未知控制方向非线性时滞系统部分状态反馈鲁棒自适应控制

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

未知控制方向非线性时滞系统部分状态反馈鲁棒自适应控制刘涛;李俊民

【摘要】A robust partial-state feedback asymptotic regulating control scheme is developed for a class of time-varying nonlinear systems with unknown control coefficients and unknown time delays. The partial-state feedback asymptotic regulating control scheme has been introduced to deal with the uncertainties of the system. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time-delay terms are compensated in the controller design procedure. Nussbaum-type functions are used to solve the problem of the unknown control direction. The designed control scheme can ensure that all the signals of the closed-loop system are bounded. Especially, all the system states converge to zero asymptotically. Finally, the design procedure is illustrated through an example and the simulation results show that the proposed controller is feasible and effective.%针对一类带有未知控制方向的时变非线性系统的部分状态渐近鲁棒调节问题,文中采用部分状态反馈渐进调节的控制算法来处理系统中的不确定性,利用Lyapunov-Krasovskii泛函来处理系统中的时滞项,通过Nussbaum型函数来处理系统中的未知控制方向问题.我们基于反推技术给出了部分状态反馈控制器的设计步骤,所设计的控制器使得闭环系统的所有信号都是有界的,而且使系统的状态渐进收敛于零.仿真实例说明了控制器的有效性和可行性.【期刊名称】《工程数学学报》

【年(卷),期】2011(028)006

【总页数】7页(P756-762)

【关键词】未知控制方向;非线性系统;部分状态反馈;鲁棒控制

【作者】刘涛;李俊民

【作者单位】西安电子科技大学理学院,西安710071;西安电子科技大学理学院,西安710071

【正文语种】中文

【中图分类】TP273

1 引言

在具有未知控制方向的自适应控制中,设计控制器时Nussbaum型函数常被用来处理系统的未知控制方向[1-5].在现实中,时滞项经常存在于系统中,它会导致控制性能的降低从而使得系统的稳定问题变得更加的困难.基于Nussbaum型函数和Lyapunov-Krasovskii泛函,文献[6,7]实现了对含有未知控制方向和时滞的非线性系统的自适应控制.然而,上述文章很少研究具有时滞的级联非线性时变系统的渐进调节问题,本文将控制方向未知问题的控制理论推广到一类时滞非线性时变系统.利用部分状态调节控制器来保证闭环系统的所有信号是有界的,并且能够保证系统的状态渐近收敛于零.最后,我们用一个仿真实例来说明控制器的有效性和可行性.部分状态反馈的方法在具有执行器动态和传感器动态的系统中具有重要的应用.

2 问题描述和预备知识

考虑如下的非线性系统其中ζ∈R m表示系统的不可测状态,x=[x1,x2,···,x

n]T∈R n表示系统的可测状态,其初始值分别为ζ(t0)=ζ0,x(t0)=x0;u∈R和y∈R 分别是系统的输入和输出;ω∈R s是扰动且是有界的,即存在未知正常数θ,使得∥ω∥≤θ;函数f 0:[t0,+∞]×R m×R→R m和h0:[t0,+∞]×R m×R→ R m×s关于变量是连续函数,且当t∈[t0,+∞],f 0(t,0,0)=0;函数ψi,f i:[t0,+∞]×R m×R n×R → R,i=1,2,···,n,h i:[t0,+∞]×R m×R n×R →R s,i=1,2,···,n,关于t是连续函数,关于其它变量是局部Lipschitz的,τi,i=1,2,···,n,为未知有限常时滞,当t∈ [t0,+∞]时,f i(t,0,0)=0,h i(t,0,0)=0,ψi(t,0)=0,i=1,2,···,n.

对于系统(1),我们假设以下条件成立:

假设1 存在连续可微的Lyapunov函数U0(t,ζ),K∞类函数κ1,κ2,以及正常数

c0i,i=1,2,使得

其中ρ(y)>0是已知的光滑函数.

假设2存在未知常数c i1>0和已知光滑函数φi(¯x i)>0,使得

假设3存在未知常数c i2>0和已知光滑函数ϕi(¯x i)>0,使得

假设4 存在未知常数c>0和已知光滑函数σi(y(t−τi))>0,使得

假设5 时变参数g i(t)在未知闭区间I i=[,]内取值,且0∈/I i,i=1,2,···,n,g i(t)的符号是未知的,即控制方向未知.

注1假设2和假设3是对系统中的非三角结构项给出的条件,当假设2中φi(x¯ i)=1,且系统(1)中不存在时滞项和干扰项,而且为未知常数时,文献[8,9]解决了系统(1)的输出反馈调节问题.假设4是为了处理系统中的延时项而给出的,比文献[10]中的假设更具有一般性.

相关文档
最新文档