实验七 振幅键控(ASK)调制与解调实验

合集下载

ASK

ASK

二进制振幅键控(ASK)调制与解调设计一、ASK 调制解调系统的原理1、ASK调制原理及其方法数字幅度调制又称幅度键控(ASK),二进制幅度键控记作 2ASK。

2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。

有载波输出时表示发送“1”,无载波输出时表示发送“0”。

借助于第3 章幅度调制的原理,2ASK 信号可表示为e0 = s(t) cos ωc t式中,c 为载波角频率, s(t ) 为单极性 NRZ 矩形脉冲序列s(t) = ∑ a n g (t - nT b )其中, g(t) 是持续时间为 Tb 、高度为 1 的矩形脉冲,常称为门函数,an 为二进制数字。

2、ASK实现有两种方法;A、乘法器实现法. a、乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。

b、带通滤波器的输出是振幅键控信号。

c、乘法器常采用环形调制器。

B、键控法键控法是产生ASK信号的另一种方法。

二元制ASK又称为通断控制(OOK)。

典型的实现方法是用一个电键来控制载波振荡器的输出而获得。

示意图如图1所示。

图1 3、ASK 解调原理及设计方法ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。

包络检波法的原理方框图如图2 所示:带通滤波器(BPF )恰好使 2ASK 信号完整地通过,经包络检测后输出其包络。

低通滤波器(LPF )的作用是滤除高频杂波,使基带信号(包络)通过。

抽样判决器包括抽样、判决及码元形成器。

定时抽样脉冲(位同步信号)是很窄的脉冲,通常位于每个码元的中央位置,其重复周期等于码元的宽度。

不计噪声影响时,带通滤波器输出为 2ASK 信号。

经抽样、判决后将码元再生,即可恢复出数字序列{an}。

相干检测法原理方框图如图3 所示相干检测就是同步解调,要求接收机产生一个与发送载波同频同相的本地载波信号,称其为同步载波或相干载波。

实验三-ASK调制及解调实验

实验三-ASK调制及解调实验

实验三-ASK调制及解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图信号源PN15128K基带信号调制输出载波1ASK解调输出门限判决LPF-ASK低通滤波整流输出半波整流解调输入门限调节9#数字调制解调模块ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。

已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。

四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。

在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。

1、关电,按表格所示进行连线。

源端口信号源:PN信号源:128KHz目的端口连线说明模块9:TH1(基带信号)调制信号输入模块9:TH14(载波1)载波输入模块9:TH4(调制输出)模块9:TH7(解调输入)解调信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【ASK数字调制解调】。

将9号模块的S1拨为0000。

3、此时系统初始状态为:PN序列输出频率32KHz,调节128KHz载波信号峰峰值为3V。

4、实验操作及波形观测。

(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。

(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。

实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。

观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。

1、保持实验项目一中的连线及初始状态。

4.通信原理振幅键控、移频键控、移相键控解调实验

4.通信原理振幅键控、移频键控、移相键控解调实验

实验十六振幅键控、移频键控、移相键控解调实验一、实验目的1.掌握2ASK相干解调的原理。

2.掌握2FSK过零检测解调的原理。

3.掌握2DPSK相干解调的原理。

二、实验内容1.观察2ASK、2FSK、2DPSK解调信号波形。

2.观察2FSK过零检测解调器各点波形。

3.观察2DPSK相干解调器各点波形。

三、实验器材1.信号源模块2.数字调制模块3.数字解调模块4.同步信号提取模块5.20M双踪示波器一台四、实验原理1.2ASK解调原理。

2ASK解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法,相应的接收系统原理框图如图16-1所示:(a)(b)图16-1 2ASK解调原理框图(a)非相干方式(b)相干方式2. 2FSK 解调原理(a)(a )cos ωt1(b) (b )(c )(a )非相干方式;(b )相干方式;(c )过零检测法图16-2 2FSK 解调原理框图2FSK 有多种方法解调,如包络检波法、相干解调法、鉴频法、过零检测法及差分检波法等,相应的接收系统的框图如图16-2所示。

这里采用的是过零检测法对2FSK 调制信号进行解调。

大家知道,2FSK 信号的过零点数随不同载频而异,故检出过零点数就可以得到关于频率的差异,这就是过零检测法的基本思想。

用过零检测法对FSK 信号进行解调的原理框图如图16-2(c )所示。

其中整形1和整形2的功能类似于比较器,可在其输入端将输入信号叠加在 2.5V 上。

2FSK 调制信号从“FSK-IN ”输入。

UA03(LM339)的判决电压设置在2.5V ,可把输入信号进行硬限幅处理。

这样,整形1将2FSK 信号变为TTL 电平;整形2和抽样电路共同构成抽样判决器,其判决电压可通过标号为“2FSK 判决电压调节”的电位器进行调节。

单稳1和单稳2分别被设置为上升沿触发和下降沿触发,它们与相加器UA05(74HC32)一起共同对TTL 电平的2FSK 信号进行微分、整流处理。

实验七 振幅键控(ASK)调制与解调实验

实验七   振幅键控(ASK)调制与解调实验

实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK 信号的方法。

2、掌握ASK 非相干解调的原理。

二、实验内容1、观察ASK 调制信号波形2、观察ASK 解调信号波形。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、⑦号模块一块5、20M 双踪示波器一台6、连接线若干四、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1 或0 的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK)。

2ASK 信号典型的时域波形如图9-1 所示,其时域数学表达式为:S2 ASK (t) = a n ⋅ A cosωc t(9-1)式中,A 为未调载波幅度, c 为载波角频率,a n 为符合下列关系的二进制序列的第n 个码元。

图9-1 2ASK 信号的典型时域波形2ASK 信号的产生方法比较简单。

首先,因2ASK 信号的特征是对载波的“通-断键控”,用一个模拟开关作为调制载波的输出通/断控制门,由二进制序列S(t) 控制门的通断,S (t) =1 时开关导通;S(t) =0 时开关截止,这种调制方式称为通-断键控法。

其次,2ASK 信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK 调制也是很容易想到的另一种方式,称其为乘积法。

2、2ASK 解调原理。

2ASK 解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法。

通信原理实验ASK调制和解调实验报告

通信原理实验ASK调制和解调实验报告

新疆师范大学实验报告2020年4月27日课程名称通信原理实验项目实验四:ASK调制及解调实验物理与电子工程学院电子17-5 姓名赵广宇同组实验者指导教师阿地力一、实验目的掌握用键控法产生ASK信号的方法。

掌握ASK非相干解调的原理二、实验器材主控&信号源模块9号数字调制解调模块示波器三、实验原理1、实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。

已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。

四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。

在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。

观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。

若解调出的信号与原基带信号有差别,可调节抽样判决旋钮进行微调观察眼图时,1.位同步信号CLK,2.低通滤波输出信号调整主控模块,16K,PN127五、实验分析●ASK即“幅移键控”又称为“振幅键控”,所以又记作OOK信号。

ASK是一种相对简单的调制方式。

●这次实验首先对输入信号利用相关的模块进行ASK调制,再通过加入高斯白噪声传输信道,接着在接收端对信号进行ASK解调,最后把输出的信号和输入的信号进行比较。

●幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。

●所谓幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。

六、实验总结●第一次进行实验时,开始运行后,跳出了如图所示的提示。

在停止运行后,在加入了数字终端模块后,提示消失,在今后进行数字实验时,可引以为戒。

实验七 振幅键控ASK调制与解调

实验七 振幅键控ASK调制与解调

实验七振幅键控(ASK)调制与解调一、概述为使数字信号在带通信道中传输,必须对数字信号进行调制。

在幅移键控中,载波幅度是随着调制信号而变化的。

最简单的形式是载波在二进制调制信号1或0控制下通或断,这种二进制幅度键控方式称为通-断键控(OOK)。

本实验采用这种方式。

二、实验原理1.调制部分:二进制幅度键控的调制器可用一个相乘器来实现。

对于OOK信号,相乘器则可以用一个开关电路来代替。

调制信号为1时,开关电路导通,为0时切断。

OOK信号表达式:s OOK(t) = a(n)A cos(c t)式中:A -载波幅度,c-载波频率,a(n)-二进制数字信号原理框图基带信号a(n) 已调信号s OOK(t)c2.解调部分:解调有相干和非相干两种。

非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。

这里采用相干解调。

原理框图低通滤波(t) 解调信号â(n)OOK载波Acos(ωc t)三、实验步骤1.根据ASK调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:2.元件参数配制Token 0,5:基带信号-PN码序列(频率=10Hz,电平=2,幅度=1V,偏移=1V)Token 1,22:乘法器Token 2, 7,23:载波-正弦波发生器(频率=50Hz,幅度=1V,相位=0deg)Token 14,26:模拟低通滤波器(截止频率=10Hz,阶数=3)Token 15,27:抽样保持器Token 16,28:脉冲(频率=10Hz,幅度=1V,脉宽=0.05s)Token 12,24:比较器(真值=1V,假值=-1V)Token 17,29:门限值(幅度=0.1V)其它为观察点-分析窗3.运行时间设置:采样点数=2048,采样频率=1000Hz4.运行系统:运行该系统后,转到分析窗观察的波形。

5.功率谱:在分析窗绘出该系统调制后的功率谱。

四、实验报告1.观察并记录实验波形:Token 4-基带信号波形,Token 33-调制波形,Token 18-解调波形,并与理论参考波形相比较。

FSK(ASK)调制解调实验报告

FSK(ASK)调制解调实验报告

实验6 FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。

观测基带数字和FSK(ASK)调制信号的频谱。

改变信噪比(S/N),观察解调信号波形。

四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成 ASK, FSK 调制,还可以完成 PSK, DPSK, QPSK, OQPSK 等调制方式。

不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。

在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。

下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。

基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或 FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过 D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。

ASK调制及解调实验报告

ASK调制及解调实验报告

实验三ASK调制及解调实验、实验目的1、掌握用键控法产生 ASK信号的方法。

2、掌握ASK非相干解调的原理。

、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。

已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。

四、实验步骤实验项目一 ASK调制概述:ASK调制实验中,ASK (振幅键控)载波幅度是随着基带信号的变化而变化。

在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】T【通信原理】T【ASK数字调制解调】将9号模块的S1拨为0000。

3、此时系统初始状态为: PN序列输出频率32KHZ,调节128KHZ载波信号峰峰值为 3V。

4、实验操作及波形观测。

(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。

RIGOL-aoooaojocu?T f- 0 a oorvpT…「. 7TpF 口讲(&卫;1二 融 N 』=:41 V 1 _ …fit实验项目二 ASK 解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证 ASK 解调原理。

观测解调输出的中间观测点,如: TP4 (整流输出),TP5( LPF-ASK ),深入理解ASK 解调过程。

1?Ti 小r^ri »><B. ODusfiiv<m 血匚Fr-e(t=Zl Tell(2)将PN 序列输出频率改为 64KHz ,观察载波个数是否发生变化。

1、保持实验项目一中的连线及初始状态。

2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;再观测TP4(整流输出)、TP5( LPF-ASK ) 两个中间过程测试点,验证ASK 解调原理。

5ASK调制与解调实验

5ASK调制与解调实验

4
四、实验原理
1、2ASK调制原理 、 调制原理 振幅键控 使载波在二进制基带信号1或0的控制下通或断,即 用载波幅度的有或无来代表信号中的“1”或“0”, 通—断键控(OOK) 2ASK信号典型的时域波形如图6-1所示,其时域数 学表达式为
5
四、实验原理
1、2ASK调制原理 -----线 、 调制原理 性调制振幅键控(通断键 控OOK) 使载波在二进制基带信号 1或0的控制下通或断,即 用载波幅度的有或无来代 表信号中的“1”或“0” 产生方法: (1)相乘法 (2)开关法
基本的数字调制系统实验一
ASK调制与解调实验 实验五 ASK调制与解调实验 实验六 FSK调制与解调实验 FSK调制与解调实验
实验五
ASK调制与解调实验
2
一、实验目的
1、理解ASK调制的工作原理及电路组成; 2、理解ASK解调的原理及实现方法。 3、掌握ASK信号的频谱特性。
3
二、实验内容
1、观察ASK调制与解调信号的波形; 2、观察ASK信号频谱。
按照实验书上进行 思考:载波频率和码元速率之间是否相互制约?还是 完全独立?
11
七、实验报告要求
1、分析实验电路的工作原理,叙述其工作过程。 2、根据实验测试记录,在坐标纸上画出各测量点的波 形图,并分析实验现象。
12
实验六 FSK调制与解调实验 调制与解调实验
13
一、实验目的
1、掌握FSK调制与解调的工作原理及电路组成; 2、掌握FSK信号的频谱特性。
16
四、实验原理
2FSK调制原理框图频率选择法
频率选择法
17
四、实验原理
2FSK信号的功率谱
P(f)
-4 -3 -2 -1 0 1 2 基带信号的功率谱

通信原理实验振幅键控(ASK)调制与解调实验

通信原理实验振幅键控(ASK)调制与解调实验

《通信原理》实验报告实验七: 振幅键控(ASK)调制与解调实验实验九:移相键控(PSK/DPSK)调制与解调实验系别:信息科学与技术系专业班级:电信0902学生姓名:同组学生:成绩:指导教师:惠龙飞(实验时间:2011年12月1日——2011年12月1日)华中科技大学武昌分校ﻬ实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

一、实验器材1、 信号源模块一块 2、 ③号模块一块 3、 ④号模块一块 4、 ⑦号模块一块 5、 20M双踪示波器一台 6、 连接线若干二、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2AS K)、二进制移频键控(2FSK)、二进制移相键控(2PS K)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2AS K信号,这种二进制振幅键控方式称为通—断键控(O OK )。

2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(9-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=PP a n -出现概率为出现概率为110 ﻩﻩ (9-2)综合式9-1和式9-2,令A =1,则2ASK 信号的一般时域表达式为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= ﻩ(9-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

数字载波调制实验报告(3篇)

数字载波调制实验报告(3篇)

第1篇一、实验目的1. 理解数字载波调制的基本原理和过程。

2. 掌握常见的数字调制方式,如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。

3. 学习数字调制信号的生成和解调方法。

4. 通过实验,加深对数字调制技术在实际通信系统中的应用理解。

二、实验原理数字载波调制是数字通信中一种常见的信号处理技术,它通过改变载波的某些参数(如幅度、频率或相位)来携带数字信息。

常见的数字调制方式包括:1. 振幅键控(ASK):通过改变载波的幅度来表示数字信息,通常用高电平表示“1”,低电平表示“0”。

2. 频移键控(FSK):通过改变载波的频率来表示数字信息,通常用不同的频率分别表示“1”和“0”。

3. 相移键控(PSK):通过改变载波的相位来表示数字信息,通常用不同的相位来表示不同的数字符号。

数字调制信号可以通过以下步骤生成:1. 基带信号生成:将数字信息转换成基带信号,通常为二进制序列。

2. 调制:将基带信号与载波信号相乘,得到已调信号。

3. 滤波:对已调信号进行滤波,去除不必要的频率分量。

数字调制信号的解调过程如下:1. 载波恢复:从已调信号中恢复出载波信号。

2. 解调:将恢复的载波信号与已调信号相乘,得到基带信号。

3. 判决:根据基带信号的幅度或频率,判断原始数字信息。

三、实验器材1. 数字信号发生器2. 数字示波器3. 数字信号分析仪4. 信号源5. 连接线四、实验步骤1. 实验一:ASK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与载波信号相乘,得到ASK调制信号。

- 使用数字示波器观察ASK调制信号的波形。

- 将ASK调制信号与恢复的载波信号相乘,得到解调信号。

- 使用数字示波器观察解调信号的波形。

2. 实验二:FSK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与两个不同频率的载波信号相乘,得到FSK调制信号。

- 使用数字示波器观察FSK调制信号的波形。

2ASK和2PSK调制与解调实验

2ASK和2PSK调制与解调实验

2ASK和2PSK调制与解调实验实验二2ASK和2PSK调制与解调实验(一)实验目的1、掌握振幅键控(ASK)调制与解调的原理,并会用仿真软件绘制仿真的原理图,得出正确的波形图。

2、掌握相移键控(PSK)调制与解调的原理,并会用仿真软件绘制仿真的原理图,得出正确的波形图。

(二)实验设备计算机、SystemView软件(三)实验内容1、振幅键控(ASK)调制与解调:掌握振幅键控(ASK)调制与解调的原理,并用仿真软件绘制仿真的原理图,得出正确的波形图。

2、相移键控(PSK)调制与解调:掌握相移键控(PSK)调制与解调的原理,并用仿真软件绘制仿真的原理图,得出正确的波形图。

(四)实验原理1、2ASK调制部分:二进制幅度键控的调制器可用一个相乘器来实现。

对于2ASK 信号,相乘器则可以用一个开关电路来代替。

调制信号为1时,开关电路导通,为0时切断。

2ASK信号表达式:S(t)=a(n)Acos(ωct)式中:A-载波幅度,ωc -载波频率,a(n)-二进制数字信号2、2PSK二进制相移键控(2PSK )就是根据数字基带信号的两个电平,使载波相位在连个不同的数值之间不通的数值之间切换的一种相位调制方法。

通常,两个载波相位相差π个弧度。

PSK 信号可以写成如下形式:Spsk (t )=a(n)Acos (ωct )1.调制部分:在2PSK 中,通常用相位0°或180°来分别表示1或-1.这里用调相法来生成2PSK :将数字信号与载波直接相乘。

这也是DSB 信号产生的方法。

S2PSK (t )=cos(ω0t+φ),φ=0或πS2PSK (t )= ACOS(ω0) a(n)=1-ACOS(ω0) a(n)= -12.解调部分2PSK 必须采用相干解调,同步载波是个关键问题。

相干接收2PSK 系统组成如图所示:对2PSK 信号相干接收的前提是首先进行载波提取,可采用平方环或科斯塔斯环来实现。

振幅键控ASK调制电路

振幅键控ASK调制电路

u(t) Akg (t kTB)
k
(6.6.1)
式中,TB为码元宽度;Ak是第k个输入随 机信息。乘法器用来进行频谱搬移,乘法器后
的带通滤波器用来滤除高频谐波和低频干扰。
带通滤波器的输出就是振幅键控信号,用uASK(t) 表示。
Ak
u (t )
基带信号 形成器
带 通 uASK (t)
滤波器
cos 2f c t 图6.6.1 乘(a)法AS器K 调实制器 现框法图的调制器方框图
在图6.6.2(a)所示仿真电路中,u (t)用方波信
号源V2代替,载波信号为V1,产生的振幅键控信号
uASK(t)如图6.6.2(b)所示。
(a)乘法器实现的ASK调制电路
u (t) uASK(t)
(b)产生的振幅键控信号uASK(t) 图6.6.2乘法器实现的ASK调制电路
6.6 振幅键控(ASK)调制电路
数字信号对载波的调制与模拟信号对载波 的调制类似,它同样可以去控制正弦振荡的振 幅、频率或相位的变化。但由于数字信号的特 点——时间和取值的离”。
数字信号对载波振幅调制称为振幅键控 即ASK(Amplitude-Shift Keying),ASK 有两种实现方法:乘法器实现法和键控法。乘 法器实现法的调制器方框图如图6.6.1所示, 它的输入是随机信息序列,以{Ak}所示。经过 基带信号形成器,产生波形序列,设形成器的 基本波形为g(t),则波形序列为

ask调制及解调实验报告

ask调制及解调实验报告

ask调制及解调实验报告ASK调制及解调实验报告引言调制与解调是通信系统中的重要环节,它们负责将信息信号转化为适合传输的信号,并在接收端将信号恢复为原始信息。

本实验旨在通过实际操作,探究幅度调制(Amplitude Shift Keying, ASK)调制与解调的原理和方法。

一、实验目的1. 了解ASK调制与解调的基本原理;2. 掌握ASK调制与解调的实验操作方法;3. 分析调制与解调过程中的信号特点。

二、实验原理ASK调制是通过改变载波的幅度来传输数字信号的一种调制方式。

当数字信号为1时,载波的幅度为A,当数字信号为0时,载波的幅度为0。

解调过程则是根据接收到的ASK信号的幅度来恢复原始的数字信号。

三、实验步骤1. 搭建实验电路:将信号源、调制电路和解调电路依次连接,确保连接正确并稳定;2. 调制信号:将信号源的输出信号与载波信号进行ASK调制,得到ASK信号;3. 解调信号:将ASK信号输入到解调电路中,通过解调电路将ASK信号恢复为数字信号;4. 观察实验结果:通过示波器观察调制前后的信号波形,并比较解调后的数字信号与原始信号的一致性。

四、实验数据与分析在实验中,我们选择了一个频率为f的正弦波作为载波信号,并将其与数字信号进行ASK调制。

通过示波器观察到调制前后的信号波形,发现调制后的信号波形在数字信号为1时,幅度为A;数字信号为0时,幅度为0。

这验证了ASK调制的基本原理。

在解调过程中,通过解调电路将ASK信号恢复为数字信号。

观察解调后的数字信号与原始信号的一致性,发现它们基本上是一致的。

然而,由于实际电路中存在噪声等因素,解调后的数字信号可能会有一定的误差。

因此,在实际应用中需要采取一些措施来提高解调的准确性。

五、实验总结通过本次实验,我们深入了解了ASK调制与解调的原理和方法。

我们通过实际操作,掌握了ASK调制与解调的实验操作方法,并通过观察实验结果,分析了调制与解调过程中的信号特点。

ASK调制解调

ASK调制解调

基于Simulink的ASK频带传输系统仿真与性能分析实验目的:1)熟悉数字调制系统的的几种基本调制解调方法;2)学会运用Matlab、Simulink设计这几种数字调制方法的仿真模型;3)通过仿真,综合衡量系统的性能指标。

实验原理及分析:数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,所以本文主要讨论二进制的调制与解调,最后简单讨论一下多进制调制中的MFSK(M元移频键控)和MPSK(M元移相键控)。

最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK和2-DPSK)等。

此次实验二进制振幅键控,即——2—ASK。

典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,其框图如图3.1所示:数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码器编码后适合在信道中传输的基带信号。

对数字调制系统进行仿真时,我们并不关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数字基带信号,不用再经过编码器。

图3.1 数字通信系统模型根据Simulink提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所示的模型:图3. 2 数字调制系统仿真框图通常,二进制振幅键控信号(2-ASK )的产生方法(调制方法)有两种,如图3.3所示:(a)(b)图3.3 2-ASK 信号产生的两种方法2-ASK 解调的方法也有两种相应的接收系统组成方框如图3.4所示:图3.4 2-ASK 信号接收系统组成框图根据3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调,设计2-ASK 仿真模型如图3.5所示:图3.5 2-ASK模型在该模型中,调制和解调使用了同一个载波,目的是为了保证相干解调的同频同相,虽然这在实际运用中是不可能实现的,但是作为仿真,这样能获得更理想的结果。

仿真波形及分析:ASK调制与解调整个ASK的仿真系统的调制与解调过程为:首先将信号源的输出信号与载波通过相乘器进行相乘,在接收端通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验目的:通过实验,进一步了解FSK(ASK)调制和解调的基本原理和方法,掌握实验仪器的操作技巧,熟悉实验过程中的测量方法和数据处理,培养实验操作能力和数据分析能力。

实验仪器:1.双示波器:2.信号发生器:3.波特率计:4.时钟信号源:实验原理和流程:FSK(Frequency Shift Keying)调制是一种数字调制方法,根据发送信号的不同频率进行调制,接收端根据频率差异来识别不同的信号。

ASK(Amplitude Shift Keying)调制是将数字信号变换为模拟信号的过程,通过调整载波波形的幅度来表示数据的0和1FSK调制的基本原理是:将数字信号转换为频率序列,利用频率切换来表示0和1、在调制时,根据数字信号的0和1,选择不同频率的载波信号进行调制。

解调是将接收到的FSK信号变换为与FSK信号相同的数字信号,可以根据频率的变化判断原始数字信号的0和1实验步骤:1.连接实验电路,将信号发生器的输出接入EL1端,EL2端接入波特率计。

将示波器的两个通道分别接入EL1和EL22.调整信号发生器的频率为f1和f2,设置合适的幅度和起始相位。

3.打开示波器,设置观察模式为X-Y模式,并调整示波器的水平和垂直触发使波形恢复稳定。

4.通过调整信号发生器的频率和幅度,观察并记录调制信号波形。

5.使用示波器观察到的调制信号波形,利用该波形计算波特率。

6.通过信号发生器产生时钟信号,将时钟信号输入到解调电路中进行解调。

7.观察解调后信号的波形并进行比较,记录解调后的数据。

8.对比解调后的数据与原始数据,验证解调是否准确。

实验结果:通过实验观察和测量,得到了调制信号的波形,利用该波形计算出了波特率。

经过解调后,与原始数据进行对比发现解调准确无误。

实验总结:通过这次实验,我们深入了解了FSK(ASK)调制和解调的基本原理和方法。

通过实验操作,我们掌握了实验仪器的操作技巧,熟悉了实验过程中的测量方法和数据处理方法,提高了我们的实验操作能力和数据分析能力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七振幅键控(ASK)调制与解调实验
一、实验目的
1、掌握用键控法产生ASK 信号的方法。

2、掌握ASK 非相干解调的原理。

二、实验内容
1、观察ASK 调制信号波形
2、观察ASK 解调信号波形。

三、实验器材
1、信号源模块一块
2、③号模块一块
3、④号模块一块
4、⑦号模块一块
5、20M 双踪示波器一台
6、连接线若干
四、基本原理
调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1 或0 的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK)。

2ASK 信号典型的时域波形如图9-1 所示,其时域数学表达式为:S2 ASK (t) = a n ⋅ A cosωc t
(9-1)式中,A 为未调载波幅度, c 为载波角频率,a n 为符合下列关系的二进制序列的第n 个码元。

图9-1 2ASK 信号的典型时域波形
2ASK 信号的产生方法比较简单。

首先,因2ASK 信号的特征是对载波的“通-断键控”,用一个模拟开关作为调制载波的输出通/断控制门,由二进制序列S(t) 控制门的通断,S (t) =1 时开关导通;S(t) =0 时开关截止,这种调制方式称为通-断键控法。

其次,2ASK 信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK 调制也是很容易想到的另一种方式,称其为乘积法。

2、2ASK 解调原理。

2ASK 解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法。

五、实验原理
1、ASK 调制电路
在这里,我们采用的是通-断键控法,2ASK 调制的基带信号和载波信号分别从“ASK-NRZ”和“ASK 载波”输入,其实验框图和电路原理图分别如图9-3、图9-4 所示。

图9-3 ASK 调制实验框图
2、ASK 解调电路
图9-5 ASK 解调实验框图
六、测试点说明
1、信号输入点参考说明
ASK-NRZ:ASK 基带信
号输入点。

ASK 载波:
ASK 载波信号输入点。

ASKIN:ASK 调制信号输
入点。

ASK-BS:ASK 解调位同步时钟输入点。

2、信号输出点参考说明
ASK-OUT:ASK 调制信号输出点。

TH2:ASK 信号经低通滤波器后的信号观测点。

ASK-DOUT:ASK 解调信号经电压比较器后的信号输出点(未经同步判决)。

OUT1:ASK 解调信号输出点。

七、实验步骤
(一)ASK 调制实验
1、将信号源模块和模块3、4、7 固定在主机箱上,将黑色塑封
螺钉拧紧,确保电源接触良好。

2、按照下表进行实验连线:
3、以信号输入点“ASK-NRZ”的信号为内触发源,用示波器观察
点“ASK-OUT”输出,即为PN 码经过ASK 调制后的波形。

4、通过信号源模块上的拨码开关S4 控制产生PN 码的频率,
改变送入的基带信号,重复上述实验;也可以改变载波频率
来实验。

5、实验结束关闭电源。

(二)ASK 解调实验
1、接着上面ASK 调制实验继续连线:
2、将模块7 上的拨码开关S2 拨为“ASK-NRZ”频率的16 倍,
如:“ASK-NRZ”选8K 时,S2 选128K,即拨“1000”。

观察模块4 上信号输出点“ASK-DOUT”处的波形,把电位器W3 顺时针拧到最大,并调节的电位器W1(改变判决门限),直到在“ASK-DOUT”处观察到稳定的PN 码。

3、观察ASK 解调输出“OUT1”处波形,并与信号源产生的PN
码进行比较。

调制前的信号与解调后的信号形状一致,相位
有一定偏移。

4、通过信号源模块上的拨码开关S4 控制产生PN 码,改变送入
的基带信号,重复上述实验;也可以改变载波频率来实验。

5、实验结束关闭电源,拆除连线,整理实验数据与波形,完成
实验报告。

八、实验报告要求
1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,在坐标纸上画出各测量点的波形图,并
分析实验现象。

3、对实验思考题加以分析,按照要求做出回答,并尝试画出本
实验的电路原理图。

4、写出完成本次实验后的心得体会以及对本次实验的改进建议。

相关文档
最新文档