经济数学基础(上)-函数与极限的笔记整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《经济数学基础》(上)笔记整理
目录
一、函数 (2)
1.函数的两个要素 (2)
2.求定义域的方法 (2)
3.分段函数 (3)
4.常用的三角函数值 (3)
5.函数的有界性 (3)
6.函数的奇偶性 (4)
7.判断函数的单调性 (4)
8.基本初等函数: (4)
9.复合函数 (4)
10.初等函数 (5)
11.常用经济函数 (5)
二、极限 (7)
1.极限的几种常用记号 (7)
2.定义1.10 (7)
3.左极限与右极限 (8)
4.定理1.1 (8)
5.分段函数讨论分段点处的极限 (8)
6.极限的运算 (8)
(1)f(x)=f(□) (9)
(2)型,未定式 (9)
(3)型,未定式。 (9)
7.两个重要极限 (14)
(1) (14)
(2)(P31) (16)
8.无穷小与无穷大 (18)
9.函数的连续性 (18)
【总结:极限运算的题型】 (21)
1. f(x)=f(□) (21)
2.型,未定式。 (22)
3.型,未定式。 (22)
4.型,未定式。 (22)
5. 无穷小×有界函数=无穷小(0) (23)
6. 分段函数中,求分段点处的极限。 (23)
7.函数的连续 (23)
附件:数学作业 (23)
第一次 (23)
第二次 (23)
第三次(3月21日) (24)
第四次(3月29日) (24)
一、函数
1.函数的两个要素:定义域和对应法则
2.求定义域的方法:【会做书上P5的例2的(1)(2)(3)】
①分母≠0
②偶次根号内≥0
③对数中的真数>0
【练习】
书P45,4(1)(2)(6)
这三道题根据上边的知识点就能做出来了。求定义域取并集。
(6)
解:由题得,
∴
∴此函数的定义域为(-)(1,3)
3.分段函数:①分段函数是一个函数;②分段函数的定义域取并集
4.常用的三角函数值
5.函数的有界性(了解,书P8图)
(1)从图像上看,函数的有界性是指:图像被两条平行于x轴的直线y=M,y=-M夹住了。
(2)常见的有界函数:
①y=c常数函数;②y=;③y=,以及由这些有界函数经过复杂的运算后所得到的。
6.函数的奇偶性(书P8)
(1)常见的奇函数:①y=;②y=
(2)常见的偶函数:①y=;②y=;③y=c
注意:奇函数可以认为是﹣的,偶函数可以认为是+的。判断奇偶性时直接带符号。但函数的奇偶性与它前边的正负号无关。
7.判断函数的单调性(P9)
(1)求导
(2)图像从左到右
8.基本初等函数:(书P11)
(1)“基本”指的是函数的原型:自变量的位置是一个字母
(2)其他函数还没讲
9.复合函数(P16)
(1)复合函数是由若干个基本的或简单的函数通过代入得到的(2)分解复合函数:由外向里,层层分解到基本的或简单的函数.书上的分解复合函数题得答案都是倒着的,你把顺序改过来就对了。
【书P7的(1)~(6),补充:,解:
】
(3)
10.初等函数(P17)
初等函数只能用一个式子来表示,所以除了分段函数外,其他函数都是初等函数。
11.常用经济函数(P39~41)
书上有概念和公式,看懂就行了。主要记住线性的函数,均衡价格。【会做书上P40的例1、例2】
【书P47 ,22】
解:
所以,
【书P48,23】
解:C(q)=2000+15q
R(q)=20q
∵保本
∴C(q)=R(q)
∴2000+15q=20q
q=400
【书p48,26】
解:设线性成本函数为c=a+bq
由题得,
【例题】
游戏机每台卖110元,固定成本7500元,可变成本为每台60元。(1)要卖多少台,厂家才可保本(收回投资)?(2)若卖100台,厂家盈利或亏损多少?(3)要获得1250元的利润,要卖多
少台?
解:
(1)C(x)=C(固)+C(变)=7500+60x
R(x)=110x
∵保本
∴C(x)= R(x)
X=150
(2)C(100)=7500+6000=13500
R(100)=110×100=11000
∴亏损= C(100)-R(100)=2500
(3)L(x)=R(x)-C(x)=1250
110x-7500-60x=1250
X=175
二、极限
(P21,重点讲P21的第2个极限:x时函数的极限)1.极限的几种常用记号
★①x,x从两侧方向无限接近,x≠
②,x从右侧方向无限接近,x>
③,x从左侧方向无限接近,x<
★④x→,无限增大
⑤x→+,x的值无限增大
⑥x→-,x的值无限减小
2.定义1.10(P21)
①极限A是常数,y越来越接近A;
②y→A与x在处是否有定义无关