数值分析实验— MATLAB实现

合集下载

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析MATLAB实验报告引言:数值分析是一门研究利用计算机进行数值计算和解决数学问题的学科。

它在科学计算、工程技术、金融等领域中有着广泛的应用。

本实验旨在通过使用MATLAB软件,探索数值分析的基本概念和方法,并通过实际案例来验证其有效性。

一、插值与拟合插值和拟合是数值分析中常用的处理数据的方法。

插值是通过已知数据点之间的函数关系,来估计未知数据点的值。

拟合则是通过一个函数来逼近一组数据点的分布。

在MATLAB中,我们可以使用interp1函数进行插值计算。

例如,给定一组离散的数据点,我们可以使用线性插值、多项式插值或样条插值等方法,来估计在两个数据点之间的未知数据点的值。

拟合则可以使用polyfit函数来实现。

例如,给定一组数据点,我们可以通过最小二乘法拟合出一个多项式函数,来逼近这组数据的分布。

二、数值积分数值积分是数值分析中用于计算函数定积分的方法。

在实际问题中,往往无法通过解析的方式求得一个函数的积分。

这时,我们可以使用数值积分的方法来近似计算。

在MATLAB中,我们可以使用quad函数进行数值积分。

例如,给定一个函数和积分区间,我们可以使用quad函数来计算出该函数在给定区间上的定积分值。

quad函数使用自适应的方法,可以在给定的误差限下,自动调整步长,以保证积分结果的精度。

三、常微分方程数值解常微分方程数值解是数值分析中研究微分方程数值解法的一部分。

在科学和工程中,我们经常遇到各种各样的微分方程问题。

而解析求解微分方程往往是困难的,甚至是不可能的。

因此,我们需要使用数值方法来近似求解微分方程。

在MATLAB中,我们可以使用ode45函数进行常微分方程数值解。

例如,给定一个微分方程和初始条件,我们可以使用ode45函数来计算出在给定时间范围内的解。

ode45函数使用龙格-库塔方法,可以在给定的误差限下,自动调整步长,以保证数值解的精度。

结论:本实验通过使用MATLAB软件,探索了数值分析的基本概念和方法,并通过实际案例验证了其有效性。

数值分析matlab完整版实验报告范文

数值分析matlab完整版实验报告范文

数值分析matlab完整版实验报告范文运用matlab软件实现,数值分析中求解非线性方程的根,实验数据完整,格式完整《数值分析》报告运用Matlab求解非线性方程的根学院:专业:班级:姓名:学号:运用matlab软件实现,数值分析中求解非线性方程的根,实验数据完整,格式完整1.目的掌握非线性方程求根的方法,并选取实例运用MATLAB软件进行算法的实现,分别用牛顿法、弦截法和抛物线法求非线性方程的根。

2.报告选题报告选取《数值分析(第四版)》290页习题7作为研究对象,即求f(某)某33某10在某02附近的根。

根的准确值某某1.87938524...,要求结果准确到四位有效数字。

(1)用牛顿法;(2)用弦截法,取某02,某11.9;(3)用抛物线法,取某01,某13,某22。

3.理论基础(1)牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(某k),k0,1,2,...f'(某k)f(某)f'(某)其迭代函数为(某)某牛顿迭代法的收敛速度,当f(某某)0,f'(某某)0,f''(某某)0时,容易证明,f'(某某)0,''(某某)f''(某某)0f'(某某),牛顿迭代法是平方收敛的,且limek1f''(某某)ke22f'(某某)。

k(2)弦截法将牛顿迭代法中的f'(某k)用f(某)在某k1,某k处的一阶差商来代替,即可得弦截法f(某k)(某k某k1)f(某k)f(某k1)(3)抛物线法运用matlab软件实现,数值分析中求解非线性方程的根,实验数据完整,格式完整弦截法可以理解为用过(某k1,f(某k1)),(某kf(某k))两点的直线方程的根近似替f(某)0的根。

若已知f(某)0的三个近似根某k,某k1,某k2用过(某k,f(某某(f,k某)k)某,某的抛物线方程的根近似代替())f(某)0的k)),k11(2,(fk2根,所得的迭代法称为抛物线法,也称密勒(Muller)法。

数值分析算法在matlab中的实现

数值分析算法在matlab中的实现

数值分析matlab实现高斯消元法:function[RA,RB,n,X]=gaus(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1);C=zeros(1,n+1);for p=1:n-1for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endendX列主元消去法:function[RA,RB,n,X]=liezhu(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1);C=zeros(1,n+1);for p=1:n-1[Y,j]=max(abs(B(p:n,p)));C=B(p,:);B(p,:)=B(j+p-1,:);B(j+p-1,:)=C;for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endendXJacobi迭代法:例1用jacobi迭代法求解代数线性代数方程组,保留四位有效数字(err=1e-4)其中A=[8-11;2 10-1;11-5];b=[1;4;3]。

数值分析matlab程序实例

数值分析matlab程序实例

1,秦九韶算法,求出P(x=3)=2+4x+5x^2+2x^3的值clear all;x=3;n=3;a(1)=2;a(2)=4;a(3)=5;a(4)=2v(1)=a(n+1);for k=2:(n+1);v(k)=x*v(k-1)+a(n-k+2);endp=v(n+1)p=,1132,一次线型插值程序:利用100.121.求115的开方。

clear all;x1=100;x2=121;y1=10;y2=11;x=115;l1=(x-x2)/(x1-x2);l2=(x-x1)/(x2-x1);p1=l1*y1+l2*y2p1=10.71433,分段插值程序,已知为S1(x)为(0,0),(1,1),(2,5)(3,8)上的分段一次插值,求S1(1.5).clear allx=[0123];y=[0158];n=length(x);a=1.5;for i=2:nif(x(i-1)<=a<x(i));endendH1=y(i-1)+(y(i)-y(i-1))/(x(i)-x(i-1))*(a-x(i-1))H1=3.50004)曲线拟合:用一个5次多项式在区间[0,2π]内逼近函数sin(x)。

clear allX=linspace(0,2*pi,50);Y=sin(X);[P,S]=polyfit(X,Y,5)plot(X,Y,'k*',X,polyval(P,X),'k-')P=-0.00560.0874-0.39460.26850.87970.0102S=R:[6x6double]df:44normr:0.03375)求有理分式的导数clear allP=[3,5,0,-8,1,-5];Q=[10,5,0,0,6,0,0,7,-1,0,-100];[p,q]=polyder(P,Q)6)将以下数据按从小到大排序:4.3 5.7 5.2 1.89.4a=[4.35.75.21.89.4];b(1:100)=0;n=1;b(a*10)=1;for k=1:100a(n)=k/10;if b(k)>0a(n)=k/10;n=n+1;endendaa=1.8000 4.3000 5.2000 5.70009.400010.00007)用二分法求方程x 3-x-1=0在[1,2]内的近似根,要求误差不超过10-3。

数值分析实验报告Matlab仿真资料

数值分析实验报告Matlab仿真资料

数值分析实验报告学院:电气工程与自动化学院专业:控制理论与控制工程姓名:李亚学号:61201401622014 年 12 月24日实验一 函数插值方法一、目的和意义1、 学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、 明确插值多项式和分段插值多项式各自的优缺点;3、 熟悉插值方法的程序编制;4、 如果绘出插值函数的曲线,观察其光滑性。

二、实验原理1、 Lagrange 插值公式00,()n ni n k k i i k k i x x L x y x x ==≠⎛⎫-= ⎪-⎝⎭∑∏编写出插值多项式程序;2、 给出插值多项式或分段三次插值多项式的表达式;三、实验要求对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。

试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。

数据如下:(1求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。

(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈)试构造Lagrange 多项式6,和分段三次插值多项式,计算的(1.8)f ,(6.15)f 值。

(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈)四、实验过程1.进入matlab开发环境;2.根据实验内容和要求编写程序,程序如下所示,程序通过运用function 函数编写,生成.m文件。

调用时只需要在命令窗口调用y=Lagrange(A,input)就可以实现任意次数拉格朗日插值法求解。

function y=Lagrange(A,input)[a,b]=size(A);x=input;y=0;for j=1:aMj=1;Nj=1;for k=1:aif(k==j)continue;endMj=Mj*(x-A(k,1));Nj=Nj*(A(j,1)-A(k,1));endy=y+A(j,2)*Mj/Nj;end3.调试程序并运行程序;调用拉格朗日脚本文件对以上两个表格数据求解,表格一对应MATLAB向量A;表格二对应向量I。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。

实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。

一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。

MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。

二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。

三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。

3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。

2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。

3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。

五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。

基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告班级:072115姓名:李凯学号:20111003943实验二:矩阵与向量运算实验目的:在MATLAB里,会对矩阵与向量进行加、减、数乘、求逆及矩阵特征值运算,以及矩阵的LU分解。

设A是一个n×n方阵,X是一个n维向量,乘积Y=AX可以看作是n维空间变换。

如果能够找到一个标量λ,使得存在一个非零向量X,满足:AX=λX (3.1)则可以认为线性变换T(X)=AX将X映射为λX,此时,称X 是对应于特征值λ的特征向量。

改写式(3.1)可以得到线性方程组的标准形式:(A-λI)X=0 (3.2)式(3.2)表示矩阵(A-λI)和非零向量X的乘积是零向量,式(3.2)有非零解的充分必要条件是矩阵(A-λI)是奇异的,即:det(A-λI)=0该行列式可以表示为如下形式:a11–λa12 (1)a21 a22 –λ…a2n =0 (3.3)…………A n1 a n2 …a nn将式(3.3)中的行列式展开后,可以得到一个n阶多项式,称为特征多项式:f(λ)=det(A-λI)=(-1)n(λn+c1λn-1+c2λn-2+…+c n-1λ+c n) (3.4) n阶多项式一共有n个根(可以有重根),将每个根λ带入式(3.2),可以得到一个非零解向量。

习题:求下列矩阵的特征多项式的系数和特征值λj:3 -1 0A= -1 2 -10-1 3解:在MATLAB中输入命令:A=【3 -1 0;-1 2 -1;0 -1 3】;c=poly(A)roots(c)得到:实验四:Lagrange插值多项式实验目的:理解Lagrange插值多项式的基本概念,熟悉Lagrange插值多项式的公式源代码,并能根据所给条件求出Lagrange插值多项式,理解龙格现象。

%功能:对一组数据做Lagrange插值%调用格式:yi=Lagran_(x,y,xi)%x,y:数组形式的数据表%xi:待计算y值的横坐标数组%yi:用Lagrange还擦之算出y值数组function fi=Lagran_(x,f,xi)fi=zeros(size(xi));np1=length(f);for i=1:np1z=ones(size(xi));for j=i:np1if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));endendfi=fi+z*f(i);endreturn习题:已知4对数据(1.6,3.3),(2.7,1.22),(3.9,5.61),(5.6,2.94)。

数值分析实验报告matlab

数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。

本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。

一、误差分析在数值计算中,误差是无法避免的。

误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。

在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。

通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。

二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。

在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。

通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。

三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。

在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。

通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。

四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。

在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。

在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

Matlab与数值分析实验

Matlab与数值分析实验

>> sum
法 2: >>a=1:100; >>sum=a*a’
法 3: >>n=1;
>>sum=0;
>> while n<=100
sum=sum+n*n;
n=n+1;
end
-6-
>> sum * 选择语句
if expression() statements;
[else statements;]
end 例:编写函数文件 demo3 实现 sgn 函数功能
例 2:编写命令文件 demo1 完成以下操作
-4-
建立数组 a=[1,2,3,...,20],b=[1,3,5,...,39],并求 a,b 内积 操作 1) 主窗口点击新建按钮 2) 在弹出的文本编辑窗口添加 a=1:20 b=1:2:39 sum=a*b'
3) 单击保存按钮 将文件命名为 demo1 保存在例 1 新建文件夹中
4) 在 Command Window 中输入 demo1 并回车 例 3:编写函数文件 demo2,返回输入变量的内积
操作:1) 新建 M 文件,编辑如下: function sum=demo2(a,b) sum=a*b';
2) 保存文件在查询目录下,注意不要修改默认名 3) 在 Command Window 中输入
操作:1)新建 M 文件,并编辑如下 function val=demo3(x) if x>0 val=1; elseif x<0 val=-1; else val=0; end 2) 将文件保存在查询目录内 3) >>demo3(0) >>demo3(90) >>demo3(-12)

数值分析实验报告(Matlab实现)(同名6593)

数值分析实验报告(Matlab实现)(同名6593)

学生实验报告实验课程名称数值分析开课实验室数学与统计学院实验室学院2010 年级数学与应用数学专业班01班学生姓名学号开课时间2012 至2013 学年第一学期end y=x;format short ;% 设置为默认格式显示,显示5位(2) 建立MATLAB 界面利用MA TLAB 的GUI 建立如下界面求解线性方程组:详见程序。

五、 计算实例、数据、结果、分析下面我们对以上的结果进行测试,求解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------725101391444321131243301024321x x x x 输入数据后点击和,得到如下结果:更改以上数据进行测试,求解如下方程组:123443211343212343112341x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦得到如下结果:六、 实验中遇到的问题及解决办法在本实验中,遇到的问题主要有两个:(1) 如何将上述的Gauss 消元法的算法在MA TLAB 中实现针对此问题我借鉴了网上以及 课本上的算法的MATLAB 实现的程序;(2) 如何将建立界面使得可以随意输入想要求解的相关矩阵后就可以直接求解针对此问题,我通过网上的一些关于MA TLAB 的GUI 设计的相关资料,总结经验完成了此项任务。

七、 实验结论通过以上的测试,我们发现以上算法和程序能够求出线性方程组的比较精确解。

八、 参考文献[1]杨大地,王开荣 .2006.数值分析.北京:科学出版社[2]何光辉.2008. 数值分析实验. 重庆大学数理学院数学实验教学中心 [3]百度文库,百度知道教师签名年 月 日详见程序。

五、计算实例、数据、结果、分析下面我们对以上的问题进行测试:输入数据:计算结果如下:当x=2.101时,x=4.234时,同理可以测试(4)中的5的值。

六、实验中遇到的问题及解决办法在本实验中,遇到的问题主要有两个:(3)如何将上述的插值的算法在MA TLAB中实现针对此问题我借鉴了网上以及课本上的算法的MATLAB实现的程序;(4)如何将建立界面使得可以随意输入想要求解的相关矩阵后就可以直接求解针对此问题,我通过网上的一些关于MA TLAB的GUI设计的相关资料,总结经验完成了此项任务。

(完整版)MATLAB数值分析实例

(完整版)MATLAB数值分析实例

2016-2017 第一学期数值分析上机实验报告姓名: xxx学号: 20162…….学院:土木工程学院导师:………..联系电话:…………..指导老师:………..目录第一题 (1)1.1题目要求 (1)1.2程序编写 (1)1.3计算结果及分析 (2)第二题 (4)2.1题目要求 (4)2.2程序编写 (4)2.3计算结果及分析 (6)第三题 (7)3.1题目要求 (7)3.2程序编写 (7)3.3计算结果及分析 (8)第四题 (9)4.1题目要求 (9)4.2程序编写 (9)4.3计算结果及分析 (10)第五题 (11)5.1题目要求 (11)5.2程序编写 (12)5.3计算结果及分析 (13)第六题 (17)6.1题目要求 (17)6.2程序编写 (17)6.3计算结果及分析 (18)6.4程序改进 (18)第一题选做的是第(1)小问。

1.1题目要求编出不动点迭代法求根的程序;把??3+4??2-10=0写成至少四种??=g(??)的形式,取初值??0=1.5,进行不动点迭代求根,并比较收敛性及收敛速度。

1.2程序编写1.3计算结果及分析①第一种迭代公式:??=??3+4??2+??-10;matlab计算结果如下:(以下为命令行窗口的内容)2;matlab计算结果如下:②第二种迭代公式:??=√(10-??3)/4(以下为命令窗口内容)2;matlab计算结果如下:③第三种迭代公式:??=√10(??+4)?(以下为命令窗口内容)④第四种迭代公式:??=10(??2+4??)?;matlab计算结果如下:(以下为命令窗口内容)上述4种迭代公式,1、4两种由于在x真实值附近|g`(x)|>1,不满足迭代局部收敛条件,所以迭代序列不收敛。

对于2、3两种式子,由于在x真实值附近|g`(x)|<=L<1,满足迭代局部收敛条件,所以迭代序列收敛。

对于2、3两迭代公式,由于L3<L2,所以第3个迭代公式比第2个迭代公式收敛更快。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

数值分析matlab数值试验

数值分析matlab数值试验

实验一:误差传播及算法稳定性实验1.21、试验程序:function charpt1_2% 误差传播及算法稳定性实验clc;clear all;promps={'请选择递推关系式,若选E1=1/e,En=1-nEn-1,请输入1,若选EN=0,En-1=(1-En)/n,请输入2:'};I=1;while Iresult=inputdlg(promps,'charpt1_2',1,{'1'});Nb=str2num(char(result));if ((Nb~=1)|(Nb~=2))I=0;endend%%%%%%%%%%%%%%%%%I=1;while Iresult=inputdlg('请输入递推步数 n>=1:','charpt1_2',1,{'10'});steps=str2num(char(result));if (steps>0)&(steps==fix(steps)) %% 如果steps大于0且为整数I=0;endend%%%%%%%%%%%%%%%%%result=inputdlg('请输入计算中所采用的有效数字位数n:','charpt1_2',1,{'5'});Sd=str2num(char(result));format long %% 设置显示精度result=zeros(1,steps); %% 存储计算结果err=result; %% 存储计算的绝对误差值func=result; %% 存储用quadl计算的近似值%%%%%%%%%%%%%%%%%%% 用quadl计算积分近似值for n=1:stepsfun=@(x) x.^n.*exp(x-1);func(n)= quadl(fun,0,1);end%%%%%%%%%%%%%%%%%%% 用自定义算法计算if(Nb==1)digits(Sd);result(1)=subs(vpa(1/exp(1)));for n=2:stepsresult(n)=subs(vpa(1-n*result(n-1)));enderr=abs(result-func);elseif(Nb==2)digits(Sd);result(steps)=0;for n=(steps-1):-1:1result(n)=subs(vpa((1-result(n+1))/(n+1)));enderr=abs(result-func);end%%%%%%%%%%%%%%%%%%% 输出结果数值及图像clf;disp('库函数计算值:');disp(sprintf('%e ',func));disp('递推值:');disp(sprintf('%e ',result));disp('误差值:');disp(sprintf('%e ',err));if(Nb==1)plot([1:steps],result,'-rs',[1:steps],func,':k*',[1:steps],err,'-.bo' );elseif(Nb==2)plot([steps:-1:1],result,'-rs',[steps:-1:1],func,':k*',[steps:-1:1],e rr,'-.bo');endxlabel('第n步');ylabel('计算值');legend('自定义算法结果','库函数计算结果','误差值');grid on2、试验结果:选择递推关系式1,递推步数为10,有效数字为5位,计算结果如下:库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-0011.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708800e-001 1.456000e-0011.264000e-001 1.152000e-001 7.840000e-0022.944000e-001 -1.944000e+000误差值:5.588280e-007 1.117662e-006 3.352927e-006 1.341222e-0056.705713e-005 4.023702e-004 2.816427e-003 2.253226e-002 2.027877e-001 2.027877e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为5位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708900e-001 1.455300e-001 1.267900e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.117662e-006 3.352927e-006 3.412224e-006 2.942873e-006 1.237016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值选择递推关系式1,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678790e-001 2.642420e-001 2.072740e-001 1.709040e-001 1.454800e-001 1.271200e-001 1.101600e-001 1.187200e-001 -6.848000e-002 1.684800e+000 误差值:4.411720e-007 8.823378e-007 2.647073e-006 1.058778e-0055.294287e-005 3.176298e-004 2.223573e-003 1.778774e-002 1.600923e-001 1.600923e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642410e-001 2.072770e-001 1.708930e-001 1.455360e-001 1.267860e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.176622e-007 3.529274e-007 4.122239e-007 3.057127e-006 1.637016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值3、结果分析:很明显第二种递推式结果要比第一种好,式1在第七步后有明显误差,而式2在第三步后基本与近似解一致。

数值分析第二章MATLAB计算实验报告

数值分析第二章MATLAB计算实验报告

数值分析MATLAB 计算实验报告姓名 班级 学号一、实验名称根据给定数据利用MATLAB 编程做出4次牛顿插值与三次样条插值的插值函数与被插值函数图形 二、实验目的1.理解牛顿插值的定义并且编写出与其算法对应的MATLAB 程序代码;2.了解三次样条插值的构造方法并且编写出与其算法对应的MATLAB 程序代码; 3.体会利用MATLAB 软件进行数值计算 。

三、实验内容已知函数在下列各点的值为:x i 0.2 0.4 0.6 0.8 1 .0 f(x i )0.980.920.810.640.38试用4次牛顿插值多项式P 4(x)及三样条函数S(x)(自然边界条件)对数据进行插值。

使用Matlab 软件用图给出{(x i ,y i ),x i =0.2+0.08i, i=0,1,11,10},P 4(x)及S(x) 四、算法描述 1.牛顿插值公式:P n (x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+… +f[x 0,x 1,…,x n ](x-x 0)…(x-x n-1),当n=4时,将插值点x i 及插值点对应的函数值f(x i )带入上式可得4次牛顿插值多项式。

2.三次样条插值:使用三弯矩法,令n i x s M i i ,,2,1,0),( =''=, 首先,以(x i ,M i ),(x i-1,M i-1)为结点作线性插值:i ii i i i M h x x M h x x x s 11)(---+--='',其中h i =x i -x i-1紧接着,连续积分两次:213131)(6)(6)(c x c x x h M x x h M x s i ii i i i ++-+-=--再利用插值条件11)(,)(--==i i i i y x s y x s)()6()()6()(6)(6)(1113131-------+--+-+-=i i ii i i i i i i i i i i i i x x h M h y x x h Mh y x x h M x x h M x sn i x x x i i ,,2,1,1 =≤≤-然后利用s '(x)在内结点连续的条件求M i ,s '(x i -0)=s '(x i +0))6()6()(2)(2)(112121i i i i i i i i i i i i i i h Mh y h M h y x x h M x x h M x s -+---+--='----ii ii i i i i i i i i h y y M M h x x h M x x h M 112121)(6)(2)(2-----+---+--=ii x x x ≤≤-11111211211)(6)(2)(2)(++++++++-+---+--='i ii i i i i i i i i i h y y M M h x x h M x x h M x s1+≤≤i i x x xii i i i i i i h y y M h M h x s 1163)0(---++=-'1111163)0(+++++-+--=+'i ii i i i i i h y y M h M h x s得i i i i i i i h y y M h M h 1163---++1111163+++++-+--=i ii i i i i h y y M h M hii i i i i i i i i i i i h y y h y y M h M h h M h 11111116)33(6-+++++----=+++)(62111111111ii i i i i i i i i i i i i i i i h y y h y y h h M h h h M M h h h -++++++-+---+=++++1,,2,1,211-==+++-n i M M M i i i i i i βαγ最后,根据三条边界条件,求出的值。

数值分析大作业(利用MATLAB软件)

数值分析大作业(利用MATLAB软件)

实验报告课程名称:数值分析实验项目:曲线拟合/数值积分专业班级:姓名:学号:实验室号:实验组号:实验时间:20.10.24 批阅时间:指导教师:成绩:工业大学实验报告(适用计算机程序设计类)专业班级:学号:姓名:实验名称:曲线拟合与函数插值附件A 工业大学实验报告(适用计算机程序设计类)专业班级:学号:姓名:实验步骤或程序:附录一:1.利用二次,三次,四次多项式进行拟合:1.1 MATLAB代码如下:clear;clc;close allt=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24];y=[14 13 13 13 13 14 15 17 19 21 22 24 27 30 31 30 28 26 24 23 21 19 17 16 15];%输入数据hold on[p2 s2]=polyfit(t,y,2);%对于上面的数据进行2次多项式拟合,其中s2包括R(系数矩阵的QR分解的上三角阵),%df(自由度),normr(拟合误差平方和的算术平方根)。

y2=polyval(p2,t);%返回多项式拟合曲线在t处的值[p3 s3]=polyfit(t,y,3);y3=polyval(p3,t);[p4 s4]=polyfit(t,y,4);y4=polyval(p4,t);plot(t,y,'ro')%画图plot(t,y2,'g-')plot(t,y3,'m^-')plot(t,y4,'bs-')xlabel('t')ylabel('y')legend('原始数据','2次多项式拟合','3次多项式拟合','4次多项式拟合')1.2 二次,三次,四次多项式拟合的结果分别如下:(1)总的拟合结果在工作区的显示如下:(2)其次二次多项式拟合的结果为:(3)其中三次多项式拟合的结果:(4)其中四次多项式拟合的结果为:1.3 拟合的图像为:1.4 拟合的多项式为:根据工作区得出的数据列出最后的拟合多项式为:(1)y=7.416+2.594t-0.094t^2(2)y=12.251-0.102t+0.193t^2-0.008t^3(3)y=15.604-3.526t+0.866t^2-0.052t^3+0.0009t^42.形如2()()b t c y t ae--=的函数,其中,,a b c 为待定常数。

matlab数值分析实验报告

matlab数值分析实验报告

matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。

本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。

一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。

在Matlab中,可以使用diff函数来计算函数的导数。

例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。

在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。

例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。

在Matlab中,可以使用\操作符来求解线性方程组。

例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。

通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。

数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。

数值分析MATLAB实验报告

数值分析MATLAB实验报告

实验 2.1 多项式插值的震荡现象问题提出:考虑在一个固定的区间上用插值逼近一个函数。

显然Lagrange 插值中使用的节点越多,插值多项式的次数越高,我们自然关心插值多项式的次数增加时,)(x L n 是否也更加靠近被逼近的函数。

Runge 给出的一个例子是极著名并富有启发性的。

设区间[-1,1]上函数.2511)(2xx f +=实验内容:考虑空间[-1,1]的一个等距划分,分点为 nix i 21+-=, =i 0,1,2 ...,n , 则拉格朗日插值多项式为)(2511)(02x l xx L ini n ∑=+=. 其中,n i x l i ,...,2,1,0),(=是n 次Lagrange 插值基函数。

实验要求:(1)选择不断增大的分点数目,...,3,2=n 画出原函数)(x f 及插值多项式函数)(x L n 在[-1,1]上的图像,比较并分析实验结果。

(2)选择其他的函数,例如定义在区间[-5,5]上的函数 ,1)(4xxx h +=)arctan()(x x g =, 重复上述的实验看其结果如何。

首先编写拉格朗日插值函数的Matlab 实现: Matlab 程序为:function y=lagrange(x0,y0,x) %Lagrange 插值 n=length(x0); m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if(j~=k)p=p*(z-x0(j))/(x0(k)-x0(j)); end ends=s+p*y0(k); endy(i)=s; end(1)当函数为.2511)(2xx f +=时, Matlab 程序为:x=linspace(-1,1,100); y=1./(1+25*x.^2); plot(x,y) hold on; for i=2:2:10x0=linspace(-1,1,i+1); y0=1./(1+25*x0.^2); y=laglanri(x0,y0,x); plot(x,y,'r--') hold on end运行结果:结果分析:从图上看到在区间[-1,1]的两端点附近,随着插值点数的增加,插值函数)(x L n 与)(x f 偏离的越远,而且出现了振荡现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析实验——MATLAB实现姓名sumnat学号2013326600000班级13级应用数学2班指导老师2016年1月一、插值:拉格朗日插值 (1)1、代码: (1)2、示例: (1)二、函数逼近:最佳平方逼近 (2)1、代码: (2)2、示例: (2)三、数值积分:非反常积分的Romberg算法 (3)1、代码: (3)2、示例: (4)四、数值微分:5点法 (5)1、代码: (5)2、示例: (6)五、常微分方程:四阶龙格库塔及Adams加速法 (6)1、代码:四阶龙格库塔 (6)2、示例: (7)3、代码:Adams加速法 (7)4、示例: (8)六、方程求根:Aitken 迭代 (8)1、代码: (8)2、示例: (9)七、线性方程组直接法:三角分解 (9)1、代码: (9)2、示例: (10)八、线性方程组迭代法:Jacobi法及G-S法 (11)1、代码:Jacobi法 (11)2、示例: (12)3、代码:G-S法 (12)4、示例: (12)九、矩阵的特征值及特征向量:幂法 (13)1、代码: (13)2、示例: (13)一、插值:拉格朗日插值1、代码:function z=LGIP(x,y)%拉格朗日插值n=size(x);n=n(2);%计算点的个数syms a;u=0;%拉格朗日多项式f=1;%插值基函数for i=1:nfor j=1:nif j==if=f;elsef=f*(a-x(j))/(x(i)-x(j));endendu=u+y(i)*f;f=1;endz=expand(u);%展开2、示例:>> x=1:6;y1=x.^5+3*x.^2-6;y2=sin(x)+sqrt(x);>> f1=LGIP(x,y1)f1 =-6+3*a^2+a^5%可知多项式吻合得很好>> f2=vpa(LGIP(x,y2),3)f2 =.962e-1*a^4+1.38*a+.300*a^2+.504-.436*a^3-.616e-2*a^5二、函数逼近:最佳平方逼近1、代码:function z=BestF(u,a,b,n)%最佳平方逼近,用x^i逼近,n为逼近的次数n=n+1;syms xreal;old=findsym(u);u=subs(u,old,x); %将u中变量替换为xf=sym('');H=sym('');d=sym('');for i=1:n %生成函数系f(1,i)=x^(i-1);endfor i=1:n %生成内积Hfor j=1:nH(i,j)=int(f(1,i)*f(1,j),a,b);endendfor i=1:n %生成内积dd(i,1)=int(f(1,i)*u,a,b);enda=H\d;%解法方程Ha=dz=a'*f';2、示例:>> syms x>> f1=sqrt(x);>> f2=x^5+x^2;>> f3=exp(x);>> a=0 ;b=1;>> BestF(f1,a,b,5)ans =12/143+420/143*x-1120/143*x^2+2016/143*x^3-1800/143*x^4+56/13*x^5>> BestF(f2,a,b,5)ans =x^5+x^2>> BestF(f3,a,b,5)ans =-566826+208524*exp(1)+(16733010-6155730*exp(1))*x+(-115830120+42611520*exp(1))* x^2+(306348840-112699440*exp(1))*x^3+(-342469260+125987400*exp(1))*x^4+(136302012-5 0142708*exp(1))*x^5>> vpa(ans,3)ans =.1e4-.1e6*x-.1e7*x^3+.1e7*x^4三、数值积分:非反常积分的Romberg算法1、代码:function z=IntRom(f,a,b) %Romberg 算法e=1e-10;I{1}=linspace(a,b,2);%1等分I{2}=linspace(a,b,3);%2等分L=setdiff(I{2},I{1});%新得插值点h=b-a;T(1,1)=h/2*sum(subs(f,I{1}));T(2,1)=1/2*T(1,1)+h/2*sum(subs(f,L));T(2,2)=4/3*T(2,1)-1/3*T(1,1);k=2;while abs(T(k,k)-T(k-1,k-1))>e %精度要求k=k+1;I{k}=linspace(a,b,2^(k-1)+1);L=setdiff(I{k},I{k-1});%集合差运算,新得插值点h=h/2;T(k,1)=1/2*T(k-1,1)+h/2*sum(subs(f,L));%梯形for i=2:kT(k,i)=(4^(i-1)/(4^(i-1)-1))*T(k,i-1)-(1/(4^(i-1)-1))*T(k-1,i-1);%加速endEndz=T(k,k);2、示例:>> syms x>> f=x^4;>> a=-4;b=4;>> IntRom(f,a,b)T =1.0e+003 *2.04800000000000 0 0 01.02400000000000 0.68266666666667 0 00.57600000000000 0.42666666666667 0.40960000000000 00.45200000000000 0.41066666666667 0.40960000000000 0.40960000000000ans =4.096000000000000e+002>> vpa((int(f,a,b)-ans),3)ans =0.>> f=exp(x);>> a=0;b=1;>> IntRom(f,a,b)T =Columns 1 through 41.85914091422952 0 0 01.75393109246483 1.71886115187659 0 01.72722190455752 1.71831884192175 1.71828268792476 01.72051859216430 1.71828415469990 1.71828184221844 1.718281828794531.71884112857999 1.71828197405189 1.71828182867536 1.718281828460391.71842166031633 1.71828183756177 1.71828182846243 1.71828182845905Columns 5 through 60 00 00 00 01.71828182845908 01.71828182845905 1.71828182845905ans =1.71828182845905>> vpa((int(f,a,b)-ans),3)ans =0.四、数值微分:5点法1、代码:function z=VDiff(f,x0)%5点法求导数值e=1e-15;h=0.01;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(1)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));%5点导数公式h=h/2;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(2)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));h=h/2;for i=-0:4x(i+1)=x0+i*h;endy=subs(f,x);m(3)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));k=3;while abs(m(k)-m(k-1))<abs(m(k-1)-m(k-2)) & abs(m(k)-m(k-1))>e & (h/10)>0%控制收敛条件及精度要求及h非0h=h/2;k=k+1;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(k)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));ende=abs(m(k)-m(k-1));z=[m(k);e];2、示例:>> syms x>> f=exp(x);>> x0=2;>> VDiff(f,x0)ans =7.389056098949710.00000000002558五、常微分方程:四阶龙格库塔及Adams加速法1、代码:四阶龙格库塔function z=RGFour(f,y0,a,b)%4阶龙格库塔,f为函数句柄h=0.01;X=a:h:b;Y(1)=y0;n=size(X);n=n(2);for i=1:n-1K1=f([X(i) Y(i)]);K2=f([X(i)+h/2,Y(i)+h/2*K1]);K3=f([X(i)+h/2,Y(i)+h/2*K2]);K4=f([X(i)+h,Y(i)+h*K3]);Y(i+1)=Y(i)+h/6*(K1+2*K2+2*K3+K4);endz=Y;plot(X,Y);2、示例:>> f=@(x)sin(x(1));>> y0=0;a=0;b=2*pi;>> figure(1);>> RGFour(f,y0,a,b);3、代码:Adams加速法function z=myAdams(f,y0,a,b)h=0.01;p(4)=1;c(4)=1;X=a:h:b;Y(1)=y0;n=size(X);n=n(2);for i=1:3K1=f([X(i) Y(i)]);K2=f([X(i)+h/2,Y(i)+h/2*K1]);K3=f([X(i)+h/2,Y(i)+h/2*K2]);K4=f([X(i)+h,Y(i)+h*K3]);Y(i+1)=Y(i)+h/6*(K1+2*K2+2*K3+K4);endfor i=4:n-1p(i+1)=Y(i)+h/24*(55*f([X(i),Y(i)])-59*f([X(i-1),Y(i-1)])+37*f([X(i-2 ),Y(i-2)])-9*f([X(i-3),Y(i-3)]));m(i+1)=p(i+1)+251/720*(c(i)-p(i));m(i+1)=f([X(i+1),m(i+1)]);c(i+1)=Y(i)+h/24*(9*f([X(i+1),m(i+1)])+19*f([X(i),Y(i)])-5*f([X(i-1), Y(i-1)])+f([X(i-2),Y(i-2)]));Y(i+1)=c(i+1)-19/720*(c(i+1)-p(i+1));endz=Y;plot(X,Y);4、示例:>> f=@(x)exp(x(1));>> myAdams(f,0,0,2*pi);六、方程求根:Aitken 迭代1、代码:function z=myAitken(f,x0);%Aitken 迭代求方程的根e=1e-15;xu1=x0;xv1=subs(f,xu1);xv2=subs(f,xv1);if xv2-2*xv1+xu1==0%防止除0;xu2=xv2;elsexu2=xv2-(xv2-xv1)^2/(xv2-2*xv1+xu1);endwhile abs(xu2-xu1)>e%精度控制xu1=xu2;xv1=subs(f,xu1);xv2=subs(f,xv1);if xv2-2*xv1+xu1==0%防止除0;xu2=xv2;elsexu2=xv2-(xv2-xv1)^2/(xv2-2*xv1+xu1);%Aitken加速公式endendz=xu2;2、示例:>> syms x>> f=cos(x/2)+x;>> x0=3;>> myAitken(f,x0)ans =3.14159265358979>> f=x^2-2+x;>> x0=1;>> myAitken(f,x0)ans =1.41421356237309七、线性方程组直接法:三角分解1、代码:function z=myGuess(A,b);%线性方程组三角分解求根n=size(A);if n~=rank(A)z=['矩阵A线性相关,不符合要求'];return;endn=n(2);L=eye(n);for i=1:n-1for j=i+1:nL(j,i)=A(j,i)/A(i,i);A(j,:)=A(j,:)-L(j,i)*A(i,:);endendU=A;for i=1:n %解Ly=b,得ys=0;for j=1:i-1s=s+y(j)*L(i,j);endy(i)=(b(i)-s)/L(i,i);endfor i=n:-1:1 %解Ux=y,得xs=0;for j=i+1:ns=s+x(j)*U(i,j);endx(i)=(y(i)-s)/U(i,i);endLUz=x';2、示例:>> A=[1 2 3;2 1 5;11 17 21];>> b=[1 3 5]';>> myGuess(A,b)L =1.00000000000000 0 02.00000000000000 1.00000000000000 011.00000000000000 1.66666666666667 1.00000000000000U =1.000000000000002.000000000000003.000000000000000 -3.00000000000000 -1.000000000000000 0 -10.33333333333333ans =-0.06451612903226-0.580645161290320.74193548387097>> t=A\bt =-0.06451612903226-0.580645161290320.74193548387097八、线性方程组迭代法:Jacobi法及G-S法1、代码:Jacobi法function z=myJacobi(A,b)n=size(A);n=n(2);x{1}=zeros(n,1);%初始值e=1e-10;D=diag(diag(A));L=D-tril(A);U=D-triu(A);B=D\(L+U);f=D\b;Q=B'*B;[w,d]=eig(Q);p=max(abs(diag(d))) ; %谱半径if p>=1z=['迭代发散'];return;endx{2}=B*x{1}+f;k=2;while norm(x{k}-x{k-1})>ek=k+1;x{k}=B*x{k-1}+f;endz=x{k};2、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> b=[20 33 36]';>> myJacobi(A,b)ans =3.000000000013402.000000000012610.999999999992373、代码:G-S法function z=myGS(A,b)n=size(A);n=n(2);x{1}=zeros(n,1);e=1e-10;D=diag(diag(A));L=D-tril(A);U=D-triu(A);B=(D-L)\U;f=(D-L)\b;Q=B'*B;[w,d]=eig(Q);p=max(abs(diag(d))) ; %谱半径if p>=1z=['迭代发散'];return;endx{2}=B*x{1}+f;k=2;while norm(x{k}-x{k-1})>ek=k+1;x{k}=B*x{k-1}+f;endz=x{k};4、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> b=[20 33 36]';>> myGS(A,b)ans =3.000000000001351.999999999999160.99999999999954九、矩阵的特征值及特征向量:幂法1、代码:function z=myChar(A);%幂法求主特征值及对应的特征向量e=1e-10;n=size(A);n=n(2);v1=ones(n,1);u1=v1;v2=A*u1;a=min(v2);b=max(v2);if abs(a)>abs(b)c=a;elsec=b;endu2=v2/c;%规范化while norm(u2-u1)>eu1=u2;v2=A*u1;a=min(v2);b=max(v2);if abs(a)>abs(b)c=a;elsec=b;endu2=v2/c;%规范化endz{1}=c;z{2}=v2;2、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> u=myChar(A)u =[14.00000000046956] [3x1 double]>> u{1}ans =14.00000000046956 >> u{2}ans =4.20000000191478 0.93333333198946 14.00000000046956。

相关文档
最新文档