2013年考研数三真题及答案解析(完整版)

合集下载

2013年考研数三真题与解析

2013年考研数三真题与解析
则 ( )
(A)
(B)
(C)
(D)
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)设曲线 和 在点 处有公共的切线,则 ________。
(10)设函数 由方程 确定,则 ________。
(11)求 ________。
(12)微分方程 通解为 ________。
(13)设 是三阶非零矩阵, 为A的行列式, 为 的代数余子式,若
(22)(本题满分11分)
设 是二维随机变量, 的边缘概率密度为 ,在给定 的条件下, 的条件概率密度
(1)求 的概率密度 ;
(2) 的边缘概率密度 .
(23)(本题满分11分)
设总体 的概率密度为 其中 为未知参数且大于零, 为来自总体 的简单随机样本.
(1)求 的矩估计量;
(2)求 的最大似然估计量.
(14)设随机变量X服从标准正态分布 ,则 =________。
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分)
当 时, 与 为等价无穷小,求 与 的值。
(16)(本题满分10分)
设 是由曲线 ,直线 及 轴所围成的平面图形, 分别是 绕 轴, 轴旋转一周所得旋转体的体积,若 ,求 的值。
(19)(本题满分10分)
设函数 在 上可导, ,证明
(1)存在 ,使得
(2)对(1)中的 ,存在 使得
(20)(本题满分11分)
设 ,当 为何值时,存在矩阵 使得 ,并求所有矩阵 。
(21)(本题满分11分)
设二次型 ,记 。
(I)证明二次型 对应的矩阵为 ;

2013年考研(数学三)真题试卷(题后含答案及解析)

2013年考研(数学三)真题试卷(题后含答案及解析)

2013年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.当x→0时,用“o(x)”表示比x高阶的无穷小,则下列式子中错误的是A.x.o(x2)=o(x3)B.o(x2).o(x)=o(x3)C.o(x2)+o(x2)=o(x2)D.o(x)+o(x2)=o(x2)正确答案:D解析:2.函数的可去间断点的个数为A.0B.1C.2D.3正确答案:B解析:3.设Dk是圆域D={(x,y)|x2+y2≤1}在地k象限的部分,记Ik=(k=1,2,3,4),则A.I1>0B.I2>0C.I3>0D.I4>0正确答案:B解析:故选B。

4.设{an}为正项数列,下列选项正确的是A.若an>an+1,则(-1)n-1an收敛B.若(-1)n-1an收敛,则an>an+1C.若an收敛,则存在常数p>1,使得npan存在D.若存在常数p>1,使npan存在,则an收敛正确答案:D解析:5.设A,B,C均为n阶矩阵,若AB=C,且曰可逆,则A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:矩阵C的列向量组γ1,γ2,…,γn可由矩阵A的列向量组α1,α2,…,αn线性表出.又矩阵曰可逆,从而A=CB-1那么矩阵A的列向量组也可由矩阵C的列向量组线性表出.由向量组等价的定义可知,应选(B).或者,可逆矩阵可表示成若干个初等矩阵的乘积,于是A经过有限次初等列变换化为C,而初等列变换保持矩阵列向量组的等价关系.故选(B).6.矩阵相似的充分必要条件为A.a=0,b=2B.a=0,b为任意常数C.a=2,b=0D.a=2,b为任意常数正确答案:B解析:7.设X1,X2,X3是随机变量,且X1—N(0,1),X2—N(0,22),X3—N(5,32),Pi=P|-2≤Xi≤2|(i=1,2,3),则A.P1>P2>P3B.P2>P1>P3C.P3>P1>P2D.P1>P3>P2正确答案:A解析:8.设随机变量X和Y相互独立,且X和Y的概率分布分别为P{X+Y=2}= A.1/12B.1/8C.1/6D.1/2正确答案:C解析:填空题9.设曲线y=f(x)与y=x2-x在点(1,0)处有公共切线,则=_________.正确答案:-2解析:10.设函数z=z(x,y)由方程(z+y)x=xy确定,则=_______.正确答案:2-2ln2解析:把点(1,2)代入方程(z+y)x=xy得z(1,2)=0在(z+y)x=xy 两边同时对x求偏导数,得11.=_______.正确答案:ln2解析:12.微分方程y”-y’+ 1/4 y=0的通解为y=______.正确答案:e1/2(c1+c2x)解析:二阶齐次方程的特征方程为λ2-λ+1/4=0,解得λ1=λ2=1/2所以y=e1/2(c1+c2x)13.设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.正确答案:-1解析:14.设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_______.正确答案:2e2解析:解答题解答应写出文字说明、证明过程或演算步骤。

2013考研数三真题及解析

2013考研数三真题及解析

2013年全国硕士研究生入学统一考试数学三试题一、选择题:1~8 小题,每小题4 分,共32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)当x 0时,用o(x) 表示比x高阶的无穷小,则下列式子中错误的是()(A)x o x(2) o x( 3)(B)o x()o x(2) o x( 3)(C)o x(2) o x(2 ) o x( 2 )(D)o x() o x(2) o x( 2 )| x |x 1(2)函数f x( ) )x x( 1)ln | x |(A)0(B)1(C)2(D)3(3)设D k 是圆域D {(x y, ) | x2 y2 1}位于第k 象限的部分,记I k (y x dxdy)k 1,2,3,4,D k则()(A)I1 0(B)I2 0(C)I3 0(D)I4 0(4)设{a n}为正项数列,下列选项正确的是()2(A ) 若a n a n 1,则(1)n 1a n 收敛n 1(B )若(1)n 1a n 收敛,则a n a n 1n 1(C )若a n 收敛,则存在常数 P 1,使 lim n a Pn 存在nn 1(D ) 若存在常数P 1,使 lim n a Pn 存在,则a n 收敛nn1(5)设矩阵 A,B,C 均为 n 阶矩阵,若 AB C ,则 可逆,则B(A )矩阵 C 的行向量组与矩阵 A 的行向量组等价(B )矩阵 C 的列向量组与矩阵 A 的列向量组等价(C )矩阵 C 的行向量组与矩阵 B 的行向量组等价(D )矩阵 C 的行向量组与矩阵 B 的列向量组等价1 a 12 0(6)矩阵a b a 与0 b 0相似的充分必要条件为1 a 100 0(A ) a 0,b2(B ) a 0,b 为任意常数 (C ) a 2, b(D ) a2,b 为任意常数(7)设 X 1, ,X 2X 3 是随机变量,且 X 1~N(0,1),X2~N(0,2),X 23 ~ N (5,3 )2 ,P j P {2X j 2}( j 1,2,3), 则( )(A)P1 P2 P3(B)P2 P1 P3(C)P3 P1 P2(D)P1 P3 P2(8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为,则P X{Y 2} ( )(A)(B)(C)(D)二、填空题:914 小题,每小题 4 分,共24 分,请将答案写在答题纸...指定位置上.(9)设曲线y f x( ) 和y x2 x在点(0,1) 处有公共的切线,则lim nfn ________。

2013考研数学三【解析版】【无水印】

2013考研数学三【解析版】【无水印】

(A)矩阵 C 的行向量组与矩阵 A 的行向量组等价
(B)矩阵 C 的列向量组与矩阵 A 的列向量组等价
(C)矩阵 C 的行向量组与矩阵 B 的行向量组等价
(D)矩阵 C 的列向量组与矩阵 B 的列向量组等价
答案:(B)
解析:∵B 可逆.∴A(b1…bn)=C=(c1…cn)
∴Abi=Ci.即 C 的列向量组可由 A 的列向量组表示.
lim f(x)= lim x ln | x |
x1
x1 x(x 1) ln | x |
而 f(0),f(1)无定义,故 x=0,x=1 为可去间断点.
(3)设 Dk 是圆域 D {(x, y) | x2 y2 1}位于第 k 象限的部分,记 Ik ( y x)dxdy k 1, 2,3, 4 ,
Dk
则( )
(A) I1 0 (B) I2 0 (C) I3 0 (D) I4 0 答案:(B)
解析:
I

k
(y
x)dxdy
Dk
k /2
d
(k 1) /2
1
(r
sin
r
cos
)rdr
1
0
3
k /2
(sin cos )d
(k 1) /2
1
3
k /2
(sin
(k 1) /2
cos )d=1 3
∵AB=C ∴A=CB-1=CP.
同理:A 的列向量组可由 C 的列向量组表示.
1 a 1 2 0 0
(6)矩阵
a
b
a

0
b
0
相似的充分必要条件为
1 a 1 0 0 0
(A) a 0, b 2

2013考研数三真题及解析

2013考研数三真题及解析

2013年全国硕士研究生入学统一考试数学三试题的,请将所选项前的字母填在答题纸 指定位置上.()当时,用表示比高阶的无穷小,则下列式子中错误的是() (A) x o(x 2) =O (X 3)23(B) O(x) O (x ) =O (X ) (C) o(x 2) o(x 2) =o(x 2) (D) O(x) O (X 2) =O (X 2)(A ) 0 (B ) 1 (C ) 2 (D ) 3(3)设 D k 是圆域 D ={(x,y )|x 2 y^1}位于第 k 象限的部分,记 I^ (^x )dxdy k=1,2,3,4 ,D k则() (A ) I 10 (B )I 2 0 (C )I 3 0 (D )I 4(4)设{a n }为正项数列,下列选项正确的是()oO(A )若 a n ■ a n 1,则二(T )n 'a n 收敛n =1QO(B )若7 (-1)心务收敛,则a n a n1n ±(2)函数 f (x)=x(x 1)ln |x|的可去间断点的个数为P 1,使lim n P a n 存在,则a n 收敛Y n 二(5)设矩阵A,B,C 均为n 阶矩阵,若 AB 二C,则B 可逆,则 A 的行向量组等价 A 的列向量组等价 B 的行向量组等价 B 的列向量组等价0、0相似的充分必要条件为°」(A) a=O,b =2(B) a =0, b 为任意常数 (C) a=2,b=0(D) a =2,b 为任意常数(7)设 X i , X 2, X 3是随机变量,且 X i ~N(0,1), X 2~N(0,22), P j 二 P{-2 沐)空2}(j =1,2,3),则()(A ) P>P 2〉F 3(B) P 2 AR A F3 (C) /P >F2 (D) P AR >F 2,X0 1 2 3YTi1P1 21 41 8q 8P1 31 31 3则 ()*1 a 「‘2 0 (6)矩阵aba 与 0 bJ a b£ 0(C )若a a n 收敛,则存在常数n 4P 1,使 lim n P a n 存在(D )若存在常数 ~ N(5,32),(A) 矩阵C 的行向量组与矩阵 (B) 矩阵C 的列向量组与矩阵 (C) 矩阵C 的行向量组与矩阵 (D) 矩阵C 的行向量组与矩阵112 18 1 61 2二、 填空题:9_14小题,每小题4分,共24分,请将答案写在答题纸.指定位置上.、 2、‘' n (9) ------------------------------------------------------------------------ 设曲线y=f (x )和v=x— x 在点(0,1)处有公共的切线,则lim nf -------------------------------------------------- i =。

2013年考研数三真题与答案解析(完整版)

2013年考研数三真题与答案解析(完整版)

2013年考研数三真题与答案解析(完整版)2013 年考研数三真题及答案解析一、选择题1 —8 小题.每小题4 分,共 32 分.、1.当 x0 时,用 o(x) 表示比 x 高阶的无穷小,则下列式子中错误的是()( A ) x o ( x 2 ) o(x 3 )( B ) o( x) o(x 2 ) o( x 3 )( C ) o( x 2 ) o( x 2 )o( x 2 )( D ) o(x) o( x 2 ) o( x 2 )【详解】由高阶无穷小的定义可知( A )( B )( C )都是正确的,对于( D )可找出反例,例如当 x 0时 f (x)x 2x 3 o( x), g( x)x 3o(x 2 ) ,但 f (x)g(x)o( x) 而不是o( x 2 ) 故应该选( D ).xx2.函数 f ( x)1的可去间断点的个数为()x( x1) ln x(A )0( B )1( C )2(D )3【详解】当 x ln xx1e xln x1 ~ x ln x ,0 时, xxx ln xlim f ( x) limx1lim 1 ,所以 x 0是函数 f ( x) 的可去间断点.x 0x 0x( x 1) ln xx 0x ln xxx ln xlim f ( x) limx1lim 1,所以 x1 是函数 f ( x) 的可去间断点.x 1x 1x( x 1) ln xx 02 x ln x2xxxln xlim f ( x)lim1lim,所以所以 x1不是函数 f (x) 的(x 1) ln xx1x1x(x 1) ln xx 1可去间断点.故应该选( C ).3.设 D k 是圆域 D( x, y) | x 2y 2 1 的第 k 象限的部分,记 I k ( y x)dxdy ,则()( A ) I 1B I 2 0C 3 0D I 4 0()() I()【详解】由极坐标系下二重积分的计算可知k 2121I k( yx)dxdy( k 1) d(sincos )rdrD k321kcos |k 2sin13所以 I 1I 30,I 22 , I 4 2 ,应该选( B ).3 34.设 a n 为正项数列,则下列选择项正确的是()(A )若 a na n 1 ,则( 1) n 1 a n 收敛;n 1k2 (sinsin ) dk 1 2(B )若( 1)n 1 a n 收敛,则 a n a n 1 ;n 1(C )若a n 收敛.则存在常数 P 1,使 lim n p a n 存在;n 1n(D )若存在常数 P 1,使 lim n p a n 存在,则a n 收敛.nn 1【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的( A )( B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项( A ),但少一条件 lim a n0 ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,n选项( B )也不正确,反例自己去构造.5.设A,B,C均为 n 阶矩阵,若AB=C,且B可逆,则( A )矩阵 C 的行向量组与矩阵 A 的行向量组等价.( B )矩阵 C 的列向量组与矩阵 A 的列向量组等价.( C )矩阵 C 的行向量组与矩阵 B 的行向量组等价.( D )矩阵 C 的列向量组与矩阵 B 的列向量组等价.【详解】把矩阵 A ,C 列分块如下: A 1, 2,, n , C 1 , 2 , , n ,由于AB=C,则可知i b i1 1 b i 2 2b in n (i 1,2, , n) ,得到矩阵 C 的列向量组可用矩阵 A 的列向量组线性表示.同时由于B 可逆,即 A CB 1 ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵 A 的列向量组等价.应该选(B ).1 a 12 06.矩阵 a b a与矩阵0 b 0 相似的充分必要条件是1 a 10 0() a0,b2() a 0, b 为任意常数AB( C ) a 2,b 0(D ) a 2 , b 为任意常数2 01 a 12 0 0 【详解】注意矩阵 0 b0 是对角矩阵,所以矩阵 A= a ba 与矩阵0 b 0 相 0 01 a 10 0似的充分必要条件是两个矩阵的特征值对应相等.1a 1 E Aa b a ( 2(b 2)2b 2a 2 )1a1从而可知 2b 2a 2 2b ,即 a 0 , b 为任意常数,故选择( B ).7 .设 X 1,X 2,X 3是随机变量,且X 1~ N (0,1), X 2 ~ N(0,22), X 3 ~ N(5,32) ,P iP 2 X i2 ,则(A ) P 1 P 2 P 3 (B ) P 2 P 1 P 3 (C ) P 3P 2 P 1(D ) P 1P 3P 2【详解】若 X ~ N( , 2),则 X~ N(0,1)P 1 2 (2) 1, P 2 P2X 22PX 2 12 (1) 1,12P 3 P2X 32 P2 5 X3 52 5 7 73331)33,P 3P 217 3 (1) 0.3(1)23故选择( A ).8.设随机变量 X 和 Y 相互独立,且X 和 Y 的概率分布分别为X0 1 2P1/21/41/8Y -1 0 P1/31/3则PXY2 ()(A )1(B )1(C )1(D ) 123P 1/8 1 1/312【详解】PXY2PX1,Y1PX2,Y0PX1111 3,Y12424612,故选择( C).二、填空题(本题共 6 小题,每小题 4分,满分 24分 .把答案填在题中横线上)9.设曲线y f (x) 和 y x 2x 在点1,0处有切线,则lim nf n.n n2【详解】由条件可知 f 10, f ' (1)1.所以f12 n n f (1)lim nf lim2 2 f '(1)2n22n 2n nn22n10.设函数z z x, y 是由方程z y x xy 确定,则z|(1,2 ).x【详解】设 F x, y, z F x x, y, z( z y) x l z y)当 x 1, y 2 时,z0 ,所以11.ln x2 d x.(1x)1z y x xy,则)y, F z (x,ny, z) x(z y) x 1,(z|(1, 2 )2 2 ln 2 .x【详解】1ln x2 dx1ln xd1ln x |111dx ln x|1 ln 2 (1 x) 1 x1x x(1 x)x112.微分方程y y 1 y0 的通解为.411【详解】方程的特征方程为r0,两个特征根分别为412,所以方程通2x解为 y (C1 C 2 x) e2,其中 C1 ,C2为任意常数.13.设A aij是三阶非零矩阵,A 为其行列式,A ij为元素a ij的代数余子式,且满足Aij aij0(i , j1,2,3) ,则A=.【详解】由条件 Aaij0(i, j 1,2,3) 可知 AA* T 0 ,其中 A * 为 A 的伴随矩阵,从而可知A* A *T3 1A ,所以 A 可能为1或 0.An,r (A)n但由结论 r ( A * )1, r ( A) n 1 可知, A A * T 0 可知 r ( A)r ( A*) , 伴随矩阵的秩只0, r ( A) n1能为 3,所以 A 1.14.设随机变量 X 服从标准正分布 X ~ N ( 0,1) ,则 E Xe 2X .【详解】E Xe 2 X1 x 2x(x 2)2e 2(x 2) 2xee 2dxe2dx( x 22)e 2dx222 2e 2t 2t 2te 2 dt 2e 2 dte 2 E( X ) 2e 2 2e 2 .2所以为 2e 2 .三、解答题15.(本题满分 10 分)当 x0时,1 cosx cos2x cos3x 与 ax n 是等价无穷小,求常数a, n .【分析】主要是考查 x 0 时常见函数的马克劳林展开式.【详解】当 x 0时,22 ),c x o 1 s xo( x1(2x) 22cos2 x1 o(x2 ) 1 2 x 2 o(x 2 ),2cos3x11(3x)2o( x 2 ) 1 9 x 2 o( x 2 ) ,2 2所以1 cosx cos2xcos3x1 (1 1 x2 o( x 2 ))(12x 2 o(x 2 ))(1 9 x 2o( x 2 )) 7x 2o( x 2 )22由于 1cosx cos2 x cos3x 与 ax n 是等价无穷小,所以 a 7, n 2 .16.(本题满分10 分)设 D 是由曲线 y3x ,直线 x a (a 0) 及 x 轴所转成的平面图形,V x ,V y 分别是 D 绕 x轴和 y 轴旋转一周所形成的立体的体积,若10V x V y ,求 a 的值.【详解】由微元法可知a252 dxa3a 3V xy x 3 dx;5aa 47x 3dx6V y2 xf ( x) dx 2;0 7由条件 10V x V y ,知 a 7 7 .17.(本题满分 10 分)设平面区域 D 是由曲线 x3 y, y3x, x y 8 所围成,求x 2 dxdy .D【详解】x 2dxdyx 2dxdyx 2dxdy2x 2dx x dyx 2dx x dy416 .3 x6 8 xDD 1D 20 3318.(本题满分 10 分)设生产某产品的固定成本为6000 元,可变成本为20 元 / 件,价格函数为 P60Q,(P1000是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求:( 1)该的边际利润.( 2)当 P=50 时的边际利润,并解释其经济意义.( 3)使得利润最大的定价 P .【详解】(1)设利润为Q 2 y ,则 y PQ (6000 20Q ) 40Q6000 ,1000边际利润为 y'40Q .500( 2)当 P=50 时, Q=10000,边际利润为 20.经济意义为:当 P=50 时,销量每增加一个,利润增加20.(3)令 y'0,得Q20000 , P20000 40.6019.(本题满分 10 分)设函数 f x 在 [0,) 上可导, f0 0 ,且 lim f (x)2 ,证明x(1)存在 a 0 ,使得 f a1;(2)对( 1)中的 a,存在(0, a) ,使得 f ' ( 1 .)a【详解】证明( 1)由于lim()2,所以存在X0,当 x X 时,有3,f x5x f (x)22又由于 f x在 [0,) 上连续,且 f 00 ,由介值定理,存在a0 ,使得f a 1;(2)函数f x 在 [0,a] 上可导,由拉格朗日中值定理,存在(0, a) ,使得 f ' ()f (a) f (0)1.a a20.(本题满分 11 分)1a,问当 a, b 为何值时,存在矩阵C,使得AC CA B ,并求出设 A01b1所有矩阵 C.【详解】显然由 AC CA B 可知,如果C存在,则必须是x1x22 阶的方阵.设C,x3x4则 AC CA B 变形为x2ax3ax1x2ax40 1,x1x3x4x2ax3 1 bx2ax30即得到线性方程组ax1x2ax41,要使 C 存在,此线性方程组必须有解,于是对方x1x3x41x2ax3b程组的增广矩阵进行初等行变换如下01a0010111a10a101a00 A |b011100001,1a01a0b0000b所以,当a1, b0 时,线性方程组有解,即存在矩阵C,使得AC CA B .10111此时, A | b011000000,x1111所以方程组的通解为x x20C11C2,也就是满足 AC CA B 的矩阵x3010x4001C为C1C1C2C1,其中 C1 , C2为任意常数.C1C221.(本题满分 11 分)设二次型 f ( x1 , x2 , x3 ) 2(a1 x1 a2 x2 a3 x3 ) 2(b1 x1 b2 x2 b3 x3 )2.记a1b1a2,b2.a3b3(1)证明二次型 f 对应的矩阵为 2T T ;(2)若,正交且为单位向量,证明f在正交变换下的标准形为2 y12y22.【详解】证明:(1)f ( x1, x2 , x3 ) 2(a1 x1 a2 x2a3 x3 ) 2(b1 x1b2 x2b3 x3 ) 2a1x1b12 x1, x2 , x3 a2a1 ,a2 , a3 x2x1 , x2 , x3 b2 b1, b2 ,b3a3x3b3x1x1x1, x2 , x3 2T x2x1, x2 , x3T x2x1x1, x2 , x3 2T T x2x3所以二次型 f 对应的矩阵为2T T .证明( 2)设A2T T ,由于1, T0则 A2T T22T2,所以为矩阵对应特征值向量;A2T T2T2,所以为矩阵对应特征值量;x1x2x31 2 的特征21的特征向而矩阵 A 的秩r ( A) r ( 2T T )r (2T ) r (T) 2,所以30 也是矩阵的一个特征值.故 f 在正交变换下的标准形为 2 y12y22.22.(本题满分11 分)设 X,Y是二维随机变量, X 的边缘概率密度为f X( x)3x2 ,0x 1 ,在给定0,其他X x(0x1) 的条件下,Y的条件概率密度为f Y( y / x)3y 2,0y x,x 3.X0,其他(1)求X ,Y的联合概率密度 f x, y ;(2) Y 的的边缘概率密度f Y ( y) .【详解】( 1)X , Y的联合概率密度 f x, y:f x, y f Y ( y / x) f X ( x)9 y 2,0 x1,0y x xX0,其他(2) Y 的的边缘概率密度f Y ( y) :f Y ( y) f (x, y)dx 1 9 y29 y2ln y,0 y 1dxy x23.(本题满分11 分)2设总体X 的概率密度为 f (x; )x 3e x , x 00,,其中为为未知参数且大于零,其他X1X 2,X n为来自总体 X 的简单随机样本.(1)求的矩估计量;(2)求的极大似然估计量.【详解】( 1)先求出总体的数学期望E( X)2E(X)xf (x)dx2e x dx,x令 E(X)1nX X i,得的矩估计量n n 1(2)当x i0(i1,2, n) 时,似然函数为1 nX i.Xn i1n22nn 1xx iL ( )3 ei3ei 1n,i1x ix ii 1取对数, ln L() 2nlnn1 3nln x i ,x ii 1i 1令 d ln L( )0 ,得2nn10 ,di 1 xi解得的极大似然估计量为.。

2013数学三解析

2013数学三解析

2013年数学(三)真题解析一、选择题(1) 【答案】(D ).【解】 由 lim * °^2)= lim=0,得(A )正确;HfOX "° X,O (J7 ) • O (J7 2 ) .. O (H ) O (g2) c A 由 lim ----------:--------= lim -------- •———=0,得(E )正确;h —o x H —o x x 由 lim O2)二。

2)=lim 匹孚 + lim 匕^=0,得(C )正确;x-*0 X工~0XH —0X2 I 3取 J : 2 —o (JC ) 9 X 3 =O {x 2 ),因为 lim ----2 =1工0,所以。

(工)+o (工2 ) =0 (工2 )不对 9工-*0 X 事实上 O (2)+ O (J :2 ) = O (J7),应选(D )・(2) 【答案】(C ).【解】 显然一1,0,1为 2)的所有间断点.(一"一1 严小一1 r Jn (—工)_ r 1由塑工(工+l )ln (r )= J^iHCz+l )ln (—工)—’四心(工+1)111(—工)一工巴y +1一 ,得工=—1是无穷间断点,不是可去间断点.. x 1 — 1 e jlnj — 1由凹+ l)ln 工=凹工(工+ l)ln 工lim-L 1 X x\n jc(•z + l)ln 3C,得工=1为可去间断点.jc In jc =!忙(工+1山工T , x In (— x ) _乂 Cz+l)ln (— H ) x-^o~ z (攵 + l)ln( oc ) x -»o - 2 (z + l)ln( jc )而f(0)无定义,故工=0,2 = 1为可去间断点,应选(C).(3)【答案】(B).由lim •r f ()+X X — 1 ].-- ----―――-----= lim X (j? + l)ln re zfo+(一"一1limx-^Olim x-*0x (a : + l)ln h严F 一 1I9得 lim/Cz) = 1.X —0严 ]【解】 由对称性得1| =0, 13 =0.12 = jj Ly +(— z )]dcr>0 (因为 jy + (— 2)>0),°2i 4 ~JJLy +(一2)]册<0 (因为夕 + (— x ) vo),应选(B ).°4(4)【答案】(D).【解】 方法一令lim/a ” = lim 牛=A $ 0.当 A = 0 时,取 £0 =1,存在 N 〉0,当 zz 〉N 时,| -y — 0 | < 1,从而 0 W a ” <C —,因为s 1收敛,所以由比较审敛法的基本形式得工s 收敛;” =1 九 n = 18 OO = OO当A>0时,由比较审敛法的极限形式得级数与敛散性相同,因为工*收n = 1 n = 1 九 n = l 兀敛,所以收敛,应选(D).n = 1I -I 00方法二 取a ” =-------,显然a ” > a 卄1 ,因为lima ” =1 # 0,所以工(一1)"一。

2013研究生入学考试数三真题及答案(打印版)

2013研究生入学考试数三真题及答案(打印版)
(16)(本题满分 10 分) 设 D 是由曲线 y x 3 , 直线 x a(a 0) 及 x 轴所围成的平面图形,Vx , Vy 分别是 D 绕 x 轴, y 轴旋转一周所得旋转体的体积,若 Vy 10Vx ,求 a 的值。
1
36+16+4 1 a 7 4a 2 1
如: x o( x)则
2
(C)
(D)
o( x ) o ( x 2 ) 1 x2
(2)函数 f ( x) (A)0 (B)1 (C)2 (D)3 答案: (B) 解析: lim
x 1
| x |x 1 的可去间断点的个数为( x( x 1) ln | x |

| x |x 1 e x ln|x| x ln | x | lim lim 1. x 0 x 0 x( x 1) ln | x | x( x 1) ln | x | x( x 1) ln | x |
(8)设随机变量 X 和 Y 相互独立,则 X 和 Y 的概率分布分别为,
则 P{ X Y 2} (
)
1 12 1 (B) 8 1 (C) 6 1 (D) 2
(A) 答案: ( C) 解析:
P X Y 2 P X 1,Y 1 P X 2,Y 0 P X 3,Y 1 1 1 1 1 1 1 1 P X 1 P Y 1 P X 2 P Y 0 P X 3 P Y 1 4 3 8 3 8 3 6
P 1 P ( 2 X 1 2) (2) ( 2) 2 (2) 1 X2 0 1) 2(1) 1 P 1 P 2 2 7 X 5 7 P3 P 3 1 (1) P2 P3 P 1 P 2 P 3 3 3 3 P 2 P(1

2013考研数学三真题及答案解析

2013考研数学三真题及答案解析

解析: lim | x |x 1 lim
e x ln| x|
lim x ln | x | 1.
x1 x(x 1) ln | x | x0 x(x 1) ln | x | x0 x(x 1) ln | x |
lim f(x)= lim x ln | x | 1
x1
x1 x(x 1) ln | x | 2
Dk
则( )
(A) I1 0 (B) I2 0 (C) I3 0 (D) I4 0 答案:(B)
解析:
Ik= (y x)dxdy
Dk
k /2 d
(k 1) /2
1
(r
sin
r
cos )rdr
1
k /2
(sin cos )d
0
3 (k 1) /2
1
3
k /2 (sin
(k 1) /2
边际利润 L(P) 2000P 80000
(2)当 P=50 时的边际利润为 L(50) 2000 50 80000 2000 ,其经济意义为在 P=50 时,价格 每提高 1 元,总利润减少 2000 元。
(3)由于
L(P)
2000P
80000
0, 0,
P P
40 40

L(P)
(7)设 X1,X2,X3 是随机变量,且 X1~N(0,1),X2 ~N(0,22),X3 ~ N (5, 32 ) , Pj P{2 X j 2}( j 1, 2,3), 则( ) (A) P1 P2 P3 (B) P2 P1 P3 (C) P3 P1 P2 (D) P1 P3 P2 答案:(A)
(C) 若 n 1
an
收敛,则存在常数

2013考研数学三真题及答案

2013考研数学三真题及答案

2013考研数三真题及答案一、选择题 1—8小题.每小题4分,共32分.、1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ).2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx xx xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.5.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.【详解】把矩阵A ,C 列分块如下:()()n n C A γγγααα,,,,,,,2121ΛΛ==,由于AB=C,则可知),,2,1(2211n i b b b n in i i i ΛΛ=+++=αααγ,得到矩阵C 的列向量组可用矩阵A 的列向量组线性表示.同时由于B 可逆,即1-=CB A ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵A 的列向量组等价.应该选(B ).6.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数【详解】注意矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 是对角矩阵,所以矩阵A=⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是两个矩阵的特征值对应相等.)22)2((111122a b b aa b aaA E -++--=---------=-λλλλλλλ从而可知b a b 2222=-,即0=a ,b 为任意常数,故选择(B ).7.设321,,X X X 是随机变量,且)3,5(~),2,0(~),1,0(~23221N X N X N X ,{}22≤≤-=i i X P P ,则(A )321P P P >> (B )312P P P >> (C )123P P P >> (D )231P P P >> 【详解】若),(~2σμN X ,则)1,0(~N X σμ-1)2(21-Φ=P ,{}1)1(212122222-Φ=⎭⎬⎫⎩⎨⎧≤≤-=≤≤-=X P X P P ,{}())13737)1(3523535222333Φ-⎪⎭⎫⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ--Φ=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=X P X P P ,=-23P P 0)1(32)1(3371<Φ-<Φ-⎪⎭⎫⎝⎛Φ+.故选择(A ).8.设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为则{}==+2Y X P ( ) (A )121 (B )81 (C )61 (D )21 【详解】{}{}{}{}612412411211,30,21,12=++=-==+==+====+Y X P Y X P Y X P Y X P ,故选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n . 【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】 设()xyy z z y x F x -+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln .【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为. 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.13.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A =.【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+TA A ,其中*A 为A 的伴随矩阵,从而可知A AA A T -===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+TA A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A14.设随机变量X 服从标准正分布)1,0(~N X ,则()=XXeE 2. 【详解】()=X Xe E 2dx ex e dx ex dx exe x x x x⎰⎰⎰∞+∞---∞+∞-+--∞+∞--+-==2)2(222)2(22222)22(2221πππ22222222)(2222e e X E e dt e dt te e t t =+=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞+∞--∞+∞--π. 所以为22e .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,. 【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a . 16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰D dxdy x 2.【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx x x D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20. (3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f(2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.20.(本题满分11分)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .【详解】显然由B CA AC =-可知,如果C 存在,则必须是2阶的方阵.设⎪⎪⎭⎫⎝⎛=4321x xx x C , 则B CA AC =-变形为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛---++-+-b ax x x x x ax x ax ax x 1103243142132, 即得到线性方程组⎪⎪⎩⎪⎪⎨⎧=-=--=++-=+-bax x x x x ax x ax ax x 3243142132110,要使C 存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下()⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=b a a b a aa ab A 000010000001011101010111011010010|,所以,当0,1=-=b a 时,线性方程组有解,即存在矩阵C ,使得B CA AC =-.此时,()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000000000011011101|b A , 所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100101110001214321C C x x x x x ,也就是满足B CA AC =-的矩阵C 为⎪⎪⎭⎫⎝⎛-++=211211C C C C C C ,其中21,C C 为任意常数.21.(本题满分11分) 设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 TTββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +. 【详解】证明:(1)()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+++++=321321321321321321321321321321321321321321233221123322113212,,,,2,,,,,,,,,,2)()(2),,(x x x x x x x x x x x x x x x x x x x x x b b b b b b x x x x x x a a a a a a x x x x b x b x b x a x a x a x x x f TT TTββααββαα所以二次型f 对应的矩阵为 TT ββαα+2.证明(2)设=A TTββαα+2,由于0,1==αβαT则()ααββαααββααα2222=+=+=T TT A ,所以α为矩阵对应特征值21=λ的特征向量;()ββββααβββααβ=+=+=222T T T A ,所以β为矩阵对应特征值12=λ的特征向量;而矩阵A 的秩2)()2()2()(=+≤+=TTTTr r r A r ββααββαα,所以03=λ也是矩阵的一个特征值.故f 在正交变换下的标准形为 22212y y +. 22.(本题满分11分)设()Y X ,是二维随机变量,X 的边缘概率密度为⎩⎨⎧<<=其他,010,3)(2x x x f X ,在给定)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,0,0,3)/(32x y x y x y f XY . (1)求()Y X ,的联合概率密度()y x f ,; (2)Y 的的边缘概率密度)(y f Y .【详解】(1)()Y X ,的联合概率密度()y x f ,:()⎪⎩⎪⎨⎧<<<<=⋅=其他,00,10,9)()/(,2x y x x y x f x y f y x f X XY(2)Y 的的边缘概率密度)(y f Y :⎪⎩⎪⎨⎧<<-===⎰⎰∞+∞-其他,010,ln 99),()(212y y y dx x y dx y x f y f yY 23.(本题满分11分)设总体X 的概率密度为⎪⎩⎪⎨⎧>=-其他,00,);(32x e x x f x θθθ,其中θ为为未知参数且大于零,n X X X Λ,21为来自总体X 的简单随机样本.(1)求θ的矩估计量; (2)求θ的极大似然估计量.【详解】(1)先求出总体的数学期望E (X )θθθ===⎰⎰∞+-∞+∞-022)()(dx e xdx x xf X E x ,令∑===n n i X n X X E 11)(,得θ的矩估计量∑=∧==ni i X n X 11θ.(2)当),2,1(0n i x i Λ=>时,似然函数为⎪⎪⎭⎫⎝⎛-==-∑⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛==∏∏n i i ix n i i nni xi e x e x L 11312132)(θθθθθ,取对数,∑∑==-⎪⎪⎭⎫ ⎝⎛-=ni i n i i x xn L 11ln 31ln 2)(ln θθθ, 令0)(ln =θθd L d ,得0121=-∑=n i ix n θ,解得的极大似然估计量为.。

2013年数三真题及解析

2013年数三真题及解析

2013硕士研究生入学考试 数学三真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,用()o x 表示比x 高阶的无穷小,则下列式子中错误的是( ) (A )23()()x o x o x ⋅= (B )23()()()o x o x o x ⋅= (C )222()()()o x o x o x += (D )22()()()o x o x o x +=(2)函数||1()(1)ln ||x x f x x x x -=+的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3.(3)设k D 是圆域22{(,)|1}D x y x y =+≤位于第k 象限的部分,记()kk D I y x dxdy =-⎰⎰()1,2,3,4k =,则( )(A )10I > (B )20I > (C )30I > (D )40I >(4)设{}n a 为正项数列,下列选项正确的是( ) (A )若111,(1)n n n n n a a a ∞-+=>-∑则收敛(B )11(1)n n n a ∞-=-∑若收敛,则1n n a a +>(C )1nn a∞=∑若收敛,则存在常数1P >,使lim Pn n n a →∞存在(D )若存在常数1P >,使lim Pn n n a →∞存在,则1nn a∞=∑收敛(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价(C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价(6)矩阵1a 1a b a 1a 1⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为,则{2}P X Y +== ( ) (A )112 (B )18 (C )16 (D )12二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设曲线)(x f y =和x x y -=2在点)1,0(处有公共的切线,则=⎪⎭⎫ ⎝⎛+∞→2lim n n nf n ________。

2013年考研数三真题及答案解析(完整版)

2013年考研数三真题及答案解析(完整版)

2013年考研数三真题及答案解析一、选择题 1—8小题.每小题4分,共32分.、1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ).2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx xx xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk k k D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ; (C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.5.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.【详解】把矩阵A ,C 列分块如下:()()n n C A γγγααα,,,,,,,2121 ==,由于AB=C,则可知),,2,1(2211n i b b b n in i i i =+++=αααγ,得到矩阵C 的列向量组可用矩阵A 的列向量组线性表示.同时由于B 可逆,即1-=CB A ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵A 的列向量组等价.应该选(B ).6.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数【详解】注意矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 是对角矩阵,所以矩阵A=⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是两个矩阵的特征值对应相等.)22)2((111122a b b aa baa A E -++--=---------=-λλλλλλλ从而可知b a b 2222=-,即0=a ,b 为任意常数,故选择(B ).7.设321,,X X X 是随机变量,且)3,5(~),2,0(~),1,0(~23221N X N X N X ,{}22≤≤-=i i X P P ,则(A )321P P P >> (B )312P P P >> (C )123P P P >> (D )231P P P >> 【详解】若),(~2σμN X ,则)1,0(~N X σμ-1)2(21-Φ=P ,{}1)1(212122222-Φ=⎭⎬⎫⎩⎨⎧≤≤-=≤≤-=X P X P P , {}())13737)1(3523535222333Φ-⎪⎭⎫⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ--Φ=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=X P X P P ,=-23P P 0)1(32)1(3371<Φ-<Φ-⎪⎭⎫⎝⎛Φ+.故选择(A ).8.设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为X 0 1 2 3P P1/21/41/81/8Y -1 0 1 P1/31/31/3则{}==+2Y X P ( ) (A )121 (B )81 (C )61 (D )21 【详解】{}{}{}{}612412411211,30,21,12=++=-==+==+====+Y X P Y X P Y X P Y X P ,故选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n . 【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】 设()xyy z z y x F x -+=)(,,,则()1)(),,(,)l n ()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln .【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xex C C y +=,其中21,C C 为任意常数.13.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+TA A ,其中*A 为A 的伴随矩阵,从而可知A AA A T -===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+TA A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A14.设随机变量X 服从标准正分布)1,0(~N X ,则()=X Xe E 2 . 【详解】()=X Xe E 2dx ex edx ex dx exe x x x x⎰⎰⎰∞+∞---∞+∞-+--∞+∞--+-==2)2(222)2(22222)22(2221πππ22222222)(2222e e X E e dt e dt te e t t =+=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞+∞--∞+∞--π. 所以为22e .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当→x 时,)(211co s 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a a x ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20. (3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f (2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.20.(本题满分11分) 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .【详解】显然由B CA AC =-可知,如果C 存在,则必须是2阶的方阵.设⎪⎪⎭⎫ ⎝⎛=4321x xx x C , 则B CA AC =-变形为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---++-+-b ax x xx x ax x ax ax x 1103243142132, 即得到线性方程组⎪⎪⎩⎪⎪⎨⎧=-=--=++-=+-bax x x x x ax x ax ax x 3243142132110,要使C 存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下()⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=b a a b a aa ab A 000010000001011101010111011010010|, 所以,当0,1=-=b a 时,线性方程组有解,即存在矩阵C ,使得B CA AC =-.此时,()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000000000011011101|b A , 所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100101110001214321C C x x x x x ,也就是满足B CA AC =-的矩阵C 为⎪⎪⎭⎫⎝⎛-++=211211C C C C C C ,其中21,C C 为任意常数.21.(本题满分11分) 设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 T T ββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +. 【详解】证明:(1)()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+++++=321321321321321321321321321321321321321321233221123322113212,,,,2,,,,,,,,,,2)()(2),,(x x x x x x x x x x x x x x x x x x x x x b b b b b b x x x x x x a a a a a a x x x x b x b x b x a x a x a x x x f TT TT ββααββαα所以二次型f 对应的矩阵为 T T ββαα+2.证明(2)设=A T T ββαα+2,由于0,1==αβαT 则()ααββαααββααα2222=+=+=T T TA ,所以α为矩阵对应特征值21=λ的特征向量;()ββββααβββααβ=+=+=222T T T A ,所以β为矩阵对应特征值12=λ的特征向量;而矩阵A 的秩2)()2()2()(=+≤+=T T T T r r r A r ββααββαα,所以03=λ也是矩阵的一个特征值.故f 在正交变换下的标准形为 22212y y +. 22.(本题满分11分)设()Y X ,是二维随机变量,X 的边缘概率密度为⎩⎨⎧<<=其他,010,3)(2x x x f X ,在给定)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,0,0,3)/(32x y x y x y f XY . (1)求()Y X ,的联合概率密度()y x f ,; (2)Y 的的边缘概率密度)(y f Y .【详解】(1)()Y X ,的联合概率密度()y x f ,:()⎪⎩⎪⎨⎧<<<<=⋅=其他,00,10,9)()/(,2x y x xy x f x y f y x f X XY (2)Y 的的边缘概率密度)(y f Y :⎪⎩⎪⎨⎧<<-===⎰⎰∞+∞-其他,010,ln 99),()(212y y y dx x y dx y x f y f yY 23.(本题满分11分)设总体X 的概率密度为⎪⎩⎪⎨⎧>=-其他,00,);(32x e x x f x θθθ,其中θ为为未知参数且大于零,n X X X ,21为来自总体X 的简单随机样本.(1)求θ的矩估计量; (2)求θ的极大似然估计量.【详解】(1)先求出总体的数学期望E (X )θθθ===⎰⎰∞+-∞+∞-022)()(dx e xdx x xf X E x ,令∑===n n i X n X X E 11)(,得θ的矩估计量∑=∧==ni i X n X 11θ.(2)当),2,1(0n i x i =>时,似然函数为⎪⎪⎭⎫⎝⎛-==-∑⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==∏∏ni i ix n i i n ni x iex e x L 11312132)(θθθθθ, 取对数,∑∑==-⎪⎪⎭⎫ ⎝⎛-=ni i n i i x xn L 11ln 31ln 2)(ln θθθ,令0)(ln =θθd L d ,得0121=-∑=n i ix n θ, 解得的极大似然估计量为.。

2013年考研数学三试题及答案解析

2013年考研数学三试题及答案解析
1 1 1 1 1 1 1 ⋅ + ⋅ + ⋅ = . 4 3 8 3 8 3 6
二、填空题: 填空题:9
14 小题, 小题,每小题 4 分,共 24 分.请将答案写在答题纸 请将答案写在答题纸 指定位置上. 指定位置上. ...
2
(9) 设曲线 y = f ( x) 与 y = x − x 在点 (1, 0) 处有公共切线,则 lim nf (
2 2 A = ai1 Ai1 + ai 2 Ai 2 + ai 3 Ai 3 = − ( ai2 1 + ai 2 + ai 3 ) ≤ 0 3−1
= (−1)3 A ,即 A = −1 或者 A = 0 .
又因为 A ≠ O ,所以至少有一个 aij ≠ 0 ,所以
2 2 A = ai1 Ai1 + ai 2 Ai 2 + ai 3 Ai 3 = − ( ai2 1 + ai 2 + ai 3 ) < 0

(5) ( ) (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价. 【答案】 (B) 由于 AB = C ,故
【解析】将 A, C 按列分块, A = (α1 ,..., α n ), C = (γ 1 ,..., γ n )
b11 ... b1n (α1 ,..., α n ) . ... . = (γ 1 ,..., γ n ) b ... b nn n1 即 γ 1 = b11α1 + ... + bn1α n ,..., γ n = b1nα1 + ... + bnnα n

2013年考研数三真题与答案解析(完整版)

2013年考研数三真题与答案解析(完整版)

2013 年考研数三真题及答案解析一、选择题1 —8 小题.每小题4 分,共 32 分.、1.当 x0 时,用 o(x) 表示比 x 高阶的无穷小,则下列式子中错误的是()( A ) x o ( x 2 ) o(x 3 )( B ) o( x) o(x 2 ) o( x 3 )( C ) o( x 2 ) o( x 2 )o( x 2 )( D ) o(x) o( x 2 ) o( x 2 )【详解】由高阶无穷小的定义可知( A )( B )( C )都是正确的,对于( D )可找出反例,例如当 x 0时 f (x)x 2x 3 o( x), g( x)x 3o(x 2 ) ,但 f (x)g(x)o( x) 而不是o( x 2 ) 故应该选( D ).xx2.函数 f ( x)1的可去间断点的个数为()x( x1) ln x(A )0( B )1( C )2(D )3【详解】当 x ln xx1e xln x1 ~ x ln x ,0 时, xxx ln xlim f ( x) limx1lim 1 ,所以 x 0是函数 f ( x) 的可去间断点.x 0x 0x( x 1) ln xx 0x ln xxx ln xlim f ( x) limx1lim 1,所以 x1 是函数 f ( x) 的可去间断点.x 1x 1x( x 1) ln xx 02 x ln x2xxxln xlim f ( x)lim1lim,所以所以 x1不是函数 f (x) 的(x 1) ln xx1x1x(x 1) ln xx 1可去间断点.故应该选( C ).3.设 D k 是圆域 D( x, y) | x 2y 2 1 的第 k 象限的部分, 记 I k( y x)dxdy ,则D k()( A ) I 1B I 2 0C 3 0D I 4 0( )( ) I( )【详解】由极坐标系下二重积分的计算可知k 2121I k( yx)dxdy( k 1) d(sincos )rdrD k321kcos |k 2sin132所以 I 1I 30,I 22 , I 4 2 ,应该选( B ).3 34.设 a n 为正项数列,则下列选择项正确的是()(A )若 a na n 1 ,则( 1) n 1 a n 收敛;n 1k2 (sinsin ) dk 1 2(B )若( 1)n 1 a n 收敛,则 a n a n 1 ;n 1(C )若a n 收敛.则存在常数 P 1,使 lim n p a n 存在;n 1n(D )若存在常数 P 1,使 lim n p a n 存在,则a n 收敛.nn 1【详解】由正项级数的比较审敛法,可知选项( D )正确,故应选(D).此小题的( A )( B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项( A ),但少一条件 lim a n0 ,显然错误. 而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,n选项( B )也不正确,反例自己去构造.5.设A,B,C均为 n 阶矩阵,若AB=C,且B可逆,则( A )矩阵 C 的行向量组与矩阵 A 的行向量组等价. ( B )矩阵 C 的列向量组与矩阵 A 的列向量组等价. ( C )矩阵 C 的行向量组与矩阵 B 的行向量组等价.( D )矩阵 C 的列向量组与矩阵 B 的列向量组等价.【详解】 把矩阵 A ,C 列分块如下: A 1, 2,, n , C 1 , 2 , , n ,由于AB=C,则可知i b i1 1 b i 2 2b in n (i 1,2, , n) ,得到矩阵 C 的列向量组可用矩阵 A 的列向量组线性表示.同时由于B 可逆,即 A CB 1 ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵 A 的列向量组等价.应该选(B ).1 a 12 06.矩阵 a b a与矩阵0 b 0 相似的充分必要条件是1 a 10 0( ) a0,b2( ) a 0, b 为任意常数AB( C ) a 2,b 0(D ) a 2 , b 为任意常数2 01 a 12 0 0 【详解】注意矩阵 0 b0 是对角矩阵,所以矩阵 A= a ba 与矩阵0 b 0 相 0 01 a 10 0似的充分必要条件是两个矩阵的特征值对应相等.1a 1 E Aa b a ( 2(b 2)2b 2a 2 )1a1从而可知 2b 2a 2 2b ,即 a 0 , b 为任意常数,故选择( B ).7 . 设 X 1,X 2,X 3是随机变量,且X 1~ N (0,1), X 2 ~ N(0,22), X 3 ~ N(5,32) ,P iP 2 X i2 ,则(A ) P 1 P 2 P 3(B ) P 2 P 1 P 3(C ) P 3P 2 P 1(D ) P 1P 3P 2【详解】若 X ~ N(, 2),则 X~ N(0,1)P 1 2 (2) 1, P 2P2X 22PX 2 12 (1) 1,12P 3 P2X 32 P2 5 X3 52 5 7 7333( 1)1)33,P 3P 217 3 (1) 0.3(1)23故选择( A ).8.设随机变量 X 和 Y 相互独立,且X 和 Y 的概率分布分别为X0 1 2P1/21/41/8Y -1 0 P1/31/3则PXY2 ()(A )1(B )1(C )1(D ) 128 63P 1/8 1 1/312【详解】PXY2PX1,Y1PX2,Y0PX1111 3,Y12424612,故选择( C).二、填空题(本题共 6 小题,每小题 4分,满分 24分 .把答案填在题中横线上)9.设曲线y f (x) 和 y x 2x 在点1,0处有切线,则lim nf n.n n2【详解】由条件可知 f 10, f ' (1)1.所以f12 n n f (1)lim nf lim2 2 f '(1)2n22n 2n nn22n10.设函数z z x, y 是由方程z y x xy 确定,则z|(1,2 ).x【详解】设 F x, y, z F x x, y, z( z y) x l z y)当 x 1, y 2 时,z0 ,所以11.ln x2 d x.(1x)1(z y x xy,则)y, F z (x,ny, z) x(z y) x 1,(z|(1, 2 )2 2 ln 2 .x【详解】1ln x2 dx1ln xd1ln x |111dx ln x|1 ln 2 (1 x) 1 x1x x(1 x)x112.微分方程y y 1 y0 的通解为.411【详解】方程的特征方程为r0,两个特征根分别为412,所以方程通2x解为 y (C1 C 2 x) e2,其中 C1 ,C2为任意常数.13.设A aij是三阶非零矩阵, A 为其行列式,A ij为元素 a ij的代数余子式,且满足Aij aij0(i , j1,2,3) ,则A=.【详解】由条件 Aijaij0(i, j 1,2,3) 可知 AA* T 0 ,其中 A * 为 A 的伴随矩阵,从而可知A* A *T3 1A ,所以 A 可能为1或 0.An,r (A)n但由结论 r ( A * )1, r ( A) n 1 可知, A A * T 0 可知 r ( A)r ( A*) , 伴随矩阵的秩只0, r ( A) n1能为 3,所以 A 1.14.设随机变量 X 服从标准正分布 X ~ N ( 0,1) ,则 E Xe 2X.【详解】E Xe 2 X1 x 2x(x 2)2e 2(x 2) 2xe2xe 2dxe2dx( x 22)e 2dx222 2e 2t 2t 2te 2 dt 2e 2 dte 2 E( X ) 2e 2 2e 2 .2所以为 2e 2 .三、解答题15.(本题满分 10 分)当 x0时,1 cosx cos2x cos3x 与 ax n 是等价无穷小,求常数a, n .【分析】主要是考查 x 0 时常见函数的马克劳林展开式.【详 解 】当 x 0时,122 ),c x o 1 s xo( x1(2x) 22cos2 x1 o(x2 ) 1 2 x 2 o(x 2 ),2cos3x11(3x)2o( x 2 ) 1 9 x 2 o( x 2 ) ,2 2所以1 cosx cos2xcos3x1 (1 1 x2 o( x 2 ))(12x 2 o(x 2 ))(1 9 x 2o( x 2 )) 7x 2o( x 2 )22,由于 1cosx cos2 x cos3x 与 ax n 是等价无穷小,所以 a7, n 2 .16.(本题满分10 分)设 D 是由曲线 y3x ,直线 x a (a 0) 及 x 轴所转成的平面图形,V x ,V y 分别是 D 绕 x轴和 y 轴旋转一周所形成的立体的体积,若10V x V y ,求 a 的值.【详解】由微元法可知a252 dxa3a 3V xy x 3 dx;5aa 47x 3dx6a 3V y2 xf ( x) dx 2;0 7由条件 10V x V y ,知 a 7 7 .17.(本题满分 10 分)设平面区域 D 是由曲线 x3 y, y3x, x y 8 所围成,求x 2 dxdy .D【详解】x 2dxdyx 2dxdyx 2dxdy2x 2dx x dyx 2dx x dy416 .3 x6 8 xDD 1D 20 32 3318.(本题满分 10 分)设生产某产品的固定成本为6000 元,可变成本为20 元 / 件,价格函数为 P60Q,(P1000是单价,单位:元, Q 是销量,单位:件),已知产销平衡,求:( 1)该的边际利润. ( 2)当 P=50 时的边际利润,并解释其经济意义.( 3)使得利润最大的定价 P .【详解】(1)设利润为Q 2 y ,则 y PQ (6000 20Q ) 40Q6000 ,1000边际利润为 y'40Q .500( 2)当 P=50 时, Q=10000,边际利润为 20.经济意义为:当 P=50 时,销量每增加一个,利润增加20.(3)令 y'0,得Q20000 , P20000 40.601000019.(本题满分 10 分)设函数 f x 在 [0,) 上可导, f0 0 ,且 lim f (x)2 ,证明x(1)存在 a 0 ,使得 f a1;(2)对( 1)中的 a,存在(0, a) ,使得 f ' ( 1 .)a【详解】证明( 1)由于lim()2,所以存在X0,当 x X 时,有3,f x5x f (x)22又由于 f x在 [0,) 上连续,且 f 00 ,由介值定理,存在a0 ,使得 f a 1;(2)函数f x 在 [0,a] 上可导,由拉格朗日中值定理,存在(0, a) ,使得 f ' ()f (a) f (0)1.a a20.(本题满分 11 分)1a, B 01,问当 a, b 为何值时,存在矩阵C,使得AC CA B ,并求出设 A01b1所有矩阵 C.【详解】显然由 AC CA B 可知,如果C存在,则必须是x1x22 阶的方阵.设C,x3x4则 AC CA B 变形为x2ax3ax1x2ax40 1,x1x3x4x2ax3 1 bx2ax30即得到线性方程组ax1x2ax41,要使 C 存在,此线性方程组必须有解,于是对方x1x3x41x2ax3b程组的增广矩阵进行初等行变换如下01a0010111a10a101a00 A |b011100001,1a01a0b0000b所以,当 a1, b0 时,线性方程组有解,即存在矩阵C,使得AC CA B .10111此时, A | b011000000,00000x1111所以方程组的通解为x x20C11C2,也就是满足 AC CA B 的矩阵x3010x4001C为C1C1C2C1,其中 C1 , C2为任意常数.C1C221.(本题满分 11 分)设二次型 f ( x1 , x2 , x3 ) 2(a1 x1 a2 x2 a3 x3 ) 2(b1 x1 b2 x2 b3 x3 )2.记a1b1a2,b2.a3b3(1)证明二次型 f 对应的矩阵为 2T T ;(2)若,正交且为单位向量,证明f在正交变换下的标准形为2 y12y22.【详解】证明:(1)f ( x1, x2 , x3 ) 2(a1 x1 a2 x2a3 x3 ) 2(b1 x1b2 x2b3 x3 ) 2a1x1b12 x1, x2 , x3 a2a1 ,a2 , a3 x2x1 , x2 , x3 b2 b1, b2 ,b3a3x3b3x1x1x1, x2 , x3 2T x2x1, x2 , x3T x2x3x3x1x1, x2 , x3 2T T x2x3所以二次型 f 对应的矩阵为2T T .证明( 2)设A2T T ,由于1, T0则 A2T T22T2,所以为矩阵对应特征值向量;A2T T2T2,所以为矩阵对应特征值量;x1x2x31 2 的特征21的特征向而矩阵 A 的秩r ( A) r ( 2T T )r (2T ) r (T) 2,所以30 也是矩阵的一个特征值.故 f 在正交变换下的标准形为 2 y12y22.22.(本题满分11 分)设 X,Y是二维随机变量, X 的边缘概率密度为f X( x)3x2 ,0x 1,在给定0,其他X x(0x1) 的条件下,Y的条件概率密度为f Y( y / x)3y 2,0y x,x 3.X0,其他(1)求X ,Y的联合概率密度 f x, y ;(2) Y 的的边缘概率密度f Y ( y) .【详解】( 1)X , Y的联合概率密度 f x, y:f x, y f Y ( y / x) f X ( x)9 y 2,0 x1,0y x xX0,其他(2) Y 的的边缘概率密度f Y ( y) :f Y ( y) f (x, y)dx 1 9 y29 y2ln y,0 y 1dxy x0,其他23.(本题满分11 分)2设总体X 的概率密度为 f (x; )x 3e x , x 00,,其中为为未知参数且大于零,其他X1X 2,X n为来自总体 X 的简单随机样本.(1)求的矩估计量;(2)求的极大似然估计量.【详解】( 1)先求出总体的数学期望E( X)2E(X)xf (x)dx2e x dx,x令 E(X)1nX X i,得的矩估计量n n 1(2)当x i0(i1,2, n) 时,似然函数为1 nX i.Xn i1n22nn 1xx iL ( )3 ei3ei 1n,i1x ix ii 1取对数, ln L() 2nlnn1 3nln x i ,x ii 1i 1令 d ln L( )0 ,得2nn10 ,di 1 xi解得 的极大似然估计量为 .。

2013年全国硕士研究生入学统一考试数学三真题及答案解析

2013年全国硕士研究生入学统一考试数学三真题及答案解析

2013年全国硕士研究生入学统一考试数学三试题一、选择题:1-8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填写在答题纸指定位置上。

二、填空题:9-14小题,每小题4分,共24分。

请将答案写在答题纸指定位置上。

三、解答题:15~23小题,共94分。

请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤。

2014新东方考研公共课辅导班2014新东方考研公共课联报VIP高辅班课程名称课时原价优惠价购买【协议】2014考研政英数联报VIP高辅班87511,6008,080【协议】2014考研政英联报VIP高辅班5747,8006,120【协议】2014考研英数联报VIP高辅班6388,4006,280【协议】2014考研政数联报VIP高辅班5737,0005,5802014新东方考研公共课联报协议班课程名称课时原价优惠价购买【协议】2014考研政英数全程联报协议班650 4,440 3,240【协议】2014考研政英全程联报协议班465 3,060 2,340【协议】2014考研英数全程联报协议班430 3,060 2,340【协议】2014考研政数全程联报协议班425 2,760 2,0702014新东方考研公共课联报班课程名称课时原价优惠价购买2014考研政英数全程联报班630 3,180 2,5002014考研政英全程联报班445 2,190 1,6902014考研英数全程联报班410 2,190 1,6902014考研政数全程联报班405 1,980 1,5102014新东方考研英语课程名称课时原价优惠价购买【协议】2014考研英语VIP高辅班3374,6004,140【协议】2014考研英语全程协议班245 2,120 1,5102014考研英语全程班225 2,120 1,0802014考研英语基础班120 780 7002014考研英语强化班75 680 6102014考研英语冲刺班25 280 2502014新东方考研英语二课程名称课时原价优惠价购买【协议】2014考研英语(二)全程协议班236 2,560 1,5102014考研英语(二)全程班195 2,560 1,0802014考研英语(二)预科班 6 120 1102014考研英语(二)基础班100 780 7002014考研英语(二)强化班53 680 6102014考研英语(二)冲刺班36 280 2502014考研英语(二)4年真题精讲班20 320 2902014新东方考研政治课程名称课时原价优惠价购买【协议】2014考研政治VIP高辅班2723,2002,880【协议】2014考研政治全程协议班240 1,740 1,2402014考研政治全程班220 1,740 8902014考研政治知识点精讲精练班95 780 7002014考研政治新大纲增补班 6 180 1602014考研政治冲刺班30 280 2502014考研政治时政精讲班 8 120 1102014考研政治点题班10 380 3402014新东方考研数学课程名称课时原价优惠价购买【协议】2014考研数学VIP高辅班3363,800 3,420【协议】2014考研数学全程协议班205 1,740 1,2402014考研数学全程班185 1,740 8902014考研数学基础预科班65 780 7002014考研数学分阶精讲精练班119 880 7902014考研数学冲刺班35 380 3402014考研数学3年真题精讲+答题技巧班30 480 430。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013 年考研数三真题及答案解析—8 小题.每小题4 分,共32 分.、一、选择题1x0 o(x) x 1.当高阶的无穷小,则下列式子中错误的是(时,用表示比)2233)(xx o(A))o( x) o(x) o( x )o(x (B)22222)o(x) o( xo( x)) o( x )o( x o( x )D)(C)(A)(B)(C)都是正确的,对于(D)可找出反例,例【详解】由高阶无穷小的定义可知(2323 x 0 f (x)o(x ) xxxo( x) f (x)g(x)o( x), g( x),但如当而不是时2o( x ) D故应该选().x x1f ( x)2.函数)的可去间断点的个数为(x( x1) ln x(A)0((D)3 B)1(C)2x e1 ~ x ln x x x ln x0 1,【详解】当时,xln xx x1x ln x x0 f ( x)1 limlimf ( x)lim的可去间断点.,所以是函数x 0x 0x ln x x( x 1) ln x x 0x1x ln xx1 x1 f( x)limlimlimf ( x),所以的可去间断点.是函数x 0x1 2 x ln x x( x 1) ln x2x 1x x1xln xx1 f (x)limlimlimf ( x)的,所以所以不是函数1 x(x 1) ln x(x 1) ln x x x11x可去间断点.故应该选(C).22kIx)dxdy ( y D D 1 y( x, y) | x记的第是圆域象限的部分,3.设,则kkD k()I II000 D B )A(C4123 I0)((())【详解】由极坐标系下二重积分的计算可知1k k2212I dr(sincos )r( yx)dxdyd(sinsin ) d k k 1( k1)032 D 2k k12cossin|k 132II 0,I, I 22所以,应该选(B).143233a4.设为正项数列,则下列选择项正确的是()nn 1a)若(A a ( 1) a 收敛;,则n nn 1n 1n 1 a aa ( 1);收敛,则)若B(n 1nnn 1p aP 1 lim n a存在;,使收敛.则存在常数)若C(nn n n 1p alim nP 1a 收敛.(D)若存在常数存在,则,使nn n n 1D)正确,故应选(D).【详解】由正项级数的比较审敛法,可知选项(此小题的(A)(B)选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A),但少一lim a0 条件,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,nn选项(B)也不正确,反例自己去构造.n 5.设A,B,C均为阶矩阵,若AB=C,且B可逆,则(A)矩阵 C 的行向量组与矩阵 A 的行向量组等价.A 的列向量组等价.)矩阵 C 的列向量组与矩阵(B的行向量组与矩阵 B 的行向量组等价.(C)矩阵 CB 的列向量组等价.(D)矩阵C 的列向量组与矩阵,, , , ,, , CA,由于AB=C,,C 列分块如下:【详解】把矩阵A1 2n21 n则可知 b bb (i, n) 1,2,,得到矩阵C的列向量组可用矩阵 A 的i 2 2ii1 1in n1 A CB 列向量组线性表示.同时由于,同理可知矩阵B 可逆,即A 的列向量组可用矩阵C的列向量组线性表示,所以矩阵C的列向量组与矩阵A 的列向量组等价.应该选().B1a1200a0b0ba6.矩阵相似的充分必要条件是与矩阵1a1000a0,b2)((),为任意常数a0b BAa 2b a 2,b0为任意常数,(D)C)(2001a1200a 00bab00b与矩阵【详解】注意矩阵A= 相是对角矩阵,所以矩阵001a01000似的充分必要条件是两个矩阵的特征值对应相等.1a122 )2b 2a ((b 2)bE Aaa1a12a0 b 2b 2a 2b 从而可知为任意常数,故选择(,即,B).22) ~ N(5,3,X,XXX), X~ N (0,1), X ~ N(0,2,是随机变量,且7 .设131232PP 2 X 2 ,则ii PPPPPP)(B(A)213312PPPPPP)(D (C)132312X2 ),则~ N(0,1)X ~ N(,【详解】若X 2 P2 (2) 1X P2 (1) 11P22P,,12212X 52 557723P2XPP21)( 1)3333333,71PP3 (1) 03(1)2.233故选择(A).8.设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为3P20X11/81/8P1/41/210-1Y1/31/31/3P PXY2则()1111 A()(CB ()))D(21286【详解】11111PX2,Y0PXPXY2PX1,Y3,Y1 2424612,故选择(C).6 小题,每小题4分,满分24分 .把二、填空题(本题共答案填在题中横线上)2xx yyf (x) 1,0lim nfn在点和9.设曲线.处有切线,则n2nf 110, f ' (1).所以【详解】由条件可知21f f (1)nn22 f '(1)lim2lim nf2n 2n2nnn22nz x |yxy z x, y zz确定,则10.设函数是由方程.(1,2 )x【详解】zyxy F x, y, z x设)(,则xx 1y, F (x,ny, z) x(z y)(F x, y, z( z y) l z y),zx z |2 ln 2 20 z.2 x 1, y(1, 2 ),所以时,当xln x d x.11.2x)(11【详解】ln x || ln 2 dxx1ln x1ln xddxln112111 11(1 x)1 xxx(1 x)x1 y y0 y的通解为.12.微分方程411r0,两个特征根分别为【详解】方程的特征方程为,所以方程通2142,C x) e C y (C C ,其中解为为任意x2常数.2211a A aA A为元素为其行列式,.设13的代数余子式,且满足是三阶非零矩阵,ij ijijAa A 1,2,3) 0(i , j=,则.ijijAa T A *A*0 A1,2,3) 0(i, j的伴随矩阵,从为,其中A可知【详解】由条件ij ij而可知A* AA A 1 A0.,所以或可能为T 3 1*nn,r (A)*T ) r ( AA *r ( A)r ( A*) A0n11, r ( A)但由结论伴随矩阵的秩只,可知,可知1n0, r ( A)A1.3,所以能为2X E Xe X ~ N ( 0,1) ,则服从标准正分布X 14.设随机变量.【详解】2 X E Xedxe 2)e xe( x222(x 2)x(x 2) 222x222dxdxex1e2222e E( X ) 2eete e dt dt 22e.22t t 222222222e.所以为三、解答题15.(本题满分10 分)n cosx cos2x cos3x a, n x01ax是等价无穷小,求常数与.当时,x0 【分析】主要是考查时常见函数的马克劳林展开式.122x 0)时,【】,详解当c x o 1 s xo( x212222 (2x)o(x )2 x )o(x 11cos2 x,212229 (3x)x o( x ) )o( x 1cos3x1,222以所22222222 ) ))7xo( xx ))(1o( xo( x2xo(x ))(1x911cosx cos2xcos3x1 (122,n cosx cos2 x cos3x 1aax7, n 2是等价无穷小,所以与由于.分).(本题满分16103x x a (aV ,V x x y0) 绕分别是D,直线轴所转成的平面图形,设 D 是由曲线及yx10VV y a 轴旋转一周所形成的立体的体积,若轴和的值.,求yx【详解】由微元法可知523a a23 dx dxVxy a;3 x005746aa3 dxx xf ( x) dx 22V a; 3y00710V V a7 7,知由条件.yx分)10 17.(本题满分2 dxdy x y 8 x3x, x3 y, y.所围成,求设平面区域 D 是由曲线416 dx dx dyx D【详解】22222dxdyx dxdydyx x dxdyx.xx83 x2x6023 D D33D2118.(本题满分10 分)Q,(P P6020 元/ 件,价格函数为元,可变成本为6000 设生产某产品的固定成本为1000是单价,单位:元,Q是销量,单位:件),已知产销平衡,求:(1)该的边际利润.(2)当P=50 时的边际利润,并解释其经济意义.(3)使得利润最大的定价P.【详解】Q2)设利润为1(6000 y y PQ (6000 20Q ) 40Q,,则1000Q .y'40边际利润为500(2)当P=50 时,Q=10000,边际利润为20.经济意义为:当P=50 时,销量每增加一个,利润增加.20 20000Qy'040.20000 , P,得(3)令601000019.(本题满分10 分)lim2 f (x)0 0 ) [0, f xf,证明,且上可导,在设函数x a0 f a1;,使得(1)存在1f ' (a(0, a) ),使得)中的)对((2 1 .,存在a【详解】lim()2X0,3X x时,有,当)由于证明(1,所以存在f x5 f (x)x220 a0 f a 1; f 0) f [0,x,由介值定理,存在,使得上连续,且又由于在x [0,a] f上可导,由拉格朗日中值定理,在(2)函数f (a)f (0)1 f ' ()(0, a) ,使得.存在aa20.(本题满分11 分)1a01AC CAB , B a, b ,并求出C,使得为何值时,存在矩阵,问当A设11b0所有矩阵C.【详解】xx21ACB CA存在,则必须是可知,如果C显然由,C阶的方阵.设2xx43xaxaxxax0 142231B ACCA变形为则,xaxxxx1 b43213 xax032axxax1412,要使 C 存在,此线性方程组必须有解,于是对方即得到线性方程组xxx1413axxb32程组的增广矩阵进行初等行变换如下0011a001110aaa100110 A |b,01100a1100100b010a00bAC CAB 0 a1, b.C ,使得时,线性方程组有解,即存在矩阵所以,当1110100110 A | b此时,,0000000000x1111x0012所以方程组的通解为CxC ACCA B 001x的矩阵,也就是满足231 x1004C为C1 C , C 为任意常数.,其中CC1C2121CC2121.(本题满分11 分)22 ) b x(b x b x , x ) 2(a x a x a x ) f ( x , x.设二次型记333331*********ab11ab,.22ab332f ;对应的矩阵为(1)证明二次型T T222 yy ,f在正交变换下的标准形为.正交且为单位向量,证明2)若(12)1【详解】证明:(22) x )(b xb xb, xf ( x , x ) 2(a x a xa x 333121*********xbax1111x ,b, b , x b b ,a , a xx , x, x2 x , x aa 2312122232231213xxba3333xx11T T , x, xx, x , x 2xxx 32122312xx33x1TT2xx, x , x 3122x3 f 2.对应的矩阵为所以二次型T T TT1,A02,由于2)设证明(TT2TT A2 222的特征则为矩阵对应特征值,所以1向量;T2T T12A2的特征向为矩阵对应特征值,所以2量;TT) 2 ) ) r (0 r ( A) r ( 2r (2,所以也是矩阵的的秩而矩阵 A T 3T一个特征值.22y2 y f 在正交变换下的标准形为故.1222.(本题满分11 分)x 12,在给定( x)f ,03x X,Y度为概率密是二维随机变量,X 的边缘设X其他0,23y y x,,03f 1) ( y / x)X x(0x的条件概率密度为Y的条件下,x.YX其他0,X ,Y f x, y ;的联合概率密度(1)求f ( y) .的的边缘概率密度Y (2)YX , Yf x, y的联合概率密度【详解】(1):29 y ,0 x1,0yx( x) ( y / x) f ff x, yxXYX其他0,f ( y) :的的边缘概率密度2)Y (Y29 y 12ln y,0 y 19 y dx f (x, y)dxf ( y)Y x y 0,其他23.(本题满分11 分), x 0e3x2xf (x; )X 的概率密度为为为未知参数且大于零,设总体,其中其他0,X为来自总体X 的简单随机样本.,X X n12(1)求的矩估计量;(2)求的极大似然估计量.【详解】(1)先求出总体的数学期望E(X)dxe xf (x)dxE(X),20x2xn11n X E(X).令XX的矩估计量X ,得i i n n n 1i1 x1,2, n) 0(i)当2(时,似然函数为i1n2n2n ee x x i i 1)L (, 33 i n x i i1x ii 11nn ln x ln L(3) 2nln,取对数,i x i i 1i12n 0 1 d ln L( ),得0 令,nx d i 1 i.解得的极大似然估计量为。

相关文档
最新文档