传热学-第4章-非稳态导热的计算与分析

合集下载

高等传热学非稳态导热理论2

高等传热学非稳态导热理论2

高等传热学导热理论第四讲 非稳态导热描述非稳态导热问题的微分方程:pC t a t ρτΦ+∇=∂∂ 2共有四维,不好解。

最简单的情况,如果系统内部无温度差(即无导热),它的温度变化规律如何?这就是所谓的薄壁问题,此时无需考虑系统的空间坐标,所以又是0维问题。

1.薄壁问题(P 40-45)即集总参数系统适用条件 薄壁理论:如果系统内部无温度差,由热力学第一定律可得:MCdt d A d q =∙Ωτ1-4-1当热流密度与边界相互垂直时,有:VCdt qAd ρτ= 1-4-2如边界上的热流密度为)(t t h q f -=VCdt d t t hA f ρτ=-)( 1-4-300t t ==τ实际情况 t 不可能相同。

什么条件下可用薄壁公式呢? 工程界用得最多的判据是:1.0≤Bi 1-4-4对平壁,圆柱和球,此时内部温差小于()()(,)(0,)/(0,)5%t r t t t τττ∞--≤,即实际判据为:()()(,)(0,)/(0,)t r t t t τττε∞--≤,即某时刻平壁内最大温差与该时刻平壁和环境间的最大温差之比小于给定小量。

有人对此判据提出异议:在加热初期极短时间内,任何有限薄壁可看作半无限大体,温度只影响边界附近薄层中,与薄壁概念不符。

判据1-4-4的缺点是没有F o 的影响。

R o s e n o w 提出另一个判据,()()(,)(0,)/(,)(,0)t r t t t ττδτδε--≤,物理意义是在某时刻平壁内最大温差与该时间段内平壁最大温度变化之比小于给定小量。

该判据含F o ,但存在B i 越小,薄壁区越小的缺点,与判据1-4-4不相容。

俞佐平提出了含F o 的新判据,()()()()(,)(,0)(,)/1//(,0)t t t t t t Bi h t t δτδδτεδλδ∞∞∞∞---=≤-该判据规律与1-4-4相似。

本人从理论上证明了判据1-4-4的合理性,发现异议者的误区在于但B i 很小时,无论时间如何短,与该薄壁相应的半无限大体中的最大温差也不会超过我们限定的温差。

非稳态传热_传热学.最全PPT

非稳态传热_传热学.最全PPT
二类非稳态导热的区别:瞬态导热存在着有区别 的三个不同阶段,而周期性非稳态导热不存在。
t
四、边界条件对温度分布的影响 tf
一大平壁置于高温环境中。
h
tf h
问题的分析: 存在两个传热环节:
0
x
1、 流体与物体表面的对流换热
2、 物体内部的导热
r
rh 1 h
rh
r
tf
tw
tm
t
存在3种情况:
Biv
Fov
Biv
h(V
A)
Bi h
Fov (V
A)2
/
a
换热时间 热扰动扩散到(V A)2面积所用的时间
t t
hA
e vc eBivFov
0 t0 t
瞬态热流量:
hA
h A h A0 e vc
0~ 内传给流
体的总热量:
Q
0
d
0
hA
hA0e vc d
一、无限大平板的分析解
1、问题描述
λ=const a=const
h=const
因两边对称,只研究半块平壁
2、数学模型
t 2t
tx,0at0x2
导热微分方程
初始条件
t x
|x0
0
边界条件
t x
|x
ht
,
t
引入过余温度 t t
x,0ax202 t0 t
x
|x0
0
x
| x
h ,
3、求解(用分离变量法)
假设 x, x
a
2
x 2
x d
d
a
d 2
dx2

《传热学》课后习题答案-第四章

《传热学》课后习题答案-第四章

t k i,j 1 t k i,j t k i,j 1 t k i , j r r rj rj r 2 r 2 rj r
并简化,可以得出与上式完全一样相同的结果。
4-7、 一金属短圆柱在炉内受热厚被竖直地移植到空气中冷却, 底面可以认为是绝热的。为用数值法确定冷却过程中柱体温 度的变化, 取中心角为 1rad 的区域来研究 (如本题附图所示) 。 已知柱体表面发射率,自然对流表面传热系数,环境温度, 金属的热扩散率,试列出图中节点(1,1) , (M,1)(M,n)及 (M,N) 的离散方程式。 在 r 及 z 方向上网格是各自均分的。 解:应用热平衡法来建立四个节点点离散方程。 节点(1,1) :
, 离散方程的建立 4-5、试将直角坐标中的常物性无内热源的二维稳态导热微分方程化为显式差分格式,并指 出其稳定性条件( x y) 。 解:常物性无内热源二维非稳态方程微分方程为
4.3636t 2 2.53t1 1.8336t f
t2
2.53t f 1.8336t f
2t 2t t a x 2 y 2
Bi=0.1,1,10 的三种情况计算下列特征方程的根
n (n 1,2,6) :
n a Fo 2 0.2 并用计算机查明,当 时用式(3-19)表示的级数的第一项代替整个级数(计
算中用前六项之和来替代)可能引起 的误差。 解: n Bi 0.1 1.0 10
tan n
第四章
复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方 程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解 时是否因为初场的假设不合适而造成?

第四章传热学

第四章传热学

4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。

4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。

一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。

2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。

正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。

(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。

二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。

传热学:第四章 导热问题数值解法

传热学:第四章 导热问题数值解法

t m,n
1 t m 1,n t m 1,n t m ,n 1 t m ,n 1 4
•二维导热问题;网格线;
沿x、y方向的间距为x、 y;网格单元。
每个节点温度就代表了它 所在网格单元的温度。 p(m,n)
•此方法求得的温度场
在空间上不连续。
•网格越细密、节点越多,结果越接近分析解 •网格越细密,计算所花时间越长
2) 数值计算法,把原来在时间和空间连续的物理量的
场,用有限个离散点上的值的集合来代替,通过求解
按一定方法建立起来的关于这些值的代数方程,从而
获得离散点上被求物理量的值;并称之为数值解;
3) 实验法 就是在传热学基本理论的指导下,采用实
验对所研究对象的传热过程进行测量的方法。 3 三种方法的特点 1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值 计算提供比较依据;
t m,n 1 2t m,n t m,n 1 2t 同理: 2 y y 2 m,n
将以上两式代入导热微分方程得到节点(m,n)的温 度离散方程: t tm,n1 2tm,n tm,n1 m 1, n 2t m , n t m 1, n 0 2 2 x y
x y 上式可简化
第三类边界条件: y x
qw h(t f tm,n )
2hx 2hx x 2 tm1,n tm,n1 2 tf 0 tm,n 2
(3) 内部角点
y t m 1,n t m ,n y y qw 2 x x 2 t m ,n 1 t m ,n x x t m ,n 1 t m ,n x qw 2 y 2 y 3xy 0 4

传热学第四章

传热学第四章

第四章 非稳态导热
第一节 概 述
a)温度分布;b)两侧表面上导热量随时间的变化
图4-1
第四章 非稳态导热
第一节 概 述
(1)温度场:【如图4-1a)所示】 ①首先,紧挨高温表面部分的温度很快上升, 而其余部分仍保持原来的温度t0,如图中曲线FBC所示; ②其次,随着时间的推移,温度变化波及的范围不断扩大, 以致在一定时间以后,右侧表面的温度也逐渐升高, 如图中曲线FC、FD所示; ③最后,达到一个新的稳态导热时,温度分布保持恒定, 如图中曲线FE所示。(λ为常数时,FE 为直线。)
t f ( x, y, z, )
dt (3)物体在非稳态导热过程中的温升速率: d
(4)某一时刻物体表面的热流量Φ(W) 或从某一时刻起经过一定时间后表面传递的总热量Q(J)。 要解决以上问题,必须首先求出: 物体在非稳态导热过程中的温度场。
第四章 非稳态导热
第一节 概 述
※求解非稳态导热过程中物体的温度场,通常可采用
第四章 非稳态导热
第一节 概 述 一、基本概念
非稳态导热即指温度场随时间而变化的导热过程 1、定义(P53)
t f ( x, y, z, )
※在自然界和工程中有许多非稳态导热问题。 例如,锅炉、蒸汽轮机和内燃机等动力机械在起动、停机和变 工况运行时的导热; 又如,在冶金、热处理和热加工等过程中,工件被加热或冷却 时的导热; 再有,大地和房屋等白天被太阳加热、夜晚被冷却时的导热。 ※由此可见,研究非稳态导热具有很大的实际意义。
l
—— 导热物体的某一尺寸,详见后述。
第四章 非稳态导热
第一节 概 述
1、毕渥数Bi (P55)
有时用引用尺寸l
e
l ——导热物体的某一尺寸

非稳态导热微分方程

非稳态导热微分方程

非稳态导热微分方程非稳态导热问题是研究物体内部或者在不同温度环境下的温度分布变化的数学模型。

其核心是通过非稳态导热微分方程来描述温度随时间和空间的变化规律。

本文将从导热微分方程的基本概念、一维问题和二维问题等方面进行论述。

一、非稳态导热微分方程的基本概念非稳态导热问题是描述物体内部温度分布随时间变化的数学模型。

在一维情况下,我们可以将问题简化为描述物体内部温度分布随空间变化的微分方程。

非稳态导热微分方程的一般形式如下:∂u/∂t = α∂²u/∂x²其中,u(x,t)表示温度随空间和时间的变化,α是导热系数。

二、一维非稳态导热问题在一维情况下,我们考虑物体的温度分布只与空间变量x有关。

根据非稳态导热微分方程,我们可以通过分析边界条件和初始条件来求解问题。

具体的求解方法包括分离变量法、格林函数法等。

例如,我们考虑均匀杆的一维非稳态导热问题。

初始时刻杆上各点的温度分布u(x,0)已知,杆的两端分别与两个恒温热源接触。

边界条件可以表示为u(0,t)=T1和u(L,t)=T2,其中T1、T2为两个恒温热源的温度。

通过求解非稳态导热微分方程,我们可以得到随时间变化的温度分布u(x,t)。

三、二维非稳态导热问题在二维情况下,物体的温度分布与空间变量x和y都有关。

同样地,我们需要给定边界条件和初始条件来求解问题。

二维非稳态导热微分方程的一般形式如下:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y²)例如,我们考虑矩形板的二维非稳态导热问题。

初始时刻板上各点的温度分布u(x,y,0)已知,板的边界上的温度分布也已知。

通过求解非稳态导热微分方程,我们可以得到随时间变化的温度分布u(x,y,t)。

结论非稳态导热微分方程是研究温度随时间和空间的变化规律的重要数学模型。

通过分析边界条件和初始条件,可以求解一维和二维非稳态导热问题,并得到随时间变化的温度分布。

传热学第四章非稳态导热例题

传热学第四章非稳态导热例题


(V / A)
3

85 K) 3.885 10 39.63 W/(m2· 0.025 / 3
BiV FoV 3.885 10 2.07945
3
535.25
2013-9-10
9
由式(4-6)计算换热量:
hA Q cV(t 0 t f)1 exp( ) cV


a 6
D(t 0 t f)1 e (
3
BiV FoV
)
85 3 2.07945 0.05 ( 60 (1 e 300 ) ) 5 6 2.95 10
=39.6 kJ
返回
2013-9-10 10
【例4-3】一根直径为1m,壁厚40mm 的钢管,初温为-20℃,后将温度为60℃的 热油泵入管中,油与管壁的换热系数为 500 W/(m2· K),管子外表面可近似认为是绝 热的。管壁的物性参数ρ=7823kg/m3, c=434J/(kg·K),λ=63.9 W/(m· K)。
1.882 10 8 60 Fo 2 5.646 2 0.04
a
5
2013-9-10
14
(2) 由于Bi>0.1, 故不能采用集总参
数法,需用线算图求解。
管子外表面, 1 3.195
Bi
查图4-7得
m 0.24 0
管子外表面温度为:
t m m t f 0.24 0 t f 0.24 20 60 60 40.8 ( )
V 准则中的特征尺寸是用 LV 确定的, A
而不是 R/2 ,所以,是否可采用集总参 数法的判别用BiV<0.1M。

非稳态导热实验报告

非稳态导热实验报告

非稳态导热实验报告课程名称:传热学基础实验名称:非稳态导热实验指导教师:钱扬顺实验目的:1 了解材料加热及冷却过程中表面与中心温度的变化;2 加深不同传热系数冷却介质对冷却温度场的影响;3 掌握实验原理、实验装置结构,学会使用实验仪器设备;4 掌握对实验结果数据进行处理和误差分析的方法。

实验仪器:有1温度自动控制系统的SX2-8-10电阻炉2 ZJ16A多点温度测试仪3 直径2mm的K型热电偶4 45刚试样直径50mmx100mm 中心钻孔r=1.5 深30mm实验原理:材料在加热和冷却过程的温度场分布不仅取决于材料的性能(密度、导温系数、比热容).而且与材料和周围环境的热交换密切相关。

本实验通过对试样在炉中德加热及在不同介质中的冷却,采用一组热电偶的热端固定于试样的表面的不同位置,利用多点温度记录仪测量和记录任意时刻试样各点的温度-时间曲线,根据温度时间曲线,可以计算该位置的冷却速度,观测和分析不同冷却介质对试样冷却结果的影响,并计对算结果进行比较。

实验步骤:1 将热电偶分别安装在式样的表面和中心的钻孔中,兵、并将热电偶和温度记录仪联接好;2 关上炉门,并将温度控制仪的温度读数调整到-200-C ,并将炉子加热开关打开,同时打开温度记录仪的开关,将记录仪调整到记录状态;3 炉温升到-200-C 并保温5分钟让炉温均匀、恒定,在开启温度记录仪的开关;4 当温度加热到200C将试样拿出并在空气中冷却20分钟;关闭记录仪开关;5 分别将记录的数据填到下表中每分钟一次)6 绘出加热和冷却曲线;7 对试样按着无量纲准则进行加热冷却计算,确定在4分钟是中心和表面温度。

并且和试样实验数据自己填,曲线自己画,自己分析。

思考题:1 试样冷却过程中有相变时的冷却曲线特点?2 试样在空气或者水剑的热换系数的选择及注意事项?3 当试样温度较高时,试样在水中的冷却特点/。

传热学基础(第二版)第四章教学课件非稳态导热

传热学基础(第二版)第四章教学课件非稳态导热
Lctptw
23/250291/4/16
0~τ范围内积分,得凝固层厚度的表达式
2 b L t w c ttp 0tw K
此式称为平方根定律,即凝固层厚度与凝固时 间的平方根成正比。式中
K2 b L t w c ttp 0tw
ms12
K 称为 凝固系数
24/250291/4/16
几种材质在不同冷却条件下的K值
由于砂型的导热系数较小,型壁较厚,所以平面 砂型壁可按半无限大平壁处理。本节得到的公式 应用于铸造工艺,可以计算砂型中特定地点在τ 时刻达到的温度和0~τ时间内传入砂型的累积热量。 瞬时热流密度qw和累计热量Q w都与蓄热系数成正 比,所以选择不同造型材料,即改变蓄热系数, 就成为控制凝固进程和铸件质量的重要手段。
物性的这种组合可表成: a c
cb W /m (2Cs1/2)
a b称为蓄热系数。它完全由材料的热物性构 成,它综合地反映了材料的蓄热能力,也是个热 物性。
15/250291/4/16
铸铁和铸型蓄热系数b的参考值。
热物性 材料
铸铁
导热系数 比热容 密度 热扩散率 蓄热系数
λ
c
ρ
a
b
46.5 753.6 7000 8.82×10-6 15600
5 /59 2021/4/16
积蓄(或放出)热 量随时间而变化是过 程的又一个特点。于 是在工程计算中,确 定瞬时热流密度和累 计热量也是非稳态导 热问题求解的任务。 在图中,累计热量由 指定时间τ与纵坐标 间曲线下的面积表示。
6/59 2021/4/16
4-2 第一类边界条件下的一维非稳态导热
式:
qw ' Lctptw
d d
与式

第五版传热学第四章

第五版传热学第四章

3.C++ —— C plus plus,C语言的增强版,目前最常用的应用程序设计 语言,数值计算软件主要使用的语言。
二、常用计算软件
1.MATLAB——矩阵计算软件
matlab软件主界面
2.FLUENT——流体流动通用数值计算软件
3. FLUENT AIRPAK ——人工环境系统分析软件,暖通空调专业和传热学领域必备软件
第四章 导热数值解法基础
本章研究的目的 ——利用计算机求解难以用 分析解求解的导热问题 基本思想 ——把原来在时间、空间坐 标系中连续的物理量的场, 用有限个离散点的值的集合 来代替,通过求解按一定方 法建立起来的关于这些值的 代数方程,来获得离散点 上被求物理量的值。 研究手段——有限差分法
物理问题的数值求解过程
优点——无条件稳定 缺点——不可根据kΔ τ 时刻温度分布直接计算 (k+1)Δ τ 时刻温度分布
ቤተ መጻሕፍቲ ባይዱ
第四节 常用算法语言和计算软件简介
一、常用算法语言
1.FORTRAN语言 ——Formula Translation,数值计算领域所使用的主要语言。
2.C语言 ——将高级语言的基本结构和语句与低级语言的对地址操作结合 起来的应用程序设计语言。


k k k k ti Fo ti 1 ti 1 1 2 Foti


优点——可根据kΔ τ 时刻温度分布直接计算(k+1)Δ τ 时刻温度分布 缺点——选择Δ x和 Δ τ 时必须满足稳定性条件 a a 1 或 1 2 0 2 2 x x 2
第三节 非稳态导热的数值计算
研究对象——一维非稳态导热问题 一、显式差分格式
t 2t a x 2

《传热学》2版 辅导资料 思考题参考答案

《传热学》2版 辅导资料 思考题参考答案
2.参见附图,圆筒壁内侧t1<t2,请判断壁内温度分布应该是两图中哪一个?并说明理由,设导热系数等于常数。
回答:导热系数等于常数的一维导热方程是(3-1-15),于是温度梯度可以写作(dt/dr) =c/r。可见,温度梯度与径向坐标成反比,即半径小的圆筒壁内侧的温度梯度一定大于外侧的温度梯度。所以附图(b)是正确的。
回答:非稳态导热问题遵循两个基本规律,一个是能量守恒定律,一个是傅里叶定律。在对物体内的任意微元体积做热平衡分析时,切记傅里叶定律中的热流密度和温度梯度均代表瞬时值,傅里叶定律的规律仍成立。
3.应用傅里叶定律时有哪些限制?
回答:限制条件是:(1)纯导热物体(非纯导热物体以当量或表观导热系数描述之);(2)各向同性(各向异性物体须在导热主轴坐标系中运用傅里叶定律);(3)非超短时间、超大热流密度或超低温度的导热问题。
3.凸状轴呈对称图形,如果侧面绝热且导热系数为常数,其一维稳态温度分布呈什么?
回答:在一维、稳态、无内热源且常物性条件下,热流量为常数,即A(x)dt/dx=常数。这表明导热的截面积A与温度梯度成反比。只有在等截面情况下,温度梯度才是常量。
回答:导热系数随温度变化时,函数关系一般是写作=0(1+b t)的形式。但是一般来说0却并不代表0℃时该材料的导热系数。参见附图,这是因为0实际上是该式适用温度区间内近似线性关系的延长线与纵轴的交点。它一般不会正好与=f(t)曲线在0℃时的数值相等。
写为=0+bt时,0未变,而b相当于原式中的0b。
8.已知某个确定的热流场q=f(x, y),能否由此唯一地确定物体的温度场?或者还需要补充什么条件?反过来,从温度场能否唯一地确定热流场?
回答:导热问题中若全部边界条件都是第二类(包括绝热),将无法唯一地得到温度场的确定解。而对给定的温度场,却可以根据傅里叶定律唯一地确定热流场。因为一个物体若均匀地提升相同温度,其热流场将不会发生任何改变。即一个热流场可以对应无穷多个温度场。所以,导热问题必须至少具有一个温度参考点,才能唯一地确定其解。

第4章-非稳态导热的计算分析

第4章-非稳态导热的计算分析

是与物体几何形状
Biv
h( V
A)
1、非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度 随时间不断地升高(加热过程)或降低(冷却过 程),在经历相当长时间后,物体温度逐渐趋近 于周围介质温度,最终达到热平衡,物体的温度 随时间的推移逐渐趋近于恒定的值。
❖ 300℃的铁块在冷水中的冷却
x, 0,
cos
1
x
它表明:当Fo>0.2后,虽然θ(x,τ)与θ(0,τ)各自均与τ相关, 但它们的比值却与τ无关而仅取决于平壁的几何位置(x/δ) 和Bi数
这意味着初始条件的影响已经消失,这就是正规状况阶段
❖ 计算正规状况阶段的温度需要根据Bi数确定相应 的特征值,使用时不甚方便
❖ 工程上常采用两种简化的计算方法,由海斯勒 (Heisler)提出的诺模图(nomogram)方法和由 Campo提出的近似拟合公式
数时,即 τ=τr,
=e1 0.386 0
0.386 01
τ/τr
τ=4τr,
=e4.6 0.01 工程上认为 =4τr时导热
0
体已达到热平衡状态
瞬态热流量:
Φ( ) hA(t( ) t ) hA
总热量:
hA
hA0e Vc
W
导热体在时间 0~ 内传给流体的总热量:
Q
0
Φ(
)d
一、无限大平板加热(冷却)过程分析
厚度 2 的无限大平壁,、a 为已知常数;=0时温度为 t0;
突然把两侧介质温度降低为 t 并保持不变;壁表面与介质之 间的表面传热系数为h。 两侧冷却情况相同、温度分布 对称。中心为原点。

非稳态导热

非稳态导热

rVc
华北电力大学
梁秀俊
高等传热学
从0到任意时刻 积分
1 d hA
d
0
rVc 0
t t
hA
e rVc
0 t0 t
上式中右端的指数可作如下变化
hA rVc
h(V /
A)
a
(V / A)2
BiV FoV
式中BiV是特征尺度l用V/A表示的毕渥数。
华北电力大学
梁秀俊
高等传热学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ;
0
m ( ) 0
m ( ) f (Bi, Fo) 0
无限大平板中心无量纲过余温度曲线
华北电力大学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ; (x, ) f (Bi, x )
0
m ( ) 0
m ( )
四、无限长圆柱 过程类似 图线类似
无限大平板无量纲过 华北电力大学 余温度曲线
梁秀俊
四、乘积解
高等传热学
在二维和三维非稳态导热问题中,几种典型几何 形状物体的非稳态导热问题可以利用一维非稳态导 热分析解的组合求得。无限长方柱体、短圆柱体及 短方柱体就是这类典型几何形状的例子。
华北电力大学
梁秀俊
高等传热学
矩形截面的无限长方柱体是由两个无限大平壁垂 直相交而成;短圆柱是由一个无限长圆柱和一个无 限大平壁垂直相交而成 ;短方柱体(或称垂直六面 体)是由三个无限大平壁垂直相交而成;
z
d d
C1 exp( 2 )
再 积 分 得 :
C1
exp( 2 )d
0
C2
代 入 定 解 C1 2w / 条 件 可 得 :C2 w

传热学-第四章-热传导问题的数值解法

传热学-第四章-热传导问题的数值解法

23
判断迭代是否收敛的准则:
迭代次数,表示第k次迭代
Monday, March 30, 2020
表示第k次迭代所得计算域内的最大值 当有温度t接近于零的时,选此准则较好
24
例题:
Monday, March 30, 2020
25
Monday, March 30, 20day, March 30, 2020
27
1. 一维非稳态导热的数值求解: 第三类边界条件下,常物性、无内热源无 限大平壁的一维非稳态导热问题为例。
1) 求解域的离散
2) 节点温度差分方程的建立
运用热平衡法可以建立非稳态导热物体内部节点和 边界节点温度差分方程。
Monday, March 30, 2020
29
➢ 两点结论:
(a) 任意一个内部节点n在(i+1)时刻的温度都可以由该节点及 其相邻节点(n-1) 、(n+1)在i 时刻的温度由上式直接求出,不必联 立求解方程组,这是显式差分格式的优点。这样就可以从初始温 度出发依次求出各时刻的节点温度;
(b) 必须满足显式差分格式的稳定性条件,即
物理意义:
15
§4-3 边界节点离散方程的建立及代数方程的求解
第一类边界条件:已知全部边界的温度,作为已知值加入到内节点的离散方程中, 组成封闭的代数方程组,直接求解。
n=N
封闭
(m,n+1)
第二类边界条件或第三类边界 条件:部分边界温度未知。
不封闭
w (m-1,n)
n e
(m,n) s
(m,n-1)
(m+1,n)
y
n=1
m=1
m
x
m=M
Monday, March 30, 2020

传热学课件第四章非稳态导热

传热学课件第四章非稳态导热


exp



hA
cV


hA
cV

h V

A

c
V

A2

hl

c

l2

hl

a
l2

BiV
FoV

0
e BiV FoV
exp
BiV FoV
下角标V表示以 l=V/A为特征长度
在0~ 时间内物体和周围环境之间交换的热量
升高到t1并保持不变,而右侧仍与温度为t0的 空气接触。这时紧挨高温表面那部分的温度
很快上升,而其余部分则仍保持初始温度t0, 如图中曲线HBD所示。随着时间的推移,经τ 1, τ 2,τ 3…平壁从左到右各部分的温度也依次 升高,从某一时刻开始平壁右侧表面温度逐
渐升高,图中曲线HCD、HE、HF示意性地表示
• 二、Bi数对导热体温度分布的影响

Bi hL L / 的大小对非稳态导热过程中导
热体内的 温1度/ h 分布有重要的影响。
• 厚为2δ的平壁突然置于流体中冷却时 ,Bi数 不同壁中温度场的变化会出现三种情形 。
思考题: 试说明毕渥数的物理意义。 毕渥数趋于
零和毕渥数趋于无穷各代表什么样的换热条件? 有人认为,毕渥数趋于零代表了绝热工况,你 是否赞同这一观点,为什么?

球 Bi hR

Fo

a 2
BiV

h
FoV

a 2
Fo

a
R2
BiV
h(R / 2)

FoV

传热学基本概念三维非稳态导热微分方程导热微分

传热学基本概念三维非稳态导热微分方程导热微分

传热学基本概念三维非稳态导热微分方程导热微分方程的基本形式是:\[\rho c \frac{{\partial T}}{{\partial t}} = \nabla \cdot (k \nabla T) + q\]其中,\(\rho\) 是介质的密度,\(c\) 是比热容,\(T\) 是温度,\(t\) 是时间,\(k\) 是导热系数,\(q\) 是单位体积内的热源。

这个方程描述了物质内部温度分布随时间的变化,以及热量在空间中的传递和变化。

对于三维非稳态导热问题,方程中的温度 \(T\)、密度\(\rho\)、比热容 \(c\)、导热系数 \(k\) 都可能是空间坐标 \(x\)、\(y\)、 \(z\) 和时间 \(t\) 的函数。

方程的实质是一个偏微分方程,描述了三维空间中温度分布随时间的变化规律。

在实际问题中,要解决三维非稳态导热问题的方程,需要满足一定的边界条件和初始条件。

边界条件指定了物体表面的温度、热流量或对流换热系数,初始条件指定了系统在初始时刻的温度分布和热能分布。

通过这些条件,可以得到方程的解析解或数值解,从而揭示物体内部温度变化的规律。

除了基本的三维非稳态导热微分方程外,传热学还涉及了许多重要的概念和原理,如热传导、热对流、热辐射等。

这些概念和原理不仅在工程领域有着重要的应用,而且在生活中也随处可见。

总结起来,对于三维非稳态导热微分方程及其相关的传热学概念,我们需要深入理解其基本原理和数学模型,掌握其解决方法和工程应用。

通过学习和研究,我们可以更好地理解和应用传热学知识,为解决工程和生活中的热传递问题提供理论和技术支持。

传热学是研究物体内部温度分布随时间的变化规律以及热量在空间中的传递和变化的学科,其理论和方法在工程热学、地球科学、生物医学工程和环境科学等领域有着广泛的应用。

三维非稳态导热微分方程是传热学中的基本方程之一,描述了物质内部温度分布随时间的变化规律。

在实际问题中,要解决三维非稳态导热问题需要满足一定的边界条件和初始条件,通过这些条件可以得到方程的解析解或数值解。

传热学 第4章-导热问题的数值解法

传热学 第4章-导热问题的数值解法

第四章 导热问题的数值解法1、重点内容: ① 掌握导热问题数值解法的基本思路;② 利用热平衡法和泰勒级数展开法建立节点的离散方程。

2、掌握内容:数值解法的实质。

3、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。

由前述3可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。

但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。

随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1) 有限差分法 (2)有限元方法 (3)边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。

如:几何形状、边界条件复杂、物性不均、多维导热问题。

分析解法与数值解法的异同点:1、 相同点:根本目的是相同的,即确定① t=f(x ,y ,z);② ),,,(τz y x g Q =。

2、 不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。

§4—1 数值求解的基本思路及稳态导热内节点离散方程的建立一、 解法的基本概念1、 实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

该方法称为数值解法。

这些离散点上被求物理量值的集合称为该物理量的数值解。

2、基本思路:数值解法的求解过程可用框图4-1表示。

由此可见:1)物理模型简化成数学模型是基础; 2)建立节点离散方程是关键;3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
4.2 对流边界条件下的一维非稳态导热
❖ 对几何形状简单、边界条件不太复杂的情形,仍然可 以通过数学分析的方法获得分析解
❖ 这里以(无限大)平壁被流体对称加热的非稳态导热 过程为例,说明非稳态导热的基本特征、分析方法和 过程
❖ 定性地、定量两个方面
11
4.2.1 平壁内非稳态过程的基本特征
问题描述: ❖ 厚为2δ、无内热源的常物性平壁 ❖ 初始时刻温度分布均匀,为t0 ❖ 某时刻突然投入到温度为t∞的高
conduction):物体内任意位置的温度随时间持续升高 (加热过程)或连续下降(冷却过程) 边界条件或内热源不变时,过程将最终逐渐趋于某个 新的稳定温度场
6
4.1 概述
研究目的:
❖ ——确定非稳态过程中的温度场:在此基础上确定物体中
某个部位到达某个预定温度所需经历的时间,或者在预定时间 内可以达到的温度,或者物体的温度对时间的变化速率。
8
4.1 概述
研究方法与过程:与稳态导热的完全相同 (1)简化假设给出物理模型 (2)给出数学模型(方程+定解条件) (3)采用适当的数学方法求解 (4)分析讨论
9
4.1 概述
❖ 非稳态导热的控制方程:
τ
ρct
x
λ
t x
y
λ
t y
z
λ
t z
Φ
❖ t=f(x,y,z,t)
❖ 控制方程:偏微分方程,数学求解难度很大
❖ 随着时间的延续,壁面加热的波及区域将继续向平壁中
心推进
16
4.2.1 平壁内非稳态过程的基本特征
17
4.2.1 平壁内非稳态过程的基本特征
❖ 当温度扰动刚刚传到平壁对称 面的那个时刻,称为穿透时间, 记作τc
❖ 此时整个平壁都“感受”到了 平壁两侧突然受到流体加热所 带来的影响
18
4.2.1 平壁内非稳态过程的基本特征
❖ ——冷冻食品的解冻过程 ❖ ——烘烤食品(花生米、蛋糕等点心) ❖ ——热处理工艺中金属在高温火炉内的加热以及加热
后在水或空气中的冷却过程等 ❖ ——焖井过程热量在地层内的扩散过程
3
第4章 非稳态导热的计算与分析
本章着重讨论非稳态导热问题 ——非稳态导热的基本概念 ——对称加热的无限大平壁的非稳态导热过程 ——最简单的非稳态导热问题-集总热容系统
22
4.2.2 平壁内温度分布的分析解
❖ 为了定量计算平壁内的温度场, 需要建立描述平壁内温度分布 的数学模型
❖ 由于平壁两侧受流体对称加热, 中心面为对称面
23
4.2.2 平壁内温度分布的分析解
❖ τc时刻后,平壁内的温度 随非稳态过程的延续继续 升高,但温度升高幅度越 来越小。
❖ 经过无限长时间后,平壁 内的温度又趋于均匀一致, 并等于加热流体温度。
19
4.2.1 平壁内非稳态过程的基本特征
整个瞬态导热过程可以分为两个阶段: 初始阶段(initial regime):也称为非正规状况阶段,
❖ ——确定非稳态过程的热流量或热量:确定物体在某一瞬
间每一位置处的热流密度、从某一时刻起经过一段时间后的总 传热量。
7
4.1 概述
关键:确定温度场t=f(x,y,z,t) ❖ 非稳态导热问题的温度场不仅与空间坐标有关,而且还
随时间τ变化,使物体内任位置处的热流量和热流密度 也随时间变化
❖ 非稳态导热问题的分析和研究过程更复杂
指在穿透时刻之前阶段,此时平壁内的温度分布主要 受初始温度分布t0的影响。
正规状况阶段(regular regime):穿透时刻之后, 非稳态过程进行到一定的程度,平壁初始温度分布的影 响逐渐消失,此后不同时刻的温度分布主要受热边界条 件的影响。这个阶段的非稳态导热称为正规状况阶段。
20
4.2.1 平壁内非稳态过程的基本特征
(3)传导的结果:热量能够影响到的区域,平壁
温度都将发生变化
15
4.2.1 平壁内非稳态过程的基本特征
❖ 首先,受流体加热的影响,壁面两侧的温度立即发生变 化,由初始温度t0跃升至tw
❖ 进入平壁的热量一边被吸收使平壁温度升高,一边被传 导使热量的影响范围扩大
❖ 热量没有影响到的地方温度维持初始值不变,壁中心 区域此时尚未“感受”到两侧壁面突然受热所带来的影 响
通过两侧面进入平壁的热流量:——当平壁刚投入 流体中时,由于流体和壁面间的传热温差最大,热流 量Φ立即本特征
❖ 随着壁面温度的升高而减小,最终趋于零 ❖ 从初始时刻到任意时刻,热流量曲线下的面积就是这
段时间内流体传给平壁的总热量Q。这些热量全部被 平壁吸收,用于增加平壁的热力学能
温流体中对称加热,表面传热系 数均为h,且沿壁面均匀、恒定 ❖ 试分析平壁内的温度变化过程
12
4.2.1 平壁内非稳态过程的基本特征
简化分析 ❖ 平壁的长度和宽度远远大于其厚
度 ❖ 平壁两个侧面上的换热条件分别
均匀一致,可忽略边缘散热效应 ❖ 一维非稳态导热问题:平壁内的
温度只沿厚度方向变化
13
4.2.1 平壁内非稳态过程的基本特征
❖ 从平壁投入高温流体中的那一刻(即τ=0)开始,平壁 内不同位置温度变化曲线在不同时刻是不同的。 原因是:由非稳态过程的特点造成的
14
4.2.1 平壁内非稳态过程的基本特征
非稳态过程的特点(以厚为dx的微元平壁为例)
(1)进入微元平壁的热量一边被吸收(蓄热), 一边被传导
(2)吸收的结果:不但使进、出平壁的热量不等, 而且导致自身温度升高
4
第4章 非稳态导热的计算与分析
4.1 概述
非稳态导热的分类: ——周期性的非稳态导热(periodic unsteady heat
conduction):由于边界条件(或内热源)随时间呈周 期性变化,使物体内的温度场也随时间按周期性规律变 化,这种状况通常称为准稳态
5
4.1 概述
非稳态导热的分类: 非周期性非稳态导热,也称瞬态导热(transient heat
第4章 非稳态导热的计算与分析
1
❖ 稳态导热是一种理想化的情况 ❖ 受环境温度变化的影响,生活和工程中真正意义上的
稳态导热是不存在的 ❖ 只是对工程中的某些问题,忽略温度随时间变化所造
成的影响、误差不大,而将其简化为稳态导热
2
❖ 生活和工程中还存在着大量的不能简化为稳态导热的 现象和问题,其中物体内的温度明显随时间而变化
相关文档
最新文档