2020高考数学三角函数复习题
2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理
3.5 两角和与差的正弦、余弦与正切公式[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·c os 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin 20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝⎛ π4-⎭⎪⎫β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223. 由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ( 2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z . ∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3,∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D.二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π, 所以cos(α+β)=-1-sin2α+β=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12,又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α = 1+34=72, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎪⎫2x -π3.令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a的取值范围.解 (1)f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6=(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6 =1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到.∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3.(2)由A =π3,得f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝⎛⎭⎪⎫3x +π3-12.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32,从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24.18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝⎛⎭⎪⎫x +3π4.(1)求函数f (x )的最小正周期和单调递增区间; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值. 解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x-cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6=2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2.∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.。
2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1
(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc
2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。
2020高考数学专项复习《三角函数10道大题》(带答案)
4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。
2020年高考数学三角函数与解三角形大题精做
2020年高考数学三角函数与解三角形大题精做例题一:在△ABC中,内角A , B , C所对的边分别为a , b , c,已知m n cosC,cos A,且m n .(1)求角A的大小;(2 )若b c 5 , △ ABC的面积为3,求a .n,AB 4 , BC .17,点D 在AC 边上,且cos(1 )求BD的长;(2)求△ BCD的面积.例题三:△ ABC的内角A , B , C的对边分别为a , b , c,已知a 2c cosB bcosA 0 .a,c 2b ,例题二:如图,在厶ABC中,(1 )求B ;(2)若b 3 , △ ABC的周长为3 2 3,求△ ABC的面积.例题四:已知函数f x cos2 x 2 3 sin xcosx sin2 x .(1)求函数y f x的最小正周期以及单调递增区间;(2)已知△ ABC的内角A、B、C所对的边分别为a、b、c,若fC 1,c 2,sinC sin B A 2sin 2A,求△ ABC 的面积.例题一:【答案】(1) A -; (2) a .13 .3【解析】(1)由m n ,可得 m n 0 ,艮卩2b cos A acosC ccosA , 即 2sin B cos A sin AcosC sin CcosA ,即 2sin BcosA sin A C ,•/sinA Csin n Bsin B , / • 2sin B cosA sin B ,即 sin B2cos A 10 ,•/ 0 B n,• sin B 0 , • cosA1 2•/ 0 A n,• A n .3(2) 由S A ABC J/3,可得 S A ABC1 -bcsin A3 , • bc4 ,2又b c 5 , 由余弦定理得 2 .2a b2 2c 2bccosA b c 3bc13• a 13 .例题二:【答案】(1) 3; ( 2) 4 2 . 【解析】(1)在△ ABD 中,■/ cos ADB1 ,• sin ADB3223 , BDABABsi n BAD 4 2 -Z 3 由正弦疋理一,• BDsin BAD sin ADB 'sin ADB 2 23(2) •/ ADB CDB n,1cos ADB -. 32 1得 17 9 CD 22 3CD -,解得 CD 4或 CD 2 (舍).32例题三:【答案】(1) B 2 n; (2) S\ABC••• △ BCD 的面积S -BD CD sin CDB 222 33.3 4二 cos CDB cos n ADB二 sin CDB sin nADBsin ADBCDB在厶BCD 中,由余弦定理 BC 2 32BD 22CD 22BD CD cos CDB ,23 .3sin A B 2cosBsinC 0 ,••• 0由 2k n n2x 丄2k n 丄得k n ni x k nn26 236故所求单调递增区间为kn -,k n n k Z3 6(2 )由 f C 1,得 2sin 2Cn61 ,二 2C -nn 2k n 或 2C —5 n2k n, • C k n 或 C -6 6663•/ C 0, n,• •C 二3又T sinCsin B Asin BA sinB A 2sin B cosAk n,/• 2sin B cos A 2sin2 A ,即 sinBcosA 2sin AcosA ,n,即函数最小正周期为 n ,T 行■/ sin AB sinC .二 cos B(2) 由余弦定理得92ac 2 2a c ac 9 ,ac 9 ,c 3 2.3, 3,二 a c…S A ABC 1 acsin B 2例题四:(1) 函数最小正周期为单调递增区间为-,k n 3S ^ ABC2、3 3【解析】 (1) f2.3sin x cosx cossin 2x . 3sin 2xcos2x 2sin 2x23 .33【解析】(1) ■/ a 2c cosB bcosA 0,sin A 2sinC cosB sin BcosA 0 , sin AcosB sin BcosA 2sinCcosB 0 ,①当 cos A 0时,即A n,则由C n, c 2 32,可得 S^ ABC2、3 3②当 cos A 0 时,贝U sinB 2sin A ,即 b 2a 则由 cosC a 2 b 2 c 2 2ab -absin C2综上:S A ABC ^-3…S A ABC1 2.3 ,解得a2 32 3。
2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)
专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
2020年高考数学专题复习三角函数的图象与性质
三角函数的图象与性质1.正弦、余弦、正切函数的图象与性质2.周期函数的定义对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期;函数y=A sin(ωx +φ)和y =A cos(ωx +φ)的周期均为T =2π|ω|;函数y =A tan(ωx +φ)的周期为T =π|ω|. 3.对称与周期正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻的两个对称中心之间的距离是半个周期.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( ) (4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( )(5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)×函数y =tan 3x 的定义域为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+3k π,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π,k ∈ZC .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π6+k π,k ∈ZD .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π3,k ∈Z解析:选D.由3x ≠π2+k π(k ∈Z ),得x ≠π6+k π3,k ∈Z .故选D.(2019·温州市十校联合体期初)下列函数中,最小正周期为π的是( ) A .y =cos 4x B .y =sin 2x C .y =sin x 2D .y =cos x4解析:选B.A.y =cos 4x 的周期T =2π4=π2,本选项错误;B.y =sin 2x 的周期T =2π2=π,本选项正确;C.y =sin x 2的周期为T =2π12=4π,本选项错误;D.y =cos x4的周期为T=2π14=8π,本选项错误,则最小正周期为π的函数为y =sin 2x. (2019·金华十校联考)函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z) 函数f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π]的减区间为________.解析:当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π4,π.答案:⎣⎢⎡⎦⎥⎤π4,π三角函数的定义域和值域(1)(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(2)函数y =lg(2sin x -1)+1-2cos x 的定义域是________.【解析】 (1)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(2)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0, 即⎩⎪⎨⎪⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z .即函数的定义域为⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z .【答案】 (1)1 (2)⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z(1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;③(换元法)把sin x 或cos x 看作一个整体,转换成二次函数求值域;④(换元法)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A .⎣⎢⎡⎦⎥⎤-32,32B .⎣⎢⎡⎦⎥⎤-32,3C .⎣⎢⎡⎦⎥⎤-332,332D .⎣⎢⎡⎦⎥⎤-332,3 解析:选B.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈[-32,3],即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.(2019·温州市十校联合体期初)已知函数f (x )=2cos x ·(sin x -cos x ),x ∈R ,则f ⎝ ⎛⎭⎪⎫π4=________,f (x )的最大值是________. 解析:f (x )=2cos x (sin x -cos x ) =2cos x sin x -2cos 2x =sin 2x -1-cos 2x=2sin ⎝⎛⎭⎪⎫2x -π4-1. 当x =π4时,f ⎝ ⎛⎭⎪⎫π4=2sin ⎝⎛⎭⎪⎫2×π4-π4-1=0.由正弦函数的图象和性质可得,sin ⎝ ⎛⎭⎪⎫2x -π4的最大值为1.所以f (x )的最大值为2-1. 答案:02-1三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度为中档题.主要命题角度有:(1)求已知三角函数的单调区间; (2)已知三角函数的单调区间求参数; (3)利用三角函数的单调性比较大小;(4)利用三角函数的单调性求值域(或最值).(见本节例1(1)及跟踪训练T1)角度一 求已知三角函数的单调区间(2017·高考浙江卷)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.【解】 (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12,得f ⎝ ⎛⎭⎪⎫2π3=2.(2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期是π.由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z , 所以,f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).角度二 已知三角函数的单调区间求参数函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,则常数φ的值可能是( )A .0B .π2C .πD .3π2【解析】 法一:结合选项,当φ分别取选项中的值时,A :f (x )=sin x ;B :f (x )=cos x ;C :f (x )=-sin x ;D :f (x )=-cos x .验证得D 选项正确.法二:⎝⎛⎭⎪⎫π3,2π3⊆f (x )的递增区间,⎝ ⎛⎭⎪⎫π3,2π3⊆⎝ ⎛⎭⎪⎫-π2-φ+2k π,π2-φ+2k π,⇒-5π6+2k π≤φ≤-π6+2k π(k ∈Z ),k =0,选项中无值符合;k =1,7π6≤φ≤11π6,φ=3π2符合; k =2,19π6≤φ≤23π6,选项中无值符合.可知φ的可取值逐渐增大,故只有D 选项符合题意.【答案】 D角度三 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 1021π,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上递增,所以c <a <b .【答案】 B(1)求三角函数单调区间的两种方法①代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.②图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.(2)利用单调性确定ω的范围的方法对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.(3)利用单调性比较大小的方法首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.1.(2019·浙江宁波质检)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,-92∪[6,+∞)B .⎝ ⎛⎦⎥⎤-∞,-92∪⎣⎢⎡⎭⎪⎫32,+∞C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析:选D.当ω>0时,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,由题意知π4ω≤-π2,所以ω≤-2.综上可知,ω的取值范围是(]-∞,-2∪⎣⎢⎡⎭⎪⎫32,+∞.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为 ( )A .-1B .-22C .22D .0解析:选B.由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin(2x -π4)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.3.函数y =sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. 解析:(同增异减法)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )三角函数的奇偶性、周期性及对称性(1)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关(2)已知ω>0,f (x )=1+tan ωx 1-tan ωx ,f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则ω的最小值为( )A .12 B .1 C .32D .2(3)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 【解析】 (1)由于f (x )=sin 2x +b sin x +c =1-cos 2x 2+b sin x +c .当b =0时,f (x )的最小正周期为π;当b ≠0时,f (x )的最小正周期为2π.c 的变化会引起f (x )图象的上下平移,不会影响其最小正周期.故选B.(2)因为f (x )=1+tan ωx 1-tan ωx =tan ⎝⎛⎭⎪⎫ωx +π4, 所以f ⎝ ⎛⎭⎪⎫x +π3=tan ⎝⎛⎭⎪⎫ωx +ωπ3+π4, 因为f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称, 所以tan ⎝ ⎛⎭⎪⎫ωx +π4+tan ⎝ ⎛ω2π3-ωx +ωπ3+⎭⎪⎫π4=0, 即tan ⎝ ⎛⎭⎪⎫ωx +π4=tan ⎝⎛⎭⎪⎫ωx -ωπ-π4,所以π4=-ωπ-π4+k π,(k ∈Z ),ω=-12+k ,(k ∈Z ),因为ω>0,所以当k =1时,ω取最小值为12,故选A.(3)f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin(ωx +φ+π4),因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增. 【答案】 (1)B (2)A (3)D三角函数的奇偶性、对称性和周期问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.[提醒] 对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.1.(2019·舟山市普陀三中高三期中)设函数f (x )=sin(2x +φ)+cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2为偶函数,则φ=( )A .π2B .π3C .π4D .π6解析:选C.f (x )=sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4, 因为函数f (x )为偶函数,所以f (-x )-f (x )=2sin ⎝ ⎛⎭⎪⎫-2x +φ+π4-2sin ⎝ ⎛⎭⎪⎫2x +φ+π4=0,即sin ⎝ ⎛⎭⎪⎫-2x +φ+π4=sin ⎝⎛⎭⎪⎫2x +φ+π4,所以-2x +φ+π4=2x +φ+π4+2k π,或-2x +φ+π4+2x +φ+π4=π+k π,即x =-k π2,k ∈Z (舍)或φ=π4+k π2,k ∈Z . 因为|φ|<π2,所以φ=π4.2.(2019·浙江省名校协作体高三联考)已知函数f (x )=sin 2x ·(1-2sin 2x )+1,则f (x )的最小正周期T =________,f (T )=________.解析:由题意得,f (x )=sin 2x cos 2x +1=12sin 4x +1,所以最小正周期T =2π4=π2,f (T )=f ⎝ ⎛⎭⎪⎫π2=1.答案:π213.已知函数f (x )=sin x 的图象与直线kx -y -k π=0(k >0)恰有三个公共点,这三个点的横坐标从小到大分别为x 1,x 2,x 3,则tan (x 2-x 3)x 1-x 3=________.解析:如图所示,易知x 2=π,x 1+x 3=2x 2=2π,则k =sin x 3-0x 3-x 2=sin x 312(x 3-x 1),又直线与y =sin x 相切于点A (x 3,sin x 3), 则k =cos x 3, 则sin x 312(x 3-x 1)=cos x 3⇒tan (x 2-x 3)x 1-x 3=tan x 3x 3-x 1=12,故答案为12.答案:12奇偶性对于y =A sin(ωx +φ)(A ≠0),若为奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=π2+k π(k ∈Z ).对于y =A cos(ωx +φ)(A ≠0),若为奇函数,则φ=π2+k π(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).对于y =A tan(ωx +φ)(A ≠0),若为奇函数,则φ=k π2(k∈Z ).函数图象的对称中心、对称轴(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数图象的对称轴或对称中心时,都是先把“ωx +φ”看作一个整体,然后根据y =sin x 和y =cos x 图象的对称轴或对称中心进行求解. (2)在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.易错防范(1)闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时的情况,避免出现增减区间的混淆.[基础达标]1.最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:选B.由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝ ⎛⎭⎪⎫2×π3-π3=sin π3=32,所以D 不正确,对于B ,sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确,故选B.2.(2019·合肥市第一次教学质量检测)函数y =sin(ωx +π6)在x =2处取得最大值,则正数ω的最小值为( )A .π2B .π3C .π4D .π6解析:选D.由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),因为ω>0,所以当k =0时,ωmin =π6,故选D.3.(2019·浙江省名校协作体高三联考)下列四个函数:y =sin|x |,y =cos|x |,y =|tanx |,y =-ln|sin x |,以π为周期,在⎝⎛⎭⎪⎫0,π2上单调递减且为偶函数的是( )A .y =sin|x |B .y =cos|x |C .y =|tan x |D .y =-ln|sin x |解析:选D.A.y =sin|x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故A 错误;B.y =cos|x |=cos x 周期为T =2π,故B 错误;C.y =|tan x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故C 错误;D.f (x +π)=-ln|sin(x +π)|=-ln|sin x |,周期为π,当x ∈⎝ ⎛⎭⎪⎫0,π2时,y =-ln(sin x )是在⎝⎛⎭⎪⎫0,π2上单调递减的偶函数,故D 正确,故选D.4.(2017·高考全国卷Ⅲ)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝ ⎛⎭⎪⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,23π上单调递减,在⎝ ⎛⎭⎪⎫23π,π上单调递增,故D 不正确.所以选D.5.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A .⎝ ⎛⎦⎥⎤0,112∪⎣⎢⎡⎦⎥⎤14,23B .⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23C .⎣⎢⎡⎦⎥⎤14,23 D .⎣⎢⎡⎦⎥⎤13,23 解析:选B.易知函数y =sin x 的单调区间为 [k π+π2,k π+3π2],k ∈Z ,由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z ,因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆⎣⎢⎢⎡⎦⎥⎥⎤k π+π3ω,k π+4π3ω,k ∈Z , 所以⎩⎪⎨⎪⎧k π+π3ω≤π,k π+4π3ω≥2π,k ∈Z ,解得k +13≤ω≤k 2+23,k ∈Z ,由k +13≤k 2+23,得k ≤23,当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω的取值范围是⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23.故选B. 6.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( )A .⎣⎢⎡⎦⎥⎤π12,7π12B .⎣⎢⎡⎦⎥⎤-5π12,π12C .⎣⎢⎡⎦⎥⎤-π3,2π3D .⎣⎢⎡⎦⎥⎤-π6,5π6解析:选A.由题意,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ),所以y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.7.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z8.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x ,则t ∈[-2,2],且sin x cos x =t 2-12,所以y =16-12t+9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.答案:729.(2019·温州市高中模考)已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,32,则b -a 的最大值和最小值之差等于________.解析:如图,当x ∈[a 1,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32且b -a 最大;当x ∈[a 2,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32,且b -a 最小,所以最大值与最小值之差为(b -a 1)-(b -a 2)=a 2-a 1=-π2-⎝ ⎛⎭⎪⎫-4π3=5π6.答案:5π610.(2019·杭州学军中学质检)已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎥⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________. 解析:因为f (x )=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎝ ⎛⎦⎥⎤0,π4,所以⎝⎛⎭⎪⎫2x -π3∈⎝ ⎛⎦⎥⎤-π3,π6,所以2sin ⎝⎛⎭⎪⎫2x -π3∈(-3,1],所以|f (x )|=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2x -π3<3,所以m ≥ 3.答案:[3,+∞)11.(2019·杭州市名校协作体高三下学期考试)已知0≤φ<π,函数f (x )=32cos(2x +φ)+sin 2x .(1)若φ=π6,求f (x )的单调递增区间;(2)若f (x )的最大值是32,求φ的值.解:(1)由题意f (x )=14cos 2x -34sin 2x +12=12cos ⎝⎛⎭⎪⎫2x +π3+12,由2k π-π≤2x +π3≤2k π,得k π-2π3≤x ≤k π-π6.所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-2π3,k π-π6,k ∈Z .(2)由题意f (x )=⎝ ⎛⎭⎪⎫32cos φ-12cos 2x -32sin φsin 2x +12,由于函数f (x )的最大值为32,即⎝ ⎛⎭⎪⎫32cos φ-122+⎝ ⎛⎭⎪⎫32sin φ2=1,从而cos φ=0,又0≤φ<π,故φ=π2.12.(2019·台州市高三期末评估)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,且x =π12为f (x )图象的一条对称轴.(1)求ω和φ的值;(2)设函数g (x )=f (x )+f ⎝⎛⎭⎪⎫x -π6,求g (x )的单调递减区间.解:(1)因为f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,由T =2πω=π,所以ω=2,由2x +φ=k π+π2,k ∈Z ,所以f (x )的图象的对称轴为x =k π2+π4-φ2,k ∈Z . 由π12=k π2+π4-φ2,得φ=k π+π3. 又|φ|≤π2,则φ=π3.(2)函数g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫2x +π3+sin 2x =12sin 2x +32cos 2x +sin 2x=3sin ⎝⎛⎭⎪⎫2x +π6.所以g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .[能力提升]1.(2019·湖州市高三期末考试)若α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则必有( )A .α2<β2B .α2>β2C .α<βD .α>β解析:选B.α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,即αsin α>βsin β,再根据y =x sin x 为偶函数,且在⎣⎢⎡⎦⎥⎤0,π2上单调递增,可得|α|>|β|,即α2>β2,故选B.2.若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D.f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at+1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D. 3.(2019·浙江“七彩阳光”联盟高三联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的图象过点⎝ ⎛⎭⎪⎫0,32,若f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则ω的值为________;当ω最小时,函数g (x )=f ⎝⎛⎭⎪⎫x -π3-22在区间[0,22]的零点个数为________.解析:由题意得φ=π3,且当x =π6时,函数f (x )取到最大值,故π6ω+π3=π2+2kπ,k ∈Z ,解得ω=1+12k ,k ∈N ,又因为ω>0,所以ω的最小值为1,因此,g (x )=f ⎝⎛⎭⎪⎫x -π3-22=sin x -22的零点个数是8个. 答案:1+12k (k ∈N ) 84.(2019·金华市东阳二中高三调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1(ω>0),直线y =3与函数f (x )图象相邻两交点的距离为π.(1)求ω的值;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若点⎝ ⎛⎭⎪⎫B2,0是函数y =f (x )图象的一个对称中心,且b =3,求△ABC 面积的最大值.解:(1)函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1=sin ωx cos π6-cos ωx sin π6-2·1+cos ωx2+1=32sin ωx -32cos ωx =3sin ⎝⎛⎭⎪⎫ωx -π3.因为f (x )的最大值为3,所以f (x )的最小正周期为π, 所以ω=2.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,因为3sin ⎝⎛⎭⎪⎫B -π3=0⇒B =π3,因为cos B =a 2+c 2-b 22ac =a 2+c 2-92ac =12,所以ac =a 2+c 2-9≥2ac -9,ac ≤9, 故S △ABC =12ac sin B =34ac ≤934.故△ABC 面积的最大值为934.5.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ].所以f (x )∈[b ,3a +b ],又因为-5≤f (x )≤1, 所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,所以4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,所以sin ⎝⎛⎭⎪⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k∈Z ,所以g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
高考数学专题复习题:三角函数
高考数学专题复习题:三角函数1.下列函数中是奇函数,且最小正周期是π的函数是( )A .cos |2|y x =B .|sin |y x =C .sin 22y x π⎛⎫=+ ⎪⎝⎭D .3cos 22y x π⎛⎫=− ⎪⎝⎭2.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 4.函数[]2sin 2,0,6y x x ππ⎛⎫=−∈ ⎪⎝⎭的增区间是( )A .0,3π⎡⎤⎢⎥⎣⎦B .7,1212ππ⎡⎤⎢⎥⎣⎦ C .5,36ππ⎡⎤⎢⎥⎣⎦ D .5,6ππ⎡⎤⎢⎥⎣⎦ 5.函数2sin cos ,36y x x x R ππ⎛⎫⎛⎫=−−+∈ ⎪ ⎪⎝⎭⎝⎭的最小值为( ) A .-3 B .-2 C .-1 D .6.函数y =|sin x |的一个单调增区间是( )A .⎝ ⎛⎭⎪⎫-π4,π4B .⎝ ⎛⎭⎪⎫π4,3π4C .⎝ ⎛⎭⎪⎫π,3π2D .⎝ ⎛⎭⎪⎫3π2,2π 7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2) 9.函数2cos ,,363y x x πππ⎛⎫⎡⎤=−∈ ⎪⎢⎥⎝⎭⎣⎦的值域为________.10.如果x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,那么函数y =3-sin x -2cos 2x 的最小值为________,最大值为________.11.如果关于x 的不等式23sin 2cos 30x x m +++>在7,36ππ⎡⎤⎢⎥⎣⎦上恒成立,那么m 的取值范围为________. 12.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.13.如果函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,那么ω=________.14.函数)sin(cos x y =的定义域是________.15.sin 1,sin 2,sin 3按从小到大排列的顺序为________.16.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若⎝ ⎛⎭⎪⎫π8,5π8是f (x )的一个单调递增区间,则φ的值为________.17.已知函数()2sin 26f x x m π⎛⎫=−− ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围为________.18.x y 2cos log 21=的增区间为________.19.3cos 2−=x y 的增区间为________.20.已知函数,且. (1)求的解析式.(2)已知,且,求.()),02f x x πϕϕ=+<<(0)1f =()fx ()()44f f ππαα−++=322παπ<<sin cos αα−。
历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
2020高考数学复习 第四章 三角函数4-3试题 精品
第四章 第三讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.(2020·福建,1)函数f (x )=sin x c os x 的最小值是( )A .-1B .-12 C.12D .1答案:B解析:∵f (x )=sin x cos x =12sin2x ,∴f (x )min =-12.2.下列各项中,值为32的是( )A .2sin15°cos15°B .cos 215°-sin 215°C .2sin 215°-1 D .sin 215°+cos 215°答案:B解析:2sin15°cos15°=sin30°=12,排除选项A.2sin 215°-1=-cos30°=-32,否定C. sin 215°+cos 215°=1,否定D.cos 215°-sin 215°=cos30°=32.故选B. 3.已知tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)等于( )A.2318B.322C.1322D.318 答案:B解析:tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)·tan (β-π4)=25-141+25×14=322,故选B. 4.(2020·山东烟台)已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-π2,π2),则α+β等于( )A . 2π3B .-2π3C .π3或2π3 D. π3或-2π3答案:B解析:由题意可知:tan α+tan β=-33, tan α·tan β=4,∴tan(α+β)=tan α+tan β1-tan α·tan β= 3.又∵α、β∈(-π2,π2),∴α+β∈(-π,π).又∵tan α+tan β=-33,tan α·tan β=4,∴α、β同为负角,∴α+β=-2π3.5.(2020·河北唐山)已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么t an θ=( )A.。
新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)
专项一解三角形考点1 三角函数的图象与性质及三角恒等变换大题拆解技巧【母题】(2020年天津卷)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin (2A+π4)的值.【拆解1】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13,求角C的大小.【解析】在△ABC中,由a=2√2,b=5,c=√13及余弦定理,得cosC=a 2+b2-c22ab=2×2√2×5=√22,又因为C∈(0,π),所以C=π4.【拆解2】在△ABC中,已知C=π4,a=2√2,c=√13,求sin A的值.【解析】在△ABC 中,由C=π4,a=2√2,c=√13及正弦定理,可得sinA=asinC c=2√2×√22√13=2√1313.【拆解3】在△ABC 中,已知a<c,sin A=2√1313,求sin 2A,cos 2A 的值.【解析】由a<c 知角A 为锐角,由sin A=2√1313,可得cosA=√1-sin 2A =3√1313, 所以sin 2A=2sin Acos A=1213,cos 2A=2cos2A-1=513.【拆解4】已知sin 2A=1213,cos 2A=513,求sin (2A+π4)的值.【解析】因为sin 2A=1213,cos 2A=513,所以sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=1213×√22+513×√22=17√226.小做 变式训练设函数f(x)=2sin 2x-sin(2x-π6).(1)当x∈[0,π2]时,求f(x)的值域;(2)若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【拆解1】已知函数f(x)=2sin 2x-sin(2x-π6).化简该函数解析式.【解析】f(x)=1-cos 2x-(√32sin 2x-12cos 2x)=1-sin (2x+π6).【拆解2】已知函数f(x)=1-sin(2x+π6),当x∈[0,π2]时,求f(x)的值域. 【解析】已知函数f(x)=1-sin(2x+π6),∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[-12,1],∴f(x)的值域为[0,32].【拆解3】已知函数f(x)=1-sin(2x+π6),若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,求g(x)的解析式. 【解析】g(x)=f(x-π6)=1-sin[2(x-π6)+π6]=1-sin(2x-π6).【拆解4】已知函数g(x)=1-sin(2x-π6),且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【解析】∵g(x0)=1-sin(2x0-π6)=23,∴sin(2x0-π6)=13.又x0∈[-π2,0],sin(2x0-π6)>0,∴2x0-π6∈[-7π6,-π),∴cos(2x0-π6)=-2√23,∴cos 2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=-2√23×√32-13×12=-2√6+16.通法 技巧归纳1.求解三角函数的值域(最值)常见的三种类型:(1)形如y=asin x+bcos x+c 的三角函数化为y=Asin(ωx+φ)+c 的形式,再求值域(最值);(2)形如y=asin 2x+bsin x+c 的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值);(3)形如y=asin xcos x+b(sin x±cos x)+c 的三角函数,可先设t=sin x±cos x,化为关于t 的二次函数求值域(最值).2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的变换.突破 实战训练 <基础过关>1.已知函数f(x)=1-2cos 2x+2√3sin xcos x(x∈R). (1)求f(2π3)的值;(2)求f(x)的最小正周期及单调递增区间.【解析】(1)f(x)=-cos 2x+√3sin 2x=2(-12cos 2x+√32sin 2x)=2sin(2x-π6),则f(2π3)=2sin(2×2π3-π6)=-1.(2)最小正周期T=2π2=π,令-π2+2kπ≤2x -π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,即单调递增区间为[-π6+kπ,π3+kπ],k∈Z.2.已知函数f(x)=(sin x-1)·(cos x+1). (1)若sin α-cos α=12,求f(α);(2)求f(x)的值域.【解析】(1)因为sin α-cos α=12,所以1-2sin αcos α=14,即sin αcos α=38.从而f(α)=(sin α-1)(cos α+1)=sin αcos α+sin α-cos α-1=-18.(2)令t=sin x-cos x,则sin xcos x=1-t 22,其中t∈[-√2,√2],则原问题转化为求y=-t 22+t-12在[-√2,√2]上的值域. 因为y=-t 22+t-12=-12(t-1)2,所以y∈[-32-√2,0].故f(x)的值域为[-32-√2,0].3.已知函数f(x)=sin 2x+√3sin xcos x. (1)求函数y=f(x)图象的对称中心; (2)若f(α2-π24)=1310,求sin 2α.【解析】(1)由二倍角公式得f(x)=√32sin 2x-12cos 2x+12,故f(x)=sin(2x-π6)+12,令2x-π6=kπ,k∈Z,解得x=12kπ+π12,k∈Z,所以函数y=f(x)图象的对称中心是(π12+12kπ,12),k∈Z.(2)由f(α2-π24)=1310,得sin(α-π4)+12=1310,所以sin(α-π4)=45,故sin 2α=cos(2α-π2)=1-2sin2(α-π4)=-725.4.设向量a=(√3sin x,sin x),b=(cos x,sin x),x∈[0,π2].(1)若|a|=|b|,求实数x 的值; (2)设函数f(x)=a·b,求f(x)的最大值. 【解析】(1)|a|2=(√3sin x)2+sin2x=4sin2x,|b|2=cos2x+sin2x=1,根据|a|=|b|,得4sin2x=1,又x∈[0,π2],从而sinx=12,∴x=π6.(2)f(x)=a·b=√3sin x·cos x+sin2x=√32sin 2x-12cos 2x+12=sin(2x-π6)+12,∵x∈[0,π2],∴2x -π6∈[-π6,5π6],∴当2x-π6=π2,即x=π3时,f(x)max=f(π3)=32,∴f(x)的最大值为32.<能力拔高>5.已知函数f(x)=sin 2(x -π3)-12(cos 2x-1).(1)求f(x)的单调递增区间;(2)若y=g(x)的图象是由y=f(x)的图象向右平移π6个单位长度得到的,则当x∈[-π2,π2]时,求满足g(x)≤54的实数x 的集合.【解析】(1)f(x)=sin2(x -π3)-12(cos 2x-1)=1-cos(2x -2π3)2-12cos 2x+12=12-12(-12cos2x +√32sin2x)-12cos 2x+12 =14cos 2x-√34sin 2x-12cos 2x+1=-√34sin 2x-14cos 2x+1=-12sin (2x +π6)+1. 令2x+π6∈[π2+2kπ,3π2+2kπ],k∈Z,则x∈[π6+kπ,2π3+kπ],k∈Z,所以f(x)的单调递增区间为x∈[π6+kπ,2π3+kπ],k∈Z.(2)由题可知g(x)=-12sin [2(x -π6)+π6]+1=-12sin (2x -π6)+1,由g(x)≤54,得sin (2x -π6)≥-12,由x∈[-π2,π2],得2x-π6∈[-7π6,5π6],由正弦函数的图象与性质可知2x-π6∈[-7π6,-5π6]∪[-π6,5π6],则x∈[-π2,-π3]∪[0,π2],即所求实数x 的取值集合为{x|-π2≤x ≤-π3或0≤x ≤π2}.6.已知θ∈(0,π3)且满足sin θ+sin (θ+π3)=4√35. (1)求cos(2θ+π3)的值;(2)已知函数f(x)=sin xcos(θ+π6)+cos xsin(θ+π6),若方程f(x)=a 在区间[0,π2]内有两个不同的解,求实数a 的取值范围. 【解析】(1)由sin θ+sin (θ+π3)=4√35,得32sin θ+√32cos θ=4√35,即sin(θ+π6)=45,则cos(2θ+π3)=cos (2θ+π6)=1-2sin 2(θ+π6)=1-2×(45)2=-725.(2)由θ∈(0,π3),令φ=θ+π6,则φ∈(π6,π2),得cos(θ+π6)=35,f(x)=sin xcos φ+cos xsin φ=sin(x+φ),当0≤x≤π2时,φ≤x+φ≤π2+φ,当x+φ=π2,即x=π2-φ时,f(x)max =1,当0≤x≤π2-φ时,f(x)是单调递增的,函数值从sin φ=45增到1,当π2-φ≤x≤π2时,f(x)是单调递减的,函数值从1减到sin(π2+φ)=cos φ=35,方程f(x)=a 在区间[0,π2]内有两个不同的解,即f(x)图象与直线y=a 有两个不同的公共点,则45≤a<1,所以实数a 的取值范围是[45,1).<拓展延伸>7.设函数f(x)=asin x+bcos x,其中a,b 为常数.(1)当x=2π3时,函数f(x)取最大值2,求函数f(x)在[π2,π]上的最小值;(2)设g(x)=-asinx,当b=-1时,不等式f(x)>g(x)对x∈(0,π)恒成立,求实数a 的取值范围.【解析】(1)由题意得{√a 2+b 2=2,√32a -12b =2,解得{a =√3,b =-1,∴f(x)=√3sin x-cos x=2sin (x -π6).当x∈[π2,π]时,x-π6∈[π3,5π6],∴f(x)min=2sin 5π6=1.(2)∵f(x)>g(x),∴asin x -cos x>-asinx.当x∈(0,π)时,sin x∈(0,1],∴asin2x -sin xcos x>-a,即a(1-cos 2x)-sin 2x>-2a,整理得3a>sin 2x+acos 2x.又sin 2x+acos 2x=√a 2+1sin(2x+φ),其中tan φ=a,∴(sin 2x+acos 2x)max=√a 2+1,∴3a>√a 2+1,解得a>√24,∴不等式f(x)>g(x)对x∈(0,π)恒成立时,a∈(√24,+∞).8.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π2<φ<π2)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2). (1)求函数f(x)的解析式;(2)将函数f(x)的图象向左平移a(a∈(0,2π))个单位长度后,得到函数g(x)的图象,若g(x)是奇函数,求实数a 的值.新高考数学 大题专项训练 学科精品资源11 / 11【解析】(1)由题意得A=2,T 2=x0+2π-x0=2π, 即T=2πω=4π,解得ω=12, ∴f(0)=2cos (12×0+φ)=1,即cos φ=12. ∵-π2<φ<π2,∴φ=-π3或φ=π3, 若φ=π3,当x>0时,函数先取得最小值,后取得最大值,不符合图象, ∴φ=-π3, ∴函数f(x)的解析式为f(x)=2cos (12x -π3). (2)由题意得g(x)=2cos [12(x +a )-π3]. ∵y=g(x)是奇函数,∴g(0)=2cos (a 2-π3)=0, ∴a 2-π3=kπ-π2(k∈Z),即a=2kπ-π3(k∈Z). 又a∈(0,2π),∴a=5π3. 当a=5π3时,g(x)=2cos [12(x +5π3)-π3]=2cos (12x +π2)=-2sin 12x, 此时有g(-x)=-g(x),即函数g(x)为奇函数,故a=5π3.。
高考数学压轴专题2020-2021备战高考《三角函数与解三角形》知识点总复习附答案
新数学《三角函数与解三角形》复习知识点(1)一、选择题1.已知函数()()sin 3cos 0x f x x ωωω=->,若集合()(){}0,1x f x π∈=-含有4个元素,则实数ω的取值范围是( ) A .35,22⎡⎫⎪⎢⎣⎭B .35,22⎛⎤⎥⎝⎦C .725,26⎡⎫⎪⎢⎣⎭D .725,26⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】化简f (x )的解析式,作出f (x )的函数图象,利用三角函数的性质求出直线y=﹣1与y=f (x )在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间. 【详解】 f (x )=2sin (ωx ﹣3π), 作出f (x )的函数图象如图所示:令2sin (ωx ﹣3π)=﹣1得ωx ﹣3π=﹣6π+2kπ,或ωx ﹣3π=76π+2kπ, ∴x=6πω+2k πω,或x=32πω+2k πω,k ∈Z , 设直线y=﹣1与y=f (x )在(0,+∞)上从左到右的第4个交点为A ,第5个交点为B , 则x A =322ππωω+,x B =46ππωω+, ∵方程f (x )=﹣1在(0,π)上有且只有四个实数根, ∴x A <π≤x B ,即322ππωω+<π≤46ππωω+,解得72526ω≤<. 故选B .【点睛】本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.2.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .5π3B .43π C .23π D .3π【答案】C 【解析】 【分析】首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】依题意π2sin 23y x θ⎛⎫=++⎪⎝⎭,由于函数为奇函数,故πππ,π33k k θθ+==-,当1,2k =时,2π3θ=或5π3θ=,由此排除B,D 两个选项.当2π3θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,()2sin 22π2sin 2y x x =+=,在0,4⎡⎤⎢⎥⎣⎦π上是增函数,不符合题意.故选C. 【点睛】本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.3.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102x << B .112x << C .12x << D .01x <<【答案】D 【解析】 【分析】根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】将ABC V 的三条边的边长均增加x 米形成A B C '''V ,设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则cos 0A '∠<,所以()()()()()2222342340x x x x x x x ⎧+++<+⎪+++>+⎨⎪>⎩,解得01x <<.故选:D. 【点睛】本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题.4.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( ) A.B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.7.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度 【答案】D 【解析】 【分析】先将函数cos 29y x π⎛⎫=- ⎪⎝⎭转化为7sin 218y x π⎛⎫=+⎪⎝⎭,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.8.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos 2cos a B b A C+=,1a =,b =c =( )A B .1CD 【答案】B 【解析】 【分析】先由正弦定理将cos cos 2cos a B b A C+=中的边转化为角,可得sin()A B +=可求出角6C π=,再利用余弦定理可求得结果.【详解】解:因为cos cos 2cos a B b A C+=,所以正弦定理得,sin cos sin cos A B B A +=所以sin()A B +=sin 2cos C C C=,因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6C π=,因为1a =,b =所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c = 故选:B 【点睛】此题考查的是利用正、余弦定理解三角形,属于中档题.9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【答案】B 【解析】 【分析】 【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,∵π2<A <π, ∴A= 3π4,由正弦定理可得c sin sin aC A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c , ∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 3f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.11.函数()2sin sin cos y x x x =+的最大值为( )A .1B 1CD .2【答案】A 【解析】由题意,得()22sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+π2114x ⎛⎫=-+≤ ⎪⎝⎭;故选A.12.已知sin α,sin()10αβ-=-,,αβ均为锐角,则β=( ) A .512πB .3π C .4π D .6π 【答案】C 【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均为锐角,∴-2π <α-β<2π.又sin(α-β)=-10,∴cos(α-β)=10.又sin αcos α ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=-×⎛ ⎝⎭.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-【答案】C 【解析】 【分析】由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】由π1cos α25⎛⎫-= ⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=. 故选C . 【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案.【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且tanC cos cos c B A =,若c =4a =,则b 的值为( )A .6B .2C .5D【答案】A 【解析】 【分析】由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值. 【详解】解:∵tan cos cos c C B A =, ∴由正弦定理可得:)()sin tan sin cos sin cos C C A B B A A B C =+=+=,∵sin 0C ≠,∴可得tan C = ∵()0,C π∈, ∴3C π=,∵c =4a =,∴由余弦定理2222cos c a b ab C =+-,可得212816242b b =+-⨯⨯⨯,可得24120b b --=,∴解得6b =,(负值舍去).故选:A .【点睛】本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若1b =,c =,且2sin()cos 12cos sin B C C A C +=-,则ABC V 的面积是( )A B .12 C D .14或12【答案】C【解析】【分析】 根据已知关系求出1sin 2B =,根据余弦定理求出边a ,根据面积公式即可得解. 【详解】因为2sin()cos 12cos sin B C C A C +=-,所以2sin cos 12cos sin A C A C =-, 所以2sin cos 2cos sin 1A C A C +=,所以2sin()1A C +=,所以2sin 1B =,即1sin 2B =,因为b c <,所以B C <,所以角B 为锐角,所以cos 2B ==,由余弦定理2222cos b a c ac B =+-得2132a a =+-⨯, 整理可得2320a a -+=,解得1a =或2a =.当1a =时,ABC V 的面积是111sin 12224S ac B ==⨯=;当2a =时,ABC V 的面积是111sin 2222S ac B ==⨯=. 故选:C.【点睛】此题考查根据余弦定理解三角形,关键在于熟练掌握定理公式,结合边角关系解方程,根据面积公式求解.17.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( )A .()f x 在区间[]2ππ--,上是减函数B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B【解析】【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.18.函数()sin())f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( )A .[-2+12k ,4+12k](k ∈Z )B .[-5+12k ,1+12k](k ∈Z )C .[1+12k ,7+12k](k ∈Z )D .[-2+6k ,1+6k](k ∈Z ) 【答案】B【解析】【分析】由题意得()23f x sin x πωϕ⎛⎫=++ ⎪⎝⎭,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6π=ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间.【详解】由题意得()()()23f x sin x x sin x πωϕωϕωϕ⎛⎫=++=++⎪⎝⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=,∴函数()f x 的周期为12T =, ∴6π=ω, ∴()263f x sin x ππϕ⎛⎫=++ ⎪⎝⎭. 又函数图象过点()1,2, ∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫++=+== ⎪ ⎪⎝⎭⎝⎭, ∴cos 1ϕ=,∴2()k k Z ϕπ=∈,∴()263f x sin x ππ⎛⎫=+⎪⎝⎭. 由22,2632k x k k Z ππππππ-+≤+≤+∈,得512112,k x k k Z -+≤≤+∈, ∴()f x 的单调增区间为[]()512,112k k k Z -++∈.故选B .【点睛】解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.19.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.20.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+⎪⎝⎭;④tan 24y x π⎛⎫=-⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③【答案】A【解析】逐一考查所给的函数: cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ== ; 综上可得最小正周期为π的所有函数为①②③.本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.。
2020版高考数学一轮复习第3章三角函数、解三角形第6讲正弦定理和余弦定理理解析版
第6讲 正弦定理和余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆的半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析因为a=4,b=5,c=6,所以cos A=b2+c2-a22bc=52+62-422×5×6=34,所以sin2Asin C=2sin A cos Asin C=2a cos Ac=2×4×346=1.题型一利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________;(2)(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b =6,c=3,则A=________.答案(1)1 (2)75°解析(1)因为sin B=12且B∈(0,π),所以B=π6或B=5π6,又C=π6,所以B=π6,A=π-B-C=2π3,又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.(2) 如图,由正弦定理,得3sin60°=6sin B,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析因为a=62b,A=2B,所以由正弦定理可得62bsin2B=bsin B,所以622sin B cos B=1sin B,所以cos B=64.2.(2018·和平区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=3 bc,且sin C=23sin B,则角A的大小为________.答案π6解析由sin C=23·sin B得c=23b.∴a2-b2=3bc=3·23b2,即a2=7b2.则cos A=b2+c2-a22bc=b2+12b2-7b243b2=32.又A∈(0,π).∴A=π6.3.如图,在△ABC中,B=45°,D是BC边上一点,AD=5,AC=7,DC=3,则AB=________.答案562解析在△ACD中,由余弦定理可得cos C=49+9-252×7×3=1114,则sin C=5314.在△ABC中,由正弦定理可得ABsin C=ACsin B,则AB=AC sin Csin B=7×531422=562.题型二利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=5t2+11t 2-13t 22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2) C.⎣⎢⎡⎭⎪⎫12,2D .(1,2]答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即 2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且 (a +b )2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得11 2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3.方法指导 1.两种主要方法1全部化为角的关系,用三角恒等变换及三角函数的性质解答.2全部化为边的关系,用因式分解、配方等方法变形.2.基本原则1若出现边的一次式一般采用正弦定理;2若出现边的二次式一般采用余弦定理.。
2020版高考数学复习第四章三角函数解三角形第6节正弦定理和余弦定理习题理含解析新人教A版
第6节 正弦定理和余弦定理最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式a sin A =b sin B =csin C=2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ;c 2=a 2+b 2-2ab cos__C常见 变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin __B ∶sin __C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数 一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sinA +B2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.(必修5P10A4改编)在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos∠BAC =b 2+c 2-a 22bc=9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =2π3.答案 C3.(必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B=π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·沈阳质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( )A.2B.1C. 3D. 2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsinπ4,∴112=b22,∴b = 2. 答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A.4 2B.30C.29D.2 5解析 由题意得cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2. 答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A ,可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7.答案7考点一 利用正、余弦定理解三角形【例1】 (1)(2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6B.π3C.5π6D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( ) A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin Cc=6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc .所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C , 且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.答案 (1)75° (2)B (3)C规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3(2)(2019·郑州二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个B.2个C.0个D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =csin C,得2sin3π4=2sin C , 则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B2-cos 2C =1,可得2cos2A +B2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0, 解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3,所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13. (3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不确定解析 (1)由c b <cos A ,得sin C sin B<cos A ,又B ∈(0,π),所以sin B >0, 所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形.(2)由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直角三角形. 答案 (1)A (2)B规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.【训练2】 若将本例(2)中条件变为“c -a cos B =(2a -b )cos A ”,判断△ABC 的形状. 解 ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , ∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , ∴cos A (sin B -sin A )=0, ∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去),∴△ABC 为等腰或直角三角形.考点三 和三角形面积、周长有关的问题多维探究角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 (2018·大理模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝ ⎛⎭⎪⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12. 答案 12规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【训练3】 (2019·潍坊一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +2c )cosB +b cos A =0.(1)求B ;(2)若b =3,△ABC 的周长为3+23,求△ABC 的面积. 解 (1)由已知及正弦定理得(sin A +2sin C )cos B +sin B cos A =0, (sin A cos B +sin B cos A )+2sin C cos B =0, sin(A +B )+2sin C cos B =0,又sin(A +B )=sin C ,且C ∈(0,π),sin C ≠0, ∴cos B =-12,∵0<B <π,∴B =23π.(2)由余弦定理,得9=a 2+c 2-2ac cos B . ∴a 2+c 2+ac =9,则(a +c )2-ac =9. ∵a +b +c =3+23,b =3,∴a +c =23, ∴ac =3,∴S △ABC =12ac sin B =12×3×32=334.[思维升华]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab<0,可知角C 为钝角,则△ABC 为钝角三角形. [易错防范]1.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去.答案 D2.在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析 因为cos 2B 2=a +c 2c, 所以2cos 2B 2-1=a +c c -1,所以cos B =a c , 所以a 2+c 2-b 22ac =a c,所以c 2=a 2+b 2.所以△ABC 为直角三角形. 答案 B3.(2019·石家庄一模)在△ABC 中,AB =2,C =π6,则AC +3BC 的最大值为( )A.7B.27C.37D.47解析 在△ABC 中,AB =2,C =π6,则AB sin C =BC sin A =ACsin B=4, 则AC +3BC =4sin B +43sin A =4sin ⎝⎛⎭⎪⎫5π6-A +43sin A =2cos A +63sin A=47sin(A +θ),(其中tan θ=39). 所以AC +3BC 的最大值为47. 答案 D4.(2019·开封模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =π3,3sin 2Ccos C=2sinA sinB ,且b =6,则c =( )A.2B.3C.4D.6解析 在△ABC 中,A =π3,b =6,∴a 2=b 2+c 2-2bc cos A ,即a 2=36+c 2-6c ,① 又3sin 2C cos C =2sin A sin B ,∴3c 2cos C =2ab , 即cos C =3c 22ab =a 2+b 2-c 22ab,∴a 2+36=4c 2,②由①②解得c =4或c =-6(不合题意,舍去).因此c =4. 答案 C5.(2018·全国Ⅰ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为( ) A.33B.233C.36D.433解析 由b sin C +c sin B =4a sin B sin C 及正弦定理, 得2sin B sin C =4sin A sin B sin C , 易知sin B sin C ≠0,∴sin A =12.又b 2+c 2-a 2=8,∴cos A =b 2+c 2-a 22bc =4bc,则cos A >0.∴cos A =32,即4bc =32,则bc =833. ∴△ABC 的面积S =12bc sin A =12×833×12=233.答案 B 二、填空题6.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析 由a sin A =b sin B ,得sin B =b a sin A =217,又a 2=b 2+c 2-2bc cos A ,∴c 2-2c -3=0,解得c =3(c =-1舍去). 答案2173 7.(2019·合肥模拟)我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________.解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S △ABC =574,则b 的值为________. 解析 由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案14三、解答题9.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ; (2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437. 由正弦定理得sin A =a sin Bb =32. 由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314, 所以AC 边上的高为a sin C =7×3314=332.10.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2-ab -2b 2=0. (1)若B =π6,求A ,C ;(2)若C =2π3,c =14,求S △ABC .解 (1)由已知B =π6,a 2-ab -2b 2=0结合正弦定理化简整理得2sin 2A -sin A -1=0,于是sin A =1或sin A =-12(舍).因为0<A <π,所以A =π2,又A +B +C =π, 所以C =π-π2-π6=π3.(2)由题意及余弦定理可知a 2+b 2+ab =196,①由a 2-ab -2b 2=0得(a +b )(a -2b )=0, 因为a +b >0,所以a -2b =0,即a =2b ,② 联立①②解得b =27,a =47. 所以S △ABC =12ab sin C =14 3.能力提升题组 (建议用时:20分钟)11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( )A.4πB.8πC.9πD.36π解析 由题意及正弦定理得2R sin B cos A +2R sin A cos B =2R sin(A +B )=2(R 为△ABC 的外接圆半径).即2R sin C =2.又cos C =223及C ∈(0,π),知sin C =13.∴2R =2sin C=6,R =3. 故△ABC 外接圆面积S =πR 2=9π. 答案 C12.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( )A.6sin ⎝ ⎛⎭⎪⎫A +π3+3B.6sin ⎝ ⎛⎭⎪⎫A +π6+3C.23sin ⎝⎛⎭⎪⎫A +π3+3 D.23sin ⎝⎛⎭⎪⎫A +π6+3 解析 设△ABC 的外接圆半径为R ,则2R =3sin2π3=23,于是BC =2R sin A = 23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A . 于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝⎛⎭⎪⎫A +π3+3.答案 C13.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________.解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cos C ,所以12b cos A =sin(A +C ),所以12b cos A =sin B ,所以cos A 2=sin B b ,又sin B b =sin A a,a =23,所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3,由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12,当且仅当b =c =23时取等号, 从而△ABC 面积的最大值为12×12×32=3 3.答案 3 314.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =bsin B ,得b sin A =a sin B ,又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6, 即sin B =cos ⎝⎛⎭⎪⎫B -π6, 可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b =7.由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.。
2020高考二轮复习三角函数与解三角形
第1讲 三角函数的图象与性质[全国卷3年考情分析]函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.(2)高考对此部分内容主要以选择题、填空题的形式考查,难度为中等偏下,大多出现在第6~12或14~16题位置上.考点一 三角函数的定义、诱导公式及基本关系1.[三角函数的定义及应用](2019·昆明市诊断测试)在平面直角坐标系中,角α的始边与x 轴的正半轴重合,终边与单位圆交于点P ⎝⎛⎭⎫-35,45,则sin ⎝⎛⎭⎫α+π4=( ) A .210B .-210C .7210D .-72102.[同角三角函数的关系式及应用]若tan α=12,则sin 4α-cos 4α的值为( )A .-15B .-35C .15D .353.[诱导公式及应用]设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12 B .32 C .0 D .-121.[与数列交汇]设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个A .25B .50C .75D .1002.[与算法交汇]某一算法程序框图如图所示,则输出的S 的值为( )A.32B .-32C.3D .03.[借助数学文化考查]《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4 m 的弧田,按照上述经验公式计算所得弧田面积约是( )A .6 m 2B .9 m 2C .12 m 2D .15 m 2考点二 三角函数的图象与解析式题型一 由“图”定“式”[例1] (1)(2019·成都市第二次诊断性检测)将函数f (x )的图象上所有点向右平移π4个单位长度,得到函数g (x )的图象.若函数g (x )=A sin(ωx+φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝⎛⎭⎫x +5π12B .f (x )=-cos ⎝⎛⎭⎫2x +π3 C .f (x )=cos ⎝⎛⎭⎫2x +π3 D .f (x )=sin ⎝⎛⎭⎫2x +7π12 (2)(2019·长沙市统一模拟考试)已知P⎝⎛⎭⎫12,2是函数f (x )=A sin(ωx +φ)(A >0,ω>0)图象的一个最高点,B ,C 是与P 相邻的两个最低点.若|BC |=6,则f (x )的图象的对称中心可A .(0,0)B .(1,0)C .(2,0)D .(3,0)题型二 三角函数的图象变换[例2] (1)(2019·福建五校第二次联考)为得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin 2x 的图象( )A .向右平移5π12个单位长度B .向左平移5π12个单位长度C .向右平移5π6个单位长度D .向左平移5π6个单位长度(2)(2019·开封模拟)将函数y =sin 2x -cos 2x 的图象向左平移m (m >0)个单位长度以后得到的图象与函数y =k sin x cos x (k >0)的图象重合,则k +m 的最小值是( )A .2+π4B .2+3π4C .2+5π12D .2+7π12考点三 三角函数的性质[例3] (1)(2019·武昌区调研考试)已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z )(2)(2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数;②f (x )在区间⎝⎛⎭⎫π2,π单调递增; ③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③(3)(2019·江西省五校协作体试题)若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A.⎝⎛⎦⎤0,112∪⎣⎡⎦⎤14,23 B .⎝⎛⎦⎤0,16∪⎣⎡⎦⎤13,23 C.⎣⎡⎦⎤14,23 D .⎣⎡⎦⎤13,231.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x | C .f (x )=cos|x | D .f (x )=sin|x |2.(2019·广东六校第一次联考)将函数f (x )=cos 2x 的图象向右平移π4个单位长度后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .为奇函数,在⎝⎛⎭⎫0,π4上单调递增 C .为偶函数,在⎝⎛⎭⎫-3π8,π8上单调递增 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称3.已知f (x )=sin(ωx +φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f (2)=1,f (4)=-1,则ω=________,f (x )在区间⎣⎡⎭⎫12,3上的值域是________.考点四 三角函数图象与性质的综合应用[例4] (2019·浙江高考)设函数f (x )=sin x ,x ∈R . (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42的值域.1.已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值.2.已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.3. (2019·全国卷Ⅲ)设函数f (x )=sin ⎝⎛⎭⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点; ②f (x )在(0,2π)有且仅有2个极小值点; ③f (x )在⎝⎛⎭⎫0,π10单调递增; ④ ω的取值范围是⎣⎡⎭⎫125,2910. 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④【课后专项练习】A 组一、选择题1.(2019·广东省七校联考)函数f (x )=tan ⎝⎛⎭⎫x 2-π6的单调递增区间是( )A.⎣⎡⎦⎤2k π-2π3,2k π+4π3,k ∈ZB.⎝⎛⎭⎫2k π-2π3,2k π+4π3,k ∈ZC.⎣⎡⎦⎤4k π-2π3,4k π+4π3,k ∈ZD.⎝⎛⎭⎫4k π-2π3,4k π+4π3,k ∈Z2.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .123.(2019·江西七校第一次联考)函数y =sin ⎝⎛⎭⎫2x -π6的图象与函数y =cos ⎝⎛⎭⎫x -π3的图象( ) A .有相同的对称轴但无相同的对称中心 B .有相同的对称中心但无相同的对称轴 C .既有相同的对称轴也有相同的对称中心 D .既无相同的对称中心也无相同的对称轴4.(2019·蓉城名校第一次联考)若将函数g (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度得到f (x )的图象,已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .g (x )=sin ⎝⎛⎭⎫4x +π3 B .g (x )=sin ⎝⎛⎭⎫4x +2π3 C .g (x )=sin 4xD .g (x )=cos x5.(2019·湖南省湘东六校联考)已知函数f (x )=|sin x |·|cos x |,则下列说法不正确的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的最小正周期为π2C .(π,0)是f (x )图象的一个对称中心D .f (x )在区间⎣⎡⎦⎤π4,π2上单调递减6.(2019·昆明市质量检测)将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移π4个单位长度,所得图象对应的函数在区间[-m ,m ]上单调递增,则m 的最大值为( )A.π8 B.π4 C.3π8 D.π2二、填空题7.(2019·广东揭阳检测改编)已知f (x )=sin ⎣⎡⎦⎤π3(x +1)-3cos ⎣⎡⎦⎤π3(x +1),则f (x )的最小正周期为________,f (1)+f (2)+…+f (2 019)=________.8.(2019·天津高考改编)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=________.9.(2019·福州模拟)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是________.三、解答题10.设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.12.已知函数f (x )=cos x (23sin x +cos x )-sin 2x .(1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围.B 组1.已知向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),函数f (x )=m ·n +3,直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2.(1)求ω的值;(2)求函数f (x )的单调递增区间.2.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.3.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最小值为-1,其图象相邻两个最高点之间的距离为π.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值.4.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0≤φ≤π2图象的相邻两对称轴之间的距离为π2,且在x =π8时取得最大值1. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,9π8时,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围.第2讲 三角恒等变换与解三角形[全国卷3年考情分析](2)若无解答题,一般在选择题或填空题各有一题,主要考查三角恒等变换、解三角形,难度一般,一般出现在第4~9或第13~15题位置上.(3)若以解答题命题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题(或18题)位置上,难度中等.考点一 三角恒等变换1.[化简求值]2sin 47°- 3sin 17°cos 17°=( )A .-3B .-1C .3D .12.[条件求值](2019·全国卷Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B .55C.33D .2553.[给值求角]已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B .π3 C.π4D .π64.[与三角函数结合](2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________.1.[与复数交汇](2019·洛阳尖子生第二次联考)若复数z =⎝⎛⎭⎫cos θ-45+⎝⎛⎭⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝⎛⎭⎫θ-π4的值为( ) A .-7 B .-17C .7D .-7或-172.[与不等式交汇]已知tan 2α=34,α∈⎝⎛⎭⎫-π2,π2,函数f (x )=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝⎛⎭⎫α-π4的值为( ) A .-255B .-55C .-235D .-353.[与向量交汇]设向量a =(cos α,-1),b =(2,sin α),若a ⊥b ,则tan ⎝⎛⎭⎫α-π4=________.考点二 利用正、余弦定理解三角形 题型一 利用正、余弦定理进行边、角计算[例1] (2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A-sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .题型二 利用正、余弦定理进行面积计算[例2] (2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.题型三 正、余弦定理的实际应用[例3] 如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.1.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .32.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sinB =4a sinC .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎫2B +π6的值.3.(2019·广东六校第一次联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b 2+c 2-a 2=ac cos C +c 2cos A .(1)求A ;(2)若△ABC 的面积S △ABC =2534,且a =5,求sin B +sin C .考点三 解三角形的综合问题题型一 与平面几何的综合问题[例4] (2019·洛阳尖子生第二次联考)如图,在平面四边形ABCD 中,∠ABC 为锐角,AD ⊥BD ,AC 平分∠BAD ,BC =23,BD =3+6,△BCD 的面积S =3(2+3)2.(1)求CD ; (2)求∠ABC .题型二 与三角函数的交汇问题[例5] 如图,在△ABC 中,三个内角B ,A ,C 成等差数列,且AC =10,BC =15.(1)求△ABC 的面积;(2)已知平面直角坐标系xOy 中点D (10,0),若函数f (x )=M sin(ωx +φ)⎝⎛⎭⎫M >0,ω>0,|φ|<π2的图象经过A ,C ,D 三点,且A ,D 为f (x )的图象与x 轴相邻的两个交点,求f (x )的解析式.1.(2019·福州模拟)如图,在△ABC 中,M 是边BC 的中点,cos ∠BAM =5714,cos ∠AMC=-277.(1)求B ;(2)若AM =21,求△AMC 的面积.2.已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.3.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测.如图所示,A ,B ,C 三地位于同一水平面上,这种仪器在C 地进行弹射实验,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s ,在A 地测得该仪器至最高点H 处的仰角为30°.(1)求A ,C 两地间的距离;(2)求这种仪器的垂直弹射高度HC .(已知声音的传播速度为340 m/s)【课后通关练习】A 组一、选择题1.(2019·全国卷Ⅰ)tan 255°=( ) A .-23 B .-2+3 C .2-3 D .2+32.(2019·重庆市学业质量调研)已知15sin θ=cos(2π-θ),则tan 2θ=( ) A .-157 B .157 C .-158D .1583.(2019·湖北省5月冲刺)已知α为锐角,β为第二象限角,且cos(α-β)=12,sin(α+β)=12,则sin(3α-β)=( )A .-12B .12C .-32D .324.(2019·湖南省湘东六校联考)若△ABC 的三个内角满足6sin A =4sin B =3sin C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能5.(2019·长春市质量监测(一))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( )A .60°B .120°C .45°D .135°6.已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =( )A .60B .80C .100D .125二、填空题7.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.8.(2019·开封市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为________.9.(2019·安徽五校联盟第二次质检)如图,在平面四边形ABCD 中,AD =2,sin ∠CAD =2114,3AC sin ∠BAC +BC cos B =2BC ,且B +D =π,则△ABC 的面积的最大值为________.三、解答题10.(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B -C )的值.11.(2019·长沙模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B .(1)求B ;(2)若b =27,tan C =32,求△ABC 的面积.12.(2019·武汉部分学校调研)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin 2B =sin 2A +sin 2C -3sin A sin C .(1)求B ;(2)求sin A +cos C 的取值范围.B 组1.(2019·重庆市七校联合考试)如图,在平面四边形ABCD 中,E 为AB 边上一点,连接CE ,DE .CB =2,BE =1,∠B =∠CED =2π3.(1)求sin ∠AED 的值; (2)若AB ∥CD ,求CD 的长.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin A sin B =cos 2C2,(c -3b )sin C=(a +b )(sin A -sin B ).(1)求A和B;(2)若△ABC的面积为3,求BC边上的中线AM的长.3.(2019·昆明质量检测)△ABC的内角A,B,C所对的边分别为a,b,c,已知2(c-a cos B)=3b.(1)求A;(2)若a=2,求△ABC面积的取值范围.4.(2019·福州市质量检测)△ABC的内角A,B,C的对边分别为a,b,c.若角A,B,C成等差数列,且b=3 2.(1)求△ABC的外接圆直径;(2)求a+c的取值范围.。
(完整版)2020版高职高考数学总复习课件:第六章三角函数节练习(共48张PPT)
(D )
A.必是第四象限角
B.必是第二或第四象限角
C.必是第一或第四象限角
D.不可能是第一、二象限角
7.在0°~360°内,与角-1785°终边相同的角是 ( B )
A.-15°
B.15°
C.165°
D.75°
8.与角-160°终边 B.{k·360°+160°(k∈Z)} C.{β|β=k·360°+200°,k∈Z} D.{β|β=k·360°+160°,k∈Z}
C. 12 13
D.12 13
6.已知tanα= 5 ,则角α终边所在的象限是 5
(C )
A.第二象限
B.第二、三象限
C.第二、四象限
D.第三、四象限
7.已知角α的终边过点(-5,8),则 A.sinα·tanα>0 C.sinα·cosα>0
(D )
1
B.sinα· tan
>0
D.cosα·tanα>0
k k , 4k 2 4k
2
4
Q
k
1,
是第三象限角,
2 是一、二象限角
2
k 2,是第一象限角,2是一、二象限角
是第一或第三象限角,2是第一或第二象限角
2
6.2 弧度制
一、选择题 1.在不等的圆内,1弧度的圆心角 ( C )
A.所对的弧长相等 B.所对的弦长相等 C.所对的弧长等于所在圆的半径 D.所对的弦长等于所在圆的半径
1.5sin270°+2cos60°-2sin120°-cos90°的值是 ( A )
A.-4- 3
B.-4+ 3
C.1- 3
D.-5- 3
【走向高考】2020年高考数学总复习 4-6二倍角的三角函数课后作业 北师大版
【走向高考】2020年高考数学总复习 4-6二倍角的三角函数课后作业北师大版一、选择题1.(文)若sin2θ=14,则tanθ+cosθsinθ的值是( )A.-8 B.8 C.±8 D.2 [答案] B[解析]tanθ+cosθsinθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=112sin2θ=214=8,故选B.(理)已知sinα=23,则cos(π-2α)=( )A.-53B.-19C.19D.53[答案] B[解析]本题考查了诱导公式、三角恒等变形及倍半角公式的应用.由诱导公式得cos(π-2α)=-cos2α,∴cos2α=1-2sin2α=1-2×49=19,∴cos(π-2α)=-1 9 .2.已知sinα=35,且α∈⎝⎛⎭⎪⎫π2,π,则sin2αcos2α的值为( )A.-34B.-32C.34D.32[答案] B[解析]∵sinα=35,α∈⎝⎛⎭⎪⎫π2,π,∴cosα=-45,∴sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2×35-45=-32. 3.2+2cos8+21-sin8的化简结果是( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4 D .-2sin4[答案] C [解析]2+2cos8+21-sin8=2|cos4|+2|sin4-cos4|, ∵π<4<5π4,∴cos4<sin4<0.∴原式=-2cos4+2(sin4-cos4)=2sin4-4cos4.故选C. 4.(文)已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35B .-15C.15D.35[答案] A[解析] sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1 =2×15-1=-35,故选A.(理)设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a2B.1-a2C .-1+a2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0, ∵a =cos θ2=1-2sin 2θ4,∴sin θ4=-1-a2. 5.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是( )A .1B.1+32C.32 D .1+ 3[答案] C [解析] f (x )=1-cos2x 2+32sin2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 又x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,f (x )max =1+12=32,故选C.6.已知tan2α=-22,且满足π4<α<π2,则2cos2α2-sin α-12sin ⎝ ⎛⎭⎪⎫π4+α 的值为( )A. 2 B .- 2 C .-3+2 2 D .3-2 2[答案] C[解析]2cos2α2-sin α-12sin π4+α=cos α-sin αsin α+cos α=1-tan αtan α+1.又tan2α=-22=2tan α1-tan 2α∴22tan 2α-2tan α-22=0.解得tan α=-22或 2. 又π4<α<π2,∴tan α= 2. 原式=1-22+1=-3+2 2.故选C.二、填空题7.设a =12cos6°-32sin6°,b =2tan13°1+tan 213°,c =1-cos50°2,则a 、b 、c 的大小关系为______(由小到大排列).[答案] a <c <b[解析] a =sin24°,b =sin26°,c =sin25°, ∵y =sin x 在(0°,90°)上单增,∴a <c <b .8.已知π2<α<π,化简12-1212-12cos2α=______. [答案] sin ⎝ ⎛⎭⎪⎫α2-π4 [解析] 原式=12-12|sin α| =12-12sin α=sin α2-cosα222=22⎝ ⎛⎭⎪⎫sin α2-cos α2=sin ⎝ ⎛⎭⎪⎫α2-π4. 三、解答题9.(2020·天津理,15)已知函数f (x )=tan(2x +π4),(1)求f (x )的定义域与最小正周期;(2)设α∈(0,π4),若f (α2)=2cos2α,求α的大小.[解析] (1)由2x +π4≠π2+kπ,k ∈Z ,得x ≠π8+kπ2,k ∈Z ,所以f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x ≠π8+kπ2,k ∈Z .f (x )的最小正周期为π2.(2)由f ⎝ ⎛⎭⎪⎫α2=2cos2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝ ⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.因此(cos α-sin α)2=12,即sin2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝ ⎛⎭⎪⎫0,π2.所以2α=π6,即α=π12.一、选择题1.函数f(x)=(3sin x-4cos x)·cos x的最大值为( )A.5 B.9 2C.12D.52[答案] C[解析]f(x)=(3sin x-4cos x)cos x=3sin x cos x-4cos2x=32sin2x-2cos2x-2=52sin(2x-θ)-2,其中tanθ=43,所以f(x)的最大值是52-2=12.故选C.2.若cosα=-45,α是第三象限的角,则1+tanα21-tanα2=( )A.-12B.12C.2 D.-2[答案] A[解析]本题综合考查了同角三角函数的基本公式以及二倍角公式的逆运用.∵cosα=-45且α是第三象限的角,∴sinα=-35,∴1+tanα21-tanα2=cosα2+sinα2cosα2cosα2-sinα2cosα2=cosα2+sinα2cosα2-sinα2=⎝⎛⎭⎪⎫cosα2+sinα22⎝⎛⎭⎪⎫cosα2-sinα2⎝⎛⎭⎪⎫cosα2+sinα2=1+sinαcos2α2-sin2α2=1+sin αcos α=1-35-45=-12,故选A.二、填空题3.(2020·江苏,7)已知tan(x +π4)=2,则tan xtan2x 的值为______.[答案] 49[解析] 由tan(x +π4)=2,可得tan x =13,从而tan2x =2tan x 1-tan 2x =34,则tan x tan2x =49. 4.若sin α·cos β=12,则cos α·sin β的取值范围是________.[答案] ⎣⎢⎡⎦⎥⎤-12,12 [解析] 解法一:设t =cos α·sin β,又sin α·cos β=12,∴sin α·cos β·sin β·cos α=12t ,即sin2α·si n2β=2t ,|sin2α·sin2β|≤1. ∴2|t |≤1,即-12≤t ≤12.∴cos α·sin β的取值范围是⎣⎢⎡⎦⎥⎤-12,12.解法二:由sin α·cos β=12知sin 2α·cos 2β=14.则cos 2α·sin 2β=(1-sin 2α)(1-cos 2β)=1-(sin 2α+cos 2β)+sin 2αcos 2β=54-(sin 2α+cos 2β)≤54-2sin 2αcos 2β=14,所以-12≤cos α·sin β≤12.三、解答题5.已知函数f (x )=a sin x ·cos x -3a cos 2x +32a +b .(a >0) (1)x ∈R ,写出函数的单调递减区间;(2)设x ∈[0,π2],f (x )的最小值是-2,最大值是3,求实数a ,b 的值.[解析] (1)f (x )=a (sin x ·cos x -3cos 2x +32)+b =a ×(12sin2x -3×1+cos2x 2+32)+b=a·sin(2x-π3)+b∵a>0,x∈R,∴由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)得,f(x)的递减区间是[kπ+512π,kπ+1112π](k∈Z)(2)∵x∈[0,π2],∴2x-π3∈[-π3,2π3]∴sin(2x-π3)∈[-32,1]∴函数f(x)的最小值是-32a+b=-2最大值a+b=3,解得a=2,b=3-2.6.(2020·重庆文,18)设函数f(x)=sin x cos x-3cos(x+π)cos x(x∈R).(1)求f(x)的最小正周期;(2)若函数y=f(x)的图像沿b=(π4,32)平移后得到函数y=g(x)的图像,求y=g(x)在[0,π4]上的最大值.[解析](1)f(x)=12sin2x+3cos2x=12sin2x+3×(1+cos2x2)=12sin2x+32cos2x+32=sin(2x+π3)+32∴f(x)的最小正周期为π.(2)依题意g(x)=f(x-π4)+32=sin(2x-π2+π3)+32+32=sin(2x-π6)+ 3当x∈[0,π4]时,2x-π6∈[-π6,π3]sin(2x-π6)∈[-12,32]∴g(x)在[0,π4]上的最大值为32+3=332.7.已知向量a=(cos x+2sin x,sin x),b=(cos x-sin x,2cos x).设函数f(x)=a·b+1 2 .(1)求函数f(x)的单调递减区间;(2)若函数y=f(x+φ)为偶函数,试求符合题意的φ的值.[分析] 写出y=f(x)的表达式是解题的关键.对于(1),结合题意,利用数量积的坐标运算及三角变换公式得到函数y=f(x)的表达式,进而求出函数的单调减区间;对于(2),函数y=f(x+φ)为偶函数的实质就是求y轴是函数y=f(x+φ)的一条对称轴.考虑到y=sin x的对称轴为x=kπ+π2(k∈Z),故可利用整体思想来解决.[解析](1)由已知可得f(x)=(cos x+2sin x)(cos x-sin x)+2sin x cos x+12=cos2x-sin x cos x+2sin x cos x-2sin2x+2sin x cos x+12=cos2x+3sin x cos x-2sin2x+12=12(1+cos2x)+32sin2x+(cos2x-1)+12=32(sin2x+cos2x)=322sin⎝⎛⎭⎪⎫2x+π4.由2kπ+π2<2x+π4<2kπ+3π2(k∈Z)得:kπ+π8<x<kπ+5π8(k∈Z),所以函数f(x)的单调递减区间为⎝⎛⎭⎪⎫kπ+π8,kπ+5π8(k∈Z).(2)由(1)知y=f(x+φ)=322sin⎝⎛⎭⎪⎫2x+2φ+π4.由于y=sin x的对称轴为x=kπ+π2(k∈Z),令2x+2φ+π4=kπ+π2(k∈Z),得x=kπ+π4-2φ2(k∈Z).因为y=f(x+φ)为偶函数,所以令x=kπ+π4-2φ2=0,解得φ=kπ2+π8(k∈Z).故符合题意的φ=kπ2+π8(k∈Z).[点评] 注重向量与三角函数的交汇是近几年新课标高考命题的一个特色.熟练掌握数量积的定义及运算法则、三角函数的诱导公式、两角和与差的公式等是解决这类题目的一个前提.复习时要将上述知识融会贯通,有针对性地加强训练.。
(完整版)数学高职高考专题复习_三角函数
高考三角函数问题专题复习一、三角函数基础题1、已知角α的终边通过点P(-3,4),则sinα+cosα+t an α= ( )A.1523-B.1517-C.151-D.15172、π617sin = ( )A.21 B.23- C.21- D.23-3、x y 2sin 21=的最小正周期是 ( ) A.2πB.πC.2πD. 4π 4、设tan α=2,且sin α<0,则cos α的值等于 ( ) A.55 B.51- C.55- D.51 5、y=cos 2(2x)的最小正周期是 ( )A .2πB. πC.4πD.8π 6、命题甲:sin x=1,命题乙:x=2π,则 ( )A.甲是乙充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充分必要条件D.甲不是乙的必要条件也不是乙的充分条件 7、命题甲:A=B ,命题乙:sinA=sinB,则 ( ) A.甲不是乙的必要条件也不是乙的充分条件 B.甲是乙的充分必要条件C.甲是乙的必要条件但不是充分条件D.甲是乙的充分条件但不是必要条件 8、函数y=sin x 在区间________上是增函数. ( ) A.[0,π] B.[π,2π] C.]25,23[ππ D .]87,85[ππ 9、函数)43tan(π+=x y 的最小正周期为 ( )A.3πB.πC.32π D.3π10、设角α的终边通过点P (-5,12),则cot α+sin α等于 ( ) A.137 B.-137 C.15679 D.- 1567911、函数y=cos3x -3sin3x 的最小正周期和最大值分别是 ( )A.32π, 1 B.32π, 2 C.2π, 2 D.2π, 1 12、若23cos ],2,[-=∈x x ππ ,则x 等于 ( ) A.67π B.34π C.35π D.611π 13、已知57cos sin ,51cos sin =-=+αααα,则tan α等于 ( )A.34- B.-43 C.1 D.- 114、ο150cos = ( )A.21 B.23 C.﹣21D. ﹣2315、在△ABC 中,AB=3,AC=2,BC=1,则sin A 等于 ( )A.0B.1C.23 D.2116、在]2,0[π上满足sinx≤-0.5的x 的取值范围是区间 ( ) A.[0,6π] B.[6π,65π] C.]67,65[ππ D .]611,67[ππ17、使等式cosx=a -2有意义的a 的取值范围是区间 ( )A .[0,2] B.[1,3] C.[0,1] D.[2,3]18、=-+-)690sin(495tan )585cos(οοο ( )A .22 B.32 C.32- D.2 19、如果51cos sin =+x x ,且0≤x<π,那么tanx= ( ) A .34- B.43- C.43 D.3420、要得到)62sin(π-=x y 的图象,只需将函数y=sin2x 的图象 ( )A .向右平行移动3π个单位 B.向右平行移动6π个单位 C.向右平行移动12π个单位 D.向左平行移动12π个单位21、已知παππ0,53cos =α,那么=+)sin(πα ( ) A .-1 B.53- C.54 D.54-22、tan165°-tan285°= ( )A .32- B.31+ C.32 D.32+23、函数y=2sin2xcos2x 是 ( )A .周期为2π的奇函数 B.周期为2π的偶函数 C.周期为4π的奇函数 D.周期为4π的偶函数24、在△ABC 中,已知∠BAC=120o ,AB=3,BC=7,则AC=____________.25、在△ABC 中,AB=3,BC=5,AC=7,则cosB=________.26、在△ABC 中,已知AB=2,BC=3,CA=4,则cosA=____ ______.27、函数y=x x cos sin 3+的值域是___ ______. 28、函数y=sinx-3cosx 的最小正周期是___________. 29、设38πα-=,则与α终边相同的最小正角是_________. 30、cos 2398o +cos 2232o =___________. 31、函数tan(3)4y x π=+的最小正周期是 . 二、三角函数式的变换及其应用32、015tan 115tan 1-+= ( )A.3-B.33C.3D.33- 33、已知=-=θθπθπθθsin cos ,24,81cos sin 那么且ππ ( )A .23 B.23- C.43 D.43- 34、当=+∈≠xxx x ,Z k k x cos 3cos sin 3sin )(2时π ( ) A .-2cos2x B.2cos2x C.4cos2x D.-4cos2x 35、=++-)67sin()67sin(θπθπ ( ) A .23B.θcosC.θcos -D.θ2cos 3 36、已知=--==)tan(,21tan ,3tan βαβα则 ( ) A .-7 B.7 C.-5 D.137、=+2280cos 1ο( )A .cos14° B.sin50° C.cos50° D.cos140° 38、如果=-=+=ββααβα那么且是锐角,1411)cos(,734sin ,, ( ) A .3π B.4π C.6π D.8π39、如果=++-x x x sin 1sin 1,20那么πππ ( )A .2cosx B.2sinx C.2sin 2x D.2cos 2x40、当=--=+)tan 1)(tan 1(43βαπβα,时 ( )A .21 B.31C.1D.2 41、在△ABC 中,已知cosAcosB=sinAsinB ,那么△ABC 是 ( ) A .直角三角形 B.钝角三角形 C.等边三角形 D.不等边锐角三角形42、在△ABC 中,已知cosA=135,cosB=53,那么cosC= ( ) A .6563- B.6563 C.6533- D.653343、已知sin α.+cos α.=53,则sin2α.=_______.44、函数y=2cosx -cos2x 的最大值是___ _____.45、如果51cos sin =+αα (0<α<π=,那么tg α的值是____ ____. 46、设0<α<2π,则2cos2sin sin 1ααα--等于______ __________.三、三角函数综合题47、在ABC 中,已知∠A=45o ,∠B=30o ,AB=2,求AC.48、在ABC 中,已知∠A=60o ,且BC=2AB ,求sinC.49、设函数θθθθθcos sin 25cos sin 2)(++=f , ]2,0[πθ∈,(Ⅰ)求)12(πf ; (Ⅱ)求函数f(θ)的最小值.50、已知sin α=54,α是锐角,求1)28(cos 22--απ的值。
2020届高考数学(理)一轮必刷题 专题16 任意角和弧度制及任意角的三角函数(解析版)
考点16 任意角和弧度制及任意角的三角函数1.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当,可以得到,反过来若,则或,所以为充分不必要条件,故选A.2.如图所示,在中,点是的中点,过点的直线分别交直线,于不同的两点,,若,,则以为圆心角且半径为1的扇形的面积为()A.1 B.2 C.3 D.4【答案】A【解析】∵为的中点,∴.又∵三点共线,∴,得.∴扇形的面积为.故选A.3.如图,已知四边形为正方形,扇形的弧与相切,点为的中点,在正方形中随机取一点,则该点落在扇形内部的概率为()A.B.C.D.【答案】A【解析】设正方形的边长为,则扇形的半径为,,在直角三角形中,,所以,所以,,又由,所以,,所以,扇形的面积为该点落在扇形内部的概率为所以,答案选A.4.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米.(其中,)A.15 B.16 C.17 D.18【答案】B【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.5.已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,6.已知点()3,a 和()2,4a 分别在角β和角45β-︒的终边上,则实数a 的值是( ) A .-1 B .6 C .6或-1 D .6或1【答案】B由题得01tan 143tan ,tan(45)31tan 213a a a aββββ--=-===++,所以2560,6a a a --=∴=或-1.当a=-1时,两个点分别在第四象限和第二象限,不符合题意,所以舍去. 故选:B.7.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M 为其终边上一点,则cos2α=( ) A .23-B .23C .13-D .13【答案】D 【解析】∵M 为角α终边上一点,∴cos 3α===,∴221cos 22cos 1213αα=-=⨯-=. 故选D .8.设函数54,(0)()2,(0)xx x f x x +<⎧=⎨≥⎩,若角α的终边经过(4,3)P -,则[(sin )]f f α的值为( ) A .12B .1C .2D .4【答案】C 【解析】因为角α的终边经过()4,3P -,所以3sin 5y r α-==,所以33(sin )()5()4155f f α=-=⨯-+=,则1[(sin )](1)22f f f α===,故选C .9.若复数cos isin z θθ=+,当4π3θ=时,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C由题,当4π3θ=时,1sin 22θθ=-=-所以复数122z =--在复平面所对应的点为1(,22--在第三象限 故选C .10.已知α∈(22ππ-,),tanα=sin76°cos46°﹣cos76°sin46°,则sinα=( ) AB. CD. 【答案】A 【解析】解:由tanα=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π), 联立22121sin cos sin cos αααα⎧=⎪⎨⎪+=⎩,解得sinα5=. 故选:A .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则( )A .B .C .D .【答案】A 【解析】由三角函数定义得tan ,即,得3cos解得或(舍去) 故选:A .12.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边经过点,则( )A.B.C.D.【答案】D【解析】解:∵角的顶点在原点,始边与轴的非负半轴重合,终边经过点,∴,∴.则.故选:D.13.已知角的顶点都为坐标原点,始边都与轴的非负半轴重合,且都为第一象限的角,终边上分别有点,,且,则的最小值为()A.1 B.C.D.2【答案】C【解析】由已知得,,,因为,所以,所以,,所以,当且仅当,时,取等号.14.在等差数列中,角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,则A.5 B.4 C.3 D.2【答案】B【解析】解:角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,可得,则.故选:B.15.已知扇形的圆心角为,其弧长为,则此扇形的面积为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。
因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。
以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
一、知识整合1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()=+的图象;y A xωϕ理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.二、高考考点分析2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。
主要考察内容按综合难度分,我认为有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。
如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。
如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。
如分段函数值,求复合函数值域等。
三、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asinθ+bcosθ=22ba+sin(θ+ϕ),这里辅助角ϕ所在象限由a、b的符号确定,ϕ角的值由tanϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
例2.求函数21sin cos (sin cos )y x x x x =++++的值域。
解:设sin cos )[4πt x x x =+=+∈,则原函数可化为22131()24y t t t =++=++,因为[t ∈,所以当t =时,max 3y =12t =-时,min 34y =,所以,函数的值域为3[34y ∈,。
例3.已知函数2()4sin 2sin 22f x x x x R =+-∈,。
(1)求()f x 的最小正周期、()f x 的最大值及此时x 的集合; (2)证明:函数()f x 的图像关于直线8πx =-对称。
解:22()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--2sin 22cos 2)4πx x x =-=-(1)所以()f x 的最小正周期T π=,因为x R ∈,所以,当2242ππx k π-=+,即38πx k π=+时,()f x 最大值为 (2)证明:欲证明函数()f x 的图像关于直线8πx =-对称,只要证明对任意x R ∈,有()()88ππf x f x --=-+成立,因为())]2)28842ππππf x x x x --=---=--=-,())]2)28842ππππf x x x x -+=-+-=-+=-, 所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8πx =-对称。
例4. 已知函数y=21cos 2x+23sinx ·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=21cos 2x+23sinx ·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx ·cosx )+1=41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45=21sin(2x+6π)+45所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6π+k π,(k ∈Z )。
所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+k π,k ∈Z} (2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像;(ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像;(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。
综上得到y=21cos 2x+23sinxcosx+1的图像。
说明:本题是2000年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。
这类题一般有两种解法:一是化成关于sinx,cosx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式,二是化成某一个三角函数的二次三项式。
本题(1)还可以解法如下:当cosx=0时,y=1;当cosx ≠0时,y=x x x x x 222cos sin cos sin 23cos 21+++1=xx2tan 1tan 2321+++1 化简得:2(y -1)tan 2x -3tanx+2y -3=0∵tanx ∈R ,∴△=3-8(y -1)(2y -3) ≥0,解之得:43≤y ≤47 ∴y max =47,此时对应自变量x 的值集为{x|x=k π+6π,k ∈Z} 例5.已知函数.3cos 33cos 3sin )(2x x x x f +=(Ⅰ)将f(x)写成)sin(φω+x A 的形式,并求其图象对称中心的横坐标; (Ⅱ)如果△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x)的值域.解:23)332sin(2332cos 2332sin 21)32cos 1(2332sin 21)(++=++=++=πx x x x x x f (Ⅰ)由)332sin(π+x =0即z k k x z k k x ∈-=∈=+πππ213)(332得即对称中心的横坐标为z k k ∈-,π213 (Ⅱ)由已知b 2=a c,,,,,,231)332sin(31)332sin(3sin |295||23|953323301cos 21212222cos 22222+≤+<∴≤+<∴->-≤+<≤<<≤∴=-≥-+=-+=πππππππππππx x x x x ac ac ac ac ac c a ac b c a x Θ 即)(x f 的值域为]231,3(+.综上所述,]3,0(π∈x , )(x f 值域为]231,3(+. 说明:本题综合运用了三角函数、余弦定理、基本不等式等知识,还需要利用数形结合的思想来解决函数值域的问题,有利于培养学生的运算能力,对知识进行整合的能力。
例6.在ABC V 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos 3cos C a cB b-=, (1)求sin B 的值;(2)若b =,且a=c ,求ABC V 的面积。
解:(1)由正弦定理及cos 3cos C a c B b -=,有cos 3sin sin cos sin C A CB B-=, 即sin cos 3sin cos sin cos B C A B C B =-,所以sin()3sin cos B C A B +=,又因为A B C π++=,sin()sin B C A +=,所以sin 3sin cos A A B =,因为sin 0A ≠,所以1cos 3B =,又0B π<<,所以sin B ==。
(2)在ABC V 中,由余弦定理可得222323a c ac +-=,又a c =, 所以有22432243a a ==,即,所以ABC V 的面积为211sin sin 22S ac B a B === 例7.已知向量2(2cos sin )(sin cos )(3)a ααb ααx a t b =-=+-r r r r r ,2,=,,,y ka b =-+r r r ,且0x y ⋅=r r,(1)求函数()k f t =的表达式;(2)若[13]t ∈-,,求()f t 的最大值与最小值。
解:(1)24a =r ,21b =r ,0a b ⋅=r r ,又0x y ⋅=r r,所以22222[(3)]()(3)[(3)]0x y a t b ka b ka t b t k t a b ⋅=+-⋅-+=-+-+--⋅=r r r r r r r r r r ,所以31344k t t =-,即313()44k f t t t ==-;(2)由(1)可得,令()f t 导数233044t -=,解得1t =±,列表如下:而(1)(1)(3)222f f f -==-=,,,所以max min ()()22f t f t ==-,。