高考数学选择题解题小技巧总结.doc
高考数学选择题的万能解题方法总结
2019 年高考数学选择题的全能解题方法总结1、特值查验法:关于拥有一般性的数学问题,我们在解题过程中,能够将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到披沙拣金的目的。
2、极端性原则:将所要研究的问题向极端状态进行剖析,使因果关系变得更为显然,进而达到快速解决问题的目的。
极端性多半应用在求极值、取值范围、分析几何上边,好多计算步骤繁琐、计算量大的题,一但采纳极端性去剖析,那么就能瞬时解决问题。
3、剔除法:利用已知条件和选择支所供给的信息,从四个选项中剔除去三个错误的答案,进而达到正确选择的目的。
这是一种常用的方法,特别是答案为定值,或许有数值范围时,取特别点代入考证即可清除。
4、数形联合法:由题目条件,作出切合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,进而得出答案的方法。
数形联合的利处就是直观,甚至能够用量角尺直接量出结果来。
5、递推概括法:经过题目条件进行推理,找寻规律,进而概括出正确答案的方法。
6、顺推破解法:利用数学定理、公式、法例、定义和题意,经过直接演算推理得出结果的方法。
7、逆推考证法 (代答案入题干考证法 ):将选择支代入题干进行考证,进而否认错误选择支而得出正确选择支的方法。
其实 ,任何一门学科都离不开照本宣科 ,重点是记忆有技巧 , “死记”以后会“活用”。
不记着那些基础知识 ,怎么会向高层次进军 ?特别是语文学科涉猎的范围很广 ,要真实提升学生的写作水平 ,单靠剖析文章的写作技巧是远远不够的 ,一定从基础知识抓起 ,每日挤一点时间让学生“死记”名篇佳句、名言警语 ,以及丰富的词语、新奇的资料等。
这样 ,就会在有限的时间、空间里给学生的脑海里注入无穷的内容。
与日俱增 , 与日俱增 ,进而收到磨铁成针 ,绳锯木断的功能。
8、正难则反法:从题的正面解决比较难时,可从选择支出发逐渐逆推找出切合条件的结论,或从反面出发得出结论。
[全]高考数学选择题六大答题技巧(附例题详解)
[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。
(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。
目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。
数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。
二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。
解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。
一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。
这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。
思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。
(完整版)高考数学选择题的解题技巧
高考数学选择题的解题技巧解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12 B.23 C.32D .2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13(1-13n )1-13=12(1-13n )<12,由于S n <a 对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A .思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( ) A.π6 B.5π6 C.π3D.2π3解析 函数y =sin 2x (x ∈R )的图象向左平移m (m >0)个单位可得y =sin 2(x +m )=sin(2x +2m )的图象,向右平移n (n >0)个单位可得y =sin 2(x -n )=sin(2x -2n )的图象.若两图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则⎩⎨⎧2m =π3+2k 1π,2n =-π3+2k 2π,(k 1,k 2∈Z )即⎩⎨⎧m =π6+k 1π,n =-π6+k 2π.(k 1,k 2∈Z )所以|m -n |=|π3+(k 1-k 2)π|(k 1,k 2∈Z ),当k 1=k 2时,|m -n |min =π3.故选C .方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2(1)等差数列{a n }的前m 项和为30,前2m项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1 B .2∶1 C .4∶1 D.3∶1解析 (1)取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210,选C .(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=1113ABC A B C V -,故选B .思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A=60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B.2 C .1 D.12答案 A解析 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A . 方法三 排除法(筛选法)例3函数y=x sin x在[-π,π]上的图象是()解析容易判断函数y=x sin x为偶函数,可排除D;当0<x<π时,y=x sin x>0,排除B;2当x=π时,y=0,可排除C;故选A.思维升华排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y=2|x|的定义域为[a,b],值域为[1,16],a变动时,方程b=g(a)表示的图形可以是()解析研究函数y=2|x|,发现它是偶函数,x≥0时,它是增函数,因此x=0时函数取得最小值1,而当x=±4时,函数值为16,故一定有0∈[a,b],而4∈[a,b]或者-4∈[a,b],从而有结论a=-4时,0≤b≤4,b=4时,-4≤a≤0,因此方程b=g(a)的图形只能是B.方法四数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8解析 由f (x )=⎝⎛⎭⎫12|x -1|+2cos πx =0, 得⎝⎛⎭⎫12|x -1|=-2cos πx , 令g (x )=⎝⎛⎭⎫12|x -1|(-2≤x ≤4), h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝⎛⎭⎫12|x -1|=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2cos πx(-2≤x≤4)的图象2|(如图),由图象可知,函数g(x)=⎝⎛⎭⎫1x-1|关于x=1对称,2|又x=1也是函数h(x)=-2cos πx(-2≤x≤4)的对称轴,所以函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2co s πx(-2≤x≤4)的交点也关于x=1对称,且2|两函数共有6个交点,所以所有零点之和为6.答案 C思维升华本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 3答案 B解析由y=1-x2,得x2+y2=1(y≥0),其所表示的图形是以原点O为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l的斜率必为负值,故排除A,C选项.当其斜率为-3时,直线l的方程为3x+y-6=0,点O到其距离为|-6|3+1=62>1,不符合题意,故排除D选项.选B.方法五估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例5 若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A.34 B .1 C.74D .2 解析 如图知区域的面积是△OAB 去掉一个小直角三角形.阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项. 答案 C思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.m -39-m B.m -3|9-m |C.13 D .5 答案 D解析 利用同角正弦、余弦的平方和为1求m 的值,再根据半角公式求tan θ2,但运算较复杂,试根据答案的数值特征分析.由于受条件sin 2θ+cos 2θ=1的制约,m 为一确定的值,进而推知tan θ2也为一确定的值,又π2<θ<π,因而π4<θ2<π2,故tan θ2>1.1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.。
高考数学选择题答题技巧排除法的运用
高考数学选择题答题技巧排除法的运用高考数学选择题答题技巧——排除法的运用选择题作为高考数学考试中的一道重要题型,占据了相当大的比重。
在解题过程中,正确运用答题技巧可以帮助考生快速准确地选择出正确答案。
本文将重点介绍一种常用的答题技巧——排除法,并探讨如何运用排除法来解答高考数学选择题。
一、什么是排除法排除法是一种答题技巧,通过排除选项中明显不正确的答案,从而缩小正确答案的范围,提高选对的概率。
在解答高考数学选择题时,利用排除法可以减少计算量,节省时间,并且降低出错的可能性。
二、运用排除法的步骤1. 仔细阅读题目在解答选择题之前,首先要认真阅读题目。
理解题目的意思对于正确运用排除法至关重要。
仔细阅读题目,了解题目要求,明确所求答案的特点与属性。
2. 逐个选项排除在阅读完题目后,我们可以逐个选项地进行排除。
针对每一个选项,将其与题目要求进行比较,筛选出与题意不符或显然错误的选项。
此时,我们可以利用一些常见的排除规律,如:- 含有绝对化词语的选项,往往不是正确的答案。
如“始终”、“永远”等。
- 与已知条件相冲突的选项,应被排除。
如果题目中已经给出了一些条件,那么与这些条件相矛盾的选项一定是错误的。
- 选项中的逻辑错误或语法错误,应当予以排除。
- 做出合理假设,根据假设来排除选项。
有时候题目的条件不充分,我们可以尝试做一些符合条件但不切实际的假设,并对选项进行排除。
3. 留下合理的答案经过逐个排除选项的步骤后,我们会留下最有可能是正确答案的选项。
此时,仍然需要仔细审题,并进行进一步的思考。
对比剩下的选项,综合考虑题目的条件和要求,选择最合乎题目要求的答案。
三、注意事项1. 注意审题在使用排除法时,考生要特别注意审题。
只有对题目要求的准确理解,才能准确地排除选项。
一旦理解错误,很容易排除掉正确答案,导致答案错误。
2. 灵活运用排除法在实际解题过程中,不同的题目可能会需要不同的排除法技巧,考生要根据题目特点灵活运用排除法。
高考数学答题技巧与解题思路
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
数学选择题八大解题方法
数学选择题八大解题方法理解题意是当前高考对同学们最为基本的要求。
那么,怎样的状态算是对题意完全理解了呢?对于数学而言,只要你在开头解题之前就通过读题精确区分出了已知条件和待求的结论,那么你距离完全理解题意就特别近了,我在这整理了相关资料,盼望能关心到您。
数学选择题记住这八句话错误类型一:读题失误口诀一:勤分已知待求,明辨信息去留理解题意是当前高考对同学们最为基本的要求。
那么,怎样的状态算是对题意完全理解了呢?对于数学而言,只要你在开头解题之前就通过读题精确区分出了已知条件和待求的结论,那么你距离完全理解题意就特别近了:接下来,你只需要弄清晰已知条件和待求结果之间的关系,并胜利运用自己学到的学问将这种关系用公式表达出来,进行计算就可以获得正确答案了。
但是,近几年来高考数学中实际应用的问题和具有物理背景、传统文化背景的问题越来越多,因此每次考试中都有至少一到两题的题面特别的长,例如2021年数学全国卷的“宝塔灯笼与等比数列”那一题。
这类题目与传统的选择题相比实际只多了一个难度层次:要求考生自行从文本中提取已知条件和待求的结论。
事实上,这也是目前高考数理类科目对咱们同学的新要求:理论与实践结合。
因此,对于这类信息量比较大的题目,我们往往可以将其简化为一个更加抽象而简洁的数学问题,求解之后即可获得答案。
只要明确了已知和待求的问题,做选择题基本不会跑偏。
口诀二:理清规律线,答案自然现在明确了一道选择题里面的已知条件、待求结果之后,接下来的工作就是理清它们的规律关系。
一般而言,已知和待求之间的规律线是由我们平常课上学到的学问点组成的,每一个学问点之间在规律上本身就存在相互导出的关系,因此规律线的整理实质上就是通过所学的学问建立起已知和待求之间的规律关系,为后面使用公式、确定求解预备条件打下基础。
此外,整理规律线的过程中,也能通过学问点的回顾,在不求解题目的状况下预判题目是否可解,或者说题目若能求解,毕竟需要哪些条件。
2023高考_高考数学选择题蒙题技巧
2023高考数学选择题蒙题技巧2023高考数学选择题蒙题技巧死亡拯救法:“三短一长就选长,三长一短就选短,两长两短就选B,参差不齐C无敌。
一样长选C,一样短选B。
"这是网上的,如果是图像题。
那就蒙B、C吧,几率大一点!1、答案有根号的,不选2、答案有1的,选3、三个答案是正的时候,在正的中选4、有一个是正X,一个是负X的时候,在这两个中选5、题目看起来数字简单,那么答案选复杂的,反之亦然6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条7、答题答得好,全靠眼睛瞟8、以上都不实用的时候选B9、在计算题中,要首先写一答字:然后在答题,即使只有一个答字10、最后一招杀手锏:如果你在选择题上不想地O分的话,建议所有选择题全选A,我就这样的。
培养“蒙感”:这个所谓“蒙感”,就是这蒙题的感觉。
因为不可能一面卷子上你一道题也不会做(当然也有例外),你也有很大可能有不会做的题。
这时,就要看蒙题的感觉了。
所有考试的人都知道,选择题中选择B、C选项的占绝大多数。
所以遇到不会的题,就往B、C上靠,几率会大一点。
还有,如果你有很多题不会——比如说五道题里你有三道不会,那就要看你平时做题的感觉了。
高考数学快速蒙题技巧1.高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。
2.在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。
单看选项,一般BD稍多,A较少。
还有一点,选了之后就不要改了,除非你有90以上的把握。
这个经验堪称是史上最牛的'高考数学蒙题技巧。
3.经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4.数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。
高考数学中选择题常用解题方法和技巧
一
(x + 2 )
判 断 如 下 三 个 命 题 的 真假
;
:
到 准确 无 误 达 到事半 功 倍之 效
,
.
命 题 甲 ,( z
:
,
+ 2 ) 是偶 函数 )在(
;
一
1
.
直接 法
,
就 是 从 条 件 出 发 通 过 正 确 的运 算
, ,
命 题 乙 ,( z
:
o o
,
2)上
是减 函数 在 ( 2
,
.
:+ 2 n 1
1 2
一
’
“
m
r 、
分 }羊 析 法
,
通 过对题干与 四个选项 之 间
。
【 例
3】
( 2 0 0 7 年 高 考全 国 卷 I ) 下 面 给 出 的
x
-
F亍 析 利 用 所 学 的知 识 作 出 符 合 逻 辑 分
。
而 确 定 正 确结 论
.
四 个点 中 到直线
,
y
+ 1
—
0
的距 离 为华 且 位
,
,
【 例
2】
(200 7 年
高考 北 京 理 科 卷 ) 对 于 函 数
1 )
;
互 交 错 在 解 题 过 程 中要 采 用 适 当 的 方 法 或 把 几
.
,
① ,( z ) ③ ,( z )
一
lg (
c o s
Iz
一
2
.
I+
② ,( z )
一
(z
一
2 )
高考数学题型:高考数学选择题解题技巧
高考数学题型:高考数学选择题解题技巧高考数学题型:高考数学选择题解题技巧高考数学题型:高考数学选择题解题技巧
高考数学题型:选择题是数学必考题型,高考数学选择题一般考哪些考点呢?在解答高考数学选择题时有什么技巧?
高考数学选择题解题思维技巧
前提:不是每个题都有技巧,必须是常规做法+标准化做法
1、如何判断是不是该完整的计算
1.1、选项全是具体的数值,且差距较小,必须算
1.2、读完题的瞬间知道思维及感觉不复杂的,必须算
1.3、读完题的瞬间知道可以不用算的思路,可以不用算
1.4、经常需要借助选项判断方向,可以不用算
2、常规的思路
2.1、题目的理解——知识点应用——结果
【可能对知识点的积累——变形——最终结果】
2.2、定性
2.2.1、极限思想
2.2.2、选项中的开闭区间
2.2.3、选项中的正负无穷大
2.2.4、选项中正负的区别
2.2.5、图形【一元一次、一元二次、圆锥曲线、一元多次、容易求导的。
注意变形过的条件,需要转化为熟悉的曲线图形】
2.3、定量
2.3.1、几乎与大题一样的过程在推
2.3.2、代入具体数值
【特殊值、有规律性的数】
2.4、思路【任何题只有两条路:看选项之前已知如何做、简单做;大多数考题看选项之后才有思维的】
2.5、万一不行了的解决方案
2.5.1、依靠选项中出现的频率猜断
2.5.2、选项之间的关系
2.5.3、合理的猜断
2.5.4、原则
3、瞬间判断——理解题目
【变化规律、成立的条件、能表达】。
高考数学选择题答题技巧 解题套路有哪些
高考数学选择题答题技巧解题套路有哪些在高考时,把握肯定的答题技巧能够帮助同学们更好的答题,节省时间。
以下是我为大家整理的相关内容,以供参考,一起来看看!高考数学选择题答题技巧有哪些1、小题不能大做;2、不要不管选项;3、能定性分析就不要定量计算;4、能特值法就不要常规计算;5、能间接解就不要直接解;6、能排解的先排解缩小选择范围;7、分析计算一半后直接选选项;8、三个相像选相像。
可以利用简便方法进行答题。
数学常考答题套路1、函数或方程或不等式的题目,先直接思索后建立三者的联系。
首先考虑定义域,其次使用“三合肯定理”。
2、假如在方程或是不等式中消失超越式,优先选择数形结合的思想方法。
3、面对含有参数的初等函数来说,在讨论的时候应当抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是.....4、选择与填空中消失不等式的题目,优选特别值法。
5、求参数的取值范围,应当建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分别参数的方法。
6、恒成立问题或是它的反面,能够转化为最值问题,留意二次函数的应用,敏捷使用闭区间上的最值,分类争论的思想,分类争论应当不重复不遗漏。
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必需先考虑是否为二次及根的判别式。
8、求曲线方程的题目,假如知道曲线的外形,则可选择待定系数法,假如不知道曲线的外形,则所用的步骤为建系、设点、列式、化简(留意去掉不符合条件的特别点)。
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。
10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用帮助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,留意向量角的范围。
11、数列的题目与和相关,优选和通公式,优选作差的方法;留意归纳、猜想之后证明;猜想的方向是两种特别数列;解答的时候留意使用通项公式及前n项和公式,体会方程的思想。
上海高考数学选择题解题技巧总结:技巧与方法并重
上海高考数学选择题解题技巧总结:技巧与方法并重在2023年上海高考数学卷中,选择题部分常见的解题技巧包括:
1.排除法:通过观察题目给出的选项,可以排除一些明显不正确或与题目不
符的选项,从而降低解题的难度。
2.数形结合法:对于一些涉及几何图形或函数的题目,可以通过画出图形或
图像来直观地理解问题,从而得出正确的答案。
3.代入法:对于一些涉及方程或不等式的题目,可以通过代入具体的数值或
数值范围来验证选项的正确性,从而得到答案。
4.反证法:对于一些涉及证明的题目,可以通过反证法来推翻某个选项,从
而排除它。
5.分析法:对于一些涉及复杂计算的题目,可以通过分析问题的条件和结论,
找出其中的关键点和突破口,从而快速解决问题。
6.整体法:在处理解析几何中的问题时,有时不必关注点的坐标,而是将几
何图形作为整体来处理,从而简化计算。
7.特殊值法:对于一些涉及函数、数列或不等式的问题,可以通过取一些特
殊的数值或情况来快速解决问题。
8.转化法:对于一些看似复杂的问题,可以通过转化思路或问题形式来简化
问题,从而快速找到答案。
9.构造法:在解决一些涉及方程或不等式的问题时,可以通过构造辅助函数
或方程来解决问题。
10.类比法:对于一些涉及相似或类比的问题,可以通过比较已知条件和结论
之间的相似性来快速解决问题。
以上解题技巧并非孤立的,考生在解题时应该根据具体问题的特点选择合适的技巧和方法。
同时,考生还需要注意仔细审题、理解题意、正确计算和规范答题等基本问题。
高考数学选择题解题技巧方法
从-2 连续变化到 1 时,动直线 x+y=a 扫过 A 中的那部分 区域的面积为 ( C ) 3 7 A. B.1 C. 4 4 解析 如图知区域的面积是△OAB 去掉 一个小直角三角形.阴影部分面积比 1 大, 1 比 S△OAB= ×2×2=2 小 2 D.2
小结:
1 数学选择题的解题思路:“ 不择手段,多快好省。”
解选择题的基本策略是 多思考一点 , 少计算一点!
多想少算
解选择题的基本原则是 准确,迅速 !
一、直接法与定义法:
就是从题设条件出发,通过正确的运算、 推理或判断,直接得出结论再与选择支 对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
A
C
二 数形结合法
“数”与“形”是数学这座高楼大厦的两块最重要的基石, 二者在内容上互相联系、在方法上互相渗透、在一定条件 下可以互相转化,而数形结合法正是在这一学科特点的基 础上发展而来的. 在解答选择题的过程中,可以先根据题意,做出草图, 然后参照图形的做法、形状、位置、性质,综合图象的特征, 排除法: 就是运用满足题设条件的某些特殊数值、特殊位 置、特殊关系、特殊图形、特殊数列、特殊函数 等对各选择支进行检验或推理, 利用问题在某一特殊情况下不真,则它在一般情 况下也不真的原理,由此判明选项真伪的方法。 用特例法解选择题时,特例取得愈简单、愈特殊 愈好。
B
四
据有关专家测试:
选择题的正常解答时间应在 3 分钟左右,各人按自己的 定位高低、解题情况和得分 重点恰当调整完成.
数学选择题与其它题型的 不同主要体现在三个方面:
1.立意新颖、构思精巧、迷惑性强,内容相关相 近,真伪难分。
2.技巧性高、灵活性大、概念性强,题材含蓄多 变。 3.知识面广、切入点多、综合性强,内容跨度较 3.知识面广、切入点多、 大。 综合性强,内容跨度较大 .
高考数学选择题的解题技巧归纳
高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。
答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。
即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。
在同一道题中优先考虑数值的“中间量”后考虑选项BCD。
(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。
高考数学的解题思路技巧
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考数学选择题秒杀技巧
高考数学选择题秒杀技巧
1. 嘿,你知道吗?特殊值法简直就是高考数学选择题的大救星啊!比如这道题“若函数 f(x)满足 f(2)=3,那 f(4)等于多少”,咱就直接找个满足条件的特殊值带进去,说不定一下就出来啦,这多省事儿呀!
2. 哇塞,选项代入排除法可太好用啦!就像找宝藏一样,把不合适的选项一个一个排除掉,最后剩下的不就是正确答案嘛!比如那道求角度的题,一试就知道哪个对啦!
3. 哎呀呀,图形结合法真是绝了呀!碰到几何题,画个图出来,答案有时候就一目了然啦!像那道求阴影面积的,画出来不就清楚多啦!
4. 嘿,数量关系分析法也很牛呀!看看题目里的数量关系,分析分析,答案也许就自己蹦出来咯!比如那道算速度的题,通过关系一分析不就懂啦!
5. 哇哦,反推法有时候能带来大惊喜呢!从答案反推条件,看看合不合理,不就知道选哪个啦!就像那道判断函数奇偶性的题,反推一下嘛!
6. 哈哈,极限思维法也是个厉害角色呀!把数值往极限去想,往往能找到突破点呢!像那道求最大值的题,想想极限情况呀!
7. 哟呵,整体代换法可别小瞧呀!把一个复杂的式子整体代换一下,说不定难题就变简单啦!比如那道含有多项式的题,整体代换一下多轻松呀!
8. 哎呀,类比法也很有趣呀!想想类似的题目怎么做的,这道题也许就有思路啦!就像那道和之前做过的类似的题,类比一下就懂啦!
9. 哇,估算法有时候能快速解决问题呀!大致估算一下范围,就能排除好多选项呢!比如那道计算面积的题,先估算个大概嘛!
10. 嘿,规律总结法可是很重要的哟!多做几道题总结总结规律,以后碰到类似的题就不怕啦!就像那类找数列规律的题,总结好规律就简单啦!
我的观点结论就是:这些高考数学选择题秒杀技巧真的超有用,大家一定要好好掌握呀,能帮你在考场上节省不少时间,提高准确率呢!。
高考数学选择题满分技巧
高考数学选择题满分技巧高考选择题特点:1、选择题分数所占比例高,约占750分的40%以上,即315~330分(数学占40%)。
2、选择题可猜答,有一定几率不会做也能得分。
3、选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。
4、选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。
5、掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。
一、猜答技巧选择题虽不易猜答但仍有它的答题基本方法,现简单介绍如下:消元法选择题答案是唯一正确的,运用消元法是最普通的。
该法也适用多选题排除错误选项。
分析法将四个选择项全部置于试题中,纵横比较,逐个分析,去误求正,去伪存真,获得理想的答案。
联想法有时对四个选项无从下手,这时可以展开联想,联想课本、练习、阅读材料及其他,从而捕捉自己需要的知识点。
类比法在能力倾向选择题中类比法十分重要,四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。
推测法利用上下文推测词义。
有些试题要从句子中的结构及语法知识推测入手,配合自己平时积累的常识来判断其义,推测出逻辑的条件和结论,以期将正确的选项准确地选出。
二、数学选择题部分方法1)数学选项暗示:①开闭区间的思想就是暗示我们能不能取到这个值,直接代入验证就行。
一般可通过数形结合来判断其具体取值。
②含有+∞及-∞的。
即极限讨论法,一般有给出无穷大的选项,我们可用极限的思想去讨论排除或者待选(案例较多,大家自行找任意题去验证)。
③函数单调性判断。
根据单调性的特征取两个到三个好算的特殊值验证即可得出结论。
④函数奇偶性判断。
根据对称特性,取相应的对称点验证是否成立。
2)根据所学知识点简化我们不必管其中的道理,但是这类题通常比较难,我们在完全没有思路的时候,完全可以利用知识点来简化。
3)定性理解做题法,数形结合但凡考题涉及到函数和坐标系的,直接画图,画完图就是小学生做的了。
高考数学选择题解题技巧如何排除错误选项
高考数学选择题解题技巧如何排除错误选项高考作为中国教育体制中最为重要的一环,数学选择题一直是考试的重要组成部分。
在解答数学选择题时,学生往往会遇到一些错误选项,而很多同学又常常不知如何排除这些错误选项。
本文将介绍一些高考数学选择题解题技巧,帮助同学们更好地排除错误选项。
一、理解题意,注意关键信息在解答选择题之前,首先要仔细阅读题目,理解题意。
同时,要特别注意题目中的关键信息,例如题目中给出的条件、已知等等。
对于数学选择题而言,这些关键信息往往是解题的关键所在,深入把握它们可以为我们排除错误选项提供指导。
二、分析选项中的明显错误在解答选择题的过程中,我们通常可以通过分析选项中的明显错误来缩小答案的范围。
明显错误包括以下几种情况:1.计算错误:有些选项中会出现明显的计算错误,例如错误的公式应用、错误的运算符等等。
通过仔细计算,我们可以轻松排除这些选项。
2.语法错误:选择题中的选项通常是通过语言文字描述问题的情况,因此语法错误也是一种常见的错误选项。
例如错用单复数、错误的语序等等。
通过对选项进行仔细阅读,我们可以轻易发现这些错误,从而排除相应选项。
3.逻辑错误:数学选择题往往涉及到逻辑推理,因此在解题时需要特别注意选项中的逻辑错误。
例如,某道题目要求求解一元二次方程的根,而选项中却出现了分式根或负数根等不符合题目要求的情况。
通过对选项逐一检验,我们可以发现这些逻辑错误,从而排除相应选项。
三、利用特殊数值进行验证在解答数学选择题时,对于一些特殊数值的验证是非常有帮助的。
例如,对于某些已知等式或已知条件,我们可以选择适当数值代入,通过验证等式的成立程度来排除错误选项。
这种方法可以很好地帮助我们排除掉一些与已知条件不符合的选项。
四、利用近似值进行估计对于一些较为复杂的选择题,我们可以通过利用近似值进行估计的方法来排除一些显然错误的选项。
例如,在求解一个较为复杂的数值问题时,我们可以首先对题目给出的数值进行近似估算,然后将所得结果代入选项中进行检验,排除与近似值相差较大的选项,从而缩小我们的选择范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择题解题小技巧总结
高考数学选择题解题小技巧
1. 直接法
就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
2. 特例法
就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好。
3. 图解法
就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几何性质分析,再辅以简单计算,确定正确答案的方法。
这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。
4. 验证法
就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。
在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。
5. 筛选法
也叫排除法、淘汰法。
就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对
选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是答案唯一,即四个选项中有且只有一个答案正确。
高考数学选择填空复习方法
对于数学学科,就具体题目来说的话,选填题大部分是送分,重要的话说三遍,要细心,要细心,要细心!不要出各种低级错误(当年我在数学和物理上面犯的低级错误简直数不过来)。
就往年的情况看,选择题的前面几个就在二次方程、复数、逻辑词、简单的积分、数列、数形结合、立体几何、解析几何、导数、算法这几个方面出题,基本上都没有多大难度。
值得注意的是10、11、12三个题,选择题里面可能拖时间的就在它们当中(一般1-2个,三个题都很难的我没见过),这些题考的基本上就是立几、解几、函数性质,关键是多做题,找手感,而且考试的时候可以考虑代数值进去验算或者强行构造特殊情况(感觉在教坏学弟。
不过一定要在考后用正规方法做一遍,这些题里面的运算思路都是有可能出现在大题当中的)。
填空题情况差不多,这里就不多说了。
高考数学学习技巧总结
学会听课
高二教学速度快、容量大、方法多,同学中会出现听了没办法记,记了来不及听的无所适从现象,但是做好笔记又是不容忽视的重要环节,那就应该记思路和结论,不要面面俱到,课后再整理笔记。
另外要有效地练习。
练习应具有针对性、同步性,如果见题就做,常常起不到巩固作用;还要学会限时完成,才能提高效率,增强紧迫感,不至于形成拖拉作风;正确对待难题,即使做不出,也应该明确此刻的收获不一定小,因为实质上已经巩固了相关知识与方法,达到了一定的目的,不能因此影响信心。
遇到困难问题,应先自己思考,实在没有头绪要及时向同学或老师请教,防止问题积累,降低学习热情。
发展思维
平时教学中,好多同学都是一听就懂,一看就会,但是一做就错。
什么原因呢?这是因为没有达到应有的思维层次。
由于学习有三个能力层次:一是懂,二是会,三是悟,因此在复习过程中,应根据加强基础、能力立意的指导思想,以高考中热点、重点内容为抓手,在练中学、学中会、会中悟,特别是通过创新题、能力题的探求来激活思维,比较系统地把握思维方法,以不变应万变!
指导考技
好多同学平时测验得心应手,正规考试一落千丈,这里既有心理因素也有考试技巧问题。
应注意收集以往同学成功经验和失败的教训并加以提炼,结合高考阅卷中出现的问题,在教学中有机进行考试指导。
只要从心理、知识、方法等方面循序渐进,全方位准备,文科生也一定能笑到最后。