电离层物理与电波传播2
各波段电波传播方式和特点
一.电磁场基本性质:1.电场和磁场:静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
2. 电磁波及麦克斯韦方程:如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。
0c D B B E t D H J t ρ∇=⎧⎪∇=⎪⎪∂⎨∇⨯=-∂⎪⎪∂∇⨯=+⎪∂⎩g g cD E B H J E εμσ=⎧⎪=⎨⎪=⎩ 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。
但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。
4. 历史的回顾与电磁场与波的应用公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。
1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。
1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。
同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。
1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。
电离层无线电波传播
电离层无线电波传播dianliceng wuxian dianbo chuanbo电离层无线电波传播radio wave propagation in the ionosphere无线电波在电离层中传播的规律及其应用的研究,早先着重于电波在电离层F2层电子密度峰值以下区域的传播问题,人造卫星上天以后,扩展到穿越整个电离层区域的传播规律问题。
基本理论电离层由自由电子正离子负离子、分子和原子组成,是部分电离的等离子体介质。
带电粒子的存在影响无线电波的传播,其机制是带电粒子在外加电磁场的作用下随之振动,从而产生二次辐射,同原来的场矢量相加,总的效果表现为电离层对电波的折射指数小于1。
由于自由电子的质量远小于离子的质量,一般电子的作用是主要的,只要考虑电子就够了。
但如电波频率较低而接近于离子的等离子体频率时,离子的影响也不能忽略。
由于地磁场的存在,带电粒子也受它的影响,所以电离层又是各向异性的(见磁离子理论)。
电离层的形成和结构特性是受太阳控制的,因此它既随时间又随空间变化。
在这样复杂的介质中,分析无线电波传播问题必须建立相对简化的物理模型并根据电波的频率采用相应的理论和方法。
对于电离层电波传播,介质的折射指数是一个最根本的参数,实验证明相当有效。
为人们普遍接受的磁离子理论表达的折射指数的公式称为阿普尔顿-哈特里公式,它是电离层电子密度和电波频率的函数,所以又被称为色散公式,而电离层则是一种色散介质。
对于短波和波长更短的电波传播问题,可以采用近似的射线理论,对长波和超长波则一般需要采用波动理论,有时可将地面和电离层底部之间看作一个同心球形波导。
折射和反射电离层的折射指数主要取决于电子密度和电波频率,电子密度愈大或电波频率愈低,折射指数愈小。
因为电离层的折射指数小于1,电波在电离层中受到向下折射,在垂直投射的情况下,折射指数等于零时,电波不能传播,产生“反射”。
在一定值的电子密度情况下,使折射指数为零的频率称为电波的临界频率,在地磁场的影响可以忽略时,这一频率就等于电子的等离子体频率。
浅谈电离层对短波传播及选频的影响
浅谈电离层对短波传播及选频的影响作者:曹文丽来源:《中国科技博览》2019年第01期中图分类号:TP3 文献标识码:A 文章编号:1009-914X(2019)01-0198-01电离层的各种变化都将对短波无线电通信带来不同程度的影响,轻则通信质量下降,重则通信中断。
短波通信按传播途径可分成地波和天波两种基本传播途径,由于电离层不断变化,使通过天波传播的短波信道并不稳定,影响短波通信的效果。
在短波电台灵敏度和发射功率、天线架设、地形地物均已确定的情况下,选择工作频率成为决定通信质量的唯一可选因素。
本文主要就短波通信特别是短波天波通信的电波传播特点和工作频率选择问题作了简要的探讨。
一、短波的地波传播利用地波路径,可在一定距离内建立稳定可靠的短波通信联络。
其有效距离主要取决于短波电台的发射功率、天线的架设方式、传播路径上的地形地物的影响及使用的载波频段。
鉴于频率越低大地对电波的吸收越小,短波电台的地波通信宜选用短波频率的低段。
对于短波通信而言,其噪声主要来自产生于大气的天电和周围工业设备的电气干扰。
一般来说,在一方天线高架的情况下,选择合适的载波频率,小型短波电台利用地波路径可在数十公里范围内建立可靠的通信联络。
二、短波的天波传播(1)关于电离层:短波无线电远程通信依赖于高空电离层反射的天波路径,了解电离层的生成、结构和变化规律,了解电离层不同时段对不同频段的短波段电波的反射规律,对短波无线电通信有至关重要的意义。
电离层中电子密度呈层状分布,对短波通信影响大的有 D 层、E 层、F1 层、F2 层,各层的电子密度 D〈 E〈 F1〈F2 :由于电离层的形成主要是太阳紫外线照射的结果,因此电离层的电子密度与阳光强弱密切相关,随地理位置、昼夜、季节和年度变化,其中昼夜变化的影响最大。
(2)电离层对电波的折射和反射:电离层可看成具有一定介电常数的媒质,电波进入电离层会发生折射。
折射率与电子密度和电波频率有关。
通信导论第五章电波传播
短波波段都可以利用天波传播方 250
式,目前,它仍是无线电远程通
信的主要传播方式之一。电离层 0 大致可分为 D、E、F1、F2四层。
F1 E O
0.5
F2
1.0
1.5
N(电子/cm3)106
各电离层高度及平均电子密度
层名
D E F1 F2
离地面高度 He(km)
60~90
90~150
150~200
当天线低架于地面时(天线架设高度小于波长时,称为低
架天线),且最大辐射方向是沿地表面,这时电波传播的 主要途径就是地面波传播,也叫地表波或地波传播。
电波沿地表面传播时,电磁波的能量不断被地面所吸收,
因此地面上的场强要比自由空间传播时小得多,能量的衰
减数值与地面的电参数有关,同时也和电波的频率及极化
方向有关。
2.季节变化:由于不同季节太阳照射不同, 故下一图般表夏示季出电电子离密层度的大日于夜冬和季 季,节但变化F2层。例外,
3. 受太阳活动影响的变化
电离层的日夜和季节变化
N 电子密度
N 电子密度
F2
日出
F2
日落
日出
日落
F1
E
E
D
D
0
4 8 12 16 20 24
0
4
8 12 16 20 24 t(时间)
t(时间)
a 夏季
b 冬季
电离层受太阳活动影响的变化
太阳活动性一般以太阳一年的平均黑子数来代表,黑子数目增加时,
太阳所辐射的能量增强,因而各层电子密度大。黑子的数目每年都在
变化,但是根据长期观察证明,它的变化也是有一定规律的,从图可
以看出太阳黑子的变化周期大约是11年,因此电离层的电子密度也与 这11年变化周期有关。
电离层对高频电波传播的影响研究
电离层对高频电波传播的影响研究1. 本文概述本文旨在深入研究电离层对高频电波传播的影响。
电离层,作为地球大气层的一部分,由太阳紫外线、射线和太阳风等太阳活动引起的气体电离形成。
这一区域的存在对高频电波(如无线电波、微波等)的传播特性具有显著影响,尤其在无线通信、雷达探测、卫星通信等领域具有广泛的应用价值。
本文将首先介绍电离层的基本结构和特性,包括其形成机制、电子密度分布、以及在不同时间和地点的变化规律。
接着,本文将重点分析电离层对高频电波传播的主要影响,包括信号衰减、折射、散射等现象,以及这些现象对电波传播路径、传播速度和信号质量的影响。
本文还将探讨电离层变化对高频电波传播的影响,包括电离层扰动、电离层暴等极端天气事件对电波传播的影响,以及这些影响对无线通信、雷达探测等实际应用的影响。
2. 电离层特性及其动态变化电离层,也称为电离层或电离大气层,是地球大气层的一部分,其中气体分子和原子因太阳紫外线、射线和太阳风等太阳活动的影响而被电离。
这层电离的大气对高频电波传播有着重要的影响。
电离层的主要特性包括其电子密度、离子密度、温度、压力和高度等。
电子密度是决定电离层对电波吸收和折射性质的关键因素。
电离层的电子密度会随着时间、地理位置、太阳活动等因素的变化而变化,这种变化对高频电波的传播特性有着直接的影响。
电离层的动态变化主要包括昼夜变化、季节变化、太阳活动周期变化等。
昼夜变化是由于太阳照射引起的电离层电子密度的日变化和夜变化。
季节变化则是由于地球围绕太阳旋转,导致不同地区在不同季节受到太阳照射的影响不同,从而影响电离层的电子密度。
太阳活动周期变化则是指太阳活动的强弱对电离层的影响,通常在太阳活动高峰期,电离层的电子密度会增加,对电波传播的影响也会增强。
电离层的动态变化不仅会影响高频电波的传播路径,还会引起电波的衰减、折射、散射等现象。
例如,电离层中的电子会对电波产生吸收作用,导致电波能量衰减电离层中的电子密度梯度会导致电波发生折射,改变电波的传播方向电离层中的不规则结构则会引起电波的散射,使电波的能量分布更广。
10电离层电波传播解析
E B / t D
H D / t J B 0
J 和 分别是传导电流密度和自由电荷密度。
( J v ) 0 t
运动的电荷形成电流。连续性方程规定电荷密度和电流密度之间的关系,
2 2 E ( E ) E E
2 2 2 因此有, E v E / t 0
2
式中v是电磁波在介质中的传播速度, v ( 0 0 )1 / 2 /( )1 / 2 c / n ,
D 。
研究方程组 E B / t
H D / t J
/ t J 0
该方程组包含两个矢量方程和一个标量方程,一共7个标量方程。而未知数 一共有16个。因此,方程组是不完备的。 为了求解所有16个场量,必须增加9个独立方程,这些方程与传播介质性质 有关。为此,引进介质的结构关系式。介质结构关系的一般形式为,
传播介质的分类
有三个特征量表征传播介质的性质,即介电常数、磁导率 和电导率,它们一般是空间、时间和场量的函数。即,
( r ,t,k , , E, H ) ( r ,t,k , , E, H ) ( r ,t,k , , E, H )
介电常数、导磁率和电导率的性质决定介质的性质。 当介电常数、导磁率和电导率是标量时,介质是各向同性 介质; 当它们是张量时,介质是各向异性介质; 当这些系数与空间坐标无关时,代表均匀介质;
当这些系数依赖于空间坐标时,代表不均匀介质; 当这些系数依赖于空间坐标并且是空间坐标的随 机函数时,代表随机介质; 当这些系数与时间无关时,代表平稳介质; 若这些系数是时间的函数,代表非平稳介质; 若这些系数是频率的函数,代表时间色散介质; 若这些系数是波矢的函数,代表空间色散介质; 若这些系数与电磁场本身大小有关, 则成为非线性 介质。
电波主要传播方式
电波主要传播方式2008-06-05 11:25:45 作者:不详电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。
传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。
根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。
当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。
那些走直线的电波就过不去了。
只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。
地面波传播无线电波沿着地球表面的传播方式,称为地面波传播。
其特点是信号比较稳定,但电波频率愈高,地面波随距离的增加衰减愈快。
因此,这种传播方式主要适用于长波和中波波段。
天波传播声音碰到墙壁或高山就会反射回来形成回声,光线射到镜面上也会反射。
无线电波也能够反射。
在大气层中,从几十公里至几百公里的高空有几层“电离层”形成了一种天然的反射体,就象一只悬空的金属盖,电波射到“电离层’就会被反射回来,走这一途径的电波就称为天波或反射波。
在电波中,主要是短波具有这种特性。
电离层是怎样形成的呢?原来,有些气层受到阳光照射,就会产生电离。
太阳表面温度大约有6000℃,它辐射出来的电磁波包含很宽的频带。
其中紫外线部分会对大气层上空气体产生电离作用,这是形成电离层的主要原因。
电离层一方面反射电波,另一方面也要吸收电波。
电离层对电波的反射和吸收与频率(波长)有关。
频率越高,吸收越少,频率越低,吸收越多。
所以,短波的天波可以用作远距离通讯。
此外,反射和吸收与白天还是黑夜也有关。
白天,电离层可把中波几乎全部吸收掉,收音机只能收听当地的电台,而夜里却能收到远距离的电台。
无线电波的传播方式
无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
第十一章__电波在电离层中的传播
Ez, t Eme
Em
j 0t k 0 z
其中,Em为信号的平均振幅,
0
0
A e
dk j 0 z t d 0
d
Em随着时间和空间的改变而改变。但在
当将电离层看成理想介质时
Zm
nn n3
n2 n1 n0
N z n r 1 80.8 2 f
N Nm
n1 n2 nn
根据折射定律,有
i1 i0 i1 n1
n0 n1 i1 i0
当 n随高度增加时,路径向上弯曲; 当 n随高度减小时,路径向下弯曲。
n0 sin i0 n1 sin i1
dV eE m mV 在正弦稳态场中, E jVm mV e dt eE V jm m
e H j0 E Ne jm m E
2 Ne 1 j0 1 j E jm 0 2 Ne j 2 j0 1 2 E jm 0 Ne 2 Ne 2 j0 1 j 2 2 m 0 m 0 2 2 ' j0 r E
n0=1
电波在单电离层中的传播路径
nn n3 n2 n1 n0
路径方向的改变发生在in=90°的时候
2) 电波从电离层反射回来的条件
n0 sin i0 n1 sin i1 nn sin in
N z 令 in 90 则 sin i0 nn 1 80.8 2 f
大约80
大约 21011
大约110
2 ~ 4 1011
电离层物理与电波传播5
电离层气体导电性分析
前面讲到,由于电离层中存在充分数量的电子和离子,在驱动力作用下, 它们都可以运动,所以电离层具有导电性,可以承载电流。 电离层电导率主要受电离密度、碰撞频率和磁旋频率的控制。
)
ki,e
(
U
bˆ
)
/(
1
k2 i ,e
)
Vi ViE ViU ViP ViG , Ve VeE VeU VeP VeG
这四种力驱动的电离层电流
j en(Vi Ve ) en[(ViE VeE )+(ViU VeU )+(ViP VeP )+(ViG VeG )] = jE jU jP jG
大约 100km 高度以上, ke ki 。根据纵向电导率 o 的表达式,电子
的作用是主要的,近似有, o enkeB 。
o 随高度升高指数地增大。
离子和电子对 P 的贡献分别在 ki =1 和 ke =1 的高度上最大, ki =1 的高度约 125km, ke =1 的高度约 75km。在 ki =1 和 ke =1 的高度, P 的离子和电子项
)1 [(
n n
Ti,e Ti,e
) ki ,e (
n n
Ti,e Ti,e
) bˆ ]
Vg i,e
Di,e H i,e
gˆ //
Di,e H i,e
(
1
k2 i ,e
)1( gˆ
ki ,e gˆ bˆ )
电离层物理与电波传播完整版本
沿垂直方向,电离层分为四个特征区域,在垂测的电离图上,它们有
不同的特征。不同的层之间并没有明显的边界或极小。主要的四个区
域是 D 区、E 区、F1 区和 F2 区。F1 区和 F2 区有时也统称为 F 区。
在白天,四个层区的大致高度范围和电子密度为:
D 区 60-90km,
108 -1010m-3
而增加。可见,上述两种因素随高度变化的倾向相反。
由此可以推断,电离密度还应该随高度变化,并且电离密度可能在某个高度上存在一
个极值。
在电离层发现的初期,Chapman 最早研究了电离层生成理论。研究结 果得到 Chapman 电离生成函数。它可以在理论上预测具有单一层状 结构的电离层高度剖面的形状及其在一天里如何随天顶角变化。 按照 Chapman 生成理论,电子-离子对的生成率与电离辐射强度、中 性气体成分的密度、中性气体的辐射吸收截面以及电离效率这四个 因素有关。 这样得到电子-离子对的生成率为
存在,不过,在夜间电子密度数值比白天小。
电离层垂直结构示意图
❖ 电离密度的时间变化*连续性方程
在太阳辐射作用下,大气层的部分中性气体发生电离,生成大 量自由电子-离子对,从而形成电离层。 电离过程所涉及的主要中性气体成分是 O2、N2、O 和 H。 在中低纬,电离所需要的能量主要来自太阳的远紫外和 X 射线 辐射。 光电离产生的电子-离子对,既可能通过复合消失,也可能与其 它气体成分重新反应产生新的离子,还可以通过扩散或漂移从 一处运动到另一处。这样,就存在一个动态平衡,局部区域内, 带电粒子密度的时间变化依赖于生成、消失和输运过程的平衡。
q nI ,
式中 q 表示电离生成率, 是密度为 n 的中性成分的吸收截面, I 是
太阳辐射强度, nI 表示单位时间和单位体积内中性大气粒子吸收的 总能量, 是电离效率,即被吸收的辐射能量的多大部分有效用于 电离过程。
各波段电波传播方式和特点
一.电磁场基本性质:1.电场和磁场:静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
2. 电磁波及麦克斯韦方程:如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。
0c D B B E t D H J t ρ∇=⎧⎪∇=⎪⎪∂⎨∇⨯=-∂⎪⎪∂∇⨯=+⎪∂⎩cD E B H J E εμσ=⎧⎪=⎨⎪=⎩ 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。
但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。
4. 历史的回顾与电磁场与波的应用公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。
1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。
1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。
同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。
1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。
电波传播
3.1 电波传播模式及衰落
3.1.7 抗衰落技术
1. 抗频率选择性衰落
抗频率选择性衰落的技术主要是自适应均衡技术。扩频技术 和正交频分复用(OFDM)技术等。
2. 抗瑞利衰落
抗瑞丽衰落主要采用分集技术。 (1)分集的概念 分集是指通过两条或两条以上的途径传输同一信息,只要不 同路径的信号是统计独立的,并且到达接收端后按一定规则适当 合并,就会大大减少衰落的影响,改善系统性能。 (2)分集合并的方式 采用分集技术接受下来的信号,按照一定的规则进行合并; 合并方式不同,分集效果也不同。分集技术采用的合并方式主要 有三种:选择合并;最大比合并;等增益合并。
图3-1 电波传输模式
3.1 电波传播模式及衰落
空间波是指在大气对流层中进行传播的电波传播模式。 地表面波是指沿地球表面传播的电波传播模式。 天波是利用电离层的折射、反射和散射作用进行的电波传播 模式。
2. 电波传播机制
电磁波在空间中的传播机制有多种,通常有:直射传播、反 射传播、绕射传播和散射传播。 (1)直射传播。直射传播又称视距离传播,是指视距范围内 无遮挡的传播。 (2)反射传播。当电磁波在传播路径中遇到某个物体表面, 且物体尺寸远大于电磁波自身波长λ 时,就会出现反射现象。 反射的影响主要表现为:物体表面可以把发射天线辐射信号 中的一部分能量反射到接受天线,与直射波信号进行矢量相加。
40 lg
d1、d2分别表示基站与移动台MS1、MS2相对的近距离和远距离。
d1
3.2 移动通信系统中的电波传播
1. 多普勒效应
当以一定速率运动的物体,例如飞机,发出了一个载波频率 f1,地面上的固定接收点收到的载波频率不会是f1,而是产生了一 个频移fd。物体运动的速率v不同,产生频移大小的程度也不同, 通常把这种现象称为多普勒效应。多普勒效应引起的附加频移称 为多普勒频移 v
电离层
电离层dianliceng电离层ionosphere从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射、反射和散射,产生极化面的旋转并受到不同程度的吸收。
大气的电离主要是太阳辐射中紫外线和X射线所致。
此外,太阳高能带电粒子和银河宇宙射线也起相当重要的作用。
太阳辐射使部分中性分子和原子电离为自由电子和正离子,它在大气中穿透越深,强度(产生电离的能力)越趋减弱,而大气密度逐渐增加,于是,在某一高度上出现电离的极大值。
大气不同成分,如分子氧、原子氧和分子氮等,在空间的分布是不均匀的。
它们为不同波段的辐射所电离,形成各自的极值区,从而导致电离层的层状结构。
在电离作用产生自由电子的同时,电子和正离子之间碰撞复合,以及电子附着在中性分子和原子上,会引起自由电子的消失。
大气各风系的运动、极化电场的存在、外来带电粒子不时入侵,以及气体本身的扩散等因素,引起自由电子的迁移。
电离层内任一点上的电子密度,决定于上述自由电子的产生、消失和迁移三种效应。
在不同区域,三者的相对作用和各自的具体作用方式也大有差异。
在55公里高度以下的区域中,大气相对稠密,碰撞频繁,自由电子消失很快,气体保持不导电性质。
在电离层顶部,大气异常稀薄,电离的迁移运动主要受地球磁场的控制,称为磁层。
电离层的主要特性,由电子密度、电子温度、碰撞频率、离子密度、离子温度和离子成分等基本参数来表示。
研究概况 1902年,O.亥维赛和A.E.肯内利为了解释无线电信号跨越大西洋传播这一实验事实,提出了高空存在能反射无线电波的“导电层”的假设,当时称为肯内利-亥维赛层。
1925年,和M.A.F.巴尼特用地波和天波干涉法最先证明了电离层的存在。
次年,和M.A.图夫用一部雏型雷达测量了无线电脉冲从电离层垂直反射的时间,验证了上述结论。
随着对电离层及其对电波传播影响的深入了解,30年代初,S.查普曼提出电离层形成的简单理论(查普曼层理论)。
电离层理论简要
电离层理论一、 电离层背景(基本结构、光化学过程、动力学和电动力学过程,及对无线电电波传 播产生的影响)二、简述赤道区电离层等离子体漂移观测特征、电离层电场产生的物理机制,及其赤道异常的影响三、简述赤道区电离层中存在的等离子体不稳定性及其可能的物理机制四、简述高纬对流电场、粒子沉降、场向电流在磁层-电离层耦合中的作用及其对高纬电离层结构和动力学的影响。
五、简述磁暴期间对电离层扰动产生明显影响的各种可能的物理机制一、 电离层背景(基本结构、光化学过程、动力学和电动力学过程,及对无线电电波传 播产生的影响)电离层基本结构电离层是由高层大气层中气体电离而形成的,其中的电子密度足以影响到无线电波的传播。
气体的电离主要依赖于太阳及其活动。
电离层的结构及峰密度(NmF2)随时间(太阳黑子周期、季节、昼夜)、地理位置(极区、极光区、中纬和赤道区)以及一些与太阳相关的电离层扰动而发生很大的变化。
电离层的电离源主要是来自太阳的(极)紫外辐射(Extreme ultraviolet radiation )和高能粒子辐射。
对电离层产生显著影响的是地球相对于太阳的旋转,电离成分在阳侧半球增加而在夜侧半球减少。
除此之外,宇宙射线也可以影响到电离成分的分布,电离层对大气的变化极为敏感,任何大气的扰动都会影响到电离成分的重新分布。
电离层按电子密度的分布可分为四个区域: 即D 区、E 区、F 区和顶部区,这些区域可以作进一步划分,如F 区可以分为F1区和F2区等。
可以认为各层由于中性大气的某种成分吸收太阳辐射而产生,他们对入射太阳光子谱的不同部分的响应不同。
处于平衡态的电离层受到如下各种因素的联合作用:光化学过程、热力学过程、动力学过程、电磁学或电动力学过程。
其中的E 层和F1层,近似为Chapman 层,由Chapman 产生率函数和光化平衡条件决定。
在较高处的F2层,它的分布除受光化学过程外还受到诸如中性曳力和磁层过程的共同作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间常数
在复杂的问题中,估计和比较两种不同的过程的时间常数,可以判断哪 种过程起控制作用。 比如,在电离层中,化学过程和扩散过程都具有潜在的重要性。不过, 在某些高度上,化学过程比输运过程慢得多,对这样的区域,可以只考 虑输运过程而忽略化学过程,在顶部电离层,情况大致如此;反之,化 学过程输运过程的时间常数相比,化学过程的时间常数短得多,可以只 考虑化学过程而忽略程输运过程,在 E 层和 F1 层,情况大致是如此。 影响电离层中化学反应速率的因素有多种。一般地讲,参与反应的成分 和密度与反应速率直接有关。此外,参与反应的成分的运动速率和温度 或碰撞频率也影响反应速率。获得反应速率定量的信息相当困难。
z 是约化高度, z ( h hm,o ) / H 。 将 ne( z )对 z 求导数,忽略 的高度变化,可以得到,当
ez cos
时,电子密度取极大值 nm nm,o cos1 / 2 ,
可见,电子密度极大以 cos1 / 2 的形式随天顶角变化。一个具有 这样性质的层称作 -Chapman 层。 在电离层中,E 层和 F1 层的属性最接近 -Chapman 层。
q=(1+)eNeNe=(1+)eNe2 由此可见,存在负离子时,生成率平方根仍然正比于平衡态电子密度, 仅仅数量上有变化。因子(1+)(e+i)常常称为等效复合系数。=0 对应不存在负离子的情况。
E 层和 F1 层
E 层电子密度峰值大约出现在 105 到 110km 高度。
E 层的形成与穿透较深、吸收不是很强的那部分太阳辐射有关。在
O+ N2 NO+ +N
NO+ e N O
NO+ 是中间成分,两步过程的后一步称作离解性复合。
此外,电离层中还有一类化学反应,称作附着性复合,典型的反应式是,
e X X Y X X Y 。
总结上面的讨论,带电粒子可以通过下面几种不同类型的反应而消失。
1、辐射性复合。电子与原子态正离子复合并伴有光子辐射。化学反
在较低高度区域, 很大,前一方程反应很快,所有的 O+都很快转换为 NO+ 或 O2+;这样 [NO ] Ne ,整体反应速率由后一方程控制,所以是 型过程。
在较高高度上, 很小,第一个方程反应很慢并控制整体反应速率。这样 [O+]=N,整个反应表现为 型。
随高度增加,反应由 型向 型转化。
光学深度的定义改为,
(
h,
,
)
h
nj
(
h
)
j
(
)ds
。
j
显然,对于辐射强度恒定的单色辐射、具有单一成分且其分布是具有 恒定标高的指数分布,光学深度依然是, n H sec 。
接近实际电离层的条件下,作为高度、辐射能量和天顶角的函数的电离 生成率表达式为,
qe ( E ,h, )
对上式的积分,得到太阳辐射通量强度作为高度、波长和天顶角的函 数的表达式
h
I( h, , )
I ( )exp
j
nj ( z ) j ( )ds I ( ) ( h, , )
式中 I大气层之外的太阳辐射通量强度,积分沿光学路径进行。这样,
其次,Chapman 假定只有一种大气成分,且按指数分布,具有恒定的标 高。实际上,大气中同时存在多种气体成份,它们的高度变化(标高) 各不相同。
此外,吸收截面也不是恒定的,它随辐射波长变化而变化。
最后,精确地讲,地球大气也不是平面分层的。最后这一点对大的天顶 角(接近日出和日落)特别重要。
按照 Chapman 生成理论,太阳辐射所致电子-离子对的生成率为
nj( h)
jl 0
I
exp[ ( ,h,
)]
l j
(
)pj( ,El
)d
lj
式中
l j
(
)
是波长依赖的总电离截面,pj (
,
El
) 是给定最终离子状态的
分支比,对应的能量水平为 El ,E E El ,E 是对应波长为的辐射
能量, jl 是第j种大气中性成份的电离阈值波长。
N
2
e
O e O
N e N
NO e O N
O2 e O O
N
2
e
N
N
N
2
O
NO
N
O N2 NO N
e O O
O O O O
N
2
O
O
N2
N
2
O2
O2
N
O O2 O2 O
电离层化学反应速率
了解电离层电离密度随时间的变化,需要知道各种化学反应速率的信息。 如果比较两种不同化学反应的时间常数或反应速率,一种反应比另一种反 应慢得多,反应比较快的过程,其作用更大。比如,离解复合反应的反应 系数约 10-13m3/s,比辐射性复合反应要快 105 倍,离解复合反应更有效。 如果复合分前后关联的两步过程实现,那么,反应速率较慢的过程对复合 起控制作用。比如以下前后关联的两步过程,
应式是:
e X X * h 。
2、离解性复合。电子与分子态正离子复合。化学反应式是:
e XY X Y 或者
e
X
2
X
X
。
在很多情况下,反应是分两步实现的,比如,
Y2 X XY Y
e XY X Y
3、附着性复合。电子附着在中性原子上形成负离子。化学反应式是:
因为生成物由反应物直接产生,电荷交换反应也称作初级反应。
在地球电离层, O+ 直接与电子复合,
e O O* h ,
称作辐射性复合。辐射性复合过程非常慢,反应速的要求不容易满足,因此,在大多
数情况下, O+ 通过多步过程复合,多步过程涉及中间成分。例如,
电离层物理与电波传播
电离层生成理论 2
接近真实电离层的光电离生成
Chapman 生成理论采用了一些简化假设,这些简化假设,与真实的电离 层条件差别很大,只能在原理上反映电离层的生成过程。接近真实的电 离层建模,需要掌握接近真实的光电离过程。
首先,Chapman 假定太阳辐射是单色的,强度恒定。实际上,太阳辐射 不是单色的,含有对光电离有效的各种波长的辐射,并且不同波长的辐 射,其强度也不同。
aA bB cC dD
式中 A 和 B 代表反应物,C 和 D 代表生成物,a,b,c 和 d 代表反应中 涉及的各种成分的粒子数目。
这类化学反应的一个典型例子是 O2 与电子的离解复合反应
O2 e O+O
反应可以双向进行,称作可逆反应,代表性的例子是电荷交换反应
O+ H H + +O
q nI ,
辐射强度 I 的衰减等于单位时间和单位体积内大气吸收的总能量,
dI / ds I n dI I nds ,
如果考虑多种大气成分,对第 j 种大气成分
qj nj I j
dI j I j njds ,
如果不仅考虑多种大气成分,还考虑强度各不相同的多种波长的辐射, 则对波长 l 的辐射和第 j 种大气成分
kf
H O H O kr
k f 2.51011 [Tn T( O ) / 16 1.2108( u( O ) un )2 ]1/ 2 kr 2.2 1011 [T ( H ) Tn / 16 1.2 108( u( H ) un )2 ]1/ 2
当输运过程可以忽略时,电子密度随时间的变化仅取决于电离 生成和复合两者的平衡。这种平衡称作光化学平衡。
在电离层 D 层、E 层和 F1 层,光化学过程起支配性的作用,与 光化学过程比较,可以忽略输运过程。电离生成和复合两者的 平衡决定电子密度随时间的变化。
按光化学过程和输运过程相对重要性,F 层大致可以 分三个子区域。最低的区域,约 200km 以下,光化 学过程起支配性的作用,可以忽略输运过程,电离层 处于光化学平衡状态;在 F2 层峰区附近,控制作用 从光化学过程向输运过程过渡,光化学过程和输运过 程同时起作用,两者都不能忽略;在最高的部分,即 顶部电离层,输运过程起支配性的作用,可以忽略光 化学过程,即可以有近似, q L 0 。
e X X
Y X X Y 。
4、电荷交换反应。化学反应式是:
X Y X Y
在电离层中,化学过程包括光电离、离子-分子反应和电子-离子复合。除最
低的区域(比如 D 层)外,主要的化学反应如下:
O h O e
O2 h O2 e
N2
h
q jl ( l ) ( l )nj I jl ( l ) dI jl I jl ( l ) ( l )njdsl
对辐射强度恒定的单色辐射,多种大气成分引起的辐射强度衰减总量 应该改写为
dI( h, , ) I( h, )nj ( z ) j ( )ds j
-Chapman 层
假定不存在负离子,电子与正离子直接复合,
X++eX 或 X2++eX+X 用 N+表示正离子密度,用 Ne 表示电子密度,此时,电离