高中数学-正态分布(1)

合集下载

高中数学正态分布

高中数学正态分布

高中数学正态分布正态分布是高中数学中一个重要的概率分布,也被称为高斯分布。

它在自然界和社会科学中具有广泛的应用,可以描述许多随机变量的分布情况。

正态分布具有许多独特的特性,包括对称性、钟形曲线、均值和标准差等。

本文将介绍正态分布的基本概念、性质以及它在实际问题中的应用。

一、基本概念正态分布是一种连续型的概率分布,它的概率密度函数可以用一个钟形曲线来表示。

钟形曲线关于均值对称,左右两边的面积相等。

正态分布的概率密度函数可以用数学公式表示,但在本文中我们不涉及具体公式。

二、性质1. 对称性:正态分布的钟形曲线关于均值轴对称,即曲线左右两侧的面积相等。

2. 峰度:正态分布的峰度较高,表示数据相对集中,没有明显的长尾巴。

3. 均值和标准差:正态分布的均值和标准差决定了曲线的位置和形状。

均值决定了曲线的中心位置,标准差决定了曲线的宽度。

三、应用举例正态分布广泛应用于各个领域,下面举几个例子说明其具体应用:1. 身高分布:人类的身高大致符合正态分布,均值是一定范围内的平均身高,标准差则决定了身高的变化范围。

2. 考试成绩:在一次考试中,学生的成绩往往呈现出正态分布的特点。

均值代表了班级的平均水平,标准差则反映了学生成绩的离散程度。

3. 生产质量控制:正态分布在生产过程中的质量控制中发挥重要作用。

通过对产品尺寸、重量等特征的测量,可以判断产品是否符合正态分布,从而进行质量控制和改进。

四、正态分布的应用思考正态分布的应用思考是高中数学中常见的问题类型之一。

通过理解正态分布的基本概念和性质,我们可以解决一些实际问题,例如:1. 求解概率:已知某一正态分布的均值和标准差,我们可以求解某个范围内的概率,从而回答一些关于随机事件的概率问题。

2. 参数估计:通过样本数据对总体的均值和标准差进行估计,从而推断总体的特征。

3. 假设检验:通过正态分布的性质,可以进行关于总体均值的假设检验,从而判断总体是否满足某种条件。

高中数学中的正态分布是一种重要的概率分布,具有广泛的应用。

2025届高中数学一轮复习课件《正态分布》ppt

2025届高中数学一轮复习课件《正态分布》ppt

高考一轮总复习•数学
A.甲工厂生产的零件尺寸的平均值等于乙工厂生产的零件尺寸的平均值 由正态曲线的对称轴相等可知. B.甲工厂生产的零件尺寸的平均值小于乙工厂生产的零件尺寸的平均值 C.甲工厂生产的零件尺寸的稳定性高于乙 甲的正态曲线瘦高,即稳定性高于乙. 工厂生产的零件尺寸的稳定性 D.甲工厂生产的零件尺寸的稳定性低于乙工厂生产的零件尺寸的稳定性
(2)由已知得 E(ξ)=3,D(ξ)=4,故 E(2ξ+1)=2E(ξ)+1=7,D(2ξ+1)=4D(ξ)=16.故选 D.
解析
高考一轮总复习•数学
第21页
题型
服从正态分布的概率计算
典例 2 (1)(2024·陕西西安模拟)陕西洛川苹果享誉国内外,据统计,陕西洛川苹果(把
苹果近似看成球体)的直径 X(单位:mm)服从正态分布 N(70,52),则直径在(80,85]内的概率
高考一轮总复习•数学
第27页
135 分的为特别优秀,那么本次数学考试成 μ+2σ 绩特别优秀的大约有________人.(若 X~N(μ,σ2),则 P(μ-σ≤X≤μ+σ)≈0.68,P(μ -2σ≤X≤μ+2σ)≈0.95) (2)(2024·河北张家口统考)某校举办乒乓球颠球比赛,现从高一年级 1 000 名学生中随机 选出 40 名学生统计成绩(单位:个),其中 24 名女生的平均成绩 x 女=70,标准差 s 女=4;16 名男生的平均成绩 y 男=80,标准差 s 男=6.
σ = 9. 因 为
μ
- 2σ

110

2×9
= 92

P(ξ≥90)>P(ξ≥92) =
P(ξ≥μ -
2σ)

1 2

高考高中数学正态分布

高考高中数学正态分布

S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N (,s 2 ),则对于任何实数a>0,概率
a
P( a x ≤ a) ,s ( x)dx a
为如图中的阴影部分的面积,对于固定的 和 s 而言,该面 积 的随概着率越s 大的,减即少X而集变中大在。这周说围明概s率越越小大, 落。在区间 ( a, a]
s ( x)
1
2 s
e
( x )2 2s 2
y
y
μ= -1
σ=0.5
μ=0
, x (, )
y μ=1
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
上述数据的分布有怎样的特点?
频率分布 直方图
第一步:分组
确定组数,组距?
第二步:列出频率分布表
区间 号
1
区间
频数
153.5~157.5 5
2 157.5~161.5 8
3 161.5~165.5 10
4 165.5~169.5 15
5 169.5~173.5 18
6 173.5~1775 18
7 177.5~181.5 8
(6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。

当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。

叫标准正态曲线。

正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。

在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。

高中数学课件 2.4正态分布(一)2.6平面向量复习课

高中数学课件          2.4正态分布(一)2.6平面向量复习课

OB CA 0
OB CA
则O在CA边的高线上 同理可得O在CB边的高线上
19、设在平面上有两个向量: a (cos ,sin ), b (cos ,sin ),(0 ) (1)试证:a b与a b互相垂直; (2)两个向量 ka b与a kb的模相等时,角 - 等于多少?其中k为非零实数
10. 已知a=(1,3),b=(-3,1),求<a,b>;
|a+b|,|a-b|,<(a+b),a>.
< a,b >=90° |a+b|= 2 5 , |a-b|= 2 5
<(a+b),a>=45 °
11. 已知向量a=(1,5),b=(-3,2),求a在b
方向上的正射影的数量。
a b 7 13 | a | cos a, b |b| 13
15、在三角形ABC中,AB =(2,3),AC =(1,k), 且三角形ABC的一个内角为直角,求实数k的值
16.已知向量a (-2,2), (5, k ). b (1)若 a b 不超过5,则实数k的取值范围是_______ (2)若 a , 为钝角,则实数k的取值范围是______ b
4、已知平行四边形ABCD的对角线交于点E,设 AB=e1,AD=e2,则用e1, e2表示ED的表达式为
.
5.设e1,e2是两个互相垂直的单位向量,且a=(2e1+e2), b=e1-λe2. (1)若a∥b,求λ; (2)若a⊥b,求λ.
6. 已知平行四边形ABCD的三顶点 A(-1, - 3),B(3,1),C(5,2),求第四个顶点D和中 心M的坐标 D(1,-2)

高中数学正态分布

高中数学正态分布

指数分布与正态分布关系
指数分布是一种连续型概率分布 ,用于描述两个连续事件之间的 时间间隔。
在某些情况下,指数分布可以近 似为正态分布。具体来说,当指 数分布的参数 $lambda$ 足够大 时,指数分布 $Exp(lambda)$ 可以用正态分布 $N(frac{1}{lambda}, frac{1}{lambdasqrt{2}})$ 来近似 。然而,这种近似通常不如二项 分布和泊松分布逼近正态分布那 样准确。
多元正态分布的定义
多元正态分布是指多个随机变 量组成的向量服从正态分布的 情况。
多元正态分布的性质
多元正态分布具有一些重要的 性质,如联合分布、边缘分布 、条件分布和独立性等。
多元正态分布在统计学中 的应用
多元正态分布广泛应用于多元 统计分析中,如多元线性回归 、主成分分析、因子分析等。
多元正态分布的参数估计 和假设检验
对于多元正态分布的参数估计 和假设检验,可以使用最大似 然估计、协方差矩阵的估计和 多元t检验等方法进行。
感谢您的观看
THANKS
对两个正态总体均值或方差进行 比较的假设检验,如t检验和F检 验的两样本版本。
置信区间构建
利用样本数据构造总体均值的置 信区间,以估计总体均值可能落 入的范围。
01
02
单样本假设检验
对单个正态总体均值或方差进行 假设检验,如t检验和F检验。
03
04
配对样本假设检验
对配对观测值之差的均值进行假 设检验,如配对t检验。
智商分布
智商测试的结果也符合正态分布,大 部分人的智商处于中等水平,极高和 极低的智商相对较少。
生产过程中质量控制
产品质量分布
在生产线上,产品质量往往呈现 正态分布,大部分产品符合质量 标准,极少数产品存在严重缺陷

高三数学正态分布知识点

高三数学正态分布知识点

高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。

其特点是在均值附近的概率较高,而在离均值较远处的概率较低。

在高中数学的学习中,正态分布也是一个重要的知识点。

本文将介绍高三数学正态分布的相关知识。

一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。

对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。

二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。

2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。

3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。

三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。

它是对正态分布进行标准化后的结果。

对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。

2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。

3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。

4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。

五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。

2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。

人教版数学高二-《正态分布》精品课件 新课标

人教版数学高二-《正态分布》精品课件 新课标

• [题后感悟] 解答此类题目的关键在于将待求 的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ -3σ,μ+3σ)这三个区间进行转化,然后利用 上述区间的概率求出相应概率,在此过程中依 然会用到化归思想及数形结合思想.
高中数学
• 3.设在一次数学考试中,某班学生的分数服 从X~N(110,202),且知满分150分,这个班 的学生共54人.求这个班在这次数学考试 中及格(不小于90分)的人数和130分以上的 人数.
高中数学
• A.三科总体的标准差及平均数都相同 • B.甲、乙、丙三科的总体的平均数不相同 • C.丙科总体的平均数最小 • D.甲科总体的标准差最小 • 解析: 由题图可得,甲、乙、丙三科的平均
分一样,但它们的标准差大小不同,σ甲<σ乙 <σ丙. • 答案: D
高中数学
(2011湖北高考)已知随机变量ξ服从 正态分布N(2,σ2),且P(ξ<4)=0.8,则 P(0<ξ<2)=( )
(3)曲线在 x=μ
处达到峰值 1 ; σ 2π
高中数学
1
σ
μ
• (4)曲线与x轴之间的面积为 • (5)当 越一大定时,曲线随着
沿x轴平移,如图①;

越小
的变化而
• (6)当μ一定时,曲线的形状由σ确定,σ ,曲线越“瘦高”;σ , 曲 线 越
“.正态总体在三个特殊区间内取值的概率值 • P(μ-σ<X≤μ+σ)= 0. ;682 6 • P(μ-2σ<X≤μ+2σ)= 0.954 4 ; • P(μ-3σ<X≤μ+3σ)= 0.997 4 .
越大,曲线越“矮胖”,表示总体越分散;σ 越小,曲线越“高瘦”,表示总体的分布越集 中,这个性质可直接判断.由正态曲线性质知 μ1<μ2,σ1<σ2. • 答案: A

高中正态分布知识点

高中正态分布知识点

高中正态分布知识点正态分布(Normal distribution)在高中数学中起着重要的作用,它具有许多特点和应用。

正态分布是一种连续概率分布,其特征是以均值为中心对称,并且呈钟型分布。

它在统计学、概率论、自然科学等领域都有广泛的应用。

一、正态分布的特点正态分布的特点主要有三个方面:对称性、均值、标准差。

1. 对称性:正态分布的曲线以均值为中心对称,即曲线两侧的面积相等。

这意味着在正态分布中,均值附近的数值出现的概率较大,而离均值较远的数值出现的概率较小。

2. 均值:正态分布的均值是曲线的中心位置,也是分布的期望值。

在正态分布中,均值的取值是有用的参考,可以帮助我们了解数据集的中心倾向。

3. 标准差:正态分布的标准差决定了曲线的宽度,标准差较小意味着数据集的值相对集中,标准差较大意味着数据集的值相对分散。

标准差还可以用来衡量数据的离散程度。

二、正态分布的应用正态分布在实际生活中有广泛的应用,以下是几个常见的场景:1. 身高和体重:人类的身高和体重通常服从正态分布。

这使得我们可以通过计算均值和标准差来了解人群的平均身高和体重,也能够判断某个个体身高和体重是否在正常范围之内。

2. 考试成绩:考试成绩常常呈正态分布。

通过对成绩分布的分析,教师可以了解学生的表现情况,设计适合学生的教学方案。

3. 生物学实验数据:生物学实验中的许多测量结果,如细胞数量、药物浓度等,往往服从正态分布。

通过对实验结果的分析,科研人员可以评估实验的准确性和稳定性。

4. 财经领域:股市收益率、商品价格等经济指标常常符合正态分布。

金融机构和投资者可以利用正态分布来进行风险评估和预测。

三、正态分布的性质正态分布具有许多重要的性质,以下是其中几个常见的性质:1. 中心极限定理:中心极限定理是正态分布的一个重要应用。

它表明,当样本容量足够大时,样本均值的分布会接近于正态分布。

2. 正态分布的标准化:对于给定的正态分布,我们可以通过标准化处理将其转化为标准正态分布。

正态分布 课件

正态分布  课件


• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:

人教B版选修2-3高中数学2.4《正态分布》ppt课件1

人教B版选修2-3高中数学2.4《正态分布》ppt课件1

单侧95%正常值范围: X 1.64S (上限)
X 1.64S (下限)
12
2. 百分位数法
双侧95%正常值范围: P2.5~P97.5 单侧95%正常值范围: < P95(上限)
或 > P5(下限) 适用于偏态分布资料
13
第三节 计数资料的统计描述
一、计数资料的数据整理 二、常用相对数指标 三、应用注意事项
如:治愈率、病死率、阳性率、人群患病率等
17
2.构成比(proportion):
说明某一事物内部,各组成部分所占的 比重。也叫百分比。
构成比=(某部分观察单位数/各组成部分 观察单位总数)×100%
如:教研室16人高级职称有4人,占 25%;中级职称有8人,占50%;初级 职称有4人,占25%。
18
正态曲线(normal curve)
2
二、正态曲线( normal curve )
f(X)

图形特点:
1. 钟型 2. 中间高 3. 两头低 4. 左右对称 5. 最高处对应
于X轴的值 就是均数
X 6. 曲线下面积 为1
7. 标准差决定 曲线的形状
3
N (1,0.82 )
0.6 f (X )
0.5
22
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的 问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。

《高中数学正态分布》课件

《高中数学正态分布》课件

正态分布的实例分析
1 案例一:商品售价的概率分布
探讨商品售价符合正态分布时的概率分布情况,为合理定价提供依据。
2 案例二:身高的概率分布
分析人类身高在不同群体中的分布,理解身高的统计特征和差异。
3 案例三:考试成绩的分布
研究考试成绩的正态分布特征,评估学生的相对表现和优势科目。
总结与思考
正态分布在数学与实践中的重要 性
3
应用示例
通过标准化后的数据,可以进行正态分布的统计估计、抽样与推论,并用于描述 实际情况。
正态分布的应用
统计估计
正态分布在估计总体参数和进行 置信区间估计时非常有用。
抽样与推论
正态分布可用于抽样分布的建立 和统计推断的进行。
实际情况分析
通过近似描述实际情况,例如商 品售价、身高和考试成绩的分布。
《高中数学正态分布》 PPT课件
引言
正态分布的定义
正态分布是一种连续型概率分布,具有钟形曲线,以均值μ和标准差σ来描述。
正态分布的性质
正态分布的均值、中位数和众数相等;左右对称;68%的数据落在一个标准差内;95%的数 据落在两个标准差内。
概率密度函数
密度函数的输入和输出,函数图 像
密度函数接受一个输入值x并给出对应的概率密度 值。函数图像呈现出正态分布的钟形曲线。
正态分布是统计学中最重要的概率分布之一,在自 然科学、社会科学和经济金融等领域有广泛应用。
对于其他分布的启示
正态分布的性质和应用可以启发我们研究和理解其 他概率分布。
参考文献
• 统计学与实际 • 十二年高等数学 • 数学建模及其应用 • 离散数学及其应用
均值和标准差对函数图像的影响
均值决定函数图像的中心位置,标准差影响函数图 像的分散程度。正态分布的Fra bibliotek准化1

高中正态分布三个公式

高中正态分布三个公式

高中正态分布三个公式第一,正态分布的概念。

正态分布又称为高斯分布或钟形曲线,是一种对称的连续概率分布。

在数学上,正态分布的概率密度函数可以表达为:f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))第二,正态分布的性质。

正态分布具有以下几个重要的性质:1.对称性:正态分布是一种对称的分布,即曲线以均值μ为中心点对称。

2.均值与中位数和众数相等:正态分布的均值、中位数和众数都相等,即μ。

3.标准差刻画曲线的宽度:标准差σ越大,曲线越宽;标准差σ越小,曲线越窄。

4.68-95-99.7法则:在正态分布中,约有68%观测值落在均值正负一个标准差范围内,约有95%观测值落在均值正负两个标准差范围内,约有99.7%观测值落在均值正负三个标准差范围内。

第三,正态分布的三个公式。

正态分布有很多重要的公式,这里介绍其中三个常用的公式。

1. Z-Score公式。

Z-Score用于将一些数值转化为标准正态分布下的相对位置,可以计算一些取值离均值的距离,即z=(x-μ)/σ。

其中,z是标准正态分布下的相对位置,x是原始分布中的取值。

2.区域计算公式。

正态分布曲线下的一些区域面积可以通过累积分布函数计算。

对于给定的区间[a,b],可以计算出该区间内的概率P(a≤X≤b)。

这个概率可以通过计算标准化变量的累积分布函数来求得。

3.逆变换公式。

逆变换公式用于计算一些百分位数对应的数值,即给定概率P,求解X,使得P(X≤X)=P。

逆变换公式可以通过标准正态分布的反函数来计算。

以上是关于高中正态分布的概念、性质和三个公式的介绍。

正态分布在诸多领域中都有广泛应用,例如自然科学、社会科学和工程领域等。

了解正态分布的概念和性质,掌握相关的计算公式,可以帮助我们更好地理解和应用正态分布。

高中数学正态分布知识点+练习

高中数学正态分布知识点+练习

正态分布高考正态分布要求层次重难点正态分布A利用实际问题的直方图,了解正态分布 曲线的特点及曲线所表示的意义.例题一) 知识内容1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直 方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随 机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是 1,而随机变量 X 落在指定的两个数 a ,b之 间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的 准差为 的正态分布通常记作 N( , 2) . 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为 0 ,标准差为 1的正态分布叫做标准正态分布. ⑶重要结论: ①正态变量在区间 ( ,) ,( 2 , 2 ) ,( 3 , 3 )内,取值的概率分别是 68.3% ,95.4%, 99.7% .②正态变量在 ( , ) 内的取值的概率为 1,在区间 ( 3故正态变量的取值几乎都在距 x 三倍标准差之内,这就是正态分布的 3 原则.变化中都只是起着均匀、 微小的作用, 则表示这样的随机现象的随机变量的 概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为 f(x)2π(x)2e 2,x 中 , 是参数,且0 ,式中的参数 和 分别为正态变量的数学期望和标准差.期望为 、标3 ) 之外的取值的概率是 0.3% ,R ,其二)典例分析:例1】 已知随机变量 X 服从正态分布 N (3 ,a 2) ,则 P (X 3) ( )值的概率为 0.4,则 X 在 0,2 内取值的概率为【例4】 已知随机变量 X 服从正态分布 N (2, 2),P (X ≤ 4) 0.84,则P (X ≤0) ( ) A . 0.16B .0.32C . 0.68D.0.84N (0 ,4) ,则不属于区间 ( 4,4) 这个尺寸范围的零件约占总数的【例 6】已知 X N ( 1,2),若 P( 3≤X ≤-1) 0.4,则 P( 3≤X ≤1) ()A . 0.4B . 0.8C . 0.6 D.无法计算【例 7】设随机变量 服从正态分布N (2 ,9) ,若 P(c 2) P( c2) ,则c ________【例 8】 设 ~ N(0 ,1),且 P(| | b)a(0 a 1,b 0) ,则 P( ≥ b) 的值是_________________________________________(用a 表示).例 9 】 设随机变量 服从正态分布 N (0 ,1) , a0 ,则下列结论正确的个数是 ___ .⑴ P(| | a) P(| | a) P(| | a)⑵ P(| | a) 2P( a) 1⑶ P(| | a) 1 2P( a)A .15B .C .D .例2】 在某项测量中,测量结果 X 服从正态分布 N 10 ,若 X 在 0 ,1 内取例 3】 对于标准正态分布 N 0 ,1 的概率密度函数1 xe 2πx 22列说法不正确的是( )A . f x 为偶函数 BC . f x 在 x 0时是单调减函数,在 x ≤0时是单调增函数 D最大值为x 关于 x 1 对称1 2π例5】 某种零件的尺寸服从正态分布⑷ P(| | a) 1 P(| | a)如果随机变量 ~ N( , 2),E D 1 ,求 P( 1 1)的值.A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值A .该市这次考试的数学平均成绩为 80 分B .分数在 120 分以上的人数与分数在 60 分以下的人数相同C .分数在 110 分以上的人数与分数在 50 分以下的人数相同D .该市这次考试的数学标准差为 10【例16】 灯泡厂生产的白炽灯寿命 (单位: h ),已知 ~ N (1000,302) ,要使灯泡的平均寿命为 1000h 的概率为 99.7%,则灯泡的最低使用寿命应控制在 _____ 小时以上.【例 17】 一批电池(一节)用于手电筒的寿命服从均值为 35.6小时、标准差为 4.4小时的正态分布, 随机从这批电池中任意取一节, 问这节电池可持续使用不少于 40 小时的概率 是多少例 10 】 例 11 】 正 态 变 量 X~ N(1, 2)P(c X 2c)P(2c X 3c) 0.4,求 P(X ≤ 0.5)的值.【例 12】 A . f(x)列函数是正态分布密度函数的是( )(x r)2 2B . f(x)2πex222πC . f(x)1 (x2 2π e1)2例 13 】 若正态分布密度函数 (x 1)2(x R) ,下列判断正确的是(【例 14】 设 的概率密度函数为 f(x) 1(x 1)2 12 e 22π,则下列结论错误的是()B . P( 1≤ ≤ 1) P( 1 1)D . 1~ N(0 ,1)【例 15】某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密 度函数为 f(x) 1(x 80)21e 200 ,则下列命题中不正确的是( )10 22πf (x)x 2f(x)2A . P( 1) P( 1)C . f (x) 的渐近线是 x 0例 18】 某班有 48 名同学,一次考试后的数学成绩服从正态分布,平均分为 80,标准差为 10,理论上说在 80 分到 90分的人数是 ___0 x ≤1【例 19】已知连续型随机变量 的概率密度函数 f (x)x a 1≤ x 2 ,x ≥ 2⑴求常数a 的值;⑵求 P(1 3) . 2P(132).ke x ≥ 0ke x ≥0,求 k 的值及 P(X 0.1). 0 x 0【例 22】 美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的100 |x |距离 X 的密度函数为f (x) 10000| x |≤ 100,若炸弹落在目标 40 米以内时,将导致该铁0 |x| 100路枢纽破坏,已知投弹 3颗,求巴格达铁路控制枢纽被破坏的概率.例 20 】 已知连续型随机变量x ≤1的概率密度函数 f(x) ax 21≤ x 2 , 求 a 的值及 0x ≥2例 21 】 设随机变量 X 具有概率密度 f (x)1x R .⑴求 , ;⑵求 P(|x 1| 2) 及P(1 2 x 1 2 2) 的值.例 24】 某校高中二年级期末考试的物理成绩 服从正态分布 N (70 ,102) .⑴若参加考试的学生有 100人,学生甲得分为 80 分,求学生甲的物理成绩排名; ⑵若及格( 60分及其以上)的学生有 101人,求第 20 名的物理成绩. 已知标准正态分布表 (0.97) 0.833 .【例 25】 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布 N (70 ,100) .已知成绩在 90分以上(含 90分)的学生有 12名.⑴试问此次参赛学生总数约为多少人⑵若该校计划奖励竞赛成绩排在前 50 名的学生,试问设奖的分数线约为多少分 附:标准正态分布表 (1.30) 0.9032 , (1.31) 0.9049 , (1.32) 0.9066 .x 2 2x 1例 23】 设 X ~ N ( , 2) ,且总体密度曲线的函数表达式为:f(x)2πe。

人教版高中数学课件-正态分布

人教版高中数学课件-正态分布
高考总复习 数学
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
(2)P(-4<X≤4)=P(0-4<X≤0+4) =P(μ-σ<X≤μ+σ)=0.682 6. [點評與警示] 要確定一個正態分佈的概率密度函數的解 析式,關鍵是求解析式中的兩個參數μ,σ的值,其中μ決定曲線 的對稱軸的位置,σ則與曲線的形狀和最大值有關.
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
高考总复习 数学
第十六章 概率与统计(选修·理科)
1.正態曲線與正態分佈
(1)函數 ,
其中實數μ和σ(σ>0)為參數.我們稱φμ,σ(x)的圖象為正態分佈密
度曲線,簡稱
正態曲線.
高考总复习 数学
第十六章 概率与统计(选修·理科)
3.(1)正態總體在三個特殊區間內取值的概率值.
P(μ-σ<X≤μ+σ)=
0.68;26P(μ-2σ<X≤μ+2σ)=
;P(0μ.-9534σ4<X≤μ+3σ)=
0.9974.
高考总复习 数学
第十六章 概率与统计(选修·理科)
(2)3σ原則
服 從 於 正 態 分 佈 N(μ , σ2) 的 隨 機 變 數 X 只 取
∴P(-2≤ξ≤2)=1-2×0.023=0.954,故選C.
[答案] C
高考总复习 数学
第十六章 概率与统计(选修·理科) 3.(2011·深圳一模)設隨機變數X~N(1,32),且P(X≤0)= P(X>a-6),則實數a的值為________.
[答案] 8
高考总复习 数学
第十六章 概率与统计(选修·理科)

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。

当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。

叫标准正态曲线。

正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。

在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。

正态分布-人教版高中数学

正态分布-人教版高中数学

知识图谱-正态分布正态分布的概念正态分布的性质与应用第04讲_正态分布错题回顾正态分布知识精讲一. 正态分布密度函数如果随机变量的概率密度函数,,我们称其图象为正态分布密度曲线. 其中是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为.二. 正态分布如果随机变量落在区间上的概率为,则称随机变量满足正态分布.正态分布由参数唯一确定,如果随机变量,根据定义有:.三. 正态曲线的性质正态曲线具有以下性质:(1)曲线在轴的上方,与轴不相交.(2)曲线关于直线对称.(3)曲线在时位于最高点.(4)当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以轴为渐近线,向它无限靠近.(5)当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中.四. 标准正态曲线当时,正态总体称为标准正态总体,其相应的函数表示式是,,其相应的曲线称为标准正态曲线,标准正态分布记做.记,指总体取值小于的概率,则.任何正态分布的概率问题均可利用公式转化为标准正态分布的概率问题.五. 正态分布在三个特殊区间的概率值1. 原则在实际应用中,通常认为服从正态分布的随机变量只取之间的值,并简称为原则. 在此区间以外取值的概率只有0.0026,此为小概率事件.2. 三个特殊区间的概率值三点剖析一. 注意事项1. 参数是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把的正态分布叫做标准正态分布;2. 正态分布是自然界中最常见的一种分布,许多现象都近似地服从正态分布,如长度测量误差,正常生产条件下各种产品的质量指标等;3. 一般的,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似地服从正态分布.题模精讲题模一正态分布的概念例1.1、设随机变量,若,则=()A、B、pC、D、例1.2、设随机变量X~N(μ,62),Y~N(μ,82).记p1=p(X≤μ-6),p2=p (Y≥μ+8),则有()A、p1=p2B、p1>p2C、p1<p2D、p1,p2大小关系无法判断例1.3、设有一正态总体,它的概率密度曲线是函数的图象,且,则这个正态总体的均值与标准差分别是( )A、10与8B、10与2C、8与10D、2与10例1.4、证明若服从()则一定有:.题模二正态分布的性质与应用例2.1、正态总体为,时,概率密度函数是:,.(1)证明是偶函数;(2)求的最大值;(3)利用指数函数的性质说明的增减性.例2.2、若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在以下设计的,如果某地成年男子的身高(单位:cm),则该地公共汽车门的高度应设计为多高?例2.3、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x0)=P(x<x0)例2.4、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.随堂练习随练1.1、若正态曲线函数为,则( )A、有最大值,也有最小值B、有最大值,没有最小值C、无最大值,也无最小值D、没有最大值,但有最小值随练1.2、若随机变量,且,,则等于()A、B、C、D、随练1.3、已知,若,则()A、0.2B、0.3C、0.7D、0.8随练1.4、设服从,试求:(1)(2)(3)(4)随练1.5、某校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a2),(a>0试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生人数约为()A、200B、300C、400D、600随练1.6、某县农民平均收入服从元,元的正态分布.求:(1)此县农民年均收入在500元~520元之间的人数的百分比.(2)若要使农民的年均收入在()内的概率不小于0.95,则的值应至少为多大?随练1.7、一投资者在两个投资方案中选择一个,这两个投资方案的利润(万元)分别服从正态分布和,投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?自我总结课后作业作业1、设随机变量,则的值为()A、1B、2C、D、4作业2、已知随机变量服从正态分布N(2,1),且P(1≤x≤3)=0.6826,则P(x <1)=()A、0.1588B、0.1587C、0.1586D、0.1585作业3、设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()A、1B、4C、2D、不能确定作业4、以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于()A、Φ(μ+σ)-Φ(μ-σ)B、Φ(1)-Φ(-1)D、2Φ(μ+σ)C、Φ()作业5、在下列命题中,①“”是“”的充要条件;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A、②B、③C、②③D、①③作业6、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(1)试问此次参赛学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表作业7、某厂生产的零件外直径(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为()A、上、下午生产情况均为正常B、上、下午生产情况均为异常C、上午生产情况正常,下午生产情况异常D、上午生产情况异常,下午生产情况正常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)(σ2>0)的密度
函数图象如图所示,则有
()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
解析:根据正态分布N(μ,σ2)函数的性质:正态分布曲线 是一条关于直线x=μ对称,在x=μ处取得最大值的连续钟形 曲线;σ越大,曲线的最高点越低且较平缓;反过来,σ越 小,曲线的最高点越高且较陡峭,故选A.
度曲线,简称正态曲线.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
2.正态曲线的性质
(1)曲线位于x轴上方 ,与x轴不相交;
(2)曲线是单峰的,它关于直线x=μ 对称;
(3)曲线在 x=μ
处达到峰值 σ
1; 2π
(4)曲线与x轴之间的面积为 1 ;
(5)当σ一定时,曲线随着 μ 的变化而沿x轴平移,如图甲
=12×(1-0.954 4)=0.022 8.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
求服从正态分布的随机变量在某个区间取值的概率,只 需借助正态曲线的性质,把所求问题转化为已知概率的三个 区间上体现了转化与化归思想应用.
课前自主回顾 课堂互动探究
课时作业
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
=12×(0.954 4-0.682 6)
=0.135 9.
(3)∵P(X≥5)=P(X≤-3),
∴P(X≥5)=12[1-P(-3<X≤5)]
=12[1-P(1-4<X≤1+4)]
=12[1-P(μ-2σ<X≤μ+2σ)]
与名师对话
高考总复习 ·课标版 ·A 数学(理)
解决此类问题的关键是正确理解函数解析式与正态曲线 的关系,掌握函数解析式中参数的取值变化对曲线的影响.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
设两个正态分布N(μ1,σ
2 1
)(σ1>0)和N(μ2,σ
2 2
问题探究:参数μ,σ在正态分布中的实际意义是什么? 提示:μ是正态分布的期望,σ是正态分布的标准差.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
3.正态分布 (1)正态分布的定义及表示 如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b) = ∫baφμ,σ(x)dx ,则称X的分布为正态分布,记作N(μ,σ2). (2)正态总体在三个特殊区间内取值的概率值 ①P(μ-σ<X≤μ+σ)= 0.6826 ; ②P(μ-2σ<X≤μ+2σ)= 0.9544 ; ③P(μ-3σ<X≤μ+3σ)= 0.9974 .
数,所以其图象关于y轴对称,即μ=0.由
1= 2πσ
1 2π·4
,得σ
=4,故该正态分布的概率密度函数的解析式是 φμ,σ(x)=4 12πe-3x22 ,x∈(-∞,+∞).
(2)P(-4<X≤4)=P(0-4<X≤0+4)
=P(μ-σ<X≤μ+σ)=0.682 6.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
考纲要求
考情分析
利用实际 问题的直方图, 了解正态分布的 特点及曲线所表 示的意义.
通过近三年高考试题来看,正态分布主要
考查正态总体在某一区间内的概率,通常以选择 、填空题形式出现,题目较易或中等.如2012年 课标卷5将正态分布与相互独立事件的概率结合 起来考查,可以说是一个新的命题方向.
所示;
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
(6)当μ一定时,曲线的形状由σ确定,σ越小 ,曲线越“瘦 高”,表示总体的分布越集中;σ越大 ,曲线越“矮胖”,表 示总体的分布越分散,如图乙所示.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
答案:(1)D (2)C
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
在实际生活中,很多事例都服从或近似服从正态分布, 了解N(μ,σ)的含义并能正确应用是解决这些问题的关键.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
(2012全国课标)某一部件由三个电子元件按右图方式连接 而成,元件1或元件2正常工作,且元件3正常工作,则部件正 常工作.设三个电子元件的使用寿命(单位:小时)均服从正态 分布N(1 000,502),且各个元件能否正常工作相互独立,那么 该部件的使用寿命超过1 000小时的概率为________.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
(2)充分利用正态曲线的对称性及面积为1的性质. 正态曲线关于直线x=μ对称,从而在关于直线x=μ对称 的区间上,概率相等.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
设X~N(1,22),试求 (1)P(-1<X≤3); (2)P(3<X≤5); (3)P(X≥5).
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
在正态分布N 0,19 中,数值落在(-∞,-1)∪(1,+∞)
内的概率为
()
A.0.097
B.0.046
C.0.03 解析:∵μ=0,σ=
D.0.002 6
1 3
,∴P(x<-1或x>1)=1-P(-
1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.997 4=0.002 6.
形状判别相应的μ和σ的大小关系.
2.正态曲线关于直线x=μ对称,从而在关于x=μ对称的
区间上概率相等.正态曲线与x轴之间面积为1.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
若一个正态分布的概率密度函数是一个偶函数,且该函
数的最大值为 4
1 2π.
(1)求该正态分布的概率密度函数的解析式;
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
【错因分析】 (1)不能正确得出该正态分布的两个参数 μ,σ导致计算无从下手.(2)对正态分布中随机变量在三个区 间内取值的概率数值记忆不准,导致计算出错.
【正确解答】 依题意,μ=116,σ=8,所以μ-3σ= 92,μ+3σ=140,而服从正态分布的随机变量在(μ-3σ,μ+ 3σ)内取值的概率约为0.997,所以成绩在区间(92,140)内的考 生所占百分比约为99.7%,从而成绩在140分以上的考生所占 的百分比为1-929.7%=0.15%.故选D.
(2)求正态总体在(-4,4]的概率.
【思路启迪】 要确定一个正态分布的概率密度函数的
解析式,关键是求解析式中的两个参数μ,σ的值,其中μ决定
曲线的对称轴的位置,σ则与曲线的形状和最大值有关.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
【解】 (1)由于该正态分布的概率密度函数是一个偶函
与名师对话
高考总复习 ·课标版 ·A 数学(理)
(1)设随机变量ξ服从标准正态分布,则P(|ξ|<1.88)等于(已
知Ф(1.88)=0.97)
()
A.0.03
B.0.06
C.0.97
D.0.94
(2)(2011年湖北)已知随机变量ξ服从正态分布N(2,σ2),
且P(ξ<4)=0.8,则P(0<ξ<2)=
【思路启迪】 将所求概率转化到(μ-σ,μ+σ].(μ- 2σ,μ+2σ]或[μ-3σ,μ+3σ]上的概率,并利用正态密度曲线 的对称性求解.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
【解】 ∵X~N(1,22),∴μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2) =P(μ-σ<X≤μ+σ)=0.682 6. (2)∵P(3<X≤5)=P(-3<X≤-1), ∴P(3<X≤5)=21[P(-3<X≤5)-P(-1<X≤3)] =12[P(1-4<X≤1+4)-P(1-2<X≤1+2)] =12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
(对应学生用书P218)
1.若连续型随机变量ξ服从正态分布,即ξ~N(μ,σ2),则
E(ξ)=μ,D(ξ)=σ2,这里μ,σ的意义是期望和标准差.μ在正
态分布曲线中确定曲线的位置,而σ确定曲线的形状.如果给
出两条正态分布曲线,我们可以根据正态分布曲线的位置和
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(理)
相关文档
最新文档