不论怎样涂,都有一个小三角形,其三个顶点涂的颜色全不同.11.证明:在2色K 6中一定存在两个同色三角形(即同色K 3).12.某个国家有21个城市,由若干个航空公司担负着这些城市之间的空运任务.每家公司都在5个城市之间设有直达航线(无需着陆,且两城市间允许有几家航空公司的航线),而每两个城市之间都至少有一条直达航线.问至少应有多少家航空公司?(1988年前苏联数学竞赛)本节“情景再现”解答:1.解 如图的5个点即不存在同色三角形,故例2中把6个人改为5个人后,结论可能不再成立.2.证明 计算每个顶点引出的边的条数(次数),如果每个顶点的次数都≤2,则统计得到的边数≤2n ,但每条边都被统计过2次,故应统计得到边数=2(n +1).矛盾.故至少有一个顶点,其次数≥3.3.解 ⑴点A :出次3,入次1;点B :出次1,入次1;点C :出次0,入次2;点D :出次1,入次1.⑵ 出次的和=3+1+0+1=5;入次的和=1+1+2+1=5.出次的和=入次的和.⑶证明 由于每条弧起点所是出次的点,终点都是入次的点,故出次和与入次和相等,都等于弧的条数.4.解 不一定,例如右面的一个图中,就没有两个点的出次相同.A 、B 、C 、D 四点的出次依次为3,2,1,0.一般的n 个点的竞赛图中,可以出现n 个点的出次分别为n -1,n -2,n -3,…,2,1,0这n 个值,于是不一定有两个点的出次相同.5.解 S 中有3个元素是可以的,a →b →c →a .满足要求.若S 至少有4个元素,取其中4点,由⑴, S 中每两点间都要连出1条有向线段,4点间连出6条有向线段.每条有向线段都记一个出次,共有6个出次.因此至少有一个点至少有2个出次.设a →b ,a →c ,则无论b →c 或是c →b 均引出矛盾.即S 的元素个数≤3.故S 最多有3个元素.6.证明 ⑴ 设共有n 个点,由于各点出次互不相等,故这n 个点的出次取得0,1,2,…,n -1这n -1个值中的每个值.把出次为0的点排在最后,其余各点均到达此点.出次为1的点必到达此点,由于出次为1的点只到达1个点,故出次为1的点只到达出次为0的点,把出次为1的点排在倒数第A B CD二位;再考虑出次为2的点,由于此点只到达2个点,故它只到达已排的两个点而不能到达其余的点,把出次为2的点排在倒数第3位;……,依此类推,把出次为k 的点排在倒数第k +1位,直到出次为n -1的点排在第1位.这就得到满足题目要求的排法.⑵ 反设图中所有各点的出次均互不相等,则由上题,可把这些点排成一列,使前面的点到达后面的点.而后面的点不能到达前面的点,于是该图中没有回路,与已知此图有回路矛盾.故必有两点出次相等.7.解 先证明:任意4人中都有1人与其余n -1人认识.用n 个点表示这n 个人,若两个人认识,则在表示这两个人的点间连一条实线,否则连一条虚线. 设任取4人v 1、v 2、v 3、v 4,其中v 1与v 2、v 3、v 4都认识,但此四人中无人与n -1人都认识.即每个点都有与之不相邻的点.设与v 1、v 2、v 3、v 4不相邻的点分别为v 1΄、v 2΄、v 3΄、v 4΄,显然v 1΄≠v 2,v 2΄≠v 1,若v 1΄≠v 2΄,则四点v 1、v 2、v 1΄、v 2΄不满足题意.于是v 1΄=v 2΄,同理v 1΄=v 3΄,于是得v 1΄=v 2΄=v 3΄,此时v 1、v 2、v 3、v 1΄这四点仍不满足已知条件.故证.又证 设图G 中度数小于n -1的点为v 1、v 2、…、v k ,记F ={v 1、v 2、…、v k },用实线表示相邻(认识),用虚线表示不相邻.若k <4,则命题正确(因为图中找不到4个人,他们中任1人都没有与其余n -1人认识). 若k ≥4,由于v k +1、v k +2、…、v n 的度数都=n -1,故与v 1不相邻的点都在F 中,设为v 2,此时若还能找到v 3、v 4∈F ,且v 3与v 4不相邻.则此四人不满足题目要求(图7⑴).若在F 中除v 1、v 2外无不相邻的人,则v 3、…、v k 均至少与v 1、v 2中某一人不相邻.则如图⑵、⑶,亦与已知矛盾.故k ≥4不可能.故证.再考虑本题:把1982个人中的任意4人组成一组,该组中必有1人认识其余所有的人.去掉这个人,在余下的人中再任取4人,又成一组,又可找出一个认识其余所有人的人;…,这样一直做下去.直到余下3人为止,此3人可能与其余的人不全认识.故至少有1979人认识其余所有的人.8.解 ⑴用10个点表示这10个人,如果某2人互相认识,则在表示这两人的点间连1条线.即任3点都至少连了1条线,要求证明存在一个K 4.设不存在K 4,即任意4点中总有2点没有连线,① 设某一点A 与4点都没有连线,则由假设此4点中有2点未连线,则此2点与A 共3点均未连线,与题设矛盾.故A 至多与3点未连线,即至少与6点连了线. ② 设A 与A 1、A 2、…,A 6连线,则A 1,…,A 6中任意3点必有2点未连线,否则存在K 4, ③ 设A 1与B i 、B j 、B k 都未连线,则B i 、B j 、B k 间若有两点未连线,则出现3点,都未连线,与已知矛盾.故此三点间都连了线,于是此三点与A 成为K 4.④ 由③知A 1,…,A 6中任一点至多与其余5点中的2点未连线.即与其余5点中至少3点连了线.设A 1与A 2、A 3、A 4连了线.此时A 2、A 3、A 4间至少连了1条线,设A 2A 3连了线,则A 、A 1、A 2、A 3成为K 4. AA 4图7V2V 43()V 2V 42()1()4V 32V图62()1()14'由上证可知,不存在K 4的假设不成立.⑵ 若有某点连出6条线,则如上证.若每点连线数<6,当每点连线数都=5时.此时9个点连线统计为45,为奇数.不可能. 若有某点连线数<5,即该点至少与4点未连线,则如上①,矛盾.从而必有点连线数=6的点.“习题67”解答:1.解 一个点经过两条弧就能到达的点至多有4个.经过一条弧或两条弧就能到达的点至多有6个.如图,每个点的出次都是2,点A 经过1条弧能到达B 、C ,点B 、C 分别经过1条弧可以到达D 、E 、F 、G ,故点A 经过1条或2条弧可以到达至多6个点.其中如果有些点重合,则点A 可以到达的点就少于6个. 2.证明 取出次最多的点为A ,则A 的出次≥12(n -1).他可以经一条线到达的点为B 1,B 2,…,B m ,m ≥12(n -1).对于A 不能到达的点C ,若B 1,B 2,…,B m 中没有点到达C ,则不能到达C 的点至少有m +1个,即C 的出次比A 多,与A 为出次最多的点矛盾.故所有A 不能到达的点,都可经2条线到达.故证.3.证明 k =1时,若w 1≠n -1,则w 1<n -1.设w 1=n -1,即w 1到达所有其余的点.把出次为w 1的点去掉,这对余下的点的出次都不受影响.此时就得到一个只有n -1个点的竞赛图.若w 2≠n -2,则w 2<n -2.设w 1=n -1,w 2=n -2,同上两次去掉出次为w 1,w 2的点,则得到一个有n -2个点的竞赛图.其中每个点的出次≤n -3.于是若w 3≠n -3,就有w 3<n -3.依此类推,若各点的出次为w 1≥w 2≥…≥w n .如果w 1=n -1,w 2=n -2,…,w k -1=n -(k -1),但w k ≠n -k (1≤k ≤n ),则依次去掉k -1个点,而不影响余下点的出次,此时余下点的出次≤n -(k -1)-1=n -k .若w k ≠n -k ,则必有w k <n -k .证毕.4.⑴证明 设A 与B 出次相等,由于A 、B 必连有线,不妨设A 胜B ,于是A 、B 的出次不为0.取所有负于B 的点集M ,设此集中有k 个点,其中k 必大于0.于是负于A 的点集中也有k 个点,若M 中没有点胜A ,则M 中的点均负于A ,于是A 胜M 中所有点且胜B ,即A 的出次至少比B 多1,与A 、B 出次相等矛盾.故M 中必有点C ,C 胜A ,于是A 胜B ,B 胜C ,C 胜A .证毕.⑵证明:不论何种比赛结果,所有参赛者出次的和都等于1+2+…+(n -1)=12n (n -1).若每个参赛者的出次都互不相同,则出次分别为0,1,2,…,n -1.此时不存在满足“A 胜B ,B 胜C ,C 又胜A ”的三个参赛者.此时w 21+w 22+…+w 2n =02+12+…+(n -1)2=(n -1)n (2n -1)6. 当有两个参赛者的出次相同时,就存在三角形回路.设出次为w k 的点为A k .设w 1≥w 2≥…≥w 1.且设w 1=n -1,…,w k -1=n -(k -1),但w k ≠n -k ,则w k <n -k ,逐个把A 1,A 2,…,A k -1去掉,这样做不会影响剩下点的出次.这样去掉点后,余下点中必有引向A k 的线,设从A j (j >k )有引向A k 的线,把这条线的方向改变,则A k 的出次变为w k +1,而A j 的出次变为w j -1.此时(w k +1)2+(w j -1)2=w 2k +w 2j +2(w k -w j )+2>w 2k +w 2j ,即这样操作可使和w 21+w 22+…+w 2n 增加,继续这样做,直到使w k =n -k ,这时去掉w k ,再做下去,A B C D E G。

高中图论知识点总结

高中图论知识点总结

高中图论知识点总结图论是离散数学中的一个重要分支,是研究图与网络结构的数学理论。

图论的研究对象是图,图由顶点集合和边集合组成,通过顶点和边的连接关系描述了事物之间的关系。

图论在计算机科学、网络科学、社交网络分析等领域有着广泛的应用。

下面将对高中图论的知识点进行总结。

一、图的基本概念1.1 图的定义图(Graph)是由非空的顶点集和边集组成的一个数学模型。

无向图是边不带方向的图,有向图是边带有方向的图,边上有权值的图称为加权图。

1.2 图的表示图可以通过邻接矩阵和邻接表两种方式进行表示。

邻接矩阵是将图的边关系存储在一个二维数组中,邻接表是将每个顶点的邻接顶点列表存储在链表或数组中。

1.3 图的分类图可以根据边的性质分为简单图、多重图、完全图等不同类型。

二、图的遍历2.1 深度优先搜索深度优先搜索(DFS)是一种用于遍历图或树的算法,通过递归或栈的方式实现。

DFS从某一顶点出发,访问它的一个邻接点,然后再访问这个邻接点的一个邻接点,依次进行下去,直到不能继续为止。

DFS的应用包括路径查找、连通性判断、拓扑排序等。

2.2 广度优先搜索广度优先搜索(BFS)是一种用于遍历图或树的算法,通过队列的方式实现。

BFS从某一顶点出发,先访问它的所有邻接点,然后再依次访问这些邻接点的所有未被访问的邻接点,依次进行下去,直到不能继续为止。

BFS的应用包括最短路径查找、连通性判断等。

三、最短路径算法3.1 Dijkstra算法Dijkstra算法是一种用于求解单源最短路径的算法,通过维护一个距离数组和一个已访问顶点集合来不断更新到达各顶点的最短路径。

Dijkstra算法适用于边权值非负的加权图。

3.2 Floyd算法Floyd算法是一种用于求解所有顶点对之间的最短路径的算法,通过动态规划的方式实现。

Floyd算法适用于有向图和无向图。

四、最小生成树算法4.1 Prim算法Prim算法是一种用于求解无向连通图的最小生成树的算法,通过维护一个顶点集合和一个边集合来逐步构建最小生成树。

图论经典问题

图论经典问题

图论经典问题常见问题:1、图论的历史图论以图为研究对象的数学分支。

图论中的图指的是一些点以及连接这些点的线的总体。

通常用点代表事物,用连接两点的线代表事物间的关系。

图论则是研究事物对象在上述表示法中具有的特征与性质的学科。

在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。

例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。

另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。

事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。

由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。

由此经数学抽象产生了图的概念。

研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。

图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段:第一阶段是从1736年到19世纪中叶。

当时的图论问题是盛行的迷宫问题和游戏问题。

最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。

东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。

如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。

于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。

这就是有名的哥尼斯堡七桥问题。

哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。

瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档