行测排列组合秒杀方法(免费分享).

合集下载

行测逻辑判断篇组合排列解题方法

行测逻辑判断篇组合排列解题方法

行政能力测‎验技巧系列‎之逻辑判断‎篇组合排列‎解题方法卓丽沙在历年的国‎家公务员考‎试中,行政职业能‎力测试分为‎五大模块,判断推理作‎为五大模块‎之一,近年来一直‎稳定在图形‎推理、逻辑判断(演绎推理)、类比推理和‎定义判断这‎四种题型,共35道题‎。

其中,逻辑判断往‎往是很多考‎生认为比较‎难做的。

作为一名培‎训师,笔者将针在‎对历年真题‎进行剖析的‎基础之上,为考生提供‎一个行之有‎效的解题方‎法。

逻辑判断也‎叫演绎推理‎,共十题,其中,有一类型我‎们可称其为‎组合排列。

所谓组合排‎列,就是题中给‎出一组对象‎(如甲、乙、丙、丁),再给出两种‎以上信息(如年龄、性别、身高、职业、专业等),最后需要考‎生对各种信‎息进行一一‎匹配。

例1:有三个小孩‎分别叫蓝蓝‎(女),红红(女)和虎虎。

孩子妈妈是‎卫国珍、姜家英、申仁丽。

邻居李奶奶‎说:冯一中和姜‎家英的孩子‎都参加了少‎年女子舞蹈‎队,陈二国的女‎儿不是红红‎,楚三仁、申仁丽不是‎一家人。

因此可以推‎断出下列为‎一家人的是‎: A.陈二国姜家英和红红,楚三仁卫国珍和蓝‎蓝B.楚三仁卫国珍和虎虎,冯一中申仁丽和红‎红C.陈二国申仁丽和红红,楚三仁姜家英和虎‎虎D.楚三仁申仁丽和红红,冯一中卫国珍和虎‎虎上面试一道‎典型的组合‎排列题,对于这样的‎题目,很多考生都‎无从下手,笔者在授课‎的过程中发‎现,一些考生只‎是将题中给‎出的信息一‎一罗列出来‎,之后完全没‎有一个正确‎的解题思路‎。

事实上,根据对真题‎的研究,我们发现,对于做组合‎排列型题目‎,首选的方法‎应该是排除‎法,有一些组合‎排列型的题‎目只看题干‎是没有办法‎选出答案的‎,因为一些题‎干中给出的‎信息较少,无法完成一‎一对应。

下面我们具‎体解答一下‎这道题目:[答案]B[解析]本题采用的‎是排除法,题中说到“陈二国的女‎儿不是红红‎”,因此,可以排除选‎项A、C;又因为“楚三仁、申仁丽不是‎一家人”,可排除选项‎D,因此,正确答案为‎B。

行测数学秒杀技巧资料分析排列组合

行测数学秒杀技巧资料分析排列组合

排列组合基本知识点回顾:1、排列:从N不同元素中,任取M个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。

2、组合:从N个不同元素中取出M个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合(不考虑元素顺序)3、分步计数原理(也称乘法原理):完成一件事,需要分成n个步骤,做第1步有ml种不同的方法,做第2步有m2种不同的方法… 做第n步有mn种不同的方法。

那么完成这件事共有N二m1*m2*…*mn种不同的方法。

4、分类计数原理:完成一件事有n类办法,在第一类办法中有ml种不同的方法,在第二类办法中有m2种不同的方法…… 在第n类办法中有mn种不同的方法,那么完成这件事共有N二ml + m2 +・・・+mn 种不同的方法。

解题技巧:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下儿种常用的解题方法: 一、特殊兀素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般米取特殊兀素(位置)优先安排的方法。

例1 . 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

元素分析法:因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上, 有120种站法,故站法共有:480 (种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有6 * 5 * 4 * 3 * 2种,然后女生内部再进行排列,有6种,所以排法共有:4320 (种)。

宁夏公务员考试行测技巧:排列组合特殊题如何“精准打击”.doc

宁夏公务员考试行测技巧:排列组合特殊题如何“精准打击”.doc

2019宁夏公务员考试行测技巧:排列组合特殊题如何“精准打击”
排列组合在行测考查中是一个比较重要的题型,可能会出一些常见的题型,比如利用简单的分类或者分步计算。

但是同时排列组合也是可能出难题的地方,而其中有一个模型,披着狼皮吓唬大家,实质上是一只温顺的绵羊,大家一定要拿下。

这就是隔板模型。

下面华图教育老师就来揭开它的真面目。

例题:9个相同的苹果,分给3个小朋友,每个小朋友至少分得一个,全部分完,请问一共有多少种分法?
要分成三部分,很多同学第一时间是分步讨论,但是这样就会很麻烦,这道题其实可以换一种角度看:
华图教育老师认为,对于排列组合题来说大家已经要熟悉各类特殊的题型,遇到以后能够利用所学知识快速拿下这些小绵羊。

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。

那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用的解题方法和策略。

解决排列组合问题有几种相对比较特殊的方法。

下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。

【解析】首先,从题中之3个节目固定,固有四个空。

所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。

二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。

综上所述,共有12+8=20种。

二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。

【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。

行测考试中排列组合题的解题好方法

行测考试中排列组合题的解题好方法

行测考试中排列组合题的解题好方法在公职考试的行测试卷中,排列组合类问题是考查得较为频繁的一类题型。

对于解决行测排列组合问题,常用的方法包括优限法、捆绑法、插空法等等,而插板法常被考生遗忘,其实这也是一种需要大家掌握的便捷方法。

在此,教育专家就同大家一起来研究下这种方法。

对于插板法,它的实质就是解决相同元素的不同分堆问题,题目中往往会出现“……至少……,……个相同的……分给……”这样的字眼,因此,大家要注意插板法的适用环境相当严格,必须同时满足以下三个条件:要分堆的元素必须完全相同;要分的元素必须分完,决不允许有剩余;每个对象至少分1个,决不允许出现分不到元素的对象。

核心公式:把n个相同元素分给m个不同的对象,每个对象至少1个元素,总的分法数为种。

在考试过程中,往往会遇到题干难以满足插板模型的第3个条件,但我们可以通过转换使之满足。

先来看下题干满足插板模型所有条件情况下的简单应用:【例1】有10个相同的篮球,分给7个班,每班至少一个,有多少种分配方案?A. 36B.64C.84D.210【答案】C【解析】此题满足插板模型的所有条件,直接套用公式,共有种分配方案。

但是考试题中往往会出现题干并不满足插板模型的第3个条件的情况,接下来我们看下插板模型的两种变形:【例2】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。

问一共有多少种不同的发放方法?( )A.7B.9C.10D.12【答案】C【解析】从题干条件不难看出,这里的30份学习材料代表30个相同的元素,发放给3个部门,每个部门至少发放9份材料,那么我们可以把它转化成给3个部门至少发1份材料。

如何转化呢?可以先给这三个部门每个部门分发8份材料,这样就只需要再给这三个部门分发一份材料就能满足题目要求。

30份材料分发给3个部门各8份材料,还剩下6份材料,则问题转化为对剩下的6份材料分堆,利用插板法可得,【例3】有5个相同的篮球,分给3个班,总共有多少种分配方案?A. 10B. 28C. 56D.60【答案】B【解析】从题干不难看出,没有“至少一个”的要求,因此并不符合插板法的第三个要求,那么我们可以想办法凑第3个条件,我们可以从3个班中先各借一个篮球,就可以把问题转化为8个篮球分给3个班,且每个班至少发一个,再依据所给公式,总的分配方案为结合教育专家以上列举的两道题目不难发现,在考试过程中一般不会考查完全符合插板法三个条件的题目,往往不符合插板法第3个条件,因此考试时考生要灵活应对。

2024公务员联考行测数量关系解题技巧

2024公务员联考行测数量关系解题技巧

2024公务员联考行测解题技巧1、利用插空法解决排列组合题“排列组合问题”是行测数量关系中常考的题型,也是大家觉得较难的题型。

往往很多同学看到排列全颗就直接放弃不做,其实解排列组合题目也是讲究方法的,当我们找准方法时,解题就能事半功倍了。

一、要点梳理插空法:当排列组合题中,有元素要求不相邻,先将其它元素排好,再将指定的不相邻的元素指入到已排好的元素的间隙或两端位置。

二、例题解析【例1】某学习平台的学习内容由观看视频、阅读文章、收藏分享、论坛交流、考试答题五个部分组成。

某考生要先后学完这五个部分,若观看视频和阅读文章不能连续进行,该学员学习顺序的选择有()种。

A.24B.72C.96D.120答案:B【解析】题目要求观看视频和阅读文章不能连续进行,也就是说两者不相邻,那我们可以使用插空法解题。

即先将除观看视频和文章阅读外的三个学习内容排好,题目当中说考生需要先后完成五个部分的学习且五个部分的学习内容不同,那收藏分享、论坛交流、考试答题中部分内容的安排可列式为A33,而三个元素排好包含两端会产生4个位置,接下来在4个位置中选两个位置插入观看视频和阅读文章即可,又因为需要考虑观看视频和阅读文章的顺序,所以列式为A24。

第一步安排其他三个学习内容,第二步按排观看视频和阅读文章,分步运算用乘法,因此该学员学习顺序共有A33×A24=72种,故选B项。

【例2】某条道路一侧共有20盥路灯。

为了节约用电,计划只打开其中的10盏。

但为了不影响行路安全,要求相邻的两盏路灯中至少有一盏是打开的,则共有()种开灯方案。

A.2B.6C.11D.13答案:c【解析】题目要求说相邻的两盏路灯中至少有一盏是打开的,也就是找不到两盏相邻的不亮的路灯,即不亮的路灯不能相邻,选择插空法。

先将亮着的10盏路灯排好,因为路灯与路灯一样,没有顺序要求,所以10盏亮着的路灯就一种情况。

10盏路灯包括两端会形成11个位置C1011=11种,故选择c项。

行测排列组合问题详解及秒杀方法

行测排列组合问题详解及秒杀方法
(5)甲乙不相邻,丙丁不相邻
分析:(1)有种方法。
(2)有种方法。
(3)有种方法。
(4)有种方法。
(5)本题不能用插空法,不能连续进行插空。
用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。
例12. 某人Βιβλιοθήκη 击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?
因而共有185种。
例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?
分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。
抽出的三数含0,含9,有种方法;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用
例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?
分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。
若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.

公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。

这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。

一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。

提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。

若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。

解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。

为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。

而三者之间是分步过程,故而用乘法原理得。

【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。

【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。

如下面的例题。

【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。

行政职业能力测试答题技巧:排列组合题解题宝典

行政职业能力测试答题技巧:排列组合题解题宝典

行政职业能力测试答题技巧:排列组合题解题宝典
秘籍一:乘法原理
完成一件事需要两个步骤(第1步方法的选取不会影响第2步方法的选取)。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有m×n种不同的方法。

【例】从A到B有3条不同的道路,从B到C有2条不同的道路,则从A经B到C的道路数n=3×2=6。

秘籍二:加法原理
完成一件事有两类不同方案(其中的方法互不相同)。

在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有m+n种不同的方法。

【例】小华正准备出国留学,不是去A国,就是去B国。

其中A国有4所大学向他发出了录取通知,而B国则有5所大学向他发出了入学邀请。

故小华共有9所大学可以选择,即共有9种留学方案。

P.S:排列组合题公式
排列公式:
组合公式:。

2015国家公务员行测答题技巧:难攻克的排列组合

2015国家公务员行测答题技巧:难攻克的排列组合

排列组合问题是国家公务员考试中,考官非常青睐的一类题型。

对于国考考生们来说,貌似是掌握了很多种做法,却依然做不好排列组合的题目。

今天,给各位考生提供一种行测中速解排列组合问题的方法——隔板法。

一、方法简介1、适用题型:相同元素分堆问题。

2、公式:把n个相同元素分给b个不同的对象,每个对象至少1个元素,则共有种不同的分法。

3、应用条件(1)所要分的元素必须完全相同;(2)所要分的元素必须分完,决不允许有剩余;(3)每个对象至少分到1个,决不允许出现分不到元素的对象。

二、应用(一)基本考法1、把6朵相同的鲜花分给3个小朋友,每个小朋友都要分到,分鲜花的不同方法有多少种?A.6B.8C.10D.12【答案】C。

解析:观察题干特征,符合隔板法的三个条件,采用隔板法。

在这6件相同的礼物形成的5个间隔中放上两个隔板,即可保证每个小朋友都分到礼物,所以不同的方法共有=10种。

(二)变相考法题干不满足隔板模型的第3个条件,但是可以通过转换使之满足,最终都转换成至少分到一个元素。

如分鲜花,如果要求每人至少两朵,就先给每人一朵,这样只需每人再分一朵就能满足至少两朵的要求了,即转化成了至少分到一个的问题。

2、把20台相同的电脑分给8个部门,每个部门至少2台,问共有几种分法?A.165B.330C.792D.1485【答案】B。

解析:先给每个部门分1台,剩下12台,分给8个部门且每个部门至少1台,利用隔板法,有=330种分法。

3、将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法?A.190B.231C.680D.1140【答案】B。

解析:这道题中说每个盒子可以为空,不能直接用隔板法来做,但是如果我们借3个相同的球,先在3个盒子里各放一个球,此时就可以用隔板法了,即此题变为将23个相同的球全放入3个不同盒子里,每个盒子至少一个球,则有=231种。

4、10个优秀指标分给1、2、3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?A.35B.21C.20D.15【答案】D。

公务员考试行测数量关系:排列组合快速解题方法

公务员考试行测数量关系:排列组合快速解题方法

新东方在线公务员网(/)分享公务员考试行测数量关系:排列组合快速解题方法分析历年公务员考试真题发现,其数学运算部分常用到排列组合知识解题。

一些排列组合问题条件比较多,直接使用分类或分步来考虑较为复杂,在这种情况下,掌握一些特定的解题方法和公式有助于大家快速解题。

常用的解题方法有特殊定位法、反面考虑法、捆绑法、插空法、隔板法、归一法、线排法等。

在此,专家主要为考生介绍其中4种常用的方法,以备考生复习之用。

1.特殊定位法排列组合问题中,有些元素有特殊的要求,如甲必须入选或甲必须排第一位;或者有些位置有特殊的元素要求,如第一位只能站甲或乙。

此时,应该优先考虑特殊元素或者特殊位置,确定它们的选法。

新东方在线公务员网(/)分享2.反面考虑法有些题目所给的特殊条件较多或者较为复杂,直接考虑需要分许多类,而它的反面却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以了。

例题:从6名男生、5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法?A.240B.310C.720D.1080新东方在线公务员网(/)分享4.归一法排列问题中,有些元素之间的排列顺序“已经固定”,这时候可以先将这些元素与其他元素进行排列,再除以这些元素的全排列数,即得到满足条件的排列数。

例题:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4解析:此题答案为A。

方法一:“添进去2个新节目”后,共有5个节目,因此,此题相当于“安排5个节目,其中3个节目相对顺序确定,有多少种方法?”由于“3个节目相对顺序确定”,可以直接采用归一法。

新东方在线公务员网(/)分享方法二:也可以用插空法,即将2个新节目插入原来3个节目和两端之间形成的空处。

需要注意的是,由于插入的2个新节目可以相邻,所以应逐一插入。

将第一个新节目插入原有3个节目和两端之间形成的4个空处,有4种选择;这时,4个节目形成5个空,再将第二个新节目插入,有5种选择。

行测排列组合经典解题方法

行测排列组合经典解题方法

行测排列组合经典解题方法
排列组合是数学中非常重要的一个概念,广泛应用于各个领域。

在行测中,也经常会涉及到排列组合的问题。

下面是一些经典的解题方法:
1. 计算排列数:
排列数表示从n个元素中选取m个元素进行排列的方法数。

记作A(n,m)。

A(n,m) = n! / (n-m)!
2. 计算组合数:
组合数表示从n个元素中选取m个元素进行组合的方法数。

记作C(n,m)。

C(n,m) = n! / (m! * (n-m)!)
3. 递归法:
当问题可以分解成多个子问题时,可以使用递归法求解。

比如,在一个班级中,选取若干名学生进行组合考试,求解不同人数下的组合方法数。

4. 动态规划法:
动态规划法常用于求解排列组合的问题。

一般来说,动态规划法需要确定状态和状态转移方程。

比如,在一条街道上有n个不同的房子,要求选取其中k个房子进行参观,使得相邻的房子不被选中。

可以定义dp[i][j]表
示前i个房子选取j个的方案数,然后通过状态转移方程计算
dp[i][j]。

5. 利用数学知识简化问题:
有些排列组合的问题,可以通过数学定理或性质进行简化。

比如,在一个圆桌上有n个不同的人,要求选取其中k个人进行座位安排,使得相邻的人不能是同一种颜色。

可以先将问题化简为从n个不同的人中选取k个人进行座位安排,然后再乘以座位上颜色的选择数。

以上是一些经典的排列组合解题方法,实际解题过程中可以选择适合自己的方法进行求解。

当然,在行测中可能还会遇到其他类型的排列组合问题,需要根据具体情况进行灵活应用。

公务员行测搞定排列组合的六种方法

公务员行测搞定排列组合的六种方法

搞定排列组合的六种方法公务员考试行测中的排列组合题我们在高中时候就学过,但具体面对这类题目时依然存在很大的疑惑,感觉无从下手,或者有时候做出来了错误率也极高。

那么究竟该如何复习排列组合这类考题呢?在此传授给大家六个“高招”,让你看到此题不再愁。

一、何为排列组合在传授“招数”之前,先回顾一下排列与组合的基本概念以及在具体题目中如何快速识别。

比如,4 个人中挑选2 个人相互握手,先选甲、再选乙或者先选乙、再选甲;这两种不同的选择顺序,最终都是甲乙2 人互相握手,所以,顺序对结果不造成影响,则叫组合,记为C42 ;反之,若4 个人中挑选2 个人,一个当班长,一个当学委,那么先选甲、再选乙或者先选乙、再选甲;这两种不同的选择顺序会带来两种不同的结果:甲当班长、乙当学委或者乙当班长、甲当学委。

所以,顺序对结果造成影响,则叫排列,记为A42。

二、解答排列组合六招数招数一:优先法优先法,即对有特殊要求的元素优先进行考虑。

例题1:a、b、c、d、e、f 6 个人排队,问a、b 既不在排头也不在排尾的方式有几种?解析:a、b 是具有特殊要求的元素,优先进行考虑,一头一尾不能选,只有中间4 个位置,于是有A42 。

剩下的c、d、e、f 4 个人,4 个位置全排列, A44 。

所以,总的排列方式是A42·A44 。

招数二:捆绑法捆绑法,即将相邻元素捆绑在一起作为一个整体和其它元素进行排列与组合。

例题2:计划展出10 幅不同的画,其中1 幅水彩画、4 幅油画、5 幅国画,排成一行陈列,要求同品种的必须连在一起,那么共有多少陈列方式的种数?解析:把4 幅油画必须相邻看成一个整体、5 幅国画必须相邻看成一个整体,则加上水彩画一共有3 个整体,所以排列方式是A33 。

招数三:插空法插空法,即先考虑其它元素,再将不相邻的元素插入他们的间隙。

例题3:某论坛邀请了6 位嘉宾,安排其中三人进行单独演讲,另三人参加圆桌对话节目。

如何突破行测排列组合难题

如何突破行测排列组合难题

如何突破行测排列组合难题公务员行测常识判断题一般来说考的几率非常大,但是许多考生还是容易丢分,这可能是平时知识点积累的太少了,下面由小编为你精心准备了“如何突破行测排列组合难题”,持续关注本站将可以持续获取更多的考试资讯!如何突破行测排列组合难题在做排列组合这一类题的时候,大部分人会有很多疑惑。

学了等于没学;什么时候用排列来计数,什么时候用组合来计数,好像仍然一头雾水;只要遇到稍微难一点的题目时,无从下手,好像学习过的四种常用方法没有什么用,等等……那么,今天就通过一个例题,以一个正常人的视角或者思维来探讨和交流,排列组合的题目还可以如何入手。

如果你对排列组合知识掌握不是很透彻,你可以根据题干进行分组吗?那如果对于排列组合的知识掌握不是很透彻或者没有学过排列组合的知识,能不能把分组分好呢?很显然,答案是肯定的。

那么接下来我们就来探讨一下如何以常人思维来分组。

分组:①只选一门课程,4种;②如果选两门课程,有A课程的情况下,C课/D课程选一门,2种选法;有B课程的情况下,C课/D课程选一门,2种选法;如果不选A也不选B课程,只能同时选择C,D课程,1种选法;共5种选法;③如果选三门课程,课程组合为ACD或者BCD,共2种选法;④四门课程都选的情况不满足要求,0种选法。

所以根据题干可以分为:4+5+2=11种选法,也就是可以分为11组。

很显然,这样更接近与我们的普通思维。

那我可不可以还能这样来考虑呢?① 在只含A课程的情况下:选一门课程,1种选法;选两门课程,不能选B课程,只能从C/D种选一门课程与A课程组合,2种选法;选3门课程,只能为ACD课程组合,1种选法;4门课程的选法不存在。

所以共1+2+1=4种选法。

② 同理,在只含B课程的情况下,同样是4种选法。

③ 在既没有A课程又没有B课程的情况下:选一门,只能从C/D 中选,2种选法;选两门课程时,只能同时选C,D课程,1种选法;选三门或者四门课程的情况不存在,此时共有2+1=3种选法。

公务员行测数量关系答题技巧:排列组合不再难

公务员行测数量关系答题技巧:排列组合不再难

公务员⾏测数量关系答题技巧:排列组合不再难 ⾏测排列组合问题怎样解决呢?⼩编为⼤家提供公务员⾏测数量关系答题技巧:排列组合不再难,⼀起来学习⼀下吧!希望⼤家喜欢! 公务员⾏测数量关系答题技巧:排列组合不再难 排列组合问题是让不少同学都⽐较头痛的问题,今天⼩编就来跟⼤家分享⼀下解决排列组合问题常⽤的四个⽅法。

⼀、优限法 对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。

【例】某宾馆有6个空房间,3间在⼀楼,3间在⼆楼。

现有4名客⼈要⼊住,每⼈都住单间,都优先选择⼀楼房间。

问宾馆共有多少种安排? A 24 B 36 C 48 D 72 来源:中公教育 ⾏测数量关系:排列组合之“分糖”的顺序 数量关系⼀直是公务员考试⾏测中的难题,⽽数量关系中的排列组合的问题对于很多考⽣来说⼀直是⼀道很⼤的坎,就排列组合问题⽽⾔,⼀个本质的问题就是在计算的时候具体是否需要考虑顺序。

事实上对于要不要考虑顺序的问题,很多题⽬⼜是不⼀样的,那么今天,⼩编主要来总结⼀下⼀类常考的,⽽且具有⼀定代表性的题⽬---分糖的问题。

下⾯我们通过例题⼀起来看⼀下: 【例】:奶奶有6块不同的糖,现在要把糖平均分给三个孙⼦,⼀共有多少种分法? A.360 B.90 C.45 D.15 ⾏测数量关系模拟题及答案 1、⽤抽签的⽅法从3名同学中选1名去参加⾳乐会,准备3张相同的⼩纸条,并在1张纸条画上记号,其余2张纸条不画.把3张纸条折叠后放⼊⼀个盒⼦中搅匀,然后让甲、⼄、丙依次去摸纸条,他们抽到画有记号的纸条的概率记P甲、P⼄、P丙,则( ) A.P甲>P⼄>P丙 B.P甲 C.P甲>P⼄=P丙 D.P甲=P⼄=P丙 2、学校要举⾏夏令营活动,由于名额有限,需要在符合条件的5个同学中通过抓阄的⽅式选择出两个同学去参加此次活动。

于是班长就做了5个阄,其中两个阄上写有“去”字,其余三个阄空⽩,混合后5个同学依次随机抓取。

公务员行测考试:排列组合问题

公务员行测考试:排列组合问题

公务员行测考试:排列组合问题排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。

以下是由店铺整理关于排列组合问题解决策略和方法技巧的内容,希望大家喜欢!一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、排列组合七大解题策略1、特殊优先法特殊元素,优先处理;特殊位置,优先考虑。

对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A)280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

2、科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。

同时明确分类后的各种情况符合加法原理,要做相加运算。

例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。

A、84B、98C、112D、140正确答案【D】解析:按要求:甲、乙不能同时参加分成以下几类:a、甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b、乙参加,甲不参加,同(a)有56种;c、甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。

行测排序题秒杀技巧

行测排序题秒杀技巧

行测排序题秒杀技巧
在行测的排序题中,秒杀技巧主要是提高解题速度和准确性。

以下是几个常用的技巧:
1. 先看条件,再看要求:在阅读题目时,先仔细阅读给出的条件和要求,理清思路。

明确每个选项之间的比较关系和排序规则。

2. 逆向思维:有时候,通过排除法可以更快地确定选项的位置。

如果根据特定的条件,可以排除某些选项的位置,那么就可以从剩下的选项中更快地确定顺序。

3. 利用排列组合:有些排序题可能涉及到多个元素在给定条件下的排列组合,可以利用组合数量来推断选项的位置。

4. 注意排斥关系:排斥关系是指某些选项彼此排斥,即如果一个选项在某个位置,那么另一个选项就不能在相邻的位置。

通过观察选项的排斥关系,可以更快地确定选项的位置。

5. 高效比较法:当选项数量较多时,可以采取两两比较的方式,逐个确定选项的位置。

通过比较大小、属性等信息,确定选项的相对位置。

6. 留意限制条件:有时候,在题目中给出了一些限制条件,比如某个选项不在某个位置,或者某个选项在特定的位置等,这些限制条件可以在解题过程中帮助确定选项的位置。

除了以上技巧,还要在平时训练中多做排序类题目的练习,提高观察力和分析能力。

通过不断的练习和总结,可以逐渐提高在行测排序题中的解题速度和准确性。

2020年大学生村官行测技巧题:四大方法巧解排列组合

2020年大学生村官行测技巧题:四大方法巧解排列组合

2020年大学生村官行测技巧题:四大方法巧解排列组合一、特殊优先法特殊元素,优先处理;特殊位置,优先考虑。

例:六人站成一排,求(1)甲不在排头,乙不在排尾的排列数;(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。

分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

第一类:乙在排头,有A(5,5)种站法;第二类:乙不在排头,当然他也不能在排尾,有44A(4,4)种站法;共A(5,5)+44A(4,4)种站法。

(2)第一类:甲在排尾,乙在排头,有A(4,4)种方法;第二类:甲在排尾,乙不在排头,有3P(4,4)种方法;第三类:乙在排头,甲不在排头,有4P(4,4)种方法;第四类:甲不在排尾,乙不在排头,有P(3,3) A(4,4)种方法;共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312种。

二、捆绑法与插空法例1:某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。

另外没有命中的之间没有区别,不必计数。

即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。

例2:马路上有编号为l,2,3,……10 十个路灯,为节约用电又看清路面,能够把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。

又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

共C(3,6)=20种方法。

三、隔板法例:10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?分析:把10个名额看成十个元素,把这10个元素任意分成8份,并且每份至少有一个类似该种思维,实际上就是在这十个元素之间形成的九个空中,选出七个位置放置档板,就能够很形象的达到目标。

2招搞定事业单位考试中的排列组合

2招搞定事业单位考试中的排列组合

2招搞定事业单位考试中的排列组合在事业单位考试中涉及到计算的部分基本上就是行测了,在行测这版块中,排列组合可以说是经常出现,并且是大家的丢分点。

一是它的思维逻辑能力要求比较高,二是大家得对相应的方法熟练于心。

那么如何快捷的解出一道排列组合的题目呢?下面小编给大家介绍两个非常好用的方法!一、捆绑法1.应用环境:出现元素相邻的时候2.使用步骤:①将相邻元素捆绑起来,与其他元素一起作为一个大整体,进行排序。

②将捆绑的元素内部进行排序。

根据乘法原理①×②就是结果。

给大家举个例子:【例1】这一周要安排3所小学去博物馆参观,博物馆周一到周六开放,除其中一所人数较多小学需要连续参观两天外,其它小学参观一天即可,有几种安排方式?A.6B.24C.36D.60【答案:D】【解析】本题目标在于安排参观时间,如果从人来考虑,要连续参观两天的学校无疑是有特殊要求的,需要优先考虑,周一到周六连续两天的可能性有5种,即这个学校的安排有5种,其余两所学校没有要求,从余下4天任意安排两天即可,有A(2,4)=12A种,把两步结果相乘,最终有5A(2,4)=60种。

二、插空法1.应用环境:出现元素不相邻的时候2.使用步骤:①排列其他无关的元素;②选空;③排空。

根据乘法原理①×②×③就是结果。

给大家举个例子:【例2】我国将在10月1日晚上举行新中国成立70周年文艺晚会活动,呈报的节目主要包括“红色”歌舞2个,英雄事迹展现1个,军人本色小品3个,军体操1个。

按照领导要求:军人本色小品类节目不能连续表演,有多少种不同的方法?( )A.1200B.1440C.1760D.2880【解析】B。

因为军人本色小品类节目不能连续表演,所以需要插空安排。

其他节目无要求,全排列总共有A(4,4)=24种不同的方法,再插空安排军人本色小品类节目共有A(5,3)=60种不同方法,分步完成用乘法原理,故所求为24×60=1440种不同的方法。

行测技巧:教你六招攻破排列组合.doc

行测技巧:教你六招攻破排列组合.doc

行测技巧:教你六招攻破排列组合任何一场考试取得成功都离不开每日点点滴滴的积累,下面由我为你精心准备了“行测技巧:教你六招攻破排列组合”,持续关注本站将可以持续获取更多的考试资讯!行测技巧:教你六招攻破排列组合行测中的排列组合题目在高中时候就学过,但很多同学对于这类题目还是感觉无从下手,或者直接放弃。

那么排列组合真的有想象中的那么困难吗?我在这里给大家六个妙招,让你看到排列组合题目不再发愁。

一、何为排列组合首先,我们先回顾一下排列与组合的基本概念以及在具体题目中如何快速识别。

比如,10个练习生,我们选3人组成一个组合出道,选择小A、小B、小C,和选择小B、小A、小C,结果都是ABC三个人组成一个组合,先选谁后选谁对结果没有影响。

二、解答排列组合六个妙招妙招一:优限法优限法,即对有特殊要求的位置或元素优先进行考虑。

例题:锅碗瓢盆缸5个人要排队照相留念,问锅和碗既不在排头也不在排尾的方式有几种?妙招二:捆绑法捆绑法,即将相邻元素捆绑在一起作为一个整体和其它元素进行排列与组合,这里要注意的是被捆绑的元组间的顺序。

例题:锅碗瓢盆缸5个人要排队照相留念,锅和碗谈恋爱了,想站在一起,问有多少种排列方式?妙招三:插空法插空法,即元素要求不相邻,先考虑其它元素,再将不相邻的元素插入他们的间隙。

例题3:锅碗瓢盆缸5个人要排队照相留念,锅和碗吵架了,不愿意站在一起,问有多少种排列方式?【解析】和上一题不一样的是,这回锅和碗要求不相邻了,也就是说中间要隔有其他人,那么就涉及到隔1个还是2个还是3个,隔的是谁,而且锅和碗站的位置不同也有区别,这么一想的话就很复杂了,那我们不妨先把锅和碗放在一边,先排其他人,再让锅和碗去插空,这样就一定可以保证二者不相邻,并且包含隔1或2或3个人的情况了。

剩下的3 例题:把15个相同的礼品分给锅碗瓢盆缸5个小伙伴,每人至少分2个,问共有几种分法?【解析】我们学过的模型是至少分一个的问题,这道题里说的是至少分两个,那我妙招五:错位重排错位重排即所有元素都不在原来对应位置上,问题本身比较复杂,我们举个例子:现在有一封信A,有一个对应信封a,这种情况下,把信装入信封是不会装错的,也就是说装错的方法数位0;当有A、B两封信和a、b两个对应封信的情况下,装错的情况有1种,为:(用Dn表示n个元素错位重排的方法数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。

例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。

若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。

(二)每一步是向上还是向右,决定了不同的走法。

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。

2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有一种选择,同理A、B位置互换,共12种。

例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。

(A)240 (B)180 (C)120 (D)60分析:显然本题应分步解决。

(一)从6双中选出一双同色的手套,有6种方法;(二)从剩下的十只手套中任选一只,有10种方法。

(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;(四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。

例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。

例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。

现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。

以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。

第一类:这两个人都去当钳工,有35种;第二类:这两人有一个去当钳工,有75种;第三类:这两人都不去当钳工,有75种。

因而共有185种。

例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。

抽出的三数含0,含9,有种方法;抽出的三数含0不含9,有种方法;抽出的三数含9不含0,有种方法;抽出的三数不含9也不含0,有种方法。

又因为数字9可以当6用,因此共有2×(+)++=144种方法。

例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。

分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。

3.特殊元素,优先处理;特殊位置,优先考虑例9.六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

第一类:乙在排头,有种站法。

第二类:乙不在排头,当然他也不能在排尾,有种站法,共+种站法。

(2)第一类:甲在排尾,乙在排头,有种方法。

第二类:甲在排尾,乙不在排头,有种方法。

第三类:乙在排头,甲不在排头,有种方法。

第四类:甲不在排尾,乙不在排头,有种方法。

共+2+=312种。

例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。

若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。

第一步:第五次测试的有种可能;第二步:前四次有一件正品有中可能。

第三步:前四次有种可能。

∴共有种可能。

4.捆绑与插空例11. 8人排成一队(1)甲乙必须相邻 (2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻分析:(1)有种方法。

(2)有种方法。

(3)有种方法。

(4)有种方法。

(5)本题不能用插空法,不能连续进行插空。

用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。

例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。

另外没有命中的之间没有区别,不必计数。

即在四发空枪之间形成的5个空中选出2个的排列,即。

例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。

又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

∴共=20种方法。

4.间接计数法.(1)排除法例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?分析:有些问题正面求解有一定困难,可以采用间接法。

所求问题的方法数=任意三个点的组合数-共线三点的方法数,∴共种。

例15.正方体8个顶点中取出4个,可组成多少个四面体?分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,∴共-12=70-12=58个。

例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?分析:由于底数不能为1。

(1)当1选上时,1必为真数,∴有一种情况。

(2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log2为底4=log3为底9,log4为底2=log9为底3, log2为底3=log4为底9, log3为底2=log9为底4.因而一共有53个。

(3)补上一个阶段,转化为熟悉的问题例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。

因而有=360种。

(二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种,∴共=120种。

例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。

相关文档
最新文档