三相半波可控整流电路课程设计中北大学
电力电子课程设计---三相半波可控整流电路电阻性负载

摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,晶闸管,额定。
The ac power rectifier circuit is converted to dc can circuit. Most by rectifier circuit transformer, rectifier main circuit and filters etc. It in dc motor speed, the motives of generator excitation adjustment, electrolysis, electroplating and other areas to be widely applied. Usually by rectifier circuit main circuit, filter and transformers group. Since 1970s, main circuit multi-purpose silicon rectifier diode and the brake canal composition. Filters connect in the main circuit and load between filter, used in the dc voltage ripple exchange component. Transformer Settings or not inspect particular case and decide。
实验一 三相半波可控整流电路实验

实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。
不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3 时间有电流流过,变压器利用率较低。
图3.1中晶闸管用DJK02 正桥组的三电感用DJK02面个,电阻R 用D42 三相可调电阻,将两个900Ω接成并联形式,Ld板上的700mH,其三相触发信号由DJK02-1 内部提供,只需在其外加一个给定电压接到Uct端即可。
直流电压、电流表由DJK02 获得。
图3.1 三相半波可控整流电路实验原理图三、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
四、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。
③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。
④观察A 、B 、C 三相的锯齿波,并调节A 、B 、C 三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。
⑤将DJK06上的“给定”输出Ug 直接与DJK02-1上的移相控制电压Uct 相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A 相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=170°。
⑥适当增加给定Ug 的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。
三相半波可控整流电路PPT课件

第16页/共68页
一、单相半波可控整流电路
❖基本数量关系
(1) 输出电压平均值Ud与输出电流平均值Id
ww 输U 出d 电2 1 π 压 p平2 均U 2 值sUidtd n t2 π U 2 1 c 2o 0 s .4 U 2 5 1 c 2os
O id
• 晶闸管导通角θ与α 无关,均为180。电流的平
i
VT
O
1,4
均值和有效值:
i
VT
O
2,3
O
i2
u
VT
O
1,4
Id Id
wt Id
wt
Id
wt
Id
wt
wt
O
wt
I dT
1 2
Id
1 IT 2Id 0.7 0I7d
b)
• 变压器二次侧电流i2的波形为正负各180的矩形波,其相位由α 角决定,有效 值I2=Id。
0 i2
wt
u2 正 半 周 承 受 电 压 - u2, 得 到 触
d) 0
wt
发脉冲即导通,当u2过零时关断。
图2-5 单相全控桥式
带电阻负载时的电路及波形
第21页/共68页
二、单相桥式可控整流电路
➢数量关系
1)输出直流电压平均值Ud及有效值U(α 角的移相范围为0~180。)
p ww p U d 1 p2 U 2 sitd n (t) 22 U 21 c 2o 0 .9 s U 2 1 c 2o s
压由正到负过零点也不会关断,输出电压出现了负波形, 输出电压和电流的平均值减小;当大电感负载时输出电
压正负面积趋于相等,输出电压平均值趋于零,则Id也
三相半波可控整流电路

图3-17 三相半波可控整流电路,反电动 势负载的波形
3.3 三相半波可控整流电路
各电量计算
(1) 负载电压平均值Ud和电流平均值Id 1) 0°≤α ≤30°时
U 1 . 17 U cos U cos d 2 d 0
2) 30°≤α ≤150°时
2
1 U 3 0 . 45 U [ 1 cos( )] 0 . 675 U [ 1 cos ) 6 2 6
U 1 . 17 U 当α =0 时,Ud最大,为 U d d0 2
。
(2) 30 ≤ α ≤150 时,负载电流断续,晶闸管 导通角减小,此时有:
1 3 2 U 2 U sin td ( t ) U 1 cos( ) 0 . 675 1 cos( ) d 2 2 2 2 6 6 6 3
w w
Ud (2)负载电流平均值 I d R
(3)流过晶闸管的电流平均值IdT、有效值IT 以及承
受的最高电压UTM分别为
IT
1 Id 3
I dT
1 Id 3
U U TM 6 2
3.3 三相半波可控整流电路
3. 大电感负载接续流二极管
为了扩大移相范围并使负载电流 id 平 稳,可在电感负载两端并接续流二极 管,由于续流管的作用, ud 波形已不 出现负值,与电阻性负载 ud波形相同。
VD1导通,ud=uα
VD2导通,ud=ub VD3导通,ud=uc
ωt
•二极管换相时刻为自然 换 相 点, 是 各 相 晶 闸 管 能触发导通的最早时刻, 将其作为计算各晶闸管 触发角α 的起点,即α =0。
三相半波可控整流电路设计

三相半波可控整流电路设计一、方案选择当整流负载容量较大,均可在三相半波的基础上进行分析。
二、主电路选择及原理分析三触发电路的设计为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。
由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。
晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以gt\Ugt为界划除OABCO区域,在此区域内为不可靠触发区。
在器件门极极限电流Igfm、门极极限电压和门极极限功率曲线的包围下,面积ABCDEFG 为可触发区,所用的合格的晶闸管器件的触发电压与触发电流都应在这个区域内,在使用时,触发电路提供的门极的触发电压与触发电流都应处于这个区域内。
再有,温度对晶闸管的门极影响很大,即使是同一个器件,温度不同时,器件的触发电流与电压也不同。
一般可以这样估算,在100°高温时,触发电流、电压值比室温时低2~3倍,所以为了使敬闸管在任何工作条件下都能可靠的触发,触发电路送出的触发电流、电压值都必须大于晶闸管器件的门极规定的触发电流、触发电压值,并且要留有足够的余量。
如触发信号为脉冲时,在触发功率不超过规定值的情况下,触发电压、电流的幅值在短时间内可以大大超过额定值。
触发脉冲应一定的宽度且脉冲前沿应尽可能陡。
由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。
只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.5~1MS,相当于50HZ、18度电度角。
为了可靠地、快速地触发大功率晶闸管,常常在触发脉冲的前沿叠加上一个触发脉冲。
【说明书】三相桥式全控整流电路设计副本

【关键字】说明书电子技术课程设计说明书三相桥式全控整流电路设计学生姓名:学号:学院:专业:指导教师:二〇一三年一月中北大学电子技术课程设计任务书2012/2013 学年第一学期学院:信息与通信工程专业:电气工程及其自动化学生姓名:学号:课程设计题目:三相桥式全控整流电路设计起迄日期: 12月24日~ 01月4 日课程设计地点:电气工程系软件实验室指导教师:石喜玲系主任:王忠庆下达任务书日期: 2012 年12 月24日课程设计任务书课程设计任务书目录1 引言 (1)1.1 设计的目的 (1)1.2 设计的意义 (1)2 系统总体方案 (2)2.1总体框图 (2)2.2 三相全控桥式整流电路原理 (2)3 硬件电路设计及描述 (3)3.1 主电路的设计 (3)3.2触发电路的设计 (4)4 电路仿真及结果分析 (5)4.1 电路仿真 (5)4.2 结果分析 (7)5 课程设计体会 (8)参考文献 (8)第一章绪论1.1 设计的目的通过Matlab的可视化仿真工具Simulink建立三相桥式全控整流电路的仿真模型,进行仿真,可以让我们熟悉MATLAB应用技术在电气工程与自动化中得应用,熟悉运用MATLAB及Simulink程序,熟悉三相桥式全控整流电路,通过分析输出波形,可以让我们知道在真实情况下三相桥式全控整流电路的各个器件的运行情况。
1.2 设计的意义电力电子技术无论对改造保守工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)和高效利用能源均至关重要。
我国目前仍旧是一个发展中的国家,尚处于前工业化阶段,保守产业仍然是我国国民经济的主力军,因此在近期或在较长一段时期内,保守产业的改造和发展将在很大程度上决定着我国经济的发展。
而电力、机械、冶金、石油、化工、交通运输是保守产业的重要支柱,这些产业技术水平的高低直接关系到我国工业基础的强弱。
毫无疑问,电力电子技术是提高这些产业技术水平的重要手段,它是对我国保守产业实现技术改造、建立自动化工业体系的关键应用技术。
三相半波可控整流电路课程设计(中北大学)

三相半波可控整流电路课程设计(中北大学)1000字本设计基于三相半波可控整流电路,旨在通过理论与实践相结合的方式加深对电力电子技术的认识和理解。
下面将从设计背景、设计目的和实验步骤三个方面进行详细介绍。
一、设计背景三相半波可控整流电路是电力电子技术中常用的一种电路,它可以将交流电转换为直流电,实现改变电压、电流、功率等特性的目的。
因此,对于电力电子专业的学生来说,掌握这个电路的原理和实现方法非常有必要。
二、设计目的本课程设计的主要目的是:通过对三相半波可控整流电路的设计与实验,使学生了解以下内容:1.掌握三相交流电的变换方法及其原理。
2.了解半控整流电路的基础知识,如晶闸管的基本工作原理、电路结构等。
3.掌握三相半波可控整流电路的实现方法,并能进行仿真和实验。
4.加深对电力电子技术及其应用的认识和理解。
三、实验步骤1.实验器材三相变压器、三相桥式整流电路、可控硅、电流表、电压表及示波器等。
2.实验步骤(1)将三相变压器的三个相线分别接入三相桥式整流电路的相线输入端,将三个中性线连接起来并接地。
(2)将可控硅的控制端接在电阻电容电路的输出端,将正极接入三相桥式整流电路的正极输出端,负极接在负极输出端。
(3)接通电源,通过调节电阻电容电路中电位器的阻值,控制可控硅的导通和截止,观察电路的输出波形和电流、电压的变化。
(4)根据实验结果,对电路进行仿真和分析,进一步加深对电路原理和特性的认识。
综上所述,三相半波可控整流电路课程设计具有重要的理论和实践意义,可以有效地提高电力电子专业学生的实践能力和综合素质。
三相半波可控整流电路课程设计(中北大学)

目录1 引言 (1)2设计方案论证 (1)2. 1 电路图 (2)2. 2设计指标 (2)2. 3工作原理 (2)2. 4基本数量关系 (5)1)整流电压的平均值分两种情况: (5)2)晶闸管的有效值: (5)3)晶闸管额定电压 (6)3触发电路的设计 (6)4硬件电路设计及描述 (7)4. 1建立仿真模型 (7)4. 2仿真结果与分析 (8)5总结 (9)参考文献 (10)1引言整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。
大多数整流电路山变压器、整流主电路和滤波器等组成。
当整流负载容量较大, 或要求直流电压脉动较小时,应釆用三相整流电路。
其交流侧山三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
随着时代的进步和科技的发展,拖动控制的电机调速系统在工农业生产、交通运输以及日常生活中起着越来越重要的作用,因此,对电机调速的研究有着积极的意义.长期以来,直流电机被广泛应用于调速系统中,而且一直在调速领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的起动性能,能较平滑和经济地调节速度。
因此采用直流电机调速可以得到良好的动态特性。
山于直流电动机具有优良的起、制动性能,宜与在广泛范圉内平滑调速。
在轧钢机、矿井卷机、挖掘机、金属切削机床、造纸机、高层电梯等需要高性能可控硅电力拖动的领域中得到广泛应用。
近年来交流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和在时间上都比较成熟,而且从反馈闭环控制的角度来看,它乂是交流拖动系统的基础,长期以来,山于直流调速拖动系统的性能指标优于交流调速系统。
因此,直流调速系统一直在调速系统领域内占重要位置。
熟悉单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
三相半波可控整流电路的设计

三相半波可控整流电路的设计三相半波可控整流电路是一种常用的电力电子变换器,常用于交流电源装置、直流电机驱动器和电压调节器等场合,其工作原理是通过对三相交流电进行控制,使其变为可控的单相直流电。
以下是关于三相半波可控整流电路的设计和工作原理的详细介绍。
一、三相半波可控整流电路的工作原理三相半波可控整流电路的输入是三相交流电源,通过可控硅器件(一般使用晶闸管)对交流电进行控制,使其变为可控的单相直流电。
整流电路由控制电路、整流电路和滤波电路三部分组成,主要包括三相变压器、可控硅器件和直流滤波电容等。
整流电路的工作过程如下:1.输入三相交流电源通过三相变压器降压,并经过整流电路的可控硅器件。
通过控制可控硅器件的导通和关断实现对交流电的控制。
2.当可控硅器件导通时,交流电流通过整流电路进入负载。
此时交流电流的方向被控制为和输入电源相同时,负载消耗正向电流。
3.当可控硅器件关断时,交流电流无法通过整流电路进入负载,此时负载上的电压降为零。
4.通过改变可控硅器件的导通角控制电流的大小,从而控制负载上的直流电压。
1.整流电压控制整流电压的控制是通过改变可控硅器件的导通角来实现的。
导通角越大,整流电压越高。
因此,设计需要确定可控硅器件的导通角范围,以满足负载对直流电压的需求。
2.整流电压波动限制为了使整流电压稳定,设计中需要考虑添加滤波电容以限制整流电压的波动。
滤波电容的选取需要根据负载电流和波动限制来确定。
一般情况下,电容的容值越大,波动越小。
3.整流电流控制为了保护负载和整流电路中的可控硅器件,需要考虑整流电流的控制。
可以通过添加电流限制保护装置,当整流电流超过设定值时进行限制。
4.整流效率和功率因数设计中还需要考虑整流电路的效率和功率因数。
整流电路的效率可以通过合理选择变压器和可控硅器件来提高。
功率因数则可以通过加入功率因数校正电路来提高。
5.控制电路设计控制电路包括触发电路和控制电压调节电路。
触发电路用于触发可控硅器件的导通;控制电压调节电路用于调节整流电压的大小。
三相半波可控整流电路设计

沈阳大学沈阳大学沈阳大学课程设计说明书N O.4沈阳大学课程设计说明书N O.4沈阳大学课程设计说明书N O.5沈阳大学课程设计说明书N O.6沈阳大学沈阳大学沈阳大学课程设计说明书N O.5沈阳大学课程设计说明书N O.5沈阳大学整流电压平均值计算分两种情况:1)α≤30°时,负载电流连续,有Ud=1.17 U2cosα当α=0°时,Ud最大,为Ud=1.17 U2。
2)当α﹥30°时,负载电流断续,晶闸管导通角减小,此时有Ud=0.675 U2[1+ cos(30°+α)]Ud/ U2随α的变化而变化。
负载电流平均值为Id=Ud∕R从晶闸管承受的最大反相电压,不难看出变压器二次线电压峰值,即U RM=2.45 U2由于晶闸管阴极与零线间的电压即为整流输出电压Ud,其最小值为零,而晶闸管阳极与零线间的最高电压等于变压器二次侧的峰值,因此晶闸管与阴极间的最大正向电压等于变压器二次相电压的峰值,即U FM=1.41 U2由于负载电流连续,Ud=1.17 U2cosα变压器二次电流即晶闸管电流的有效值为I2=I VT=0.577I d由此可求出晶闸管的额定电流为I VT(AV)=0.368I d晶闸管的两端电压波形如图所示,由于负载电流连续,因此晶闸管最大正反相电压峰值均变为变压器二次侧峰值电压,即U FM= U RM=2.45 U2图中所给I d波形有一定的脉动,与分析单相整流电路阻感负载时所示的I d波形有所不同。
这是电路工作的实际情况,因为负载中电感量不可能也不必非常大,往往只要能保证负载电流连续即可,这样I d实际上是有波动的,不是完全平直的水平线。
通常为简化分析及定量计算,可以将I d近似为一条水平线,这样近似对分析和计算的准确性并不产生很大影响。
2.设计方案论证、选择。
3.电路设计:①单元电路的设计;②参数计算③器件选择;④绘制电路原理图;4.撰写课程设计报告(说明书)。
第七讲三相半波可控整流ppt课件

a =0时的工作原理分析 a)
变压器二次侧a相绕组和晶闸管
VT1的电流波形,变压器二次绕
u2 a =0 ua
R
ub
uc
组电流有直流分量。
b)
O wt1
wt2
wt3
wt
晶闸管的电压波形,由3段组成。
uG c)
O ud
wt
a=30的波形(图2-13)
d) O
wt
i VT 1
特点:负载电流处于连续和断续
i
c
O i
d
wt
—ud波形中出现负的部分。
O
wt
id波形有一定的脉动,但为简
化分析及定量计算,可将id近
Ou
ac
wt
似为一条水平线。
阻 感 负 载 时 的 移 相 范 围 为 图2-16 三相半波可控整流电路,阻
90。
感负载时的电路及a =60时的波形
1 三相半波可控整流电路
数量关系
由于负载电流连续, Ud可由式(2-1)求出,即
1 三相半波可控整流电路
变压器二次电流即晶闸管电流的有效值为
I2 IVT
1 3
Id
0.577Id
晶闸管的额定电流为
(2-6)
I VT(AV)
IVT 1.57
0.368Id
(2-7)
晶闸管最大正、反向电压峰值均为变压器二次线
电压峰值
UFM URM 2.45U2
(2-8)
三相半波的主要缺点在于其变压器二次电流 中含有直流分量,为此其应用较少。
1 三相半波可控整流电路
负载电流平均值为
Id
Ud R
(2-3)
三相半波可控整流电路的设计

、八、■刖言本课程设计的题目是三相半波可控整流电路的设计,三相半波可控整流电路是最基本的三相可控整流电路。
需要设计的此三相半波可控整流电路带阻感负载,电感为极大值,根据这些条件及三相半波可控整流电路的工作原理设计出该三相半波可控整流电路图。
用PSIM仿真软件对设计结果进行校验,验证其正确性。
在设计电路与仿真结果的过程中,将更清晰的了解三相半波可控整流电路的原理。
目录1电路设计参数说明..................................................................... 仁2电路原理图设计....................................................................... 仁2.1电路工作原理说明................................................................1..2.2电路图的设计.................................................................... 2.. 3电路仿真............................................................................ 2.. 4电路各参数计算......................................................................3. 5心得与体会.........................................................................4..参考文献............................................................................. 4...三相半波可控整流电路的设计1电路设计参数说明三相半波可控整流电路:U2=200V,带电阻电感负载,R=8Q , L值极大,当口= 75°。
三相半波可控整流电路(阻感负载)

1引言整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
2 三相可控整流电路当整流负载较大,或要求直流电压脉动较小,易铝箔时,应采用三相整流电路,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
3 三相半波可控整流电路(阻感性负载)3.1 工作原理如果负载为阻感负载,且L 值很大,则整流电路Id 的波形基本是平直的,流过晶闸管的电流接近矩形波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术课程设计说明书三相半波可控整流电路设计学生姓名:李明雨学号:1307044353学生姓名:李秋月学号:1307044357学院:计算机与控制工程学院专业:电气工程及其自动化指导教师:李晓秦鹏2016年 1月中北大学课程设计任务书2015/2016 学年第一学期学院:计算机与控制工程学院专业:电气工程及其自动化学生姓名:李明雨学号:1307044353 学生姓名:李秋月学号:1307044357 课程设计题目:三相半波可控整流电路设计起迄日期: 2015年12月27日~2016年1月8日课程设计地点:德怀楼八层虚拟仿真实验室指导教师:李晓秦鹏学科部副主任:刘天野下达任务书日期: 2015 年 12月 26日课程设计任务书课程设计任务书目录1 引言 (1)2 设计方案论证 (2)2. 1 电路原理图 (2)2.2 设计指标 (2)2.3 工作原理 (2)3 参数的计算 (6)4 触发角参数计算 (7)5 触发电路的设计 (7)6 硬件电路设计及描述 (8)6.1 建立仿真模型 (8)6. 2 仿真结果与分析 (8)7 总结 (10)8 附录 (11)参考文献 (12)1 引言整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。
大多数整流电路由变压器、整流主电路和滤波器等组成。
当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。
其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
随着时代的进步和科技的发展,拖动控制的电机调速系统在工农业生产、交通运输以及日常生活中起着越来越重要的作用,因此,对电机调速的研究有着积极的意义.长期以来,直流电机被广泛应用于调速系统中,而且一直在调速领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的起动性能,能较平滑和经济地调节速度。
因此采用直流电机调速可以得到良好的动态特性。
由于直流电动机具有优良的起、制动性能,宜与在广泛范围内平滑调速。
在轧钢机、矿井卷机、挖掘机、金属切削机床、造纸机、高层电梯等需要高性能可控硅电力拖动的领域中得到广泛应用。
近年来交流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和在时间上都比较成熟,而且从反馈闭环控制的角度来看,它又是交流拖动系统的基础,长期以来,由于直流调速拖动系统的性能指标优于交流调速系统。
因此,直流调速系统一直在调速系统领域内占重要位置。
熟悉单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
又因为它接在三相电网的一相上,当容量较大时易造成三相电网不平衡,因而只用在容量较小的地方。
一般负载功率超过4kw要求直流电压脉动较小时,可以采用三相可控整流电路。
悉三相半波可控整流电路带电阻负载工作原理,研究可控整流电路在电阻负载工作状态。
通过设计培养我们对电子线路的分析与应用能力、电子器件的应用能力。
2 设计方案论证设计题目:三相半波可控整流电路设计2.1 电路原理图图1 三相半波可控整流电路原理图为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。
三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。
2.2 设计指标1)电源电压:三相交流U2:100V/50Hz2)输出功率:500W3)触发角α=120°4)纯电阻负载2.3 工作原理图 1.1 三相半波可控整流电路电阻负载α=00时的波形图 1.2三相半波可控整流电路电阻负载α=300时的波形图 1.3三相半波可控整流电路电阻负载α=600时的波形稳定工作时,三个晶闸管的触发脉冲互差120º,规定ωt=π/6为控制角α的起点,称为自然换相点。
三相半波共阴极可控整流电路自然换相点是三相电源相电压正半周波形的交叉点,在各相相电压的π/6处,即ωt1、ωt2、ωt3 ,自然换相点之间互差2π/3,三相脉冲也互差120º。
在ωt1时刻触发VT1,在ωt1~ωt2区间有uu>uv、uu>uw,u相电压最高,VT1承受正向电压而导通,输出电压ud=uu。
其他晶闸管承受反向电压而不能导通。
VT1通过的电流iT1与变压器二次侧u相电流波形相同,大小相等。
在ωt2时刻触发VT2,在ωt2~ωt3区间v相电压最高,由于uu<uv,VT2承受正向电压而导通,ud=uv。
VT1两端电压uT1=uu-uv= uuv<0,晶闸管VT1承受反向电压关断。
在VT2导通期间,VT1两端电压uT1= uu-uv= uuv。
在ωt2时刻发生的一相晶闸管导通变换为另一相晶闸管导通的过程称为换相。
在ωt3时刻触发VT3,在ωt3~ωt4区间w相电压最高,由于uv<uw,VT3承受正向电压而导通,ud=uw。
VT2两端电压uT2= uv-uw=uvw<0,晶闸管VT2承受反向电压关断。
在VT3导通期间VT1两端电压uT1= uu-uw= uuw。
这样在一周期内,VT1只导通2π/3,在其余4π/3时间承受反向电压而处于关断状态。
只有承受高电压的晶闸管元件才能被触发导通,输出电压ud波形是相电压的一部分,每周期脉动三次,是三相电源相电压正半波完整包络线,输出电流id与输出电压ud波形相同(id=ud/R)。
电阻性负载α=0º 时,VT1在VT2、VT3导通时仅承受反压,随着α的增加,晶闸管承受正向电压增加;其他两个晶闸管承受的电压波形相同,仅相位依次相差120º。
增大α,则整流电压相应减小。
α=30º是输出电压、电流连续和断续的临界点。
当α<30º时,后一相的晶闸管导通使前一相的晶闸管关断。
当α>30º时,导通的晶闸管由于交流电压过零变负而关断后,后一相的晶闸管未到触发时刻,此时三个晶闸管都不导通,直到后一相的晶闸管被触发导通。
从上述波形图可以看出晶闸管承受最大正向电压是变压器二次相电压的峰值,UFM =U2,晶闸管承受最大反向电压是变压器二次线电压的峰值,URM=× U2 =U2。
α=150º时输出电压为零,所以三相半波整流电路电阻性负载移相范围是0º~150º。
3 参数的计算三相桥式全控整流电路中,整流输出电压d u 的波形在一个周期内脉动3次,且每次脉动的波形相同,因此在计算其平均值时,只需对一个脉波(即1/3周期)进行计算即可。
对于电阻性负载而言,当α<300时,例如α=00,上图1.1所示,各晶闸管上的触发脉冲,其相序与电源的相序相同,各相触发脉冲依次间隔1200,在一个周期内,三相电源轮流向负载供电,每相晶闸管各导电1200,负载电流是连续的。
增大α值,即触发脉冲后移,则整流电压相应减小。
当α=300时,如上图1.2所示,从输出电压、电流的波形可看出,这时负载电流处于连续和断续的临界状态,各项仍导电1200。
如果α>300,例如α=600,如上图1.3所示,当导通的一相的相电压过零变负时,该相晶闸管关断,此时下一相晶闸管虽然承受正向电压,但它的触发脉冲还未到,不会导通,姑输出电压和电流都为零,直到下一相触发脉冲出现为止,显然电流断续,各晶闸管导电时间都小于1200。
如果α角继续增大,那么整流电压将越来越小。
当α=1500时,整流输出电压为零。
故电阻负载时要求的移相范围为1500。
下面分两种情况来计算整流电压的平均值:(1)α≤30︒时,负载电流连续,有:(公式3-1)当00α=时,d U 为最大,d d02U =U =1.17U 。
(2)a >30︒时,负载电流断续,晶闸管导通角减小,此时有:(公式3-2)当0150α=时, d U =0566d 221sin () 1.17cos 2/3U td t U ππααωωαπ++==⎰6d 221sin ()0.675[1cos(/6)]2/3U td t U ππαωωπαπ+==++⎰4 触发角参数计算1) 当电阻两端的平均电压为72V 时:根据公式3-1可得,029.5α=2) 当电阻两端的平均电压为82V 时:根据公式3-2可得,07.6α=5 触发电路的设计触发器输入端与变压器二次侧电压对应连接,分别连接晶闸管的三个门极端。
每个触发脉冲相差120°,依次触发晶闸管。
为避免触发信号过小,在触发器输出端连接一放大器,放大脉冲信号10倍。
如图所示:图5-1 三相半波整流电路触发电路6 硬件电路设计及描述6.1 建立仿真模型示波器六个通道信号依次是:①三相电源电压;②三相电源电流;③同步脉冲信号;④晶闸管1VT的电流,晶闸管1VT的电压;⑤电阻性负载电流di;⑥电阻性负载电压dU。
图 6-1 三相半波可控整流电路(电阻性负载)的MA TLAB仿真模型6.2 仿真结果与分析触发角α=0°,MATLAB仿真波形如下:U d=72V时,MATLAB仿真波形如下:U d=82V时,MATLAB仿真波形如下:7 总结两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。
课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程。
“千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义。
我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。
通过这次设计,本人在多方面都有所提高,综合运用本专业所学课程的理论和实际知识进行一次设计工作的训练从而培养和提高学生独立工作能力,巩固与扩充了整流电路设计等课程所学的内容,掌握整流电路设计的方法和步骤,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。
在设计过程中对三相半波可控整流电路的工作原理有了更深入的了解。
三相半波可控整流电路的主要缺点在于其变压器二次电流中含有直流分量,为此其应用较少。
在前面分析整流电路时,均未考虑包括变压器漏感在内的交流侧电感的影响,认为换相是瞬时完成的。
但实际上变压器绕组总有漏感,该漏感可用一个集中的电感LB表示,并将其折算到变压器二次侧。
由于电感对电流的变化起阻碍作用,电感电流不能突变,因此换相过程不能瞬间完成,而是会持续一段时间。
同时也对matlab这一款庞大的仿真软件有了初步的认识。
对matlab中的simulink 仿真模块有了深入了解。