驻极体话筒的结构与工作原理 (1)
话筒原理图
1.结构及特点驻极体话筒的内部结构如图1(a)所示,它主要由“声—电”转换和阻抗变换两部分组成。
“声—电”转换的关键元件是驻极体振动膜片,它以一片极薄的塑料膜片作为基片,在其中一面蒸发上一层纯金属薄膜,然后再经过高压电场“驻极”处理后,在两面形成可长期保持的异性电荷——这就是“驻极体”(也称“永久电荷体”)一词的来历。
振动膜片的金属薄膜面向外(正对音孔),并与话筒金属外壳相连;另一面靠近带有气孔的金属极板,其间用很薄的塑料绝缘垫圈隔离开。
这样,振动膜片与金属极板之间就形成了一个本身具有静电场的电容——可见驻极体话筒实际上是一种特殊的、无需外接极化电压的电容式话筒。
金属极板与专用场效应管的栅极G 相接,场效应管的源极S和漏极D作为话筒的引出电极。
这样,加上金属外壳,驻极体话筒一共有3个引出电极,其内部电路如图1(b)所示。
如果将场效应管的源极S(或漏极D)与金属外壳接通,就使得话筒只剩下了2个引出电极。
驻极体话筒的内部结构如图1(a)所示,它主要由“声—电”转换和阻抗变换两部分组成。
“声—电”转换的关键元件是驻极体振动膜片,它以一片极薄的塑料膜片作为基片,在其中一面蒸发上一层纯金属薄膜,然后再经过高压电场“驻极”处理后,在两面形成可长期保持的异性电荷——这就是“驻极体”(也称“永久电荷体”)一词的来历。
振动膜片的金属薄膜面向外(正对音孔),并与话筒金属外壳相连;另一面靠近带有气孔的金属极板,其间用很薄的塑料绝缘垫圈隔离开。
这样,振动膜片与金属极板之间就形成了一个本身具有静电场的电容——可见驻极体话筒实际上是一种特殊的、无需外接极化电压的电容式话筒。
金属极板与专用场效应管的栅极G相接,场效应管的源极S和漏极D作为话筒的引出电极。
这样,加上金属外壳,驻极体话筒一共有3个引出电极,其内部电路如图1(b)所示。
如果将场效应管的源极S(或漏极D)与金属外壳接通,就使得话筒只剩下了2个引出电极。
驻极体话筒构成图图1(a)内部结构(b)内部电路驻极体话筒的工作原理是这样的:当驻极体膜片遇到声波振动时,就会引起与金属极板间距离的变化,也就是驻极体振动膜片与金属极板之间的电容随着声波变化,进而引起电容两端固有的电场发生变化(U=Q/C),从而产生随声波变化而变化的交变电压。
驻极体话筒原理知识
驻极体话筒1、概述驻极体话筒具有体积小、结构简单、电声性能好、价格低的特点,广泛用于盒式录音机、无线话筒及声控等电路中。
属于最常用的电容话筒。
由于输入和输出阻抗很高,所以要在这种话筒外壳内设置一个场效应管作为阻抗转换器,为此驻极体电容式话筒在工作时需要直流工作电压。
2、构造与原理驻极体话筒由声电转换和阻抗变换两部分组成。
声电转换的关键元件是驻极体振动膜。
它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。
然后再经过高压电场驻极后,两面分别驻有异性电荷。
膜片的蒸金面向外,与金属外壳相连通。
膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。
这样,蒸金膜与金属极板之间就形成一个电容。
当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
驻极体膜片与金属极板之间的电容量比较小,一般为几十pF。
因而它的输出阻抗值很高(Xc=1/2~tfc),约几十兆欧以上。
这样高的阻抗是不能直接与音频放大器相匹配的。
所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。
场效应管的特点是输入阻抗极高、噪声系数低。
普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。
这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。
接二极管的目的是在场效应管受强信号冲击时起保护作用。
场效应管的栅极接金属极板。
这样,驻极体话筒的输出线便有三根。
即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。
3、驻极体话筒与电路的接法有两种:源极输出与漏极输出。
源极输出类似晶体三极管的射极输出。
需用三根引出线。
漏极D接电源正极。
源极S与地之间接一电阻Rs来提供源极电压,信号由源极经电容C输出。
编织线接地起屏蔽作用。
源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。
但输出信号比漏极输出小。
漏极输出类似晶体三极管的共发射极放入。
只需两根引出线。
漏极D与电源正极间接一漏极电阻RD,信号由漏极D经电容C输出。
驻极体话筒原理
驻极体话筒原理
驻极体话筒是一种常用的声学传感器,它能够将声音转换成电信号,被广泛应
用于电话、录音、音乐等领域。
驻极体话筒的工作原理主要涉及到声音的传导、振动和电信号的转换,下面我们将详细介绍其原理及工作过程。
首先,驻极体话筒是由一个薄膜、一个磁体和一个线圈组成的。
当声音波传播
到话筒上时,声波会使得薄膜振动,振动的薄膜会带动连接在其上的磁体一起振动。
这样,磁体就会在磁场中产生变化,从而在线圈中感应出电信号。
其次,驻极体话筒的工作原理可以用霍尔效应来解释。
当磁体在磁场中振动时,会导致磁场的变化,而这种磁场的变化会引起霍尔元件上的霍尔电压发生变化。
这个变化的霍尔电压会被放大,然后就可以输出为声音信号。
最后,驻极体话筒的工作过程可以简单概括为声音振动磁场变化电信号输出。
在这个过程中,声波通过薄膜传导到磁体上,使得磁体在磁场中振动,最终产生电信号输出。
这种声音-磁场-电信号的转换过程实现了声音到电信号的转换。
总的来说,驻极体话筒的原理是基于声音振动引起磁场变化,再通过霍尔效应
产生电信号输出的。
这种原理使得驻极体话筒成为了一种重要的声学传感器,被广泛应用于各种领域。
希望通过本文的介绍,读者可以更加深入地了解驻极体话筒的工作原理和应用。
驻极体话筒
驻极体话筒1. 简介驻极体话筒(Electret Microphone),也称为电容式话筒,是一种常见的音频传感器。
它利用了驻极体元件的特性,将声音转化为电信号,然后经过放大和处理后输出给音频设备。
驻极体话筒具有体积小、重量轻、价格低廉等优点,广泛应用于通信、音频采集、语音识别等领域。
在本文中,我们将介绍驻极体话筒的原理、结构和工作原理,并介绍一些常见的应用场景。
2. 原理驻极体话筒的原理基于电容器的原理。
它由驻极体电容器和放大电路组成。
2.1 驻极体电容器驻极体电容器是驻极体话筒的核心组件,它由两个金属片组成,中间被一层电介质隔开。
其中一个金属片固定不动,称为固定极板;另一个金属片可以振动,称为振动极板。
当振动极板受到声波震动时,驻极体电容器的电容值也会随之发生变化。
驻极体电容器内部有一个永久的静电荷,在生产过程中被注入进去,这就是所谓的驻极体。
这个静电荷会在电容器的两个极板之间形成电场,并与外界的电荷相互作用。
由于驻极体电容器的驻极体是永久性的,所以驻极体电容器不需要外界电源来维持电荷。
驻极体电容器的输出信号非常微弱,需要经过放大电路进行放大。
放大电路一般由一个FET(场效应晶体管)和其他电子组件构成。
当声波作用在驻极体电容器上时,驻极体电容器的电容值发生变化,改变了与其连接的FET的栅极电势,从而使FET的通道电阻也发生变化。
这个变化通过放大电路进行放大,最终输出一个可以被音频设备接受并处理的电信号。
3. 结构驻极体话筒的结构相对简单,一般由以下几个主要组件组成:3.1 振动极板振动极板是驻极体话筒中可以振动的部分,它的振动受到外界声波的影响。
当声波作用于振动极板时,振动极板会产生微小的位移。
3.2 固定极板固定极板是驻极体话筒中的固定部分,它不会移动。
固定极板与振动极板之间的距离决定了驻极体电容器的电容值。
3.3 驻极体电容器驻极体电容器由振动极板和固定极板组成,它们之间的空气间隙形成一个电容器。
驻极体话筒的基本原理
驻极体话筒的基本原理驻极体话筒是一种常见的电声转换器,它通过将声音信号转换为电信号,实现声音的录制和放大。
驻极体话筒的基本原理是利用了声音对声波的敏感性以及电磁感应的原理。
驻极体话筒的核心部件是一个由金属薄膜组成的振动膜片,膜片上覆盖着一层绝缘材料。
当有声波通过话筒时,声波会使得膜片产生微小的振动。
这种振动会导致膜片上的电荷分布发生变化,进而改变电容。
这样,声波的振动就被转化为电信号。
在驻极体话筒内部,有一对金属板,它们分别位于振动膜片的前后。
这对金属板中的一面是驻极板,它与振动膜片的绝缘层相连,起到了固定振动膜片的作用。
另一面是极板,它与振动膜片的金属层相连,起到了电荷收集和电信号输出的作用。
当振动膜片发生振动时,驻极板上的电荷分布也会改变。
这种电荷变化会影响驻极板与极板之间的电场分布,从而改变了电容。
电容的变化会导致电荷在电路中的流动,产生微弱的电流。
这个电流就是根据声音信号而产生的电信号,可以被放大器放大,进而用于录音或放音。
驻极体话筒的工作原理可以用以下步骤来概括:1. 声音信号进入驻极体话筒,使得振动膜片发生微小振动。
2. 振动膜片的振动导致驻极板上的电荷分布发生变化。
3. 电荷分布的变化影响了电场分布,导致电容发生变化。
4. 电容的变化引起了电流的流动,产生了与声音信号相对应的电信号。
5. 电信号经过放大器放大后,可以被用于录制或放音。
驻极体话筒具有灵敏度高、频率响应范围宽等优点,因此在音乐录制、广播电视、舞台演出等领域被广泛应用。
它可以准确地捕捉到声音的细微变化,并将其转化为电信号,让人们能够听到真实而清晰的声音。
驻极体话筒通过将声音信号转换为电信号,实现了声音的录制和放大。
它的基本原理是利用了声音对声波的敏感性以及电磁感应的原理。
驻极体话筒的工作过程可以概括为声音信号进入话筒,使得振动膜片发生振动,进而改变电容,产生电信号。
这种电信号可以被放大器放大,用于录音或放音。
驻极体话筒的应用广泛,可以捕捉到真实而清晰的声音,为人们的音乐和娱乐生活增添了乐趣。
驻极体麦克风电路原理
驻极体麦克风电路原理驻极体麦克风是一种常见的电声转换器,用于将声音信号转换为电信号。
它是基于驻极体电容的原理工作的。
在驻极体麦克风电路中,驻极体电容负责将声音信号转换为电信号。
下面将详细介绍驻极体麦克风电路的原理和工作方式。
一、驻极体麦克风的基本原理驻极体麦克风是由一个驻极体电容和一个放大器组成的。
驻极体电容由一个薄膜和一个固定板组成,当声波到达薄膜时,薄膜会振动,从而改变电容的值。
放大器会将这个改变的电容值转换为电信号输出。
二、驻极体麦克风电路的详细原理1. 驻极体电容驻极体电容是驻极体麦克风电路中的关键部件。
它由一个薄膜和一个固定板组成,薄膜与固定板之间形成一个电容。
当声波到达薄膜时,薄膜会振动,从而改变电容的值。
这个变化的电容值将被用作电信号的输入。
2. 放大器放大器是驻极体麦克风电路中的另一个重要组成部分。
它负责将驻极体电容的电信号放大,使其能够被后续的电路或设备处理。
放大器通常由一个或多个晶体管组成,可以放大驻极体电容的微弱信号。
3. 电路连接驻极体电容和放大器通过电路连接在一起。
电路通常由导线、电阻和电容等元件组成,用于将驻极体电容的电信号传输到放大器,并提供适当的电源供电。
三、驻极体麦克风电路的工作方式驻极体麦克风电路的工作方式可以分为以下几个步骤:1. 声音接收当有声波到达驻极体麦克风时,声波会引起驻极体电容薄膜的振动。
这个振动将导致驻极体电容的电容值发生变化。
2. 电容值变化驻极体电容的电容值会随着薄膜振动而变化。
这种变化将导致电容两端的电压发生变化。
3. 电信号输出电容两端电压的变化将被传输到放大器中。
放大器将这个微弱的电信号放大,使其能够被后续的电路或设备处理。
4. 后续处理经过放大器放大后的电信号可以被用于各种应用,比如音频录制、语音识别等。
后续处理可以根据具体应用的需求进行,如进行滤波、放大、编码等。
四、驻极体麦克风电路的应用领域驻极体麦克风电路广泛应用于各个领域,如通信、音频设备、语音识别等。
驻极体话筒的基本原理
驻极体话筒的基本原理驻极体话筒是一种常见的麦克风类型,它利用了电磁感应的原理来将声音转换成电信号。
它的基本原理可以概括为声音震动引起电磁感应,进而产生电信号。
下面将详细介绍驻极体话筒的基本原理和工作过程。
驻极体话筒由震动系统和电磁感应系统两部分组成。
震动系统包括膜片、振动线圈和磁体,而电磁感应系统则包括磁体和感应线圈。
当声音波传播到驻极体话筒时,声音的震动会使得膜片产生相应的震动。
膜片与振动线圈连接在一起,振动线圈则位于磁体的磁场中。
当膜片振动时,振动线圈也会随之振动。
这样,膜片和振动线圈的振动就会相互作用,进而改变磁体的磁场强度。
磁体和感应线圈也相互作用。
由于磁体的磁场强度发生变化,感应线圈中就会产生感应电流。
这个感应电流的大小和方向与膜片和振动线圈的振动有关。
感应线圈将这个感应电流转换成电信号输出。
这样,驻极体话筒就实现了将声音转换成电信号的功能。
电信号可以通过连接到话筒的电缆传输到其他设备中进行处理,比如放大、录制或实时传输。
驻极体话筒的工作过程可以用以下步骤来描述:1. 声音波传播到话筒时,声音的震动使得膜片产生相应的振动。
2. 膜片与振动线圈连接在一起,振动线圈位于磁体的磁场中。
3. 膜片和振动线圈的振动相互作用,改变磁体的磁场强度。
4. 磁体和感应线圈相互作用,感应线圈中产生感应电流。
5. 感应线圈将感应电流转换成电信号输出。
6. 电信号可以传输到其他设备中进行处理或记录。
驻极体话筒的基本原理是利用声音的振动引起磁体的磁场强度变化,从而产生感应电流。
这个原理不仅适用于驻极体话筒,也广泛应用于其他类型的麦克风。
这些麦克风通过不同的结构和技术来实现声音到电信号的转换,但基本原理都是利用声音的振动引起电磁感应。
总结一下,驻极体话筒的基本原理是利用声音的振动引起磁体的磁场强度变化,从而产生感应电流。
这个原理使得驻极体话筒可以将声音转换成电信号,并实现音频的录制、放大和传输等功能。
驻极体话筒在音频行业中有着广泛的应用,成为人们进行音频处理和传输的重要工具。
驻极体话筒原理
驻极体话筒原理驻极体话筒是一种常见的电声设备,它利用了电磁感应的原理来将声音转换成电信号。
在现代通讯和音频录制中,驻极体话筒扮演着非常重要的角色。
在本文中,我们将深入探讨驻极体话筒的工作原理,以及它在各种应用中的作用。
首先,让我们来了解一下驻极体话筒的结构。
驻极体话筒通常由一个薄膜、一个磁圈和一个线圈组成。
当声音波通过薄膜时,它会使得薄膜产生微小的振动。
这些振动会导致线圈在磁场中产生感应电流,从而将声音信号转换成电信号。
这种结构简单而有效,使得驻极体话筒成为了一种常见的声音采集设备。
其次,让我们来探讨一下驻极体话筒的工作原理。
驻极体话筒利用了电磁感应的原理来实现声音到电信号的转换。
当声音波作用在薄膜上时,薄膜会随之振动。
这种振动会使得线圈在磁场中产生感应电流。
这个感应电流的大小和频率与声音波的振动情况息息相关,因此可以准确地将声音信号转换成电信号。
这样一来,我们就可以通过驻极体话筒来捕捉声音,并将其转换成电信号,从而实现声音的录制和传输。
驻极体话筒在各种领域中都有着广泛的应用。
在通讯领域,驻极体话筒被用于手机、电话、对讲机等设备中,用来接收和发送声音信号。
在音频录制领域,驻极体话筒则被用于麦克风、录音设备等设备中,用来捕捉声音。
此外,在一些专业领域,如会议记录、音乐制作等,驻极体话筒也扮演着重要的角色。
总结一下,驻极体话筒是一种利用电磁感应原理来实现声音到电信号转换的设备。
它的结构简单而有效,工作原理清晰可靠。
在各种通讯和音频录制设备中都有着广泛的应用。
通过驻极体话筒,我们可以实现声音的捕捉、传输和录制,为人们的日常生活和工作提供了便利。
希望本文能够帮助您更好地了解驻极体话筒的原理和应用。
驻极体话筒结构原理及应用电路设计
(3) JFET旳特征曲线
转移特征 输出特征
iD f (u ) GS uDS const.
iD
IDSS (1
uGS UGS (off
)
)2
iD f (u ) DS uGS const.
饱和漏极电流: IDSS
(UGS(off ) uGS 0)
体现式
转移特 征曲线
预夹断 线
满足: uGD=UGS(off)
驻极体话筒构造原理 及应用电路设计
一、驻极体话筒旳工作原理与构造
驻极体话筒具有体积小、构造简朴、电声性能好、价 格低旳特点,广泛用于盒式录音机、无线话筒及声控等电 路中。
驻极体话筒由声电转换和阻抗变换两部分构成。声电 转换旳关键元件是驻极体振动膜。
1、驻极体极头旳构造与工作原理
驻极体极头旳基本构造由一片单面涂有金属旳驻极体薄 膜与一种上面有若干小孔旳金属电极(称为背电极)构成 以及它们中间旳几十μm厚旳尼龙隔离垫构成,如图一所示。
2、简朴旳AGC电路
AGC环是闭环电子电路,它能够提成增益受控放大电路 和控制电压形成电路两部分。增益受控放大电路位于正向 放大通路,其增益随控制电压而变化。
控制电压形成电路旳基本部件是AGC检波器和低通平滑滤 波器。
放大电路旳输出信号u0 经检波并经滤波器滤除高频调制 分量和噪声后,产生用以控制增益受控放大器旳电压uc 。 当输入信号ui增大时,u0和uc亦随之增大。 uc增大使放大 电路旳增益下降,从而使输出信号旳变化量明显不大于输入 信号旳变化量,到达自动增益控制旳目旳。
3、驻极体话筒旳接法
话筒有两根引出线,漏极D与电源正极之间接一漏极电阻 R,信号由漏极经一隔直电容输出,这种接法有一定旳电压增 益,话筒旳敏捷度比较高,但动态范围比较小。
ECM麦克风的技术简介
ECM麦克风的技术简介ECM麦克风的技术简介1. 驻极体麦克风的原理及构造驻极体是一种能长久保持电极化状态的电介质,这种电介质是一种高分子聚合物,它的工作原理是电容式的:由一片单面涂有金属的振动膜与一个带有若干小孔贴有驻极体薄膜的金属电极(称为背极)构成。
驻极体面与振动膜相对,中间有一极小的空气隙,这就形成一个以空气隙和驻极体作绝缘介质,以背极和振动膜上的金属层作为两个电极的介质电容器,电容器的两极之间并接一只电阻,这只电阻是麦克风的阻抗变换器或前置放大器的输入电阻。
由于驻极体上分布有自由电荷,于是在电容器的两极之间就有了电荷量,当声波使振动膜振动而产生位移时,改变了电容器的电容量,电容量的改变使电容器的输出端产生了相应的交变电场,交变电场作用于R 就形成了与声波信号对应的电信号,于是就完成子声——电转换的功能。
实际应用其模型如下:驻极体麦克风之声学结构,举例如下图:麦克风在手机上的典型应用如下图:由于驻极体麦克风是按电容式原理工作的,因此它具有电容式电声器件的很多优点,如频带宽、音质好、失真小、瞬态响应好,对机械振动不敏感等特点。
2. 麦克风的主要电声性能从驻极体麦克风的结构来看,可以看作是由振膜与驻极体背极形成的电容式极头以及后接的阻抗变换器(PCB 组)两部分组成。
因此,驻极体麦克风的性能设计是从两部分来进行的。
【灵敏度】灵敏度是衡量在给定某个大小声音下输出多大电信号的测量指标,假如试图去记录非常微弱的声音,这是一个非常关键的指标,同时需要考虑各种不同的环境。
一方面不灵敏的麦克风不得不增加后级电路的增益;另一方面,非常灵敏度的麦克风可能会使得后级电路过载,从而产生失真。
影响驻极体麦克风灵敏度的因素较多,归纳起来主要有以下几项:A、驻极体表面电荷密度的大小B、振膜的张力C、振膜与背极间的距离D、阻抗变换器或放大器的性能驻极体麦克风的灵敏度与驻极体表面电荷密度成正比,但驻极体表面电荷密度过大将会导致振膜附到背极上,使麦克风处于不稳定状态,解决的办法是增大振膜与背极的距离或增加膜片的张力,由此会导致灵敏度降低和频响曲线改变。
驻极体话筒(整理)
驻极体话筒原理简介
驻极体话筒(又称电容式微音器)是由驻极体和场效应管组成的一种具有自偏压的电声换能器,它具有频带宽(20~100Hz)、音质好、噪声低、耗电少、灵敏度高等特点,而且体积小、重量轻、价格低廉,现在盒式录音机的录音用内接,外接话筒几乎都采用驻极体话筒。
驻极体话筒的内部结构如图3-6-2所示,其中两个由驻极体材料构成的极板组成了一个电容器,一个极板的作用是承受声压信号,作为振膜。
当振膜振动时,两极板间因距离变化而使电容量发生变化,即产生出与声信号对应的交变信号。
由于此电容量很小,在声频段,其阻抗高达几兆欧。
为了降低其输出阻抗,在驻极体的另一极板上通过弹簧连接了一个场效应管,以此来匹配阻抗,放大信号。
图3-6-2 驻极体话筒结构
场效应管阻抗变换电路通常有两种形式,即源极输出式——两端话筒和漏极输出式——三端活筒,如图3-6-3所示。
(a)源极输出式(b)漏极输出式
图3-6-3 两种阻抗变换电路
为了保证驻极体活筒的质量,通常将场效应管连同相应的电阻等一起装在话筒的外壳内,整个话筒只有三个输出接点(电源端、输出端和接地端)或两个输出接点(输出端和接地端),对应不同的需要,在使用时又可有几种电源接线方式(见图3-6-4)。
话筒的工作电压范围一般为1.5~12V。
图3-6-4 几种电源接线图。
驻极体话筒的结构与工作原理
驻极体话筒的结构与工作原理-驻极体话筒具有体积小,频率范围宽,高保真和成本低的特点,目前,已在通讯设备,家用电器等电子产品中广泛应用。
一:驻极体话筒的结构与工作原理驻极体话筒的工作原理可以用图(1)来表示。
话筒的基本结构由一片单面涂有金属的驻极体薄膜与一个上面有若干小孔的金属电极(背称为背电极)构成。
驻极体面与背电极相对,中间有一个极小的空气隙,形成一个以空气隙和驻极体作绝缘介质,以背电极和驻极体上的金属层作为两个电极构成一个平板电容器。
电容的两极之间有输出电极。
由于驻极体薄膜上分布有自由电荷。
当声波引起驻极体薄膜振动而产生位移时;改变了电容两极版之间的距离,从而引起电容的容量发生变化,由于驻极体上的电荷数始终保持恒定,根据公式:Q =CU 所以当C变化时必然引起电容器两端电压U的变化,从而输出电信号,实现声—电的变换。
实际上驻极体话筒的内部结构如图(2)。
由于实际电容器的电容量很小,输出的电信号极为微弱,输出阻抗极高,可达数百兆欧以上。
因此,它不能直接与放大电路相连接,必须连接阻抗变换器。
通常用一个专用的场效应管和一个二极管复合组成阻抗变换器。
内部电气原理如图(3)电容器的两个电极接在栅源极之间,电容两端电压既为栅源极偏置电压Ucs,Ucs变化时,引起场效应管的源漏极之间Idc的电流变化,实现了阻抗变换。
一般话筒经变换后输出电阻小于2千欧。
二:驻极体话筒的正确使用机内型驻极体话筒有四种连接方式,如图(4)所示。
对应的话筒引出端分为两端式和三端式两种,图中R是场效应管的负载电阻,它的取值直接关系到话筒的直流偏置,对话筒的灵敏度等工作参数有较大的影响。
二端输出方式是将场效应管接成漏极输出电路,类似晶体三极管的共发射极放大电路。
只需两根引出线,漏极D与电源正极之间接一漏极电阻R,信号由漏极输出有一定的电压增益,因而话筒的灵敏度比较高,但动态范围比较小。
目前市售的驻极体话筒大多是这种方式连接。
(SONY用在MD上的话筒也是这类)三端输出方式是将场效应管接成源极输出方式,类似晶体三极管的射极输出电路,需要用三根引线。
驻极体话筒测量方法
驻极体话筒测量方法驻极体话筒测量方法导言:驻极体话筒测量方法是音频工程领域中一种常用的测量手段。
通过这种方法,我们可以评估话筒的性能,了解其频率响应、指向性特性以及其他关键参数。
本文将就驻极体话筒测量方法进行深入探讨,以帮助读者更全面、深入地理解这一话题。
1. 驻极体话筒的基本原理1.1 驻极体话筒的结构驻极体话筒是一种常见的话筒类型,其结构由一个薄膜和一个电容板组成。
当声波进入话筒时,薄膜会随着声波的压力变化而产生振动,从而改变电容板之间的电容值。
这个变化的电容值被转换为电压信号,最终被放大和记录。
1.2 驻极体话筒的工作原理驻极体话筒的工作原理基于电容的变化。
当声波到达话筒时,薄膜振动会导致电容板之间的电容值发生变化。
这一变化的电容值可以通过信号转换电路转换为电压信号。
由于驻极体话筒是一种压电传感器,其输出的电压信号与声波的压力变化成正比。
2. 驻极体话筒测量方法2.1 频率响应测量频率响应是评估话筒性能的重要指标之一。
通过测量驻极体话筒在不同频率下的响应能力,我们可以了解它在不同频率范围内的工作效果。
频率响应测量可以通过将话筒连接到信号发生器和频谱分析仪来进行。
选择适当的频率范围,并逐步改变信号频率,测量并记录话筒输出的电压信号。
将这些数据绘制成频率响应曲线,以便更直观地了解驻极体话筒在不同频率下的响应情况。
2.2 指向性特性测量驻极体话筒的指向性特性描述了话筒对声源位置的敏感度。
通过测量话筒在不同角度和声源位置下的响应能力,我们可以了解其指向性特性。
指向性特性测量可以通过将驻极体话筒放置在旋转平台上,并围绕话筒以不同角度旋转声源来进行。
测量过程中,记录话筒输出的电压信号,并绘制成指向性图案,以便更直观地了解驻极体话筒在不同角度和声源位置下的接收特性。
3. 个人观点与理解驻极体话筒测量方法对音频工程领域至关重要。
通过测量驻极体话筒的频率响应和指向性特性,我们可以选择合适的话筒来满足特定的录音需求。
驻极式电容麦克风构造与原理介绍
04 驻极式电容麦克风性能指 标
灵敏度
总结词
灵敏度是衡量麦克风将声音转换成电信号 的能力,单位为伏特/帕斯卡(V/Pa)。灵 敏度越高,麦克风对声音的捕捉能力越强。
VS
详细描述
驻极式电容麦克风的灵敏度通常在-40~60dBFS之间,这个范围表示麦克风能够 将微弱的声音信号转换为电信号。高灵敏 度的麦克风能够更好地捕捉声音细节,但 同时也更容易受到环境噪声的干扰。
录音棚
用于录制高质量的声音,如音 乐、演讲等。
语音识别系统
作为语音输入设备,用于语音 助手、智能家居等。
会议系统
用于远程会议、视频通话等场 合,提供清晰的声音传输。
公共广播系统
用于学校、商场、车站等公共 场所的广播和通知。
02 驻极式电容麦克风构造
电容极头
极头是驻极式电容麦克风的核心部分,由两片平行金属膜片(通常为铝膜 片)构成,膜片间距非常小,通常在几微米到几十微米之间。
驻极式电容麦克风构 造与原理介绍
目录
CONTENTS
• 驻极式电容麦克风概述 • 驻极式电容麦克风构造 • 驻极式电容麦克风工作原理 • 驻极式电容麦克风性能指标 • 驻极式电容麦克风使用注意事项
01 驻极式电容麦克风概述
定义与特点
定义
驻极式电容麦克风是一种利用电 容原理将声音转换成电信号的麦 克风。
感谢您的观看
THANKS
使用环境与条件
温度
驻极式电容麦克风应在-20℃至40℃的温度范围内使 用,以确保其正常工作。
湿度
相对湿度应保持在30%至80%之间,以防止麦克风受 潮或结露。
防尘
避免在多尘的环境中使用,以免灰尘影响麦克风的性 能。
驻极体话筒原理知识
驻极体话筒原理知识驻极体话筒(Electret Condenser Microphone)是一种常见的麦克风类型,其原理是利用了驻极体的特性来实现声音的转换与放大。
在麦克风中,驻极体话筒有着重要的应用,具有灵敏度高、频率响应范围宽等优点。
驻极体话筒一般由驻极体膜、背板和电荷放大器组成。
其中,驻极体膜是一片非常薄的聚合物膜,在制作过程中被电解质处理获得一定的电荷。
驻极体话筒的背板上有一个小孔,当声波进入话筒时,会引起膜片的振动,振动产生的声音使驻极体的电荷发生变化。
这种变化的电荷会通过电荷放大器进行放大和转换,最终输出为电压信号。
在驻极体话筒的制作过程中,关键是制造出具有稳定电荷的驻极体膜。
最常见的方法是使用一种特殊的聚合物材料,通过电荷处理或电解质处理的方式,将电荷转移到聚合物膜中。
这样,一旦声音进入话筒,驻极体膜就会根据声音的振动产生电荷的变化。
首先是声音的转换阶段。
当声音进入话筒时,驻极体膜会因声波的作用而振动。
这种声波产生的振动会受到驻极体膜自身特性的影响,例如膜片的质量、张力和结构等。
一旦驻极体膜振动,膜片上的电荷就会随着振动而改变。
接下来是电荷的储存阶段。
驻极体膜上的电荷变化会储存在电荷存储器中。
一般来说,驻极体膜和电荷存储器之间的电压是恒定的,以保证驻极体膜上的电荷保持稳定状态。
所以当驻极体膜上的电荷发生变化时,驻极体膜电荷与电荷存储器间的电压将改变。
最后是电荷的放大阶段。
电荷的变化通过电荷放大器放大,并转换成微小的电压信号。
电荷放大器通常由晶体管或操作放大器构成,可以放大电荷的变化。
最后输出的电压信号可以通过声音设备进行进一步处理和放大,最终得到可听的声音。
总之,驻极体话筒利用了驻极体膜的特性实现声音的转换和放大。
其工作原理主要包括声音的转换、电荷的储存和电荷的放大等三个阶段。
通过利用晶体管或操作放大器进行电荷变化的放大,驻极体话筒可以输出可听的声音信号。
这种工作原理使得驻极体话筒在音频领域得到广泛的应用,例如语音录制、音乐演奏等。
驻极体话筒结构原理及应用电路
频率响应
总结词
频率响应是指驻极体话筒对不同频率声音的响应能力,直接影响声音采集的音色和清晰度。
详细描述
频率响应范围越宽,话筒能够捕捉的声音频率范围越广,输出的声音音色更丰富、更自然。常见的频率响应范围 在20Hz-20kHz之间,其中全频驻极体话筒的频率响应更接近人耳听觉范围。
输出阻抗
总结词
输出阻抗是衡量驻极体话筒输出信号的 电阻值,对电路设计和信号处理有重要 影响。
VS
详细描述
低输出阻抗的话筒便于与各种音频设备连 接,能够减小信号损失和噪声干扰。常见 的输出阻抗有几十欧姆到几百欧姆不等, 选择合适阻抗的话筒对于保证信号质量和 稳定性至关重要。
噪声电平
总结词
噪声电平是指驻极体话筒在无声音输 入时输出的电信号强度,反映了话筒 的背景噪声水平。
详细描述
低噪声话筒能够在安静环境下提供更 纯净的声音采集效果,适用于需要高 清晰度录音的场合。噪声电平越低, 背景噪声越小,输出的声音质量越高。
工作原理简介
原理
当声音引起话筒振膜振动时,会导致电容器两极板间的距离发生变化,从而引 起电容量变化,产生随声音变化的电信号。
过程
声能 → 机械振动 → 电容量变化 → 电信号
分类与用途
分类
按极性可分为单极型和双极型;按输出阻抗可分为低阻型和 高阻型。
用途
广泛应用于录音机、手机、电脑、无线麦克风等音频设备中 。
03 驻极体话筒的应用电路
前置放大器电路
01
信号放大
前置放大器电路用于放大驻极体 话筒输出的微弱信号,使其足够 驱动后续电路。
阻抗匹配
02
03
噪声抑制
通过前置放大器,实现与话筒输 出阻抗的匹配,提高信号传输效 率。
驻极体话筒的基本原理
驻极体话筒的基本原理驻极体话筒是一种常见的电声转换器,它利用了磁性材料的磁特性和电流的作用,实现了声音到电信号的转换。
驻极体话筒的基本原理可以概括为磁感线与电流相互作用的过程。
驻极体话筒由磁性材料、线圈和薄膜组成。
当声音波传播到驻极体话筒时,声压波作用在话筒的薄膜上,使薄膜振动。
这种振动会导致磁性材料中的磁感线发生变化。
根据法拉第电磁感应定律,磁感线的变化会在线圈中产生感应电动势。
当线圈的两端接入电路时,感应电动势会使电流流过线圈。
通过线圈中的电流,驻极体话筒将声音波转化为电信号。
当声音波的频率和振幅发生变化时,话筒薄膜的振动也会随之改变,从而改变磁感线的变化速率,进而改变线圈中的感应电动势和电流。
这样,驻极体话筒就能够将不同频率和强度的声音转化为相应的电信号。
驻极体话筒的原理基于电磁感应,因此其灵敏度和频率响应特性与磁性材料、线圈和薄膜的性能有关。
磁性材料的选择要具有较高的磁导率和饱和磁感应强度,以确保磁感线的变化能够被充分感应出来。
线圈的设计要考虑到电流的大小和频率范围,以充分利用电磁感应效应。
薄膜的选取要具有足够的柔韧性和强度,以便能够准确地传递外界声音的振动。
驻极体话筒在音频设备中得到广泛应用,例如麦克风、录音设备等。
其原理简单、结构紧凑,能够实现高质量的声音转换。
然而,驻极体话筒也存在一些局限性,例如对环境噪声的干扰较为敏感,需要外部电路进行放大和滤波,才能得到清晰的音频信号。
总结起来,驻极体话筒利用磁感线与电流相互作用的原理,将声音波转化为电信号。
通过选取合适的材料和设计合理的结构,驻极体话筒能够实现高质量的声音转换。
在音频设备中的应用广泛,为人们提供了优质的音频体验。
驻极体话筒的基本原理
驻极体话筒的基本原理一、驻极体话筒的概述驻极体话筒是一种广泛应用于音频采集和录音领域的电声传感器。
它采用了一种特殊的工作原理,能够将声音转化为电信号,并具有高灵敏度、宽频响和低噪声等优秀性能特点。
二、电动驻极体话筒的原理驻极体话筒主要由振膜、极板和前置放大器等组成。
其工作原理可以分为机械振动、电荷转换和电信号放大三个过程。
2.1 机械振动过程驻极体话筒的振膜是其感受声音振动的部分,一般采用金属或聚合物薄膜材料制成。
当声波作用于振膜时,振膜会产生相应的机械振动。
2.2 电荷转换过程振膜与极板之间存在间隙,形成一个电容器。
当振膜振动时,间隙的电容值会发生变化,从而引起极板上的电荷发生变化。
这个过程类似于电容麦克风的工作原理,所以驻极体话筒也被称为电容式话筒。
2.3 电信号放大过程在电荷转换过程中,极板上的电荷变化会被前置放大器放大并转化为电压信号。
这个电信号经过后续电路的处理,最后被输出为模拟音频信号或数字信号。
三、结构类型与特点根据驻极体话筒的结构特点,可以将其分为平板式和柱式两种类型。
3.1 平板式驻极体话筒平板式驻极体话筒的振膜和极板呈平行排列。
它具有频响平坦、快速响应和精确传递等优点,常用于专业录音和演出领域。
3.2 柱式驻极体话筒柱式驻极体话筒的振膜和极板呈一定的角度排列,形成一个圆柱体结构。
它具有较高的灵敏度和动态范围,常用于广播、录音室等场合。
四、驻极体话筒的应用领域驻极体话筒由于其优秀的声音采集特性,在音频领域得到了广泛的应用。
4.1 录音和演出驻极体话筒可用于录音室、演唱会、乐器录制等场合,能够准确记录声音的细节和动态。
4.2 电视和广播驻极体话筒在电视和广播中扮演着重要的角色,能够捕捉到主持人、演员和嘉宾的声音,确保音频质量清晰和逼真。
4.3 会议和讲座驻极体话筒在会议和讲座中广泛应用,能够将发言者的声音传递给听众,提供良好的语音清晰度。
4.4 语音识别驻极体话筒也在语音识别领域有着重要的应用,能够准确捕捉说话者的语音信号,提供高质量的输入数据。
驻极体话筒结构原理及应用电路设计
驻极体话筒结构原理及应用电路设计驻极体话筒的结构主要由振动膜片、驻极板和输出电路组成。
振动膜片通常由金属或塑料材料制成,用于接收声压波并产生振动。
驻极板与振动膜片之间存在电容,当振动膜片受到声波的作用时,电容发生变化,导致电信号的产生。
输出电路将产生的电信号放大,并输出为声音信号。
首先是驻极体话筒的电容放大电路设计。
电容放大电路是驻极体话筒的核心部分,用于将微弱的电信号转化为可用的声音信号。
在设计电容放大电路时,需要选择合适的放大倍数和频率响应,以提高音质和减少噪音。
其次是供电电路的设计。
驻极体话筒通常需要直流电源供电,因此需要设计一个合适的供电电路,以提供稳定的电压和电流。
供电电路还需要考虑防止干扰和噪音的设计,以保证音质的清晰度和信号的稳定性。
另外,为了进一步提高声音质量,还可以在驻极体话筒的输出电路中添加滤波电路。
滤波电路可以减少声音中的杂音和失真,并根据需要调整音频的频率范围。
此外,驻极体话筒的应用电路设计还需要考虑信号传输和接收的问题。
一般情况下,驻极体话筒的信号需要通过电缆或无线方式传输给其他设备,因此需要设计合适的信号传输电路和接收电路。
这些电路可以保证信号的稳定传输和准确接收,以及防止干扰和干扰。
最后,驻极体话筒的应用电路设计还需要考虑功耗和体积的问题。
随着现代电子设备的迅速发展,人们对功耗和体积的要求越来越高。
因此,在设计驻极体话筒的应用电路时,需要尽量选择低功耗和小尺寸的元件和模块,以满足现代设备的需求。
总之,驻极体话筒的结构原理及应用电路设计是一个复杂而重要的课题。
只有深入理解其工作原理,并根据实际需求进行合理的电路设计,才能实现高质量的声音采集和放大。
驻极体话筒结构原理及应用电路设计图文
2、阻抗变换电路
驻极体膜片与金属极板之间的电容量比较小,一般为 几十pF。因而它的输出阻抗值很高,约几十兆欧以上。因此, 它不能直接与放大电路相连接,必须连接阻抗变换器。通常 用一个专用的场效应管和一个二极管复合组成阻抗变换器。 内部电气原理如图。
2、 工作电流I
I 是指话筒静态时流过话筒的电流,它就等于场效应管的 IDS.与工作电压类似,工作电流的离散性也较大,通常在 0.1~1mA 之间。
3、最大工作电压U
最大工作电压UMDS是指场效应管漏源极两端能够承受的 最大电压。超过该电压时场效应管会被击穿造成永久损坏。
4、输出阻抗
话筒输出的交流负载阻抗。由于驻极体话筒经过场效应 管的变换,输出阻抗较小,一般小于2k。
2、灵敏度的选择
灵敏度的选择是使用中一个比较关键的问题,究竟选择 灵敏度高好还是低好应根据实际情况而定。
在要求动态范围较大的场合应选用灵敏度低一些,这样 录制的节目背景噪声较小、信噪比较高,声音听起来比较 干净、清晰,但对电路的增益相对就要求高的些;
在简易系统中可选用灵敏度高一点的产品,以减轻后级 放大电路增益的压力。
• uGS < 0 时 , 耗 尽 层 增 厚 , 导 电 沟 道 变 薄 。 当
uGS=UGS(off) (<0)时,沟道开始夹断。
UGS(off) :夹断电压 ,(<0)
B. uGS=Const, uDS (>0)变化 (见p36)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻极体话筒的结构与工作原理
2007-08-30
驻极体话筒具有体积小,频率范围宽,高保真和成本低的特点,目前,已在通讯设备,家用电器等电子产品中广泛应用。
一、驻极体话筒的结构与工作原理
驻极体话筒由声电转换和阻抗变换两部分组成。
声电转换的关键元件是驻极体振动膜。
它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。
然后再经过高压电场驻极后,两面分别驻有异性电荷。
膜片的蒸金面向外,与金属外壳相连通。
膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。
这样,蒸金膜与金属极板之间就形成一个电容。
当驻极
体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
驻极体膜片与金属极板之间的电容量比较小,一般为几十pF。
因而它的输出阻抗值很高(Xc=1/2~tfc),约几十兆欧以上。
这样高的阻抗是不能直接与音频放大器相匹配的。
所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。
场效应管的特点是输入阻抗极高、噪声系数低。
普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。
这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。
接二极管的目的是在场效应管受强信号冲击时起保护作用。
场效应管的栅极接金属极板。
这样,驻极体话筒的输出线便有三根。
即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。
驻极体话筒的工作原理可以用图(1)来表示。
话筒的基本结构由一片单面涂有金属的驻极体薄膜与一个上面有若干小孔的金属电极(背称为背电极)构成。
驻极体面与背电极相对,中间有一个极小的空气隙,形成一个以空气隙和驻极体作绝缘介质,以背电极和驻极体上的金属层作为两个电极构成一个平板电容器。
电容的两极之间有输出电极。
由于驻极体薄膜上分布有自由电荷。
当声波引起驻极体薄膜振动而产生位移时;改变了电容两极版之间的距离,从而引起电容的容量发生变化,由于驻极体上的电荷数始终保持恒定,根据公式:Q=CU所以当C变化时必然引起电容器两端电压U的变化,从而输出电信号,实现声—电的变换。
实际上驻极体话筒的内部结构如图(2)。
由于实际电容器的电容量很小,输出的电信号极为微弱,输出阻抗极高,可达数百兆欧以上。
因此,它不能直接与放大电路相连接,必须连接阻抗变换器。
通常用一个专用的场效应管和一个二极管复合组成阻抗变换器。
内部电气原理如图(3)
电容器的两个电极接在栅源极之间,电容两端电压为栅源极偏置电压UGs,UGs变化时,引起场效应管的源漏极之间Idc的电流变化,实现了阻抗变换。
一般话筒经变换后输出电阻小于2千欧。
驻极体话筒与电路的接法有两种:源极输出与漏极输出。
源极输出类似晶体三极管的射极输出。
需用三根引出线。
如图3所示,漏极D接电源正极。
源极S 与地之间接一电阻Rs来提供源极电压,信号由源极经电容C输出。
编织线接地起屏蔽作用。
源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。
但输出信号比漏极输出小。
漏极输出类似晶体三极管的共发射极放入。
只需两根引出线。
如上图2所示。
漏极D与电源正极间接一漏极电阻RD,信号由漏极D经电容C输出。
源极S与编织线一起接地。
漏极输出有电压增益,因而话筒灵敏度比源极输出时要高,但电路动态范围略小。
Rs和RD的大小要根据电源电压大小来决定。
一般可在2.2~5.1k间选用。
例如电源电压为6V时,Rs为4.7k,RD为2.2k。
图3输出电路中,若电源为正极接地时,只须将D、S对换一下,仍可成为源、漏极输出。
最后要说明一点,不管是源极输出或漏极输出,驻极体话筒必须提供直流电压才能工作,因为它内部装有场效应管。
二、驻极体话筒的正确使用
机内型驻极体话筒有四种连接方式,如图(4)所示。
对应的话筒引出端分为两端式和三端式两种,图中R是场效应管的负载电阻,它的取值直接关系到话筒的直流偏置,对话筒的灵敏度等工作参数有较大的影响。
二端输出方式是将场效应管接成漏极输出电路,类似晶体三极管的共发射极放大电路。
只需两根引出线,漏极D与电源正极之间接一漏极电阻R,信号由漏极输出有一定的电压增益,因而话筒的灵敏度比较高,但动态范围比较小。
目前市售的驻极体话筒大多是这种负极接地,D极输出的方式连接。
(SONY用在MD上的话筒也是这类)
三端输出方式是将场效应管接成源极输出方式,类似晶体三极管的射极输出电路,需要用三根引线。
漏极D接电源正极,源极S与地之间接一电阻R来提供源极电压,信号由源极经电容C输出。
源极输出的输出阻抗小于2K,电路比较稳定,动态范围大,但输出信号比漏极输出小。
三端输出式话筒目前市场上比较少见。
无论何种接法,驻极体话筒必须满足一定的偏置条件才能正常工作。
(实际上就是保证内置场效应管始终处于放大状态)。
三、驻极体话筒的特性参数
工作电压:Uds1.5~12V,常用的有1.5V,3V,4.5V三种
工作电流:Ids0.1~1mA之间
输出阻抗:一般小于2K(欧姆)
灵敏度:单位:伏/帕,国产的分为4档,红点(灵敏度最高)黄点,蓝点,白点(灵敏度最低)频率响应:一般较为平坦
指向性:全向
等效噪声级:小于35分贝
极性判别
关于驻极体电容式话筒的检测方法是:首先检查引脚有无断线情况,然后检测驻极体电容式话筒。
驻极体话筒体积小,结构简单,电声性能好,价格低廉,应用非常广泛。
驻极体话筒的内部由声电转换系统和场效应管两部分组成。
它的电路的接法有两种:源极输出和漏极输出。
源极输出有三根引出线,漏极D接电源正极,源极S经电阻接地,再经一电容作信号输出;漏极输出有两根引出线,漏极D经一电阻接至电源正极,再经一电容作信号输出,源极S直接接地。
所以,在使用驻极体话筒之前首先要对其进行极性的判别。
驻极体话筒
在场效应管的栅极与源极之间接有一只二极管,因而可利用二极管的正反向电阻特性来判别驻极体话筒的漏极D和源极S。
将万用表拨至R×1kΩ档,黑表笔接任一极,红表笔接另一极。
再对调两表笔,比较两次测量结果,阻值较小时,黑表笔接的是源极,红表笔接的是漏极。
灵敏度检测
在收录机、电话机等电器中广泛应用的驻极体话筒,其灵敏度直接影响送话和录放效果。
这类话筒灵敏度的高低可用万用表进行简单测试。
驻极体话筒
将万用表拨至R×100档,两表笔分别接话筒两电极(注意不能错接到话筒的接地极),待万用表显示一定读数后,用嘴对准话筒轻轻吹气(吹气速度慢而均匀),边吹气边观察表针的摆动幅度。
吹气
瞬间表针摆动幅度越大,话筒灵敏度就越高,送话、录音效果就越好。
若摆动幅度不大(微动)或根本不摆动,说明此话筒性能差,不宜应用。
对于三根引脚驻极体电容式话筒检测方法同上,只是黑表棒接输出引脚2脚,红表棒接引脚3脚。