离散系统的频率响应分析和零极点分布

合集下载

数字信号处理 实验3 离散系统的频域分析

数字信号处理 实验3 离散系统的频域分析
function[db,mag,pha,grd,w]=freqz_m(b,a,N); %离散系统响应求解函数,包括幅度响应、相位响应、群时延; %a,b,N 为输入参数; %b 为系统分子多项式系数向量; %b 为系统分子多项式系数向量; N 为频率离散化的点数; %db,mag,pha,grd,w 为输出参数; %db 为系统[0,π]的度响应,单位是 dB; %ag 也是系统[0,π]的幅度响应,单位是伏; %pha 为系统的[0,π]上的相位响应,单位为 rad; %grd 为[0,π]上的群延时响应; %w 为[0,π]上的频率采样点. [H,w]=freqz(b,a,N,’whole’); H=(H(1:N/2));w=(w(1:N/2)); mag=abs(H); db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w);
MATLAB 为求解离散系统的频率响应和连续系统的频率响应,分别提供了 freqz 和 freq(s 求
连续系统的频率响应函数)两个函数,使用方法类似。本实验主要讨论离散系统的频率响应。
例 3-1 已知离散时间系统的系统函数为
H(z)
=
0.1321− 0.3963 z−2 + 0.3963 z−4 − 0.1321z−6 1+ 0.34319 z−2 + 0.60439 z−4 + 0.20407 z−6
求该系统在 0~π频率范围内的绝对幅频响应、相对幅度响应、相位响率响应及群迟延。
解 MATLAB 程序如下:
b=[0.1321,0,0.3963,0,0.3963,0,0.1321];
a=[1,0,-0.34319,0,0.60439,0,-0.20407];

数字信号处理实验4

数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

零极点分布对系统频率响应的影响

零极点分布对系统频率响应的影响

实验三零极点分布对系统频率响应的影响
一.实验目的
学习用分析零极点分布的几何方法分析研究信号和系统频率响应
. 二. 实验原理
1. 对(序列)信号x(n)进行ZT, 得X(z), 从而得到它的零极点分布
. 2. 对(离散)系统, 求出它的系统函数
H(z) , 也可得到它的零极点分布. 3. 按教材(3.6.13)式, 信号或系统的幅度特性由零点至单位圆周上的矢量长度和极点至单位圆周上的矢量长度之比
. 4. 极点影响频率特性的峰值
, 零点影响频率特性的谷值. 零极逾靠近单位圆
, 这些特征越明显. 如有极点410.9j z e , 则频率特性曲线在4
处出现峰值. 5. 本实验借助于计算机分析信号或系统的频率响应
, 目的是掌握用极、零点分布的几何分析法分析频率响应, 实验时需并j z e 代入相应的X(z) 或H(z) 中, 再在0~2中等
间隔的取点. 如100等分:w=[0:2*pi/100:2*pi], 再用plot 等函数作出|()|j H e 图形.
三. 实验内容
1. 设系统为()()(1)y n x n ay n , 试就0.7,0.8,0.9a , 分别在三种情况下分析系统的频率特性, 并作出幅度特性曲线
., 并作出高, 低通等判断.
2. 假设系统为: ()
1.273(1)0.81(2)()(1)y n y n y n x n x n 试分析它的频率特性
, 作出它的幅-频曲线, 估计其峰值频率和谷值频率
. 四. 实验报告要求1. 总结零、极点分布对频率响应的影响;
2. 总结零、极点分布对系统的高通、低通的影响.。

数字信处理实验报告

数字信处理实验报告

数字信号处理实验报告姓 名: 班 级: 13电信2 学 号: 2013302 2013302 2013302 指导老师: 日期: 2016.6.6~华南农业大学电子工程学院电子信息工程系实验一 常见离散信号的MATLAB 产生和图形显示一、实验目的加深对常用离散信号的理解; 二.实验原理 1. 单位抽样序列在MATLAB 中可以利用zeros()函数实现。

如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:2. 单位阶越序列在MATLAB 中可以利用ones()函数实现。

3. 正弦序列在MATLAB 中 4. 复正弦序列在MATLAB 中 5. 指数序列在MATLAB 中6.卷积分析conv.m 用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。

三.实验内容1.画出信号x (n) = 1.5*δ(n+1) - δ(n-3)的波形。

2.求序列x(n)和h(n)的线性卷积y(n)=x(n)*h(n)。

x(n) = {3,-3,7,0,-1,5,2} , h(n) = {2,3,0,-5,2,1}. 画出x(n),h(n),y(n)与n的离散序列图形四.实验要求1)画出信号x(n) = 1.5*δ(n+1) - δ(n-3)的波形。

①MATLAB程序如下:n3 = [-3:3];x3 = [(n3+1)==0];subplot(1,3,1);stem(n3,x3);n4 = [-3:3];x4 = [(n4-3)==0];subplot(1,3,2);stem(n4,x4);n5 = [-3:3];x5 = 1.5*x3 - x4;subplot(1,3,3);stem(n5,x5);②理论计算:x(n)=③程序运行结果:图(1)从图(1)左侧起第一幅图是信号δ(n+1)的波形,第二幅图是信号δ(n-3)的波形,最后一幅图是信号x(n) = 1.5*δ(n+1) - δ(n-3)的波形。

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

离散时间系统的频率响应特性

离散时间系统的频率响应特性

差分方程的Z 域解序言描述离散时间系统的数学模型为差分方程。

求解差分方程是我们分析离散时间系统的一个重要途径。

求解线性时不变离散系统的差分方程有两种方法:• 时域方法——第七章中介绍,烦琐 • z 变换方法• 差分方程经z 变换→代数方程; • 可以将时域卷积→频域(z 域)乘积; • 部分分式分解后将求解过程变为查表;• 求解过程自动包含了初始状态(相当于0-的条件)。

一.应用z 变换求解差分方程步骤一.步骤(1)对差分方程进行单边z 变换(移位性质 );(2)由z 变换方程求出响应Y (z ) ; (3) 求Y (z ) 的反变换,得到y (n ) 。

例8-7-1(原教材例7-10(2))解:方程两端取z 变换()0.9(1)0.05()(1)1,y n y n u n y --=-=已知系统的差分方程表达式为若边界条件求系统的完全响应。

()()()10.910.051zY z z Y z y z -⎡⎤-+-=⎣⎦-例8-7-2 已知系统框图列出系统的差分方程。

求系统的响应 y (n )。

解:(1) 列差分方程,从加法器入手(2)(3)差分方程两端取z 变换,利用右移位性质()()()()20.910.0510.90.9y z z Y z z z z -=+---()1210.9Y z A z A zz z z =+--()1210.9Y z A z A z zz z =+--120.5 0.45A A ==()0.50.4510.9Y z z z z z z =+--()()()0.50.450.9 0n y n n =+⨯≥()()()()⎩⎨⎧==<≥-=010,0002y y n n n x n ()()()()()13122x n x n y n y n y n +-----=()()()()()12213 -+=-+-+n x n x n y n y n y 所以()()151,224y y -=--=()()()()1,2,1,0z y y y y --用变换求解需要用由方程迭代出()()()()()()12131212Y z z Y z y z Y z z y y ---⎡⎤⎡⎤++-++-+-⎣⎦⎣⎦a.由激励引起的零状态响应即零状态响应为b.由储能引起的零输入响应即零输入响应为c.整理(1)式得全响应注意()()()1 01221=-+++=-x z z z z z ()[]2123121zs ++=++--z z zz z Y ()()2zs 22z Y z z =+()()()()()n u n n y z Y n21zs zs-+=↔2n ≥-(对都成立)()[]()()()221312231121zi ------=++---y y y z z z z Y ()()()()1223121zi +++-=++--=z zz z z z z z z Y ()()()()1223zi zi ≥-+--=↔n n y z Y nn()()()()22112221212+++++=++=z B z B z A z z z z Y ()()()()222122d d !121221-=-=⎥⎦⎤⎢⎣⎡+++⋅-=z z z z z B ()()2222212 +-++-++=z z z z z Y 所以()()2222212+-+-+=z zz z z z z Y ()()()()()0 22212≥-+---=n n n y n n n 122,2A B ==-()()()2212zY z z z =++2(),2()n azna u n a z a ↔=--验证 由方程解y (n )表达式可以得出y (0)=0, y (1)=0,和已知条件一致。

电子科大软件实验:离散系统的转移函数-零、极点分布和模拟

电子科大软件实验:离散系统的转移函数-零、极点分布和模拟

电子科大软件实验:离散系统的转移函数-零、极点分布和模拟————————————————————————————————作者:————————————————————————————————日期:电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 一、实验室名称:信号与系统实验室二、实验项目名称:离散系统的转移函数,零、极点分布和模拟 三、实验原理:离散系统的时域方程为∑∑==-=-Mm m Nk km n x b k n y a][][其变换域分析方法如下:系统的频率响应为 ωωωωωωωjN N j jM M j j j j e a e a a e b e b b e A e B e H ----++++++==......)()()(1010 Z 域 )()()(][][][][][z H z X z Y m n h m x n h n x n y m =⇔-=*=∑∞-∞=系统的转移函数为 NN MM z a z a a z b z b b z A z B z H ----++++++==......)()()(110110 分解因式 ∏∏∑∑=-=-=-=---==N i i Mi iN i i k Mi ik z zKz a zb z H 11110)1()1()(λξ ,其中i ξ和i λ称为零、极点。

在MATLAB 中,可以用函数[z,p,K]=tf2zp (num,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。

四、实验目的:目的:1、加深对离散系统转移函数、零极点概念的理解;2、根据系统转移函数求系统零极点分布。

任务:利用MATLAB 函数tf2zp 、zplane 求系统零极点及绘制零极点图;根据系统零极点图求系统的频率响应。

数字信号处理实验报告-实验3

数字信号处理实验报告-实验3

数字信号处理实验报告林鸿运10282039 生医1002实验1 常见离散信号的matlab产生和图形显示五个常见离散信号1.单位抽样序列程序源代码:clcclear alln=0:10;x=[n==0];subplot(2,2,1);stem(n,x);title('单位抽样序列');xlabel('n');ylabel('x(n)');程序运行截图2.单位阶跃序列程序源代码:clcclear alln=0:10;x=[n>=0];subplot(2,2,1);stem(n,x);title('单位阶跃序列');xlabel('n');ylabel('x(n)');程序运行截图:3.正弦序列程序源代码:clcclear alln=0:20;A=5;f=2/pi;Fs=4;b=2*pi;x=A*sin(2*pi*f*n/Fs+b);subplot(2,2,1);stem(n,x);title('正弦序列');xlabel('n');ylabel('x(n)');程序运行截图:4.实指数序列程序源代码:clcclear alln=0:0.5:10;a=10;x=a.^n;subplot(2,2,1);stem(n,x);title('实指数序列');xlabel('n');ylabel('x(n)');程序运行截图:5.复指数序列程序源代码:clcclear alln=0:0.5:10;a=10;b=10x=exp((a+j*b)*n);subplot(2,2,1);stem(n,x);title('复指数序列');xlabel('n');ylabel('x(n)');程序运行截图:实验内容1.实验内容11.产生x(n)=δ(n+2)-2δ(n-1) (-5<=n<=5)序列的波形图2. 产生x(n)=u(n)-u (n-5) (0<=n<10)序列的波形图3. 产生x(n)=2sin(0.04πn+π/3) (0<=n<50)序列的波形图4. 产生x(n)=0.8n (0<=n<10)序列的波形图程序源代码:clcclear alln=-5:5;x=[(n+2)==0]-2*[(n-1)==0];subplot(2,2,1);stem(n,x);title('抽样序列');xlabel('n');ylabel('x(n)');n=0:10;x=[n>=0]-[(n-5)>=0];subplot(2,2,2);stem(n,x);title('阶跃序列');xlabel('n');ylabel('x(n)');n=0:50;x=2*sin(0.04*pi*n+pi/3); subplot(2,2,3);stem(n,x);title('正弦序列');xlabel('n');ylabel('x(n)');n=0:10;x=0.8.^n;subplot(2,2,4);stem(n,x);title('实指数序列'); xlabel('n');ylabel('x(n)');程序运行截图:产生复指数序列x(n)=e(-0.1+j0.3)n(-20<=n<20),画出它的实部、虚部、幅值和相位图,以此讨论复指数序列的性质程序源代码:clcclear alln=-20:20;x=exp((-0.1+0.3j)*n);subplot(2,2,1);stem(n,real(x));title('实部');xlabel('n');subplot(2,2,2);stem(n,imag(x));title('虚部');xlabel('n');subplot(2,2,3);stem(n,abs(x));title('幅值');xlabel('n');subplot(2,2,4);stem(n,(180/pi)*angle(x));title('相位');xlabel('n');程序运行截图:复指数序列的性质:2.实验内容2(1).产生x(n)= (n.^2).*{ [(n-5)>=0]-[(n-6)>=0]} +10*[n==0]+ 20*(0.5.^n).*{ [(n-4)>=0]-[(n-10)>=0]} (-10<=n<10)序列的样本,要求用四个框图分别显示表达式中的三个相加项和x(n)波形程序源代码:clcclear alln=-10:10;a=[(n-5)>=0]-[(n-6)>=0];b=[(n-4)>=0]-[(n-10)>=0];x1=(n.^2).*a;x2=10*[n==0];x3=20*(0.5.^n).*b;x=x1+x2+x3;subplot(2,2,1);stem(n,x1);title('x1(n)');xlabel('n');subplot(2,2,2);stem(n,x2);title('x2(n)');xlabel('n');subplot(2,2,3);stem(n,x3);title('x3(n)');xlabel('n');subplot(2,2,4);stem(n,x);title('x(n)');xlabel('n');程序运行截图:(2)a .程序源代码:clcclear alln=-20:20;x1=cos(0.3*pi*n);x2=cos(0.4*pi*n);subplot(2,1,1);stem(n,x1);title('余弦序列1');xlabel('n');ylabel('x1(n)');subplot(2,1,2);stem(n,x2);title('余弦序列2');xlabel('n');ylabel('x2(n)');程序截图:分析:两个序列都是周期序列,基本周期是20,如果f0=K/N是一个有理数,N为周期;K代表一个周期里有多少个震荡。

LTI 离散系统的频域分析

LTI 离散系统的频域分析

实验二 LTI 离散系统的频域分析一、实验目的 1、 利用 Matlab 绘制 LTI 离散系统的零极图;2、 根据离散系统的零极点分布,分析系统单位响应 h(n) 的时域特性;3、 利用 Matlab 求解 LTI 离散系统的幅频特性和相频特性。

二、实验原理 1、离散系统的零极点LTI 离散系统可采用(4-1)所示的线性常系数差分方程来描述,其中y(n)为系统输出信号,x(n)为系统输入信号。

1()()NMkm k m ay n k b x n m ==-=-∑∑将上式两边进行z 变换得:10111(1)()()()/()()(1)MMjjm j j N Nikii i q zbzB z H z Y z X z KA z a zp z--==--==-====-∑∏∑∏上式中,A(z)和B(z)均为z 的多项式,可分别进行式因式分解。

c 为常数, q j (j =1,2,…,M)为H(z)的M 个零点, p i (i =1,2,…,N )为H(z)的N 个极点。

H(z)的零、极点的分布决定了系统的特性,若某离散系统的零、极点已知,则系统函数便可确定。

因此,通过对H(z)零极点的分析,可以分析离散系统以下几个方面的特性:离散系统的稳定性;系统单位响应h(n)的时域特性;离散系统的频率特性(幅频响应和相频响应)。

2、离散系统的因果稳定性离散系统因果稳定的充要条件:系统函数H(z)的所有极点均位于z 平面的单位圆内。

对于三阶以下的低阶系统,利用求根公式可方便地求出离散系统的极点位置,判断系统的因果稳定性。

对于高阶系统,手工求解极点位置则非常困难,这时可利用MATLAB 来实现。

3、离散系统的频率响应()j ωH e()()[()]()|()j j j j z e H e DTFT h n H z H e eωϕωωω====()j ωH e 称为离散系统的幅频响应,决定了输出序列与输入序列的幅度之比; ()ϕω称为离散系统的相频响应,决定了输出序列和输入序列的相位之差;()j H e ω随ω而变化的曲线称为系统的幅频特性曲线,()ϕω随ω而变化的曲线称为系统的相频特性曲线。

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布离散系统的幅频响应描述了系统对不同频率信号的放大或压缩能力。

幅频响应一般用幅度响应曲线表示,即以输入信号频率为横轴,以输出信号幅度为纵轴绘制的曲线。

幅频响应曲线可以展示离散系统的增益特性,即在不同频率下系统对信号的放大或压缩程度。

幅频响应曲线上的波动和变化可以反映系统对不同频率信号的响应情况。

离散系统的相频响应描述了系统对不同频率信号的相位差。

相频响应也是以输入信号频率为横轴,以输出信号相位为纵轴绘制的曲线。

相频响应可以展示离散系统对不同频率信号的相位延迟或提前情况,即输入信号和输出信号之间的相位差。

相频响应的变化可以反映系统对不同频率信号相位的变化情况。

在频率响应分析中,零极点分布也是非常重要的。

零点是指离散系统传递函数的分子多项式为零的根,极点是指传递函数的分母多项式为零的根。

零极点的分布对离散系统的频率响应和系统特性有着重要的影响。

具体来说,零点会在幅频响应曲线上产生波动或峰值,影响系统的放大或压缩程度。

零点的频率越高,波动或峰值的位置越靠近高频,反之亦然。

而极点会导致幅频响应曲线的趋势变化,影响系统的稳定性和阻尼特性。

极点越接近单位圆,系统越不稳定;极点越远离单位圆,系统越稳定。

相频响应同样受到零点和极点的影响。

零点的频率越高,在相频响应曲线上引起的相位变化越明显。

而极点的频率越接近单位圆,相频响应曲线呈现明显的相位延迟。

极点越远离单位圆,相频响应曲线呈现相位提前的情况。

因此,频率响应分析和零极点分布是研究离散系统特性的重要方法。

通过频率响应分析和零极点分布,我们可以了解离散系统对不同频率输入信号的响应情况、系统的稳定性特点以及系统的放大和压缩能力。

这对于离散系统的设计、控制和优化都有着重要的指导意义。

数字信号处理习题答案及matlab实验详解.pdf

数字信号处理习题答案及matlab实验详解.pdf

(2) 由 H(z)的表达式,不难求出, 当 w=0 时, H (e j0 ) 1/ 0.51 2;
当 w=π时, H (e j ) 1/ 2.77 0.36;

w=±π/4
时,
H
(e
j
4
)
1/ 0.256
4 ,峰值。
B=1; A=[1,-1.13,0.64]; [H,w]=freqz(B,A,256,'whole',1); figure(1); subplot(2,1,1); plot(w,abs(H)) subplot(2,1,2); plot(w,angle(H))
12
实验 2-3 离散系统的频率响应分析和零、极点分布 实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。
在 MATLAB 中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的 系统转移函数的零、极点,用函数 zplane(z,p)绘出零、极点分布图;也可以 用函数 zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分 布图。
m
m0
即 y(0) 1, y(1) 0.75, y(2) 0.4375, y(3) 0.2344, y(4) 0.1211,......
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应: b=[1,-1]; a=[1,0.75,0.125]; x=ones(1,100); h=impz(b,a,100); y1=filter(b,a,x); figure(1) subplot(2,1,1); plot(h); subplot(2,1,2); plot(y1);
z 2

实验Z变换、零极点分析

实验Z变换、零极点分析

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换;一、 实验原理及实例分析(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

离散系统的频域分析与零极点分布Ⅱ

离散系统的频域分析与零极点分布Ⅱ

离散系统的频域分析与零极点分布Ⅱ离散系统的频域分析是对离散系统在频域上的特性进行分析和研究。

频域分析的基本思想是将离散系统的输入输出关系表示为频率响应函数的形式,通过频率响应函数来描述离散系统的特性。

而离散系统的零极点分布则是分析离散系统的传递函数的零点和极点在复平面上的分布情况,对于离散系统的稳定性和频率响应特性有着重要的影响。

首先,我们来讨论离散系统的频域分析。

离散系统的频率响应函数是指在复频率域上,将输入信号的频谱与输出信号的频谱之比来描述系统的特性。

离散系统的频率响应函数可以通过系统的传输函数来求得。

传输函数是指系统输出信号与输入信号的拉普拉斯变换之比。

对于离散系统,传输函数可以通过系统的差分方程求解。

然后,使用z变换将差分方程转化为传输函数的形式。

通过传输函数,我们可以得到离散系统的频率响应函数,从而分析系统在不同频率下的特性。

离散系统的频率响应函数通常使用幅频响应和相频响应来描述。

幅频响应表示系统在不同频率下的输出信号的幅度与输入信号的幅度之比,相频响应表示系统在不同频率下的输出信号与输入信号的相位差。

通过幅频响应和相频响应,可以分析系统在不同频率下的输出信号的放大倍数和相位延迟情况。

接下来,我们来介绍离散系统的零极点分布。

离散系统的零点是指系统传递函数的分子多项式所对应的根,零点表示系统在一些频率下对输入信号的抑制或增强。

离散系统的极点是指系统传递函数的分母多项式所对应的根,极点表示系统在一些频率下的共振或抑制。

离散系统的零点和极点在复平面上的分布情况对于系统的稳定性和频率响应特性有着直接的影响。

离散系统的零极点分布的分析方法通常可以使用极坐标图或者单位圆图来表示。

极坐标图将离散系统的零点和极点用复数的模和幅角表示,通过观察零点和极点的分布情况,可以初步判断系统的稳定性和频率响应特性。

更进一步地,可以使用单位圆图来表示离散系统的零点和极点在单位圆上的分布情况。

单位圆图可以直观地显示系统的极点与零点对于频率响应的影响,通过观察单位圆图可以得到离散系统的稳定性和频率响应特性的更详细的信息。

实验4Z变换和系统频域特性的MATLAB实现

实验4Z变换和系统频域特性的MATLAB实现

实验4Z变换和系统频域特性的MATLAB实现⼩实验4 Z 变换和系统频域特性的MATLAB 实现1. 实验⽬的学习通过Z 变换来分析离散系统的频率响应,并⽤MATLAB 实现。

加深对系统的零、极点分布概念的理解。

2. 实例分析2.1通过Z 变换分析求解系统的冲激响应()h n已知⽤线性常系数差分⽅程:1()()()NMk r k r y n a y n k b x n r ===-+-∑∑表⽰的线性时不变系统其系统函数为:01()()()1Mrr r N kk k b zY z H z X z a z-=-===-∑∑ (3-1)上式为两个关于1z -的多项式之⽐,即()H z 为有理分式。

同时,式可以表⽰成部分分式的形式:110()1NM Nkk k k k k R H z C z p z ---===+-∑∑ 则可以通过所熟悉的常见序列的Z 变换形式求得()H z 的Z 反变换,从⽽求得系统的冲激响应函数()h n 。

MATLAB 提供了⼀个内部函数residuez( ),来计算有理多项式的留数和直接项,residuez( )函数有⼏种调⽤⽅式:(1)[R,p,C] = residuez(b,a),在已知以分⼦⾏向量b 和分母⾏向量a 下,得到列向量R 含有留数,列向量p 是极点位置,⾏向量C 包含直接项;(2)[b,a] = residuez(R,p,C),将部分分式展开式转换到分⼦⾏向量b 和分母⾏向量a.MATLAB 还提供了⼀个内部函数impz(b,a,N),在已知分⼦⾏向量b 和分母⾏向量a 下,计算N 点的单位冲激响应()h n 。

例3.1 求系统:123412340.0018360.0073440.0110160.0073740.001836()1 3.0544 3.8291 2.29250.55075z z z z H z z z z z --------++++=-+-+的单位冲激响应()h n 。

离散系统的系统函数和频率响应

离散系统的系统函数和频率响应
| z |> m | pi | ax
i
p2
p1 p3 Re[z]
⇔ cau sality
p2
Im[z]
p1
| z |< m | pi | ⇔anti - causality in
i
p3
因果、稳定系统: 因果、稳定系统:
H(z)的收敛域为: ( )的收敛域为:
ρ ≤| z |≤ ∞
包含单位圆且 (ROC包含单位圆且极点均在单位圆内) 包含单位圆 极点均在单位圆内)
离散系统的系统函数和频率响应 系统函数: 系统函数: H(z) = FT[h(n)] = Y(z) X (z)
频率响应: 频率响应: H(e ) 单位圆上的系统函数(传输函数 传输函数) 单位圆上的系统函数 传输函数

H(e ) = H(z) |z=e jω

1、零极点分布对系统因果、稳定性的影响: 、零极点分布对系统因果、稳定性的影响: 稳定性: 稳定性:
G = (1− R) 1− 2Rcos(2ω0) + R
2
Resonator----谐振器
3-dB width----3 分贝带宽
|H(e jω)|²
1 1/2
∆ω
ω
0
ω0
π/2
陷波器
梳状滤波器
• Notch and Comb Filters
e
pole

1
|H(ω)|²
unit circle
zero
2、利用零极点分布确定系统的频率特性: 、利用零极点分布确定系统的频率特性:
Y(z) H(z) = = X (z)
M
bi z−i ∑ ai z−i ∑

精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3

精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3
图2.6.2 H(z)=z-1的频响19特
【例2.6.3】 设一阶系统的差分方程为y(n)=by(n-1)+x(n)

由系统差分方程得到系统函H数(为z)
1 1 bz1
z
z b
| z || b |
式中,0<b<1。系统极点z=b,零点z=0,当B点从ω=0逆时针 旋转时,在ω=0点,由于极点向量长度最短,形成波峰;在 ω=π点形成波谷;z=0处零点不影响幅频响应。极零点分布 及幅度特性如图所示。
如果-1<b<0,则峰值点出现在ω=π处,形成高通滤波 器。
20
【例2.6.4】已知H(z)=1-z-N,试定性画出系统的幅频特性。
H(z) 1 zN z N 1 zN
H(z)的极点为z=0,这是一个N阶极点,它不影响系统的幅频响 应。零点有N个,由分子多项式的根决定
z N 1 0 即 z N e j2πk
小结 单位圆附近的零点位置对幅度响应波谷的位置和深度有明
显的影响,零点可在单位圆外。 在单位圆内且靠近单位圆附近的极点对幅度响应的波峰的
位置和高度则有明显的影响,极点在单位圆上,则不稳定。 利用直观的几何确定法,适当地控制零、极点的分布,就
能改变系统频率响应的特性,达到预期的要求,因此它是 一种非常有用的分析系统的方法。
根据其形状,称之为梳状滤波器。
例2.6.4的梳状滤波器的极零点分布及幅频、相频特性
22
2.6.4 几种特殊系统的系统函数及其特点 全通滤波器 梳状滤波器 最小相位系统
23
1 全通系统(全通网络,全通滤波器)
定义:如果滤波器的幅频特性对所有频率均等于常数或1.
| H (ej ) | 1 0 2π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散系统的频率响应分析和零极点分布
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
实验2 离散系统的频率响应分析和零、极点分布一、实验目的
通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。

二、基本原理
离散系统的时域方程为
其变换域分析方法如下:
频域
)
(
)
(
)
(
]
[
]
[
]
[
]
[
]

ω
ωj
j
j
m
e
H
e
X
e
Y
m
n
h
m
x
n
h
n
x
n
y=

-
=
*
=∑∞
-∞
=
系统的频率响应为
ω
ω
ω
ω
ω
ω
ω
jN
N
j
jM
M
j
j
j
j
e
d
e
d
d
e
p
e
p
p
e
D
e
p
e
H
-
-
-
-
+
+
+
+
+
+
=
=
...
...
)
(
)
(
)
(
1
1
Z域
)
(
)
(
)
(
]
[
]
[
]
[
]
[
]
[z
H
z
X
z
Y
m
n
h
m
x
n
h
n
x
n
y
m
=

-
=
*
=∑∞
-∞
=
系统的转移函数为
N
N
M
M
z
d
z
d
d
z
p
z
p
p
z
D
z
p
z
H
-
-
-
-
+
+
+
+
+
+
=
=
...
...
)
(
)
(
)
(
1
1
1
1
分解因式
∏-
∏-
=


=
=
-
=
-
=
-
=
-
N
i
i
M
i
i
N
i
i
k
M
i
i
k
z
z
K
z
d
z
p
z
H
1
1
1
1
)
1(
)
1(
)
(
λ
ξ
,其中i
ξ
和i
λ
称为零、极点。

在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。

另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。

三、实验内容及要求
一个LTI离散时间系统的输入输出差分方程为
y(n)(n-1)+(n-2) =(n)+(n-1)
(1)编程求出此系统的单位冲激响应序列,并画出其波形。

(2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。

(3)编程得到系统频响的幅度响应和相位响应,并画图。

(4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。

解答:
(1)
clf;
N=40;
num=[,];
den=[1,,];
y=impz(num,den,N)
stem(y);
xlabel('时间信号n');
ylabel('信号幅度');
title('冲击响应');
(2)
clf;
N=40;
num=[,];
den=[1,,];
x=[1,2,3,4,5,zeros(1,N-1)];
y=filter(num,den,x)
stem(y);
xlabel('时间信号n');
ylabel('信号幅度');
title('输出波形');
函数y=cov(x,h)和y=filter(num,den,x)的区别
clf;
N=40;
num=[,];
den=[1,,];
x=[1,2,3,4,5,zeros(1,N-1)];
h=impz(num,den,N);
y=conv(x,h)
subplot(2,1,1);
stem(y);
xlabel('时间信号n');
ylabel('信号幅度');
title('输出波形');
y=filter(num,den,x);
subplot(2,1,2);
stem(y);
xlabel('时间信号n');
ylabel('信号幅度');
title('输出波形');
(3)
clf;
N=40;
fs=1000;
num=[,];
den=[1,,];
[h,f]=freqz(num,den,256,fs);
mag=abs(h);
ph=angle(h);
ph=ph*180/pi;
subplot(2,1,1),plot(f,mag);
xlabel('频率(Hz)');
ylabel('幅度');
subplot(2,1,2),plot(f,ph);
xlabel('频率(Hz)');
ylabel('相位');
(4)
clf;
N=40;
num=[,];
den=[1,,];
[z,p,k]=tf2zp(num,den);
zplane(z,p);
解:由图可知,零点在单位圆内,所以是因果的;极点在单位圆外,所以是不稳定的。

四、实验总结
由此次实验,我更深刻理解了如何用零极点图来画频率响应图,如何用零极点图判断系统地稳定性和因果性。

期间遇到了个问题就是不知道如何表示单位冲激序列,后来查了下才知道可以表示为x=[1,zeros(1,N)]。

通过这次实验,我感觉收获很多。

相关文档
最新文档