运筹学基础-线性规划(1)

合集下载

运筹学基础及应用共107页文档

运筹学基础及应用共107页文档
约束条件:关于X的线性等式或不等式 目标函数:Z=ƒ(x1 … xn) 为关于X 的线性函数,
求Z极大或极小
2020/4/19
4
1.2 线性规划问题的数学模型
三个组成要素:
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。
2020/4/19
16
可行解:满足约束条件的解称为可行解,可行解的集 合称为可行域。
最优解:使目标函数达到最大值的可行解。
基:约束方程组的一个满秩子矩阵称为规划问题的一
个基,基中的每一个列向量称为基向量,与基向量对应 的变量称为基变量,其他变量称为非基变量。
基解:在约束方程组中,令所有非基变量为0,可以
j1
x
j
0
( j 1, , n)
标准形式特点:
1. 目标函数为求极大值; 2. 约束条件全为等式;
3. 约束条件右端常数项全为非负;
4. 决策变量取值非负。
2020/4/19
9
一般线性规划问题如何化为标准型:
1. 目标函数求极小值:
n
minz cj xj j1
令: z'z,即化为:
maxz max(z)minz
3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2020/4/19
5
一般线性规划问题的数学模型:
目标函数:m ( m a ) z x 或 c i 1 x 1 n c 2 x 2 c n x n
a11x1 a12x2 a1nxn (或,)b1
约束条件:a21x1a22x2a2nxn( 或,)b2

第一章 线性规划

第一章 线性规划
(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

第一章 线性规划

第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。

学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。

包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。

包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。

包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。

包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。

当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。

如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。

这些研究当时在英国称为Operational Research,直译为作战研究。

战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。

这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。

我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。

现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。

它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。

线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。

而当目标是最小化cx时,则是最小化问题。

线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。

而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。

二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。

这样的问题往往更加接近实际情况。

整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。

因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。

但是对于特定结构的整数规划问题,可以设计专门的算法来求解。

比如分枝定界法、动态规划等。

整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。

三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。

它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。

动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。

动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。

动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。

四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。

它可以应用在各种风险决策、投资决策、生产决策等方面。

决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。

答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。

- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。

答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。

通过多面体的边界和顶点,可以确定最优解点的位置。

如果可行域是无限大的,则最优解点可以在其中的任何位置。

1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。

答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。

- 单纯形法:通过迭代计算,逐步靠近最优解点。

单纯形法是一种高效的求解线性规划问题的方法。

第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。

答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。

答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。

通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。

对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。

《运筹学》(第二版)课后习题参考答案

《运筹学》(第二版)课后习题参考答案
表1—17 家具生产工艺耗时和利润表
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;

中南大学考研运筹学966B:第一章:线性规划基础

中南大学考研运筹学966B:第一章:线性规划基础
2
二、L.P.数学模型的经济含义
Max Z = 70x1+30x2 …① 1 、数学模型的三要素: s.t. 3x1 + 9x2 ≤ 540 …② ①.有一组待确定的决策变量。如(x1, x2)为一个具体行动方案。 5x1 + 5x2 ≤ 450 …③ ②.有一个明确的目标要求(Max或Min)。如要求利润最大。 9x1 + 3x2 ≤ 720 …④ ③.存在一组约束条件。如设备A、B、C三种资源的约束。 x1 , x2 ≥ 0 …⑤ 2 、数学模型中系数的含义: ①.目标函数中决策变量的系数70,30 ------ 叫价值系数,表单位产品提供的利润(元/件); ②.约束条件左边决策变量的系数 ------ 叫约束条件系数或单耗(台时、kg 、kg/件); ③.约束条件右边常数540,450,720 ------ 叫限制常数,表现有的资源限量。
三、 L.P.问题的求解过程
1、将实际问题转化为数学模型(数学公式):建模。 2、求解数学模型: 图解法: 适合于 2 个变量的 L.P. 数学模型。 单纯形法:适合于任意个变量的 L.P. 数学模型。 3、利用数学模型的最优解获得原问题的最优决策方案。
1
1.2 线性规划问题及其数学模型
一、L.P.问题
9
1.4 线性规划图解法
一、适用范围: 二个变量的数学模型。 二、求解步骤: 第一步:将所有约束方程用图形绘出; 第二步:确定可行解域,即所有约束方程图形的公共部分; 第三步:绘出目标函数直线,根据目标函数的要求以及与决策变量的关系,找出直线移动方向P。 第四步:目标函数直线沿着方向P向可行解域的边界平行移动,直至与可行解域第一次相切为止, 这个切点就是最优点,对应的解就是最优解。 第五步:确定最优解及最优目标函数值。 Max Z = 70x1+30x2 s.t. 3x1 + 9x2 ≤ 540 5x1 + 5x2 ≤ 450 9x1 + 3x2 ≤ 720 x1 , x2 ≥ 0 最优解为:X* = Z* = 5700 …① …② …③ …④ …⑤

运筹学第1章:线性规划问题及单纯型解法

运筹学第1章:线性规划问题及单纯型解法

原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?

求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8

运筹学课件——第2讲 线性规划模型(1)

运筹学课件——第2讲  线性规划模型(1)
第1章 线性规划
本章要求: 本章要求: 1.掌握并熟练应用线性规划的模型处理实际问 1.掌握并熟练应用线性规划的模型处理实际问 题 2.掌握线性规划的图解法 2.掌握线性规划的图解法 3.掌握软件求解线性规划 3.掌握软件求解线性规划 4.了解线性规划对偶问题的基本性质 4.了解线性规划对偶问题的基本性质 5.理解有关灵敏度分析内容 5.理解有关灵敏度分析内容
+ = x 1 x 3 4 x 12 2x 2 + 4 = s.t. + 3x 1 + 2 x 2 x 5 = 18 x j ≥ 0( j = 1,2,3,4,5)
max Z = 70 x1 + 120 x 2 9 x1 + 4 x 2 ≤ 360 4 x + 5 x ≤ 200 1 2 s.t . 3 x1 + 10 x 2 ≤ 300 x1 ≥ 0, x 2 ≥ 0
例4:饮料配制计划
大众酒吧自行配制生产甲,乙两种饮料,管 大众酒吧自行配制生产甲,乙两种饮料, 理层决定下月总产量至少达到350 350升 理层决定下月总产量至少达到350升。甲饮料每 升的制造成本为2 制造时间需2小时, 升的制造成本为2元,制造时间需2小时,乙饮 料每升的制造成本为3 制造时间需1小时, 料每升的制造成本为3元,制造时间需1小时, 下月总生产时间为600小时。此外, 600小时 下月总生产时间为600小时。此外,下月有一位 客户已预定甲饮料125升。试为管理层制定满足 客户已预定甲饮料125升 125 客户要求且制作成本最小的生产计划。 客户要求且制作成本最小的生产计划。 线性规划模型? 线性规划模型?
显然,上述活动所引起的问题是一类有约束的 显然,上述活动所引起的问题是一类有约束的 最优化问题( 最优化问题(Constrained Optimization)。 ) 线性规划正是解决有约束的最优化问题的一种 线性规划正是解决有约束的最优化问题的一种 常用的方法,其涉及的主要概念包括: 常用的方法,其涉及的主要概念包括: ◆目标(Objective):所要达到的最优结果(最 所要达到的最优结果( 目标( ) 所要达到的最优结果 大或最小); 大或最小); ◆约束条件(Constraints):对所能产生结果的 约束条件( ) 对所能产生结果的 限制。 限制。

运筹学的基础

运筹学的基础

运筹学的基础一、概述运筹学是一门应用数学学科,旨在解决实际问题中的优化、决策和规划等问题。

它涉及多个学科领域,如数学、统计学、计算机科学和工程等。

本文将从以下几个方面介绍运筹学的基础知识。

二、线性规划线性规划是运筹学中最基础也是最常用的方法之一。

它的主要思想是在给定约束条件下,寻找使目标函数最大或最小的变量值。

线性规划问题可以用下列标准形式表示:max c^Txs.t. Ax ≤ bx ≥ 0其中,c和x分别表示目标函数系数和变量向量,A和b分别表示约束条件系数矩阵和常向量。

三、整数规划整数规划是线性规划的扩展,它要求变量取整数值。

这种限制使得整数规划问题更难求解。

通常采用分支定界法或割平面法等算法来求解整数规划问题。

四、网络流问题网络流问题也是运筹学中重要的问题之一。

它涉及到图论中的最大流和最小割等概念,在实际应用中有着广泛的应用。

网络流问题可以用下列标准形式表示:max fs.t. 0 ≤ f ≤ c∑f(i,j) - ∑f(j,i) = 0 (i ≠ s,t)其中,f表示流量,c表示容量,s和t分别表示源点和汇点。

五、排队论排队论是运筹学中另一个重要的问题。

它研究的是在一定条件下,如何通过优化系统结构、调整服务策略等方式来提高服务效率和降低成本。

排队论采用概率模型来描述系统行为,并通过数学方法来优化系统性能。

六、决策分析决策分析是运筹学中最终的目标之一。

它涉及到多种方法和工具,如决策树、贝叶斯网络、模拟等。

决策分析旨在帮助决策者做出最优决策,并同时考虑风险和不确定性因素。

七、结语运筹学的基础知识包括线性规划、整数规划、网络流问题、排队论和决策分析等内容。

这些方法和工具在实际应用中有着广泛的应用,并且不断发展和完善。

掌握这些基础知识对于从事运筹学研究和应用的人员来说是非常重要的。

运筹学基本概念及判断题(含答案)

运筹学基本概念及判断题(含答案)

运筹学基本概念及判断题(含答案)第1章线性规划1.任何线性规划一定有最优解。

2.若线性规划有最优解,则一定有基本最优解。

3.线性规划可行域无界,则具有无界解。

4.在基本可行解中非基变量一定为零。

5.检验数λj表示非基变量xj增加一个单位时目标函数值的改变量。

7.可行解集非空时,则在极点上至少有一点达到最优值。

8.任何线性规划都可以化为下列标准形式:9.基本解对应的基是可行基。

10.任何线性规划总可用大M单纯形法求解。

11.任何线性规划总可用两阶段单纯形法求解。

12.若线性规划存在两个不同的最优解,则必有无穷个最优解。

13.两阶段法中第一阶段问题必有最优解。

14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。

15.人工变量一旦出基就不会再进基。

16.普通单纯形法比值规则失效说明问题无界。

17.最小比值规则是保证从一个可行基得到另一个可行基。

18.将检验数表示为的形式,则求极大值问题时基可行解是最优解的充要条件是。

19.若矩阵B为一可行基,则|B|=0。

20.当最优解中存在为零的基变量时,则线性规划具有多重最优解。

第2章线性规划的对偶理论21.原问题第i个约束是“≤”约束,则对偶变量yi≥0。

22.互为对偶问题,或者同时都有最优解,或者同时都无最优解。

23.原问题有多重解,对偶问题也有多重解。

24.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解。

25.原问题无最优解,则对偶问题无可行解。

26.设X*、Y*分别是的可行解,则有(1)CX*≤Y*b;(2)CX*是w的上界(3)当X*、Y*为最优解时,CX*=Y*b;(4)当CX*=Y*b时,有 Y*Xs+Ys X*=0成立(5)X*为最优解且B是最优基时,则Y*=CBB-1是最优解;(6)松弛变量Ys的检验数是λs,则 X=-λS是基本解,若Ys是最优解,则X=-λS是最优解。

第5章运输与指派问题61.运输问题中用位势法求得的检验数不唯一。

运筹学复习资料(1)

运筹学复习资料(1)

运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。

其中,可行域无界,并不意味着目标函数值无界。

无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。

有界可行域对应唯一最优解和多重最优解两种情况。

线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。

单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。

换基迭代要求除了进基的非基变量外,其余非基变量全为零。

检验最优性的一个方法是在目标函数中,用非基变量表示基变量。

要求检验数全部小于等于零。

“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。

”这句话是最小比值法的一种通俗的说法,但是很有意义。

这里,x1为进基变量,x3为出基变量。

将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。

单纯型原理的矩阵描述。

在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。

最初基变量对应的基矩阵的逆矩阵。

这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。

但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。

解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。

2-1线性规划引论-(1) [运筹学]

2-1线性规划引论-(1) [运筹学]

min Z cij xij ;
aij xij ai (i 1, 2, m, 对机床A i 加工机时的限制); j 1 m s.t. xij b j ( j 1, 2, n, 对零件B j的需要量必须保证); i 1 xij 0(i 1, 2, m; j 1, 2, n).
11
min Z x1 x2 xn ;
例4 运输问题
某航运局现有船只种类、数量以及计划期内各条航线的货运量、 货运成本如下表所示。
编队形式 航线号 船队 类型 1 1 2 3 2 4 1 — 4 27 20 1 2 — 2 4 4 36 72 20 40 拖轮 1 A型 驳船 2 B型 驳船 — 货运成本 (千元/队) 36 货运量 (千吨) 25
解:
当产销平衡(即 ai b j)时,设xij 表示由产地A i 运往销地B j (i 1,2, , m; j 1,2, , n)的运量,
i 1 j 1
m
n
则问题的数学模型为:求xij (i 1,2, , m; )
minZ cij x ij ;
i 1 j 1
编队形式
x1 + x2 + 2x3 + x4 ≤ 30 2x1 + 2x3 ≤34 4x2 + 4x3 + 4x4 ≤52 25x1 + 20x2 xj ≥ 0 j = 1,2,3,4 =200 40x3 + 20x4 =400
船队 用单纯形法可求得: A型 B型 类型 1 2 3 4 拖轮 1 1 2 1 2 — 4
a 1 1 x 1 a 1 2 x 2 a 1 n x n b1 a x a x a x b 22 2 2n n 2 21 1 s.t. a x a x a x b m 2 2 mn n m m1 1 x j 0 ( j 1, 2 , , n )

运筹学 线性规划 图解法

运筹学 线性规划 图解法

x2 4x1=16
x1+2x2=8
Q4
Q3
3
•Q2(4,2) 4x2=12
Q1
0
4
x1
2x1+3x2=0
2.试算法
最优解在顶点达到:
O点:X1=0, X2=0, Z=0 Q1: X1=4, X2=0, Z=8 Q2: X1=4, X2=2, Z=14 Q3: X1=2, X2=3, Z=10 Q4: X1=0, X2=3, Z=6
x2
X1=10/3,x2 =4/3
Z=12.67
0
x1
线性代数基础知识补充与回顾
一、克莱姆规则
含有n个未知数x1,x2,…xn的n个线性方程的方程 组如下式所示:
a11x1 a12x2 ..... a1nxn b1 a21x1 a22x2 ..... a2nxn b2 ...................................... an1x1 an2x2 ..... annxn bn
克莱姆法则 如果上述线性方程组的系数行列式不等于零,即有:
a11 a1n
D
0
an1 ann
那么,上述方程组有唯一解:
x1D D 1,x2D D 2,........xn .. ..D .D .n .
其中Dj(j=1,2,……n)是把系数行列式D中的第j 列的元素用方程组的常数项代替后得到的n阶行列式.
(a)可行域有界 唯一最优解
(b)可行域有界 多个最优解
(c)可行域无界 唯一最优解
(d)可行域无界 多个最优解
(e)可行域无界 目标函数无界
(f)可行域为空集 无可行解
课堂作业:用图解法求解下列问题
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
线性规划
【开篇案例】
二、生产计划的问题
明兴公司生产甲、乙、丙三种产品,都需要经过铸造、机加工 和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自 行生产,但产品丙必须本厂铸造才能保证质量。数据如右表。问: 公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、 乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?
则该问题的数学模型表示为
maxZ= 2x1 +3x2
2x1+2x2 ≤12 x1 +2x2 ≤8 设生产Ⅰ、Ⅱ产品为x1、x2件 4x1 ≤16 4x2 ≤12 问题:建立线性规划模型要考虑的关键要素? x ≥0, x ≥0 1 2 10
线性规划
maxZ= 2x1 +3x2 2x1+2x2 ≤12 x1 +2x2 ≤8 4x1 ≤16 4x2 ≤12 x1 ≥0, x2 ≥0
产地
A1 A2 A3 销量
销地 B1
B2
B3
B4
产量
6 7 3 2
3 5 2 3
2 8 9 1
5 4 7 4
5 2 3
17
线性规划
销地
建立模型: A
1
产地
B1
B2
B3
x13
B4
x14 5
2
A2 A3 销量
x24 7 x21 5x22 8 x23 4
3 x31 2x32 9 x33 7 x34
线性规划是一种合理利用资源、合理调配资源的应用数学 方法。 其中:规划就是利用某种数学方法使得有效资源的运用最 优化;线性就是用来描述就是之间关系的函数是线性函数。
8
线性规划
在管理中一些典型的线性规划应用
在生产管理和经济活动中经常提出这样一类问题, 即如何 合理地利用有限的人力、物力、财力等资源,以便得到最好的 经济效果。 主要包括:
约束条件
任何问题都是限定在一定的条件下求解,把各种限制条件表示为 一组等式或不等式,称之为约束条件。如设备能力、原材料数量等 约束条件是决策方案可行的保障。 约束条件的基本类型:大于等于“≥”、等于“=”、小于等于 11 “≤”
线性规划
二、线性规划模型的构建
线性规划建模步骤:
明确问题,确定目标,列出约束条件; 收集资料,确立模型;
9
问题:如何建立线性规划模型?
线性规划
§1.1 一般线性规划问题的数学模型
【引例】生产计划的问题
设备A 设备B 设备C 设备D 利润
产品1 2 1 4 0 2
产品2 2 2 0 4 3
资源量 12 8 16 12
某企业生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D 四各不同设备上加工。生产每件产品Ⅰ需占用各设备为2、1、4、0小时, 生产每件产品Ⅱ 需占用各设备为2、2、0、4小时,各设备用于生产这 两种产品的能力分别为12、8、16、12小时,又知生产一件产品Ⅰ获得2 元,生产Ⅱ 获得3元,问如何安排生产,使总的利润最大。
18
线性规划
【例3】营养问题
某养鸡场所用的混合饲料是由 n 种配料组成。要求这种混 合饲料必须含有 m 种不同的营养成份,而且要求每单位混合饲 料中第 i 种营养成份的含量不能低于 bi ( i= 1,2, …, m)。已知 第 i 种营养成份在每单位的第 j 种配料中的含量为 aij , j = 1,2, …, n,每单位的第 j 种配料的价格为 cj 。现在要求在保证营养条件 的前提下,应采用何种配方,使混合饲料的成本最小.
maxZ= 3x1 +5 x2
≤8 2x2 ≤12 3x1 +4 x2 ≤36 x1 ≥0, x2 ≥0 x1
15
目标函数
约束条件
线性规划
【引例】生产计划的问题
某企业生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、 C、D四各不同设备上加工。生产每件产品Ⅰ需占用各设备为2、1、 4、0小时,生产每件产品Ⅱ 需占用各设备为2、2、0、4小时,各 设备用于生产这两种产品的能力分别为12、8、16、12小时,又知 生产一件产品Ⅰ获得2元,生产Ⅱ 获得3元,问如何安排生产,使 maxZ= 2x1 +3x2 总的利润最大。 则该问题的数学模型表示为
配料
营养成份
B1
B2

Bn
含量 b1 b2 bm
19
A1 A2

a11 a21
a12 a22
… …
a1n a2n amn cn
Am 单价
am1 am2 … c1 c2 …
线性规划
配料 营养成份 A1 A2

B1 a11 a21 a12 a22
B2 … …
… a1n a2n amn cn
Bn
含量 b1 b2 bm
建立模型:
Am 价格
am1 am2 … c1 c2 …
设xj 表示在单位混合饲料中,第j 种配料的含量( j =1,2,…,n) 则有如下的数学模型:
MinZ=c1x1 + c2x2 + … + cnxn
a11x1 + a12x2 + … + a1nxn ≥ b1 a21x1 + a22x2 + … + a2nxn ≥ b2 …… am1x1 + am2x2 + … + amnxn ≥ bm
合理利用线材问题:如何下料使用材最少 配料问题:在原料供应量的限制下如何获取最大利润 投资问题:从投资项目中选取方案,使投资回报最大
产品生产计划:合理利用人力、物力、财力等,使获利最大
劳动力安排:用最少的劳动力来满足工作的需要
运输问题:如何制定调运方案,使总运费最小
盈亏平衡问题:掌握企业盈亏界限,合理安排生产能力
班次 1 2 3 4 5 6 时间 6:00 —— 10:00 10:00 —— 14:00 14:00 —— 18:00 18:00 —— 22:00 22: —— 2:00 2:00 —— 6:00 所需人数 60 70 60 50 20 30
设司机分别在各时间段一开始时上班,并连续工作八小时, 问该公交线路怎样安排司机,既能满足工作需要,又配备最少 司机?
13
线性规划
产品 车间 A B C 单位产品获利 甲
工时单耗 乙 0 2 4 5 1 0 3 3
生产能力 8 12 36
建立模型:
(1) 决策变量
要决策的问题是甲、乙两种产品的产量,因此有两个决 策变量:设x1为甲产品产量,x2为乙产品产量。 (2) 约束条件 生产这两种产品受到现有生产能力的制约,用量不能突破。 生产单位甲产品的零部件需耗用A车间的生产能力1工时, 生产单位乙产品不需耗用A车间的生产能力,A车间的能力总量 限制为8工时,则A车间的能力约束条件表述为 x1 ≤8 同理,B和C车间能力约束条件为 2x2 ≤12 3x1 +4 x2 ≤36
(1)决策变量: 设从Ai到Bj的运输量为xij,
(2)目标函数: 则运费最小的目标函数为
2
3
1
4
minZ=6x11+3x12+2x13+5x14+7x21+5x22+8x23+4x24+3x31+2x32+9x33+7x34
(3) 约束条件: 产量之和等于销量之和,故要满足 供应平衡条件 x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3 销售平衡条件 x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4 条件非负性约束 xij≥0 (i=1,2,3;j=1,2,3,4)
x1 ≥0, x2 ≥0 ,… , xn≥0
甲 5 6 3 3 5 2 3 23 乙 10 4 2 5 6 1 2 18 丙 7 8 2 4 -3 2 16 资源限制 8000 12000 10000
铸造工时(小时/件) 机加工工时(小时/件) 装配工时(小时/件) 自产铸件成本(元/件) 外协铸件成本(元/件) 机加工成本(元/件) 装配成本(元/件) 产品售价(元/件)
模型求解与检验
优化后的分析
其中:最为困难的是建模
12
线性规划
【例1】生产计划问题
某厂生产甲乙两种产品,各自的零部件分别在A、B车间 生产,最后都需在C车间装配,相关数据如表所示:
产品 车间 A B C 单位产品获利 工时单耗 甲 乙 1 0 3 3 0 2 4 5 生产能力 8 12 36
问如何安排甲、乙两产品的产量,使利润为最大。
项目 A B C D 风险指数(次/万元) 1 3 4 5.5
问:a.应如何确定这些项目的每年投资额,使得第五年年末拥有资 金的本利金额为最大? b.应如何确定这些项目的每年投资额,使得第五年年末拥有资 6 金的本利在330万元的基础上使得其投资总的风险系数为最小?
线性规划
归纳上述研究的主要内容:
设生产Ⅰ、Ⅱ产品为x1、x2件
设备A 设备B 设备C 设备D 利润
产品1 2 1 4 0 2
产品2 2 2 0 4 3
资源量 12 8 16 12
2x1+2x2 ≤12 x1 +2x2 ≤8 4x1 ≤16 4x2 ≤12 x1 ≥0, x2 ≥0
16
线性规划
【例2】运输问题
某名牌饮料在国内有三个生产厂,分布在城市A1、A2, A3, 其一级承销商有4个,分布在城市B1、B2、B3、B4,已知各厂 的产量、各承销商的销售量及从Ai到Bj的每吨饮料运费为Cij, 为发挥集团优势,公司要统一筹划运销问题,求运费最小的调 运方案。
相关文档
最新文档