中考数学突破瓶颈疑难解答专题八讲:中考数学突破瓶颈疑难解答专题第五讲阅读理解型问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题第五讲 阅读理解型问题
【要点梳理】
阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.
阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:
题型一:考查掌握新知识能力的阅读理解题
命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.
题型二:考查解题思维过程的阅读理解题
言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.
题型三:考查纠正错误挖病根能力的阅读理解题
理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.
题型四:考查归纳、探索规律能力的阅读理解题
对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.
【学法指导】
解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:
①认真阅读材料,把握题意,注意一些数据、关键名词;
②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;
③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.
【考点解析】
阅读新知识,解决新问题
(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .
【考点】4F:平方差公式;2C:实数的运算.
【分析】根据定义即可求出答案.
【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2
故答案为:2
阅读解题过程,模仿解题策略
(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.
解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△
AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;
(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.
【考点】SO:相似形综合题.
【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;
(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;
(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△
AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,
∵AB∥DC,
∴∠BAF=∠F,
∵E是BC的中点,
∴CE=BE,
在△AEB和△FEC中,
,
∴△AEB≌△FEC,
∴AB=FC,
∵AE是∠BAD的平分线,
∴∠DAF=∠BAF,
∴∠DAF=∠F,
∴DF=AD,
∴AD=DC+CF=DC+AB,
故答案为:AD=AB+DC;
(2)AB=AF+CF,
证明:如图②,延长AE交DF的延长线于点G,
∵E是BC的中点,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G,
在△AEB和△GEC中,
,
∴△AEB≌△GEC,
∴AB=GC,
∵AE是∠BAF的平分线,
∴∠BAG=∠FAG,
∵AB∥CD,
∴∠BAG=∠G,
∴∠FAG=∠G,
∴FA=FG,
∴AB=CG=AF+CF;
(3)AB=(CF+DF),
证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,
∴△AEB∽△GEC,
∴==,即AB=CG,
∵AB∥CF,
∴∠A=∠G,
∵∠EDF=∠BAE,
∴∠FDG=∠G,
∴FD=FG,
∴AB=CG=(CF+DF).
阅读探索规律,推出一般结论
(2017内江)观察下列等式:
第一个等式:
第二个等式:
第三个等式:
第四个等式:
按上述规律,回答下列问题:
(1)请写出第六个等式:a6= = ﹣ ;
(2)用含n的代数式表示第n个等式:a n= =
﹣ ;
(3)a1+a2+a3+a4+a5+a6= (得出最简结果);
(4)计算:a1+a2+…+a n.
【考点】37:规律型:数字的变化类.
【分析】(1)根据已知4个等式可得;