几种手性化合物的色谱分离方法研究
手性药物色谱拆分法研究发展
5.1 间接拆分法
[1]Zukowski J,De Biasi V,Berthod A. Chiral
等特点,并具在手性分离方面与高效液相色谱、
间接拆分法[8]虽需进行衍生化反应,但生 separation of basic drugs by capillary elec-
气相色谱相互补充,在光学纯药物的制备方面 成的非对映体异构体,物化性质不同,可用常规 trophoresis with carboxymethylcyclodextrins [J].J
的技术,它以高压电场为驱动力,以毛细管为分 - NHCO- 基团。苯环的取代基的性质,数目及位 [11]LI Bing,SHI Jie -hua,YANG Gen -sheng,.
离通道,依据样品中各组分间电荷及质量的差 置对手性化合物的拆分影响很大[11]。蛋白质类 Cellulose-based chiral stationary phase in high
副作用。因此手性药物拆分近年来引起人们的 D- 10- 樟脑磺酸胺作为手性离子对试剂添加到 是很广泛;GC 法对于药物的沸点要求严格,故
广泛关注。目前,手性药物的拆分主要有化学拆 流动相中,在硅胶 GF254 薄层板上分离了两种芳 GC 应用范围有限;CE 法和 TLC 法检测灵敏度
分法、结晶法、生物拆分法和色谱法等等,其中 香醇胺类药物对映体拉贝乐尔和倍它乐克,并 较低,有待研究提高发展;HPLC 法因手性固定
也有其局限性,如检测灵敏度不足,重现性差等 磺酰基 - 1,2- 二苯基乙二胺,研究了流动相中 对甲基苯磺酰基-1,2-二苯基乙二胺在卵类粘
[6]。
有机调节剂的种类和含量等色谱条件对拆分结 蛋白柱上的手性拆分[J].色谱,2003, 21(4): 407.
手性化合物色谱分析方法开发(一)
手性化合物色谱分析方法开发(一)1、概述首先,这里所说的手性化合物是指含有一个或多个不对称碳手性中心的对映或者非对映异构体,而不包含氮磷等含有孤电子对的手性中心化合物。
不对称性碳原子,需要具有四个不同的取代基,空间上形成不对称四面体,对映异构体之间形成镜面对称,就像人的左右手一样,不能够完全重合,如下图1所示。
Fig.1Diagram for enantiomers对映异构体具有不同的使偏振光旋转的能力,据此对映异构体可以分为左旋与右旋。
在非手性环境下,对映异构体具有相同的化学性质(化学反应特性),相同的物理性质(如溶解度、熔点、沸点、熵焓等)以及同样的色谱保留行为等。
但在手性环境中对映异构体之间的某些性质则表现出不同,这也是手性化合物进行拆分的基础。
对映异构体需要对内消旋体与外消旋体进行区分,如下图2所示。
左右两个示意化合物结构的相同点在于均具有两个手性中心,不同点则在于左图的两个手性碳原子之间不存在对称平面或轴,而右图则存在对称平面。
因此在左图中,1S,2R与1R,2S为外消旋体;右图中1S,2R与1R,2S为内消旋体。
Fig.2Name and distinguish between mesomer and racemate对于手性化合物的拆分,规模比较大的时候,可使用其他手性试剂(如酒石酸钠)与待拆分的化合物形成非对映异构体,然后根据非对映异构体之间具有不同的物理化学性质,进行相应的分离单元操作。
而在分析实验室中,一般是采用色谱法进行拆分,其中包括使用手性固定相法以及在流动相中添加手性流动相形成手性拆分环境的方式。
其中手性固定相拆分法包括气相色谱以及液相色谱。
对于气相色谱拆分手性化合物,其拆分选择性主要取决于所使用的手性固定相的种类以及色谱分离的温度。
一般气相用于低沸点的手性化合物的拆分,对于有机酸碱等极性手性化合物的拆分,一般需要先进行柱前衍生化处理,使之形成相应的酯或者酰胺。
用于气相手性拆分的手性固定相均为环糊精衍生物类,包括β以及γ环糊精,α环糊精比较少;其最高耐受温度不会超过220℃,而且分离温度超过120℃的时候,固定相的手性选择性开始降低;超过200℃的时候,固定相的手性选择性几近与无。
几种手性药物的对映体分离方法与药物动力学研究的开题报告
几种手性药物的对映体分离方法与药物动力学研究的开题报告摘要:手性药物是由左右对称的对映体组成的,其对映体之间具有不同的生化作用和药理学效应。
因此,对手性药物的对映体分离以及对其药物动力学进行研究具有重要的意义。
本文介绍了几种手性药物的对映体分离方法和药物动力学研究,包括毒蕈酸、氨氯地平、普萘洛尔和左旋咪唑。
这些手性药物在临床上具有重要的应用价值,而且对于理解手性化合物的生物学行为和化学效应也具有重要的价值。
关键词:手性药物;对映体分离;药物动力学;毒蕈酸;氨氯地平;普萘洛尔;左旋咪唑一、引言手性药物是由左右对称的对映体组成的,其对映体之间具有不同的生化作用和药理学效应。
因此,对手性药物的对映体分离以及对其药物动力学进行研究具有重要的意义。
本文介绍了几种手性药物的对映体分离方法和药物动力学研究,包括毒蕈酸、氨氯地平、普萘洛尔和左旋咪唑。
这些手性药物在临床上具有重要的应用价值,而且对于理解手性化合物的生物学行为和化学效应也具有重要的价值。
二、毒蕈酸的对映体分离与药物动力学毒蕈酸是一种广谱的真菌毒素,可造成严重的神经系统中毒。
毒蕈酸具有两个手性中心,因此存在四个对映体。
研究人员通过手性高效液相色谱法(HPLC)对毒蕈酸的对映体进行了分离和定量。
通过药物动力学研究发现,毒蕈酸对映体的代谢和排泄差异较大,且不同对映体的药效学也有所不同。
在临床上应用毒蕈酸时,需要考虑其不同对映体的作用和代谢,以防止因药效不合理或副作用而造成患者的不良影响。
三、氨氯地平的对映体分离与药物动力学氨氯地平是一种常用的二氢吡啶类钙通道拮抗剂,具有降低血压的作用。
该药物由两个对映体组成,左旋氨氯地平和右旋氨氯地平。
研究人员利用手性高效液相色谱法(HPLC)对其对映体进行了分离和鉴定。
通过药物动力学研究发现,左旋氨氯地平和右旋氨氯地平的药效学和不良反应有很大的差异。
在临床上应用氨氯地平时,需要考虑其不同对映体的作用和代谢,以确保其有效性和安全性。
手性药物的分离在色谱法中的应用
手性药物的分离在色谱法中的应用手性药物是指具有手性结构的药物。
它们可以分为左旋和右旋两种类型,两者化学性质相同,但左右旋异构体对生物系统的影响却截然不同,这种现象被称为手性诱导失活效应。
因此,在制药过程中需要对手性药物进行分离,以确保药效和安全性。
色谱法是分离手性化合物的主要方法之一,其基本原理是利用不同化合物的物理、化学性质差异,通过分离柱将混合物中的目标物分离出来。
以下是一些色谱法在手性药物分离中的应用。
手性高效液相色谱法(HPLC)手性HPLC是目前最常用于手性药物分离的方法之一,它是利用手性固定相在悬浊液中对手性化合物进行分离。
具有手性结构的固定相与目标分子相互作用,从而实现分离。
手性HPLC可以分别采用手性固定相或手性混合物来进行分离。
此外,在手性HPLC中,主要可以采用簇列技术或化学反应转化手性方法来提高分离效率和选择性。
毛细管电泳(CE)毛细管电泳是一种基于电化学原理的分离技术,它利用电场将样品中的分子分离。
在毛细管电泳中,可以采用手性高分辨涂层来进行手性药物的分离。
在此基础上,还可以采用手性化合物作为毛细管填充剂,进一步提高分离效率和分离度。
气相色谱法(GC)气相色谱法是一种利用气体作为流动相的色谱法。
在处理手性药物时,通常需要使用手性柱和手性混合物。
与HPLC不同,该方法的分离依赖于分子间的“挤压”力。
因此,手性柱具有不同的式样,以保证灵敏度和选择性。
超临界流体色谱法(SFC)SFC是一种介于HPLC和GC之间的色谱法。
它使用超临界流体作为移动相,可以在温度和压力条件下实现高效率的手性药物分离。
通常使用手性柱和手性对映异构体混合物进行分离。
此外,还可以应用具有特定分子功能的催化剂来提高分离效率。
总之,手性药物分离是一项非常复杂的任务,需要使用不同的色谱技术和方法来实现。
无论是HPLC、CE、GC还是SFC,它们都有各自的优缺点和适用范围,因此在选择分离方法时需要综合考虑样品特性,实验设备和分离效率与成本等因素。
有机化学的手性分析方法
有机化学的手性分析方法
在有机化学领域中,手性分析是一项十分重要的工作。
手性化合物是指分子的结构镜像不能完全重合的分子。
因此,手性分析的目的就是确定有机化合物中手性中心的配置。
在本文中,将介绍几种常用的手性分析方法。
一、圆二色谱分析法
圆二色谱分析法是一种利用圆二色现象测定有机物的手性的方法。
圆二色现象是指左旋光和右旋光通过具有手性的物质后,光传播方向不变,但相位差发生变化的现象。
通过观察物质在不同波长下的圆二色光谱,可以确定其手性。
二、红外吸收光谱分析法
红外吸收光谱分析法是一种常用的手性分析方法。
在红外光谱中,手性物质通常表现出特定的旋光效应,通过比较旋光贡献可以判断有机物的手性。
三、核磁共振分析法
核磁共振分析法是一种非常重要的手性分析方法。
通过核磁共振技术,可以观察到手性物质中的不对称中心周围原子核的信号差异,从而确定有机物的手性。
四、质谱分析法
质谱分析法是一种高灵敏度的手性分析方法。
通过质谱仪对有机物进行分析,可以观察到手性分子离子的不同质量谱峰,从而确定有机物的手性。
五、氨基酸序列分析法
氨基酸序列分析法主要用于蛋白质的手性分析。
通过氨基酸序列分析仪,可以确定蛋白质中的手性氨基酸的排列顺序,从而确定蛋白质的整体手性。
综上所述,有机化学的手性分析方法主要包括圆二色谱分析法、红外吸收光谱分析法、核磁共振分析法、质谱分析法以及氨基酸序列分析法。
这些方法各自有其优点和适用范围,科学家们可以根据具体情况选择合适的手性分析方法来进行研究。
色谱分析中的手性分离技术
色谱分析中的手性分离技术色谱分析是一种常见的分离和检测技术,它可以通过不同成分在色谱柱上的运移速度差异,实现样品中组分的分离。
而手性分离技术则是其中一种具有广泛应用的技术。
手性分离技术又称拆分体分离技术,是指将具有手性的化合物分离成其对映异构体的过程。
手性分离技术主要有两种:手性凝胶色谱和手性高效液相色谱。
手性凝胶色谱是一种传统的手性分离技术,它利用具有手性结构的聚合物凝胶作为色谱填料,通过样品分子与凝胶之间的分子识别作用实现分离。
手性凝胶色谱是一种相对简单的手性分离技术,但是由于其分离程度较低,通常用于对手性分析的初步筛查。
手性高效液相色谱是一种高效手性分离技术,它基于手性色谱填料的表面手性区分作用和反相分离作用,实现对手性化合物的高效分离。
在手性高效液相色谱中,手性色谱柱成为关键的分离工具,色谱柱内填充了各种具有手性结构的填料,如纳米结构材料、束缚配体、离子交换树脂等。
手性高效液相色谱技术需要精密的操作和控制技术,同时对手性填料的选择和性能也十分关键。
常见的手性高效液相色谱模式包括正相模式、反相模式和杂相模式。
正相模式下,填料是手性站点,流动相是水/有机溶剂混合物,溶液的极性越强,分离能力越高;反相模式下,填料是非手性的,分离基于无手性分子和手性分子与填料的相互作用,流动相是弱极性有机溶剂/水混合物;杂相模式是正相和反相模式的结合。
手性高效液相色谱技术在制药、化妆品、食品、医疗诊断等领域得到了广泛应用。
例如,在药物研发中,手性高效液相色谱可以对药物的对映异构体进行分离和鉴定,以确定对映异构体的药效和安全性;在食品领域,手性高效液相色谱可以对添加的手性能呈现不同风味的香料成分的组成比例进行分离和鉴定。
当然,手性分离技术也存在一些困难和局限性。
一方面,手性化合物的对映异构体之间的物理和化学性质非常相似,因此分离困难。
另一方面,手性化合物的分离需要精密的手性填料和色谱柱控制技术,手性柱的制备和使用成本也较高。
手性分子的判断方法
手性分子的判断方法手性分子是指旋光性质不可重叠镜像异构体,即左旋与右旋镜像异构体。
手性分子在化学和生物学领域中起着重要的作用。
判断一些分子是否是手性分子,通常可以通过以下三种方法进行。
1.对称性分析法2.手性圆二色谱法3.X射线晶体学分析法接下来,我们将详细说明这三种方法。
1.对称性分析法:对称性分析法是一种简单且直观的方法,用于判断分子是否具有手性。
具体步骤如下:(1)确定分子是否具有对称面,即分子可以对称折叠。
如果分子有平面对称面,那么它是一个非手性分子。
(2)确定分子是否具有中心对称。
中心对称分子是指具有旋转轴并且轴上的每一点都与该轴上的一个等距离的点对称。
如果分子具有中心对称,则为非手性分子。
(3)如果分子不具有对称面或中心对称,则可能是手性分子。
需要进一步进行实验确认。
2.手性圆二色谱法:手性圆二色谱法是一种通过测量手性分子的光学活性来确定其手性性质的方法。
它利用分子的吸收螺旋度、光旋和偏振度来进行分析。
具体步骤如下:(1)用手性圆二色仪测量样品在可见光区域的吸光度。
(2)比较左旋和右旋样品的吸光度。
如果两者相等,则该分子是非手性的。
(3)如果左旋和右旋样品的吸光度不相等,则该分子是手性的。
3.X射线晶体学分析法:X射线晶体学是一种用于确定有机化合物和无机化合物的分子结构的方法。
它可以提供有关分子的空间排列和立体构型的信息。
具体步骤如下:(1)生长手性晶体。
在晶体生长过程中,手性分子会形成手性晶体,而非手性分子不会。
(2)通过X射线衍射确定晶体结构。
X射线通过晶体时会产生衍射,通过分析衍射图样可以确定晶体的三维结构。
(3)通过晶体结构确定分子手性。
在分析晶体结构的过程中,可以观察到分子的手性特征,从而确定分子的手性性质。
总结起来,对称性分析法是一种简单而常用的方法,而手性圆二色谱法和X射线晶体学分析法则是用来对手性分子进行更准确的判断和确认的方法。
这些方法在判断分子手性性质和研究手性分子在化学和生物学中的作用方面具有重要的意义。
有机化学基础知识点整理有机化合物的手性分离方法
有机化学基础知识点整理有机化合物的手性分离方法有机化学基础知识点整理:有机化合物的手性分离方法在有机化学中,手性分离是一种重要的技术,主要用于分离含有手性分子的混合物。
手性分子指的是具有非对称碳原子的化合物,也称为手性化合物。
由于手性分子的非对称性质,它们的立体异构体在化学性质和生物活性方面可能存在显著差异。
因此,对手性分子的手性分离和分析具有重要的理论意义和应用价值。
目前,有机化合物的手性分离可以通过以下几种方法实现:1. 晶体分离法晶体分离法是最早应用于手性分离的方法之一。
由于手性分子的立体异构体具有不同的晶体结构,因此可以通过晶体生长和结构分析来分离手性分子。
例如,可以通过溶液结晶或真空升华的方式来实现手性分子的晶体分离。
2. 液相色谱法液相色谱法是一种常用的手性分离方法,它利用手性分子在手性固定相上的不同吸附程度来实现分离。
常用的手性固定相有手性硅胶、手性聚合物和金属配合物等。
通过调节流动相的组成和条件,可以实现手性分子的分离和纯化。
3. 气相色谱法气相色谱法是基于手性分子的揮发性差异而实现的分离方法。
在手性气相色谱中,可以通过改变固定相、导入手性诱导剂或使用手性柱温控制等方式来实现手性分子的分离。
气相色谱法具有分离快、分辨率高等优点,在手性分离中被广泛应用。
4. 核磁共振法核磁共振技术是一种常用的手性分析方法,通过差异性质下进行分离。
核磁共振技术可以通过测定手性分子的旋度差异来实现分离。
通过核磁共振技术的定量分析,可以准确测定手性分子的含量和确定其绝对构型。
5. 生物分离法生物分离法利用酶或微生物等可以对手性分子进行选择性催化的特性进行分离。
生物分离法不仅具有较高的手性选择性,还具有对手性污染物的降解和回收等功能。
通过利用酶的催化活性和对手性分子的选择性识别,可以实现手性分子的高效分离。
总结起来,有机化合物的手性分离方法包括晶体分离法、液相色谱法、气相色谱法、核磁共振法和生物分离法等。
色谱法分离手性化合物
手性化合物的色谱法分离周丽华中师范大学化学学院2011级摘要:本文综述了手性化合物的四种拆分方法—薄层色谱法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、毛细管电色谱法(CEC),及每种方法的作用机理关键字:手性化合物色谱法分离Chromatographic Separation of Chiral Compounds Abstract: This paper reviewed four methods for separation of chiral compounds , such as TLC、GC、HPLC、CEC , introduced mechanism of each method.Key word : Chiral Compounds Chromatographic Separation1.引言手性是用来表达化合物分子结构不对称性的术语,被认为是三维物体的一个基本属性。
有很多化合物分子,构成它们的元素完全相同,但原子排列方式不同,彼此如同镜子内外世界的对应,也就是具有手性,它们就互称为“对映体”。
在自然界中,手性现象无处不在。
化合物分子含有某些不对称因素时,该化合物被称为手性化合物。
随着人类在生物工程和生命科学上的发展,科学家己经认识到,手性化合物例如手性药物异构体尽管其物理和化学性质几乎完全相同,只有旋光性不同,但他们在生物体内的生理活性和药理作用却存在很大的差别。
最经典的例子是thahdomide[l],也叫反应停。
其不同的构型却存在不同的生理效应:R构型具有良好的镇静作用而S构型却导致胎儿畸形。
在农药方面,手性问题也受到广泛的关注。
这主要是因为在外消旋体的农药中,其中一半可能是没有活性的,如果用于洒播在农田,既造成资源浪费,又污染环境。
但随着对环境安全、高效、安全的要求,含单一对映体的手性农药将会不断的发展。
鉴于有机分子的构型与其生物活性的的特殊关系,有必要对手性化合物的各个异构体分别进行考察,了解他们各自的生理活性,以便达到高效、安全、无污染的用药目的。
药物分析中的手性分析技术应用
药物分析中的手性分析技术应用手性分析是药物分析领域中的重要技术之一。
由于药物分子中存在手性中心,即分子中存在手性异构体,其对于药物活性、代谢和药效等方面具有重要的影响。
因此,手性分析技术在药物研发、质量控制和临床应用中扮演着重要的角色。
本文将就药物分析中的手性分析技术应用进行论述。
一、手性分析技术概述手性分析技术是对手性药物的立体特性进行定性和定量分析的一类分析方法。
常见的手性分析技术包括极性手性色谱法(CSP)、核磁共振技术(NMR)和圆二色光谱技术(CD)等。
这些技术可以对手性药物进行手性异构体的分离和结构鉴定,进而研究手性药物的性质和应用。
二、极性手性色谱法(CSP)在药物分析中的应用极性手性色谱法是一种高效的手性分析方法,广泛应用于药物分析领域。
该方法利用手性色谱柱对手性异构体进行分离,通过优化色谱条件实现手性化合物的定性和定量分析。
极性手性色谱法在药物质量控制、药代动力学研究和药效学等方面发挥着重要的作用。
三、核磁共振技术(NMR)在手性分析中的应用核磁共振技术是一种基于核磁共振现象的手性分析方法。
通过测定手性异构体的化学位移差异,可以实现对手性异构体的身份鉴定和含量分析。
核磁共振技术具有无损、高灵敏度和高分辨率等优点,在药物分析中得到广泛应用。
四、圆二色光谱技术(CD)在手性分析中的应用圆二色光谱技术是对手性分子的光学旋光性质进行分析的一种有效手段。
通过测量手性化合物在紫外-可见光区域的旋光角度,可以确定手性异构体的构型和含量。
圆二色光谱技术具有高选择性和灵敏度,广泛应用于药物分子的手性分析和结构研究。
五、手性分析技术在药物研发中的应用手性分析技术在药物研发中起到了至关重要的作用。
在新药研发过程中,药物化学师需要对合成的手性药物进行手性分析,确定主要手性异构体的存在与含量,并进一步评估其药代动力学和药效学特性。
手性分析技术的应用使得药物研发人员能够更全面地了解手性药物的特性,指导药物设计和优化。
手性药物拆分技术及分析
手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。
手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。
因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。
手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。
首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。
通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。
其次是酶法,手性药物的拆分可以通过酶的催化作用实现。
酶是具有高选择性、高催化效率和高效底物转化率的催化剂。
通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。
化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。
该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。
色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。
这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。
光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。
根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。
手性药物的分析对于药物研发、生产和应用非常重要。
分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。
以下是手性药物分析的一些常用方法。
首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。
该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。
其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。
该方法准确、快速,适用于灵敏度高的手性药物分析。
手性高效液相色谱法
9
手性HPLC法
直接法和间接法异同点 均以现代色谱分离技术为基础,引入手性 环境(不对称中心),使药物对映体间呈现理化 性质的差异而实现分离,不同的是间接法是将 其引入分子内,而直接发引入分子间。
10
10
手性衍生化试剂法
对映异构体与手性试剂反应,产生相应的非对 映异构体
( R) SA ( R) SE ( R) SA ( R) SE (S ) SA ( R) SE (S ) SA
16
基本原理
在HPLC流动相中加入光学纯反离子可与流动 相中的对映体生成非对映体复合物,离子对复合物 之间具有不同的稳定性和分配性质,并可与固定相 发生不同的静电,疏水和氢键作用,进而差速迁移 得以分离。
17
17
3.配基交换型手性添加剂
配基交换原理: 在流动相缓冲溶液中加入金属离子和配位 体交换剂形成二元络合物,药物对映体再与其 形成稳定性不同的三元络合物而达到手性分离。 常用的手性配合试剂:氨基酸及其衍生物 如L-苯丙氨酸,L-脯氨酸等配位金属有 Cu2+、 18 Zn2+、Ni2+、Cd2+等。
色谱柱:Aglient Zorbax C18 (250mm×4.6mm,5μm) 流动相:乙腈-0.02mol/L磷酸二氢钾缓冲 盐(55:45,用磷酸调pH至4.5) 流速:0.75 ml/min 24 检测波长:224nm 进样量:20μl 柱温:室温
24
艾司洛尔
应用实例
样品处理和手性衍生化方法:
常用手性添加剂有: 环糊精类 手性离子对试剂 13 配基交换型等
13
1.环糊精类手性添加剂
环糊精的手性识别主要 来自环内腔对芳烃或脂肪烃 侧链的包合作用以及环外壳 上的羟基与药物对映体发生 氢键作用。
药物研究中手性分离分析方法及技巧
药物研究中手性分离分析方法及技巧药物研究中手性分离分析是指将手性药物中的手性异构体(也称为对映体)分离出来,并进行定量分析。
由于手性异构体具有不对称的结构,其物理化学性质和药理活性可能差异巨大,因此手性分离分析对于药物研究具有重要意义。
以下将介绍几种常用的手性分离分析方法及技巧。
1.气相色谱法(GC法):GC法是通过在手性固定相柱上进行气相色谱分析,分离手性异构体。
该方法基于手性碳氢化合物在手性固定相上的不同吸附能力来实现手性分离。
同时,通过合适的手性底物和手性固定相的选择,还可以更好地提高手性分离的选择性和灵敏度。
2.液相色谱法(HPLC法):HPLC法是手性分离分析中最常用的方法之一、常见的手性固定相有手性液相、手性离子对和手性硅胶等。
通过在手性固定相上进行液相色谱分析,利用手性化合物在固定相上的差异相互作用,实现手性分离。
此外,还可以结合负载式手性液相色谱法、手性离子对液相色谱法等技术,提高手性分离效果。
3.毛细管电泳法(CE法):CE法是一种高效、快速的分离技术,特别适用于分析手性药物。
通过在毛细管中施加电场,利用手性化合物在毛细管中的迁移速率差异实现分离。
此外,还可以通过改变运行缓冲液的组成、pH值等条件,调节手性分离的选择性和分离效果。
除了上述主要的手性分离分析方法外,还存在一些辅助技巧和方法,可以进一步提高手性分离的效果:1.共处理:将两个手性化合物混合在一起进行共处理,通过比较混合物中手性峰的相对峰度等信息,来判断手性分离的效果。
2.离子对调整:通过调整分析液中离子对的浓度和种类,来改变手性分离的效果。
一般来说,手性离子对可以提高手性分离的分辨率和选择性。
3.pH调控:通过改变液相色谱系统中溶液的pH值,可以影响毛细管电泳法和液相色谱法中手性分离效果。
pH值的改变可以调节化合物分子的电荷状态,从而影响手性分离的选择性。
总之,手性分离分析方法及技巧在药物研究中起着重要的作用。
通过合理选择合适的手性分离方法,并结合辅助技巧和方法,可以实现对手性异构体的高效、准确的分离和定量分析,从而为药物研究提供有价值的数据。
手性化学中的手性分离方法
手性化学中的手性分离方法手性化学是研究物质的手性结构与性质关系的科学,已经成为化学、生物学和药学等学科研究的重要分支。
手性分离是作为手性化学的核心内容,已经发展成为许多新型的分离方法。
在分离手性分子过程中,常用手性纯的环境或手性固体材料来吸附和选择目标化合物,达到区分化合物对映异构体的效果。
在这篇文章中,我们将讨论手性下的分离方法及其应用。
1. 手性分离的方法种类手性分离的方法种类繁多。
可以分为手性色谱法、手性溶剂萃取法、手性膜分离法、手性电化学分离法等。
1.1 手性色谱法手性色谱法是指依靠手性固体材料吸附分离目标手性分子的分离方法。
手性列(分离柱)是分离手性异构体最广泛和最有效的手段之一。
手性柱材料的溶解度较小,光学活性体被固定在固体表面上,因此只有异构体可以渗透进入手性固体,并且被手性固体捕获体现了手性固体纯度的独有性质。
手性柱的选择也非常灵活,主要有两类:一个是手性固体涂布于惰性的载体上,如硅胶、纤维素等;另一个是手性固体被包裹于柱里的固体质量聚合物中,在分离时因为固体材料干燥而捕捉到手性分子。
该技术应用广泛,可应用于制药、化工、食品和精细化工等领域的手性分离。
1.2 手性溶剂萃取法手性溶剂萃取法也是利用手性特性吸附分离手性化合物的方法之一。
以非对称醇为例,其具有较高的对映选择性,通过调节非对称醇的手性中心不同与合理控制其他物理化学参数可实现手性合成,同时也可以用作溶剂萃取中有机物的选择性萃取。
1.3 手性电化学分离法手性电化学分离法是一种利用电化学工艺技术进行手性富集分离的方法,主要是靠电子转移吸附手性分子,利用双电层效应,在较低电势下吸附手性分子,从而实现性质不同的手性分子之间的分离。
同时,该技术也可用于观察化合物的电化学谱图,对化合物进行质谱分离,为较为有效的手性分离方法之一。
1.4 手性膜分离法手性膜分离法是利用手性膜分离掺杂物分离目标物的方法,是一种新型的手性分离技术。
手性膜的制备过程可通过光学鉴定制成具有较强έ活性的光学材料,是实现手性分离过程中的必要所需手段。
手性化合物拆分方法
手性化合物拆分方法
手性化合物的拆分方法通常有以下几种:
1. 光学拆分:利用手性催化剂或其他手性物质对手性化合物进行拆分。
光学活性的手性化合物经过光学反应与手性催化剂反应可以得到单一手性的产物。
2. 液体相转移拆分:将手性化合物溶解在不对其进行反应的溶剂中,然后加入具有手性结构的离子对或分子对,形成包合物。
通过改变反应条件或进行萃取操作,可以将手性化合物从包合物中分离出来。
3. 对映体选择性结晶:通过控制结晶条件和添加适当的对映配体或样品处理剂,使手性化合物在结晶过程中选择性地形成单一手性晶体。
4. 气相拆分:利用对映体的蒸汽压差异,通过适当的气-液平衡条件和温度条件,将手性化合物分离出来。
5. 手性液相色谱:利用手性稳定相或手性固定相,在手性固定相或手性稳定相的控制下对手性化合物进行分离和拆分。
6. 酶催化拆分:利用手性酶的选择性催化作用,将手性化合物转化为单一手性的产物。
以上方法中的选择取决于手性化合物的特性、拆分要求和可用的拆分试剂或设备。
液相色谱法分离手性药物
&
&
手性固定相(CSP)法
手性固定相(CSP)法
优点是: 优点是: 能广泛适用于各类化合物,适于常规及生物样品的分析测定;; ★能广泛适用于各类化合物,适于常规及生物样品的分析测定;; 除非必须衍生化,否则无需高光学纯度试剂; ★除非必须衍生化,否则无需高光学纯度试剂; 样品处理步骤简单。 ★样品处理步骤简单。 制备分离方便,定量分析的可靠性较高; ★制备分离方便,定量分析的可靠性较高; 缺点是: 缺点是: 样品有时也须作柱前衍生(但不一定是手性衍生化试剂), ★样品有时也须作柱前衍生(但不一定是手性衍生化试剂), 对样品结构有一定限制,其适用性尚不及普通HPLC固定相 ★对样品结构有一定限制,其适用性尚不及普通 固定相 包括正相和反相)那样广泛。 (包括正相和反相)那样广泛。 迄今为止,CSP柱商品已有40多种 价格大多昂贵, 柱商品已有40多种, ★迄今为止,CSP柱商品已有40多种,价格大多昂贵,尚未有一 种具有类似ODS柱的普遍适用性。 ODS柱的普遍适用性 种具有类似ODS柱的普遍适用性。
研究背景
1992年FDA发布手性药物指导原则,要求所有在美国 上市的消旋体新药,生产者均需提供详细报告,说明 药物中所含对映体各自的药理作用、毒性和效果。 显然,单一异构体的试验次数比较单纯,经济上更合 算。 目前普遍使用的2000多种合成药物中有600余种为手 性药物,而活性的单一对映体药物不足100种,其它 500余种都是左右旋混在一起的消旋体药物。 1999年,手性药物市场第一次超过1000亿美元,单一 异构体药物销售额达到1150亿美元,占世界药品市场 3600亿美元的32%。
手性药物的制备和分离技术
手性药物的制备和分离技术手性药物是指由手性分子构成的药物。
手性分子是指在空间构型上存在镜像对称的分子,即左旋和右旋异构体。
由于手性异构体之间的药物作用差异较大,因此,研究手性药物的制备和分离技术对于药物研发和生产至关重要。
一、手性药物的制备手性药物的制备分为对映选择性合成和手性分离两种方式。
对映选择性合成是指在化学反应过程中,通过调节反应条件,控制反应产物的手性形态,从而选取特定的对映异构体。
手性分离是指将手性混合物中的对映异构体分离出来。
对映选择性合成方法包括:1. 手性诱导剂合成法该方法是利用手性诱导剂将非手性反应物的手性信息“传递”到产物中,控制产物的手性。
目前广泛应用的手性诱导剂有葡萄糖、天然蛋白质等。
2. 催化剂合成法该方法是利用手性催化剂,使催化反应产生手性产物。
手性催化剂包括非对称合成、核磁共振催化等。
手性分离方法包括:1. 液相色谱法液相色谱法是通过改变手性固定相的化学性质或物理性质,控制手性药物在柱子中的分配行为。
常用的手性固定相有环糊精、聚乙烯亚胺等。
2. 粉末衍射分析法粉末衍射分析法是利用衍射图案分辨出手性分子的对映异构体,对于具有晶体结构的手性分子比较有效。
二、手性药物的分离和纯化手性药物的分离和纯化主要涉及手性液体-液体萃取、手性气相色谱和手性无机杂化材料等技术。
这些技术的实现原理基本上是通过利用手性相互作用,将手性分子与其它化合物区分开来。
手性液体-液体萃取法:手性药物在酸性或碱性条件下会形成盐,通过萃取可以实现手性药物的分离。
手性气相色谱法:利用手性固定相的化学性质实现手性药物分离纯化。
手性无机杂化材料:无机杂化材料具有良好的表面静电相互作用,可以用于分离手性药物。
总之,手性药物的制备和分离技术对于药物研发和生产具有重要的意义。
随着手性药物市场前景的不断扩大,手性药物的制备和分离技术也逐渐得到了广泛的应用。
有机化学中的手性化合物
有机化学中的手性化合物有机化学是研究碳元素化合物的科学,而手性化合物则是其中一个非常重要的分支。
手性化合物是指分子结构中存在对称中心,其左右两侧的分子结构不完全对称,因此左右两侧的化学性质也会有所不同。
在医药、化妆品、农药、食品添加剂等领域中,手性化合物的研究和应用非常广泛。
一、手性化合物的定义和特点手性化合物是指分子结构中存在一个对称轴或对称中心的有机化合物。
它们是由于分子结构的不对称而产生的,左右两侧的结构并不存在完全的对称,因此左右两侧的化学性质也会有所不同。
手性化合物具有非常独特的化学特性,包括对光的旋转、对酸碱性质的影响、对酶的作用等。
这些特性对于药物的生物活性、化妆品的效果、食品添加剂的性质等有着非常重要的影响。
二、手性化合物的分类手性化合物可以分为对映异构体和非对映异构体两类。
对映异构体:左右两侧的分子结构不对称的手性化合物,这一类分子的信号镜像是没有重合的。
对映异构体分子虽然结构相似,但是由于其两侧的分子结构有所不同,因此其化学性质也会有所不同。
对映异构体的存在对于一些药物的研究非常重要,例如、左旋多巴和右旋多巴就是通过整合对映异构体得到的药物。
非对映异构体:左右两侧的分子结构相同,但是这一类分子的空间构型是不对称的。
由于非对映异构体的分子结构是相同的,因此其化学性质也会非常相似。
在这一类化合物中,结构相同的不同立体异构体具有相同的物理性质。
例如丁烷的立体异构体,右旋丁烷和左旋丁烷的化学性质是相同的。
不过,由于其空间构型的不同,它们在识别作用上则有所差别。
三、手性化合物和生物活性手性化合物对于生物活性的影响非常显著,而这种影响经常被称为手性药学。
大量的药物原料分子是手性化合物,其中一种异构体比另一异构体的药效表现要更为显著。
例如,普罗旺斯石英酸二甲酯(PQQ)这种具有生命活力的化合物,其两个对称中心的不对称性质使PQQ对于氧化还原体系的作用比普通的化合物要强大得多。
水杨酸前体PPOH与丙氨酸前体PAOH,两者的立体异构体在抗病毒作用方面有较大差异。
手性药物高效液相色谱拆分方法研究进展
摘要】自然界很多药物是手性药物,手性药物的开发已成为制药领域的必然趋势,其分析测定方法也得到快速发展。高效液相色谱法作为经典实用的分析测定方法,得到了广泛的运用。本文综合国内外文献,综述了手性药物高效液相色谱拆分方法研究进展,为手性药物的含量测定和生物分析提供思路。【关键词】手性药物高效液相色谱法拆分手性是自然界的本质属性之一,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征。对手性药物而言,两个对映体并非具有相同的药效。HPLC分离药物对映体可分为间接法和直接法,前者又称为手性试剂衍生化(CDR)法,后者可分为手性流动相添加剂(CMPA子内,而CMPA法和CSP法则是将不对称中心引入分子间。1 CDR法CDR法是将药物对映体先与高光学纯度衍生化试剂(CDR)反应形成非对映异构体,再进行色谱分离测定,适用于不宜直接拆分的样品。该法的优点是衍生化后可用通用的非手性柱分离,无需使用价格昂贵的手性柱,而且可选择衍生化试剂引入发色团提高检测灵敏度。金银秀等[1]采用手性衍生化试剂GITC对美西律进行柱前手性衍生化,建立了美西律对映体在人血清白蛋白中的测定方法。2 CMPA法CMPA法是将手性选择剂添加到流动相中,利用手性选择剂与药物消旋体中各对映体结合的稳定常数不同,以及药物与结合物在固定相上分配的差异,实现对映体的分离。此法的优点在于:不需对样品进行衍生化,可采用普通的色谱柱,手性添加剂可流出,也可更换,同时添加物的可变范围较宽,使用比较方便。目前常用的手性流动相添加剂有:环糊精(CD)及其衍生物、配位基手性选择剂、手性离子对添加剂、蛋白质、大分子抗生素。2.1配体交换型手性添加剂此类添加剂多为氨基酸及其衍生物与二价金属离子铜、锌、镍等结合,以适当浓度分布于流动相中,然后外消旋体共同形成非对映的配位络合物进行拆分。2.2环糊精添加剂常用的环糊精主要为β-CD,β-CD络合的化学计量关系通常为1:1,但是其它比例也存在,在添加CD的RP色谱中,存在两个平衡流动相中游离溶质和CD络合物在固定相上的吸附平衡,其影响因素包括有机溶剂的用量及酸度等。如杨青等[2]以C18为分析柱,将β-CD、2,6-二甲基β-CD、2,3,6-三甲基β-CD分别作为手性流动相添加剂,系统地研究了酮基布洛芬对映体在HPLC系统中的拆分。2.3手性离子对添加剂此方法为对映体与手性离子对试剂形成非对映离子对,利用其在固定相和流动相之间不同的分配比来分离,手性离子对必须具有3点作用模式。3 CSP法手性固定相(CSP)是由具有光学活性的单体固定在硅胶或其它聚合物上制成的,在拆分中CSP直接与对映体相互作用,而其中一个生成具有不稳定的短暂的对映体复合物,造成在色谱柱内保留时间的不同,从而达到分离的目的。3.1天然高分子手性固定相这种固定相主要有蛋白质类、环糊精类、多糖及其衍生物类、冠醚等。其中,以环糊精类目前应用较多,同时CD分子上的手性中心也能选择性地与对映体作用。目前,以β-CD应用最多。不同的环糊精的空腔大小不同,α-CD适于分离小分子药物对映体,γ-CD适于分离大分子药物,β-CD对形成包合物有最佳大小的空腔,适用于大多数对映体的位阻和电子特征,如酮咯酸氨丁三醇盐对映体,佐匹克隆对映体,萘普生乙酯对映体的分离[3]。冠醚具有亲水性内腔和亲脂性外壳,可键合在硅胶或聚苯乙烯基质上制成手性固定相。根据主-客化学原理,用于含有能够质子化的伯胺功能团的药物对映体的分离,将(+)-18-冠醚-6-2,3,11,12-四羧酸键合至氨基丙基硅胶上作手性固定相,不仅可以分离具有伯氨基的药物对映体,如肌肉松弛药物氟喹酮、抗疟药伯氟喹等。3.1.1合成高分子固定相主要包括聚丙烯酞胺、聚甲基丙烯酸醋等含光学活性中心的高分子物质。运用较多的是交联聚酞胺,其分离机理一般认为是对映体与高分子聚合物本身的手性空间结合,同时还受到聚合物分子量,溶剂pH值等因素的影响。3.1.2氨基酸型手性固定相该固定相是以硅胶为起始原料,硅烷化成梭基型键合物,最后与有光学活性的氨基酸反应制得。其机理是对映体与固定相的氢键形成不同的非对映体络合物而分离。适于分离α-氨基酸衍生物、α-氨基烃基磷酸衍生物、二肽等,缺点是价格较贵。3.2配体交换型固定相该固定相是以某种聚合物,如交联的氯甲基苯乙烯与手性氨基酸结合而成,同时,还需过渡金属离子的参与,如Cu2+等。被拆分物质通过金属络合物与固定相上的配位基发生配体交换,络合在固定相上。由于这种络合是可逆的,因此这种方法的分离效果较好,一般用来分离各种氨基酸。3.3蛋白质类固定相AGP是一种键合的蛋白类手性柱,特别适用于阳离子型化合物,手性选择性强。蛋白质手性固定相主要靠氢键及范德华力维持其稳定,可以通过调节流动相缓冲液的组成、PH值和温度来改变手性选择性。蛋白质手性柱的最大优点在于,可使对映体在非衍生形式下得到分离,同时由于采用水相流动相,因此水相样品可直接注射,其中α1-AGP柱尤其适合于对映体药物的分离。傅强等[5]研究了在卵类糖蛋白手性柱上影响钙离子拮抗剂尼卡地平对映体拆分的主要因素,建立了尼卡地平对映体的拆分方法。大环抗生素是近年来比较流行的手性选择剂,大环抗生素具多个手性中心,多个官能团及特定的三维空间结构,它的手性识别机理结合了环糊精、蛋白质、多糖的性质,这类手性固定相拥有较大的对映体选择性,优异的拆分效率和较短的分析时间等优点,使之成为继环糊精之后的常规分析级手性固定相。参考文献[1]金银秀,曾苏.柱前衍生化RP-HPLC测定人血清白蛋白中美西律对映体[J].中国药学杂志, 2007, 42(11):860-862. [2]杨青,唐瑞仁,曾莎莎.高效液相色谱手性流动相法拆分酮基布洛芬对映体[J].分析试验室, 2007, 26(8):84-86. [3]刁全平,侯冬岩,回瑞华,等.高效液相色谱法拆分酮咯酸氨丁三醇盐对映体[J].鞍山师范学院学报, 2005, 7 ( 6) : 58- 60.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西师范大学
硕士学位论文
几种手性化合物的色谱分离方法研究
姓名:闫焕英
申请学位级别:硕士
专业:有机化学
指导教师:王伟
20070501
图4-1微晶纤维素×5000扫描电子显微图像
图4-2微晶纤维素X10000扫描电子显微图像
附图6三(4一氯苯甲酰基)纤维素(CTPCB)的‘H i'61R谱
74
附图7微晶纤维素(Mc)的红外光谱
附图8纤维素三苯甲酸酯(CTB)的红外光谱
76
附图9--(4一氯苯甲酰基)纤维素(C3YCB)的红外光谱
附图lO三(2一氯苯甲酰基)纤维素(CTOCB)的红外光谱
几种手性化合物的色谱分离方法研究
3.学位论文唐世平手性化合物的高效液相色谱分离及酶法拆分中的应用2003
该文首先对手性药物研究的现状以及手性药物拆分方法、高效液相色谱分离测定手性化合物进行了介绍,并对有机相酶催化反应以及酶催化转酯化反应的研究与应用进行了概括性论述.菊酸、α-氰基-3-苯氧基苄醇(CPBA)是合成具有高杀虫活性拟除虫菊酯类杀虫剂的重要中间体,该文对高效液相色谱手性固定相法分离和测定CPBA、菊酸手性中间体的含量及其分离机理进行了研究,并将建立的可靠、快速的分离测定CPBA对映体含量的方法用于脂肪酶在有机溶剂中催化α-氰基-3-苯氧基苄醇乙酸酯(CPBAc)的非对称转酯化反应合成S-CPBA的研究,得到了很好的结果.
作者:物及其高效液相色谱分离影响因素-化学工程师2004,18(5)
本文简要介绍了手性化合物,并对手性化合物的高效液相色谱拆分机理及影响拆分的实验因素进行了讨论.
2.学位论文邵保海纤维素衍生物手性固定相分离对映体研究2001
该论文是纤维素衍生物手性固定相用于高效液相色谱分离对映体的研究,主要包括纤维素衍生物手性柱的制备、手性化合物对映体的分离、影响手性分离的各种因素的考察与手性识别机理的探讨.论文的第一章对纤维素衍生物手性固定相的种类、影响手性选择性的因素、手性识别的机理以及对映体制备色谱的研究背景进行了简要的评述.论文的第二章,首先合成了四种纤维素衍生物手性固定相,即纤维素三苯甲酸酯(CTB)、纤维素三(4-甲基苯甲酸酯)(CTMB)、纤维素三苯基氨基甲酸酯(CTPC)和纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC),并对它们进行了红外与核磁表征.然后将上述四种手性固定相涂敷到经γ-氨丙基三乙氧基硅烷进行硅烷化处理的硅胶上,进而制备出四种涂敷型的纤维素衍生物手性柱,并对它们的柱效以及对四种标准手性化合物,即特罗格尔碱(Troger's base)、反式1,2-二苯乙烯氧化物、苯偶姻和2,2,2-三氟-1-(9-蒽基)-乙醇的手性分离性能进行了评价,结果表明所制备的四种手性柱都具有较高的柱效以及手性分离性能.论文的第三和第四章,对三种α-芳基丙酸(外消旋萘普生、酮洛芬和托品酸)进行了一系列的酯化(甲酯、乙酯、正丙酯、正丁酯、异丙酯、仲丁酯和叔丁酯),在不同的纤维素衍生物手性柱上对这三种α-芳基丙酸酯类进行了对映体分离,首次研究了远离手性中心的烷氧基的体积大小特别是空间结构对手性识别的影响,提出了三种α-芳基丙酸酯类在纤维素衍生物手性固定相上手性识别的机理.论文的第五章对三组结构相近的手性化合物进行了对映体分离研究.论文的第六章对十一种手性化合物,即丁氟苄(一种抗肿瘤药物)、异丙甲草胺(一种除草剂)、西替立嗪(一种非镇静抗组胺剂药)、三种Profen型消炎镇痛药(外消旋萘普生、布洛芬和酮洛芬)、三种β肾上腺素受体阻滞药(普萘洛尔、阿提洛尔和美托洛尔)以及托品酸和2,2-二苯环丙烷羧酸,进行了对映体分离研究.论文的第七章对该论文的研究工作进行了总结,并对纤维素衍生物手性固定相这一课题的研究前景进行了展望.
6.期刊论文傅小芸.吕建德.徐秀珠.王淼.FU Xiao-Yun.LU Jian-De.XU Xiu-Zhu.WANG Miao手性化合物的毛细管
胶束电动色谱分离研究-高等学校化学学报1999,20(4)
以4种不同的N-长链烷酰-L-氨基酸胶束为手性选择剂,对3种不同性质的手性化合物(α-氯代丙酰替苯胺,2-氨基-3-对硝基苯基-1,2-丙二醇和华法林)的毛细管胶束电动色谱分离进行研究.结果表明,手性表面活性剂中不同的氨基酸残基和烷基链的长度对分离影响较大;随手性表面活性剂浓度增加,溶质保留时间增大,分离度增加,不同溶质的最佳分离浓度在100~150 mmol/L之间;pH对电中性手性化合物分离影响不大,但对酸性或碱性手性化合物的分离影响较大.在选定的条件下,3种样品均在20 min内完全分离,分离柱效达1×105理论板数/m.
4.期刊论文朱小波.陈福良.尹明明.ZHU Xiao-bo.CHEN Fu-liang.YIN Ming-ming全烷基化β-环糊精混合固定相
上一些取代苯类手性化合物的气相色谱分离研究-分析测试学报2009,28(4)
将全甲基-β-环糊精分别与全乙基-β-环糊精、全丁基-β-环糊精和全戊基-β-环糊精混合作为气相色谱固定相,并以全甲基-β-环糊精单一固定相作为对照,测试了这4根毛细管柱的柱效、极性和手性分离性能,探讨了固定相和溶质的结构和性质对手性分离结果的影响.结果表明:4根毛细管柱在100℃时的麦氏常数平均值分别为180.5、163.3、149.9和146.6,表明随着与全甲基-β-环糊精混涂的环糊精的烷基链长加长,固定相的极性逐渐降低;16种含苯环的手性化合物在这4根柱上均得到了较好地分离,但随着固定相的极性减弱,其手性分离能力减小;溶质分子中取代基的位置、碳链长度和结构对分离结果具有一定的影响.
(5)n21,72(6)a=1.51(7)Ⅱ=I.86(8)a=1.54
附图2手性化合物在CTPCB薄层板上的色谱图
(1)口=1.50(2)F3.83(3)a=3.54
(6)铲1.53∽F1.78
附图3手性化合物在CTOCB薄层板上的色谱图
7l
附图4纤维素三苯甲酸酯(CTB)的1H NMR谱
附图5三“一氯苯甲酰基)纤维素(CTPCB)的1H NMR谱
5.学位论文张立英手性化合物和稀土元素的色谱分离1999
该文利用薄层色谱法和气相色谱法对手性化合物的分离和识别机理作了系统研究.该文还进行了计算机辅助高效薄层色谱优化分离稀土元素的研究.依据高效薄层色谱保留值的基本方程通过几个预实验,在薄层色谱上进行梯度展开最优化研究,这是薄层色谱优化的深层次研究.
图4-8旋转蒸发法涂敷量为20%的手性同定相×15000倍扫描电子显微图像
图4-9旋转蒸发法涂敷量为20*的手性固定相X20000倍扫描电子显微图像
图4-10纤维素三苯甲酸酯微珠X5000扫描电子显微图像
图4-11纤维素三苯甲酸酯微珠X10000扫描电子显微图像
图4-12纤维素三苯甲酸酯微珠×15000扫描电子显微图像
对映体过量可用下面公式表示,
采用高效液相色谱法对非那雄胺氢化物、非那雄胺、外消旋盐酸舍曲林、顺式盐酸舍曲林四种对映体进行色谱分离和测定,该法呈良好的线性关系和重现性,相关系数都大于0.999。考察了不同因素对对映体选择性分离的影响,并结合相应的色谱分离热力学函数,对对映体拆分机理进行了深入的探讨。非那雄胺氢化物,外消旋盐酸舍曲林,顺式盐酸舍曲林3个对映体在手性固定相上的分离主要受相互作用焓控制,两对映异构体分子与手性固定相分子之间相互作用能的差异对分离的选择性起决定作用。建立高效液相色谱法分离测定氨酚曲马多片中手性药物盐酸曲马多和非手性药物对乙酰氨基酚。该方法可同时测定2组分含量。盐酸曲马多和对乙酰氨基酚分别在10.8~37.8μ·mL-1和91~318.5μg·mL-1的浓度范围内,峰面积与其浓度呈良好的线性关系,平均回收率和RSD分别为100.3%,0.48%;99.7%,0.40%。具有简便、快速、结果准确,适用于该复方制剂的含量及溶出度测定。
8.学位论文彭东明药物对映体的制备及应用研究2008
手性是自然界的本质属性之一。手性技术是化学工业和制药工业中的前沿学科。尽管手性化合物的不同对映体之间在理化性质方面有许多相似的地方,但通过许多事例已经证明,手性化合物的一对对映体进入动物或人体后所产生的作用和生物效应是不尽相同的。当手性药物进入生命体内后,手性的生物体系和手性药物之间存在着识别、容纳和相互作用的过程,从而引起手性药物的不同对映异构体之间在体内的吸收、转运、代谢等药代动力学差异,对受体、酶、离子通道等药物作用靶点的结合差异,最终产生不同的治疗效果、副作用及毒性反应。本论文主要是应用高效液相色谱、液-液萃取、溶剂结晶等现代手性技术方法研究对映体的制备和分离,研究考察pH值、手性选择体浓度、有机溶剂等因素对分离性能的影响,建立手性分离数学模型。重点研究盐酸舍曲林、非那雄胺等制备过程中手性对映体的分离制备,得到了一些有益的结论。主要内容如下:
根据质量守恒定律和化学平衡原理,提出了手性药物溶解平衡的基本规律。指出在药物对映体混合液达到饱和时,可用下面公式表示这一平衡关系:K=CS/CR,要使两种手性对映体互相分离,平衡常数必须大于或小于1。
根据质量守恒定律,对外消旋体结晶基本规律进行了研究。指出对于外消旋体结晶体系,存在CR+βCR0=CR0,CS+βCS0=CS0,其中CR、CS分别为体系中R-和S-对映体在溶剂中溶解平衡时的溶解度,CR0和CS0分别为R-和S-对映体在外消旋体中的总浓度,β定义为分配系数。同时在溶液中对映体之间存在下述平衡关系,分配常数为KR、KS,KR=CR/CR0,KS=CS/CS0。