小学奥数教程:幻方(一)全国通用(含答案)

合集下载

小学奥林匹克辅导及答案 三阶幻方(含答案)-

小学奥林匹克辅导及答案  三阶幻方(含答案)-

三阶幻方同学们:在(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续33⨯的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。

如果在(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均44⨯相等,这样的图形叫四阶幻方。

一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。

(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。

a bc d ef g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。

看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。

同时可以看到图(2)中,e 是一个中间数,也是关键数。

因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。

如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。

(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。

因为:a e i b e h c e g d e f ++=++=++=++=15所以:()()()()a e ib e hc e gdef +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45所以45360+⨯=e 36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。

六年级下册数学试题 - 数学竞赛 幻方 全国通用(含答案)

六年级下册数学试题 - 数学竞赛  幻方   全国通用(含答案)

小学数学六年级(2019全国通用)-数学竞赛部分-幻方(含答案)一、单选题1.在如图方格表中的每个方格中填人一个字母,使得方格表中每行、每列及两条对角线上的四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是()A. AB. BC. CD. D2.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A和B两个圆圈中所填的数之和最大是()A. 8B. 10C. 12D. 143.“九宫阵”是一个9×9的方阵,它是由九个3×3的“九宫格”(图中黑实线围住的方阵)组成.请你在下图中将数字1、2、3、4、5、6、7、8、9分别填入空格内,使得每行、每列及9个“九宫格”中数字1~9均恰好出现一次.当填写完后,那么,位于第4行第4列的数字是()A. 2B. 4C. 6D. 84.将1,2,3,4,5,6分别填入6×6的方格网(如图所示)的36个小方格中,使得每一行每一列中的6个数1,2,3,4,5,6各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是()(左图是一个3×3的例子)A. 5B. 4C. 3D. 25.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图给出了“河图”的部分点图,请你推算出P处所对应的点图.有以下4个点图可供选择其中,正确的是()A. ①B. ②C. ③D. ④二、填空题6.已知如图中每行、每列和对角线上的三个数之和都相等,那么A=________ ,B=________ ,C=________ ,D=________ ,E=________ .7.将1﹣﹣8这八个整数放在正方体的八个顶点上,要求任一面上四个数之和都相等,请在如图正方体八个顶点处写出符合上述要求的一种填法.________ .8.如图的4×4网格里,横、竖、对角线上的四个数之和均等于“2010”,则a+b+c+d=________ .9.把3、5、7、9、11、13、15、17、19填在适当的位置,使每行每列,每条对角线上三个数和为33.10.将2000至2010这11个数不重复地填入图中的圆圈内,每个圆圈恰填入一个数,使得图中十条经过三个格子的线段,每一条线段上的三个圆圈内所填数的总和都相等,请问,左下角所填的数是________ .11.在空格内填入数字1~6,使得每行、每列和每宫内数字不重复.虚线框里的小数表示虚线框里数字的和.那么,最后一行前五个数依次是:________ .12.在3×3的表格中,有3个数分别是3、4、7.又已知表格中的每行、每列和对角线上的三个数的和都相等,那么问号所代表的数是________ .13.将一些数字分别填入下列各表中,要求每个小格中填入一个数字,表中的每横行中从左到右数字由小到大,每一数列中从上到下数字也由小到大排列.(1)将1至4填入表1中,方法有________ 种;(2)将1至6填入表2中,方法有________ 种;(3)将1至9填入表3中,方法有________ 种;表1:表2:表3:14.如图,4×4方格被分成了五块;请你在每格中填入1、2、3、4中的一个,使得每行、每列的四个数各不相同,且每块上所填数的和都相等.则A、B、C、D四处所填数字之和是________ .三、计算题15. 将4至12的九个整数填入下图九个格内,使纵、横及斜三个数字的和均是一样,问A 和B是那两个数字?四、应用题16.在如图的五个小圆圈内分别填上,,,1,1五个数,使每条直线上三个数相加的和都相等.17.将1至8这8个自然数分别填入图中的正方体的八个顶点处的○内,并使每个面上的四个○内的数字之和都相等.18.将1﹣﹣9这九个数填入右边的九宫格(三阶幻方)中.19.利用猴子跳楼法,写出1﹣49的数字并且每一行一列对角线上的数字之和相等.20.只用2,3,5三个数(可重复使用)填在右图中的○内,使得每个三角形三个顶点上的三个数的和都相等.21.如图为6×6的数独游戏,在36方格的大宫格内,每行和每列分别填上1至6的数字.大宫格内有6个分别由6个小方格组成小宫格,以粗线作为分隔.每个小宫格内亦分别填上1至6的数字,请在空白的小格中填上1至6的数字,使得最后每行、每列、每小宫格都不出现重复的数字.22.将1~7 这七个数字,分别填入图中各个圆圈内,使每条线段上的三个圆圈内的三个数字之和相等.答案解析部分一、单选题1.【答案】C【考点】幻方【解析】【解答】解:如图:①≠D、C、A,只能是B;同理,★部分的字母≠A、B、D,只能是C,所以,★部分的方格中填入的字母是C.故选:C.【分析】先确定①的位置:①≠D、C、A,只能是B;同理,根据容斥原理,★部分的字母≠A、B、D,只能是C,据此解答即可.2.【答案】B【考点】幻方【解析】【解答】解:设幻和为a,则5a=2×(1+2+3+…+8)﹣B,5a=72﹣B又因两条斜线和下面一条横线的和也相等,可知3a=(1+2+3+…+8)+A,可得3a=36+A,a=12+A÷3,所以A只能是3或6当A是3时幻和是13,当A是6时幻和是14,再根据5a=72﹣B可确定当A=3时,B=7当A=4时,B=6,所以幻和最大是3+7=10.故选:B.【分析】图中一共有5条线段,每条线段上的数字和相等,可先求出幻和是多少,设幻和为a,则5a=2×(1+2+3+…+8)﹣B,5a=72﹣B,又因两条斜线和下面一条横线的和也相等,可知3a=(1+2+3+…+8)+A,可得3a=36+A,然后再进行分析进行解答即可.3.【答案】A【考点】幻方【解析】【解答】解:由分析可知位于第4行第4列的数字是2;故选:A.【分析】如图,首先找出第4行第4列的数字所在行列的数字为1、3、6、7、8、9,这个数字所在的3×3的“九宫格”内的数字里面有5,那么这个数字只能为2或4;由第4行第5列的数字所在行列的数字为1、2、3、5、6、7、8、9,这个数字所在的3×3的“九宫格”内的数字里面有9,那么第4行第5列的数字是4;由此得出位于第4行第4列的数字只能是2,得出结论.4.【答案】D【考点】幻方【解析】【解答】解:通过排除试填,得到如下答案,如图:故选:D.【分析】首先发现能组成约数的一组为:1、2、4,1、3、6,1、2、6,1和任意一个数;再发现对角线的数只能为6或4,带黑点的空只能为1或2,连续两个小于或大于的只能考虑连续三个数是倍数关系的;而6由两组适合的约数,因此首先确定对角线为6试填,由此逐一分析即可得出答案.5.【答案】C【考点】幻方【解析】【解答】解:每个点表示1,中间数就是5,幻和是5×3=15.左下角的数是:15﹣5﹣2=8,P点的数是:15﹣8﹣1=6.P点有6个点组成,与③相同.故选:C.【分析】把一个点看成1,那么中间数是5,幻和就是5×3=15;再根据这个幻和进行推算.二、填空题6.【答案】40;30;10;15;50【考点】幻方【解析】【解答】解:根据第1行和第1列的各数之和相等,可得第1行的A数为:A=15+50+25﹣35﹣15=40然后根据对角线上的三个数之和和第1列的各数之和相等,可得B数为:B=15+50+25﹣35﹣25=30再根据每行、每列和对角线上的三个数之和都相等,求出:D=15+50+20﹣40﹣30=15C=15+50+25﹣50﹣30=10E=15+50+25﹣15﹣25=50故答案为:40,30,10,15,50.【分析】通过分析:首先根据第1行和第1列的各数之和相等,可得第1行的A数为:A=15+50+25﹣35﹣15=40;然后根据对角线上的三个数之和和第1列的各数之和相等,可得B数为:B=15+50+25﹣35﹣25=30;再根据每行、每列和对角线上的三个数之和都相等,求出D=15+50+20﹣40﹣30=15,C=15+50+25﹣50﹣30=10,E=15+50+25﹣15﹣25=50,据此解答即可.7.【答案】18【考点】幻方【解析】【解答】解:如图所示:【分析】将每个面上的和全都加起来,就相当于每个点上的数都加了3次,总和为:3×(1+2+…+8),而共有6个面,则每个面上的和为即每个面上的和为(1+2+3+4+5+6+7+8)×3÷6=18;于是我们可以将这8个数字放到相应位置,满足每个面的和等于18.8.【答案】2010【考点】幻方【解析】【解答】解:根据分析可得,c=d+1,b=d+4,a=d+5,(d﹣1)+a+b+(d+2)=2010,(d﹣1)+(d+5)+(d+4)+(d+2)=2010,解得:d=500,c=d+1=500+1=501,b=d+4=500+4=504,a=d+5=500+5=505,所以:a+b+c+d=505+504+501+500=2010.故答案为:2010.【分析】根据双偶数阶幻方的制作的对称性可知:d原来在a的位置,c原来在b的位置,(原图如下);因此可得:c=d+1,b=d+4,a=d+5,d原来左面的数是d﹣1,c右面的数是d+2,根据幻和等于2010,可得:(d﹣1)+a+b+(d+2)=(d﹣1)+(d+5)+(d+4)+ (d+2)=2010,得出d=500,进而可得:a=505,b=504,c=501,那么a+b+c+d=505+504+501+500=2010.9.【答案】解:【考点】幻方【解析】【分析】因为每行、每列、每条对角线上各数的和都等于33,所以幻和为33,中心数为33÷3=11,那么每行、每列、每条对角线上其它两数的和是33﹣11=22,所以再根据其它的两个数凑成和为22,即3+19=5+17=7+15=9+13,然后填空即可.10.【答案】2005【考点】幻方【解析】【解答】解:答:左下角所填的数是2005.故答案为:2005.【分析】通过观察可知一共有10条线,1个数字用5次,1个数字用4次,3个数字用3次,6个数字用2次,可把2000到2010看作是0到10,11个数字来进行计算,通过计算平均每条线的和在12.1和18.2之间,然后用5次的数字用5或6去试,再确定4次的数用哪个数,然后再确定其它位置上的数是多少.11.【答案】3、6、2、4、5【考点】幻方【解析】【解答】解:根据分析,可得所以最后一行前五个数依次是:3、6、2、4、5.故答案为:3、6、2、4、5.【分析】首先根据第2列的第3个数和第4个数的和是4,可得第2列的第3个数和第4个数一个是1,另一个是3;再根据第5列的第3个数和第4个数的和是3,可得第5列的第3个数和第4个数一个是2,另一个是1;再根据第4列的第2个数和第3个数的和是4,可得第4列的第2个数和第3个数一个是1,另一个是3.然后根据第1列的第2个数和第3个数的和是10,可得第1列的第2个数和第3个数一个是6,另一个是4;再根据第6列的第2个数和第3个数的和是11,可得第6列的第2个数和第3个数一个是5,另一个是6;再根据第3列的第4个数和第5个数的和是10,可得第3列的第4个数和第5个数一个是6,另一个是4;再根据第4列的第4个数和第5个数的和是11,可得第4列的第4个数和第5个数一个是5,另一个是6.最后根据第3列的第2个数和第3个数的和是8,可得第3列的第2个数和第3个数一个是2,另一个是6,或者一个是3,另一个是5;再根据每行、每列和每宫内数字不重复,判断出各个空格内的数的大小,进而判断出最后一行前五个数依次是多少即可.12.【答案】5【考点】幻方【解析】【解答】解:3+7+★=★+□+4得出□=66×3=18所以?=18﹣7﹣6=5.答:问号所代表的数是5.故答案为:5.【分析】如图,首先由3+7+★=★+□+4,推出中间的数字为6;又因每行、每列以及每条对角线上的三个数的和相等,说明行、列以及对角线上的三个数的和是6的3倍为18,由此解决问题.13.【答案】2;5;42【考点】幻方【解析】【解答】解:(1)如图,1和4是固定的,另外两格随便选,2种.如下:;(2)1和6是固定的,其余的不确定:(3)由(2)的规律已经知道,6格是5种;1、2、3确定后,剩下的6个一定是5种,比如:同理:也对各对应5个;但是例外,对应的不是5个.因为第一排右边的数限制了下面的数.如下:所以:共计5+5+5+4+2=21(种).同理,以上所有情况倒过来后都有一一对应的种类翻了一番,共21×2=42(种).故答案为:2,5,42.【分析】(1)要符合每横行从左到右数字由小到大,每竖列从上到下数字也由小到大排列.图一中,1只能在A的位置,4只能在D的位置,2和3可在B、C这两个格子中排列,所以共有2种方法;(2)图二中,1只能在A的位置,6只能在F的位置,2只能在B和D,5只能在C、E的位置,数字5在C,有2种排列,数字5在E,又有3种排列方法;所以一共有2+3=5(种).(3)由(2)的规律已经知道,6格是5种,1、2、3确定后,剩下的6个一定是5种;由此进行求解.14.【答案】10【考点】幻方【解析】【解答】解:经分析试填,答案如下:【分析】首先16个方格的和为4×(1+2+3+4)=40,所以每一块的和为40÷5=8;4个数的和为8的只有1+2+3+2和1+1+2+4两种,3个数的和为8的有1+3+4、2+2+4、2+3+3三种,其中只有1+3+4三个加数各不相同,所以A只能填1、3、4,所以B只能是2,B所在块中的另外两个数只能是3+3(排除)或2+4,如图:再看C所在的块,这能填1+2+3+2或1+1+2+4,其中C右侧的数只能是重复的数,如图:事实上以上两个中2可以确定位置,以下的数字调整即可得出答案.三、计算题15.【答案】解:这九个数的和是:(4+12)×9÷2=72幻和是:72÷3=24所以,A=24﹣12﹣4=8那么A下面的格子里的数是:24﹣10﹣8=6所以,B=24﹣11﹣6=7答:A和B分别是8和7.【考点】幻方【解析】【分析】这九个数的和是:(4+12)×9÷2=72,那么幻和是:72÷3=24,所以A=24﹣12﹣4=8,那么A下面的格子里的数是:24﹣10﹣8=6,所以,B=24﹣11﹣6=7,据此解答即可.四、应用题16.【答案】解:这个幻方是:【考点】幻方【解析】【分析】﹣=,﹣=,1﹣=,1﹣1=,相邻两个数的差相等,所以这幻方中间的数就是这5个数的中位数[MISSING IMAGE: , ],然后让最大的数和最小的数在一条直线上,剩下的两个数在同一条直线上即可.17.【答案】解:如图所示:【考点】幻方【解析】【分析】将每个面上的和全都加起来,就相当于每个点上的数都加了3次,总和为:3×(1+2+…+8),而共有6个面,则每个面上的和为=18,即每个面上的和为18,于是我们可以将这8个数字放到相应位置,满足每个面的和等于18.18.【答案】解:因为:1+9=2+8=3+7=4+6=10;按上述条件填出并调整可得到一个三阶幻方,其幻和为15.幻方如下(答案不唯一):【考点】幻方【解析】【分析】根据题意,要使三阶幻方的幻和为15,所以中心数必为15÷3=5,那么与5在一条直线上的各个组的其余两个数的和为10,调整和为10的两个数的位置填入幻方即可.19.【答案】解:这个幻方如下:【考点】幻方【解析】【分析】把1﹣49这49个数字放入一个7×7的矩阵中,使每行、每列及对角线上的七个数字之和相等,即构造一个7阶幻方.对所有奇数阶幻方的构造,都可以采取“连续摆数法”(猴子跳楼),其法则如下:把“1”放在中间一列最上边的方格中,从它开始,按对角线方向(比如说按从左下到右上的方向)顺次把由小到大的各数放入各方格中,如果碰到顶,则折向底,如果到达右侧,则转向左侧,如果进行中轮到的方格中已有数或到达右上角,则退至前一格的下方.20.【答案】解:这个幻方可以是(答案不唯一):【考点】幻方【解析】【分析】先把2、3、5写在一个上面三角形的三个顶点上,然后再根据组成其它三角形的各个顶点都是用2、3、5这三个数进行求解即可.21.【答案】解:对各个小宫格编号如下:先看己:已经有了数字1、3、6,缺少2、4、5;观察发现:5不能在第四列,4不能在第五列,而2不能在第五行;所以2只能在第六行第五列,4就在第六行第四列,5在第五行第七列;如下:观察上图发现:第四列已经有数字1、3、4、5,缺少2和6,由于2不能在第一行,所以6在第四列的第一行,那么2在第四列的第四行;如下:再看乙部分:已经有了数字3、4、6,缺少数字1、2、5,观察上图发现:5不能在第六列,所以5在第五列的第二行;1不能在第二行,所以1至你呢个在第一行的第六列,剩下的2在第二行第六列;如下:观察上图可知:第二行缺少4,所以第二行第一列是4;第六列缺少4、6,由于6不能在第四行,所以第六列的第三行是6,那么第四行就是4;第三列已经有了数字1、2、6,缺少3、4、5,4不能在第一行和第六行,所以第三列的第三行是4,3不能在第六行,所以第三列的第六行是5,那么剩下的3在第三列的第一行;如下:再观察甲部分:已经有了数字1、2、3、4、6,缺少5,所以第一行的第二列就是5;第六行的缺少数字6,所以第六行的第一列就是数字6;戊部分:已经有了数字1、2、5、6,缺少数字3、4,4不能在第一列,所以第一列的第五行只能是3,第二列的第五行就是4;第三行已经有了数字4、5、6,缺少1、2、3;第一列有了数字2、3,所以第三行的第一列就是数字1;第五列有了数字2,所以第三行第五列就是3,剩下的2在第三行第二列;丁部分缺少数字1,丙部分缺少数字3、5,3不能在第一列,所以第四行第一列是5,第二列是3;那么这个数独就是:【考点】幻方【解析】【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.22.【答案】解:1+2+3+4+5+6+7=28;令中心数为1,三条线段的总和为:28+1+1=30,每条线段上的和是30÷3=10,因为10=1+2+7=1+3+6=1+4+5.所以这个图是:【考点】幻方【解析】【分析】1~7的和为28先确定中心数,如果中心数是1,那么3条线段的上的总和就是28+1+1=30,再使每条线段上的和是10即可.。

小学奥数--三阶幻方

小学奥数--三阶幻方

小学奥数 三阶幻方幻方起源于中国. 传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如右图. 人们称之为洛书.如果将龟背上的数字翻译出来,如下图.观察,你发现了什么?观察发现,上图的每行每列,斜着的三个数之和都是15. 像这样,将九个不同的自然数填在3×3(三行三列)的正方形内,使每行、每列以及每条对角线上的三个数和都相等,这样的图形就叫三阶幻方. 三阶幻方是一种特殊的数阵图.上面的三阶幻方中,15是这个幻方的和,简称幻和. 5是幻方最中心的数字,简称中心数. 三阶幻方的规律:(1)幻和= 九个数之和 ÷3; (2)中间数=幻和÷3(3)四个角上的数字 2=(3+1)÷2,8=(9+7)÷2例题1 在图中填上合适的数,使每行、每列、每一条对角线的三个数的和都相等。

巩固练习:在下图的方格中填上适合的数,使每行、每列、每一条对角线的三个数的和都等于21。

73 84 63 二、例题讲解 672159834例题2在下图中填上适当的数,使每行、每列、每条对角线上的三个数的和都相等。

巩固练习:根据三阶幻方的特点,完成下列幻方。

例题3 在下图的每个空格中填入小于12且互不相同的九个自然数,使得每行、每列及每条对角线上的三个数之和都等于21。

巩固练习:在下列右图空着的方格内填上合适的数,使得每一横行、每一竖列和对角 线上的三个数之和都等于27。

例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上的三个数的和都相等。

19 1410 18 812介绍杨辉法:介绍公式法:口诀:九子斜列,上下对易,左右相更,四维挺出。

想一想还有没有其他填法:第一种:816 357 492第二种:618 753 294第三种:492357816第四种:294753618第五种:672159834第六种:834159672第七种:276951438第八种:438951276巩固练习:用3-11构造一个三阶幻方课堂练习1、把4~12九个数填入方格中,使每行、每列、每一条对角线的三个数的和都相等。

三年级数学奥数讲义-巧填幻方通用版

三年级数学奥数讲义-巧填幻方通用版

三年级数学奥数讲义-巧填幻方通用版
这就是传说中神秘的幻方,让我们走进今天的课堂,一起来研究一下幻方的这是传说中神秘的幻方,我们走进今天的课堂,起来研究下幻方的
阶幻方……
幻和:幻方中每行/列/对角线的数的和。

幻和:15
【幻方填法】
民谣
四海三山八仙洞,九龙五子一枝连;;二七六郎赏月半,周围十五月团圆。

周围十月团圆把1-9这九个数填入下面的九宫格中,不能重复,使得每一行,每一列,每条对角线上的三个数的和相等。

试编出一个三阶幻方,使其幻和为30,而且幻方中没有重复的数。

中间数:在奇数阶幻方中填在最中间的数。

中中中
观察下三阶幻方:
幻和=(1+2+3+…+8+9)÷3=15
中间数=15÷3=5
在下图中的A、B、C、D处填上适当的数,使下图成为一个三阶幻方。

【三阶幻方性质】
角块等于对角两棱块之和的一半
在下图空格中填入7个自然数,使每行、每列、每一对角线三数之和为90把1-16这十六个数填入下面的图中,不能重复,使得每一行,每一列,每条对角线上的四个数的和相等。

在下图的每个方格中填入一个数字,使得每行、每列以及每条对角线
上的方格中的四个数字都是1,2,3,4。

⑴幻和=总和÷3
⑵中心数=幻和÷3=总和÷9
“T型台”
⑶型台
c=(a+b)÷2
二三阶幻方填法二、三阶幻方填法。

高斯小学奥数四年级下册含答案第01讲_从洛书到幻方

高斯小学奥数四年级下册含答案第01讲_从洛书到幻方

第一讲 从洛书到幻方大家仔细观察一下右侧这个3行3列的数阵图,很快就会发现一个有趣的现象:它的每行、每列以及每条对角线上3个数之和都等于15!像这样行和、列和以及对角线和都相等的方形数阵图就称为幻方.这些相等的和我们就称为幻和.幻方有大有小,刚才的这个幻方是3行3列的,因此也叫做三阶幻方;如果幻方是4行4列的,我们就称之为四阶幻方;至于五阶、六阶幻方的含义依此类推.右图是一个基本三阶幻方,其实任意一个三阶幻方都是可以由它变化而来的.比如用2至10构建一个三阶幻方,那么只需要把基本三阶幻方中的每一个数都加1即可;又如用2,4,6,…,16,18构建一个三阶幻方,那么只需要把基本三阶幻方中的每一个数都乘2即可.因此,学会构建三阶幻方的方法,我们就可以很轻松地构建无数个三阶幻方. 我们先来学习一种很快构建三阶幻方的方法.我国古代的数学家概括其构建方法为:“九子斜排,上下对易,左右相更,四维突出”.如下图所示:例题1用3,6,9,…,24,27这9个数构建一个三阶幻方.「分析」用3,6,9,…,24,27构建三阶幻方与用1~9构建三阶幻方有什么联系呢? 练习1用7,14,21,…,56,63这9个数构建一个三阶幻方.下面我们来学习一般幻方的填法,包括三阶、四阶、五阶或更高阶幻方. 例题2如下图,在44 的方格表中填入恰当的数,使得每行、每列、每条对角线上的所填数之和都相等.「分析」每行、每列、每条对角线上所填数之和都相等,你能算出这个和是多少吗?1和9对调 3和7对调12345 6 789927456 381 4、2、8、6 分别往外拉9 2 7 4 5 63 81练习2在右图44⨯的方格表中填入恰当的数,使得每行、每列、每条对角线上的所填数之和都相等.那么“&”处所填的数是多少?有些时候一开始幻和是求不出来的,这个时候需要利用一类基本的数学思想——比较法来推导.如右图三阶幻方,我们取出有公共格(★)的一行一列.由于行和与列和相同,因此去掉“★”公共格后,剩下数的和仍然相同.也就是说,因此A 就等于6.这种方法我们称之为比较法,通过对有公共格的两条直线进行比较分析,可以确定一些未知的空格.比较法是解决幻方问题非常重要的一种方法.例题3请完成图中的三阶幻方:「分析」利用题目中已填的数是无法直接算出幻和的,可以利用“比较法”填出一些数,进而计算幻和吗?练习3请完成图中的三阶幻方:三阶幻方是结构最简单的幻方,它还有三个常用的重要性质:(1)幻和等于幻方中心方格内所填数的3倍,如右图所示,即幻和3A =⨯(2)所有经过中心方格的行、列或对角线上的三个数,均构成等差数列;(3)位置如a 、b 、c 所示的三个格子满足如下关系:2b c a +=⨯.例如:右面的幻方中,有:(1)幻和等于3515⨯=; (2)4、5、6,2、5、8,9、5、1,3、5、7均成等差数列;(3)2417⨯=+,2879⨯=+,2639⨯=+,2213⨯=+.利用以上的几个性质,就可以非常快捷地填出有空缺的三阶幻方.587A +=+(1)请完成左下图中的三阶幻方.(2)在右下图中的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于27.「分析」尝试用一下三阶幻方重要性质解决问题吧! 练习4(1)请完成左下图中的三阶幻方.(2)已知右下图这个幻方的幻和等于30,这个幻方中最大的数字是多少?在图中的每个空格内填入一个数,使得每行、每列及两条对角线上的5个方格中的各数之和都相等.「分析」试着找一下交叉的两个幻和,能否应用“比较法”填出一些格子,进而计算出幻和呢?比较法就是通过对两条有公共部分的直线进行幻和的比较,从而求出幻方中的一些未知数.这个方法不仅适用于幻方,也适用于一些与幻方类似(相等和数)的数阵图问题.所以比较法在数学学习中是一种很重要的数学思想和解题方法. 例题6将1、2、3、5、6、7、9、10、11填入图中的小圆圈内,使得每条直线上三个圆圈中的数字之和都相等.「分析」在填写幻方时,我们常常找有公共方格的两条直线进行比较分析,本题我们也可以用类似的方法. 课堂内外神秘的洛书相传在我国远古的伏羲氏时代,有一匹龙马游于黄河,马背上负有一幅奇妙的图案,这就是所谓的《河图》.有一只神龟出没于洛水,龟壳上有一些神秘的符号,这就是所谓的《洛书》.伏羲氏知道后,就按照《河图》、《洛书》编制八卦,用以推算历法,预测吉凶等.在我国的古籍《周易》、《尚书》、《论语》中都有关于《河图》、《洛书》的记载.《周易》的系辞篇里是这样记载的:“河出图,洛出书,圣人则之.”这与上述传说颇相吻合.也许这一记载正是上述传说的来源或记录吧!明朝的程大位也曾说:“数何肇自图书乎,伏羲氏得之以画卦,大禹得之以序畴,列圣得之以开物.”意思是说:“数起源于什么?它起源于河图、洛书吗?伏羲氏得到它后,用它绘制出八卦;大禹得到它后,用客观存在来规划田畴,其客观存在圣贤得到后,用来开发物产.”那么,河图究竟是一个什么样的图案,洛书究竟是一些什么样的书写符号呢?这在《周易》、《论语》这些典籍中都没有记载.直到宋代,朱熹经解《周易》时,曾派他手下的学者蔡元定去四川,用高价才在民间收购到了华山道士搏传出的《太极图》、《河图》、《洛书》等.其中《太极图》与现在流传的太极图相同,而《河图》《洛书》则是由一些圆圈点构成的图形,洛书的形状如左下图所示.这与公元前一世纪时我国汉代的《大戴礼》一书中的九宫图相合.所谓九宫,就是将一个正方形用两组与边平行的分割线,每组两条,分割成的九个小正方格.每个小方格分别填入从1到9这九个自然数中的其中一个,不同的方格填入的数不同,使得三横行中每一横行三个数的和(叫行和),三纵列中每一纵列三个数的和(叫列和),两条对角线中每一条对角线上三个数的和(叫对角和)都相等,等于()123456789315++++++++÷=.这样得到的图就叫九宫图.与洛书相应的九宫图如右下图所示.作业1. 用2、4、6、8、10、12、14、16、18这9个数构建一个三阶幻方.2. 请将1~16填入图中16个方格中,使得每行、每列及两条对角线上的各数之和都相等.现在已经填入了一些数,请补全这个幻方. 3. 请补全下面的三阶幻方.4. 已知下面这个幻方的幻和等于21,请补完这个三阶幻方.5.将4、6、8、9、10、12、13、14、17填入图中的圆圈内,使得每条直线上的数之和都相等.第一讲 从洛书到幻方1. 例题1答案:详解:这9个数由1~9这9个数乘3得到,因此可根据基本三阶幻方的构建方法,将每个数乘3即可(如右上图).2. 例题2答案:详解:由第1列可知幻和为7216934+++=,由于每行、每列、每条对角线上和相等,只要某行、某列、某条对角线有三个已知数,就可计算出另一个空格,如第1行第3个数为34712141---=,其他空格依次类推.3. 例题3答案:详解:通过比较第1列和第2行,发现左上角的数是4,这时幻和就可以通过斜对角线求出来是18.4. 例题4详解:(1)中间数是5,幻和就是15,接下来可根据幻和来填其它数.(2)根据幻和是27,可填出幻方中心的数是9,其他可根据幻和依次填出.×3答案:详解:如右上图,粗线圈圈出的第二行和第五列有公共格,因此可知()()37826374a =+++-++=;细线圈圈出的第五行和第二列有公共格,因此()()97340878b =+++-++=,由此可知对角线上五个数为8、4、8、2、4,和为26,因此幻和为26,可结合比较法和幻和填出剩下的空格.6. 例题6答案:详解:使用比较法,右上图中,粗线圈圈出的两条直线有公共格,因此19a b +=+,可知a 比b 大8,则a 、b 可以是11、3,10、2,9、1,其中1、3、9都出现过,因此a 、b 只能是10、2.右上图中,细线圈出的两条直线也有公共格,因此31c d +=+,可知d 比c 大2,c 、d 不能是1、2、3、9、10,因此只能是5、7.剩下两个格也可通过比较法确定.7. 练习1答案:详解:可根据基本三阶幻方的构建方法,将每个数乘7即可.8. 练习2答案:15详解:通过对角线可知幻和为34,从而可依次填出其他数,如右图所示.答案:简答:通过比较第1行和斜对角线,发现中间数是18,这时幻和就可以通过斜对角线求出来是54.10. 练习4答案:简答:(1)中间数是9,幻和就是27,接下来可根据幻和来填其它数.(2)根据幻和是30,可填出幻方中心的数是10,其他可根据幻和依次填出.11. 作业1答案:简答:由1~9基本三阶幻方得来. 12. 作业2答案:简答:根据1~16的总和,能够算出幻和为()123416434+++++÷=,其它根据幻和可以一一填出.13. 作业3答案:简答:根据三阶幻方性质求解.14.作业4简答:幻和为21,所以中间数字为7.然后应用三阶幻方的性质就可以填出其他空格.15.作业5答案:简答:左下角和右上角的两个圆圈中填的数差8,左下角填17,右上角填9.那么9的左边填12,左上角的数比右下角填的数大2,分别为10和8,最中间的圆圈填13.。

四年级下册奥数知识点专讲第12课《简单的幻方及其他数阵图》试题附答案

四年级下册奥数知识点专讲第12课《简单的幻方及其他数阵图》试题附答案
幸遇只因这一次
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世
---------------------谢谢喜欢--------------------
四年级下册奥数知识点专讲第12课《简单的幻方及其他数阵图》试题附答案
答案
四年级奥数下册:第十一讲简单的幻方及其他数阵图习题解答
---------------------赠予---------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句

六年级下册数学试题 - 数学竞赛 奇阶幻方问题 全国通用(含答案)

六年级下册数学试题 - 数学竞赛 奇阶幻方问题   全国通用(含答案)

2019小学数学六年级(全国通用)-数学竞赛部分-奇阶幻方问题(含答案)一、填空题1.把4~12这九个自然数填入九宫图内(如图),使每行、每列、每条对角线上三个数的和都等于24(每个数用一次).2.把11、12、13、14、15、16、17、18、19填在图合适的方格里,使每横行、竖行、斜行的三个数相加都得45.3.字1~9被填入到下面3×3的方格中,其中每个数字都恰好被用了一次.如果在方格的右边和下边所写的数字代表的是该行或该列中所填数的乘积,则在“*”格中所填的数字应该是________ .4.如图是九宫格,每个格子中有一个数(图中没有全部标出),已知它每行、每列、每条对角线上三个数的和都相等,则A格中的数是________ .5.用11﹣﹣﹣35填出下列五阶幻方:6.在九宫格中,填入的都是大于0的整数,且每行,每列,每条对角线上三数之积相等,则图中A表示的整数等于________ .7.请你在图中的空格里填上数,使横、竖的三个数的和都相等.8.将8、12、16、20、24、28、32、36、40这9个数,分别填入右图方格内,使每行每列及对角线上的三个数的和都相等.9.在如图中每个没有数字的格内各填一个数,使每行、每列及每条对角线的三个格中的数之和都等于108.那么,画有“?”的格内所填的数是________ .10.将不大于12且互不相同八个自然数填入图中八个方格中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.九个小方格,每个小方格内都有一个数,每行、每列以及对角线上三个数的和都相等,这样的九个数所组成的方块叫做九宫图!如表一就是一个九宫图.在表二的空格中分别填入________ .表一表二.12.在右面的9个方格中分别填入﹣2,﹣1,0,1,2,3,4,5,6,使得每一行的三个数、每一列的三个数、斜对角的三个数之和都相等.13.在如图所示的3×3方格表中填入合适的数,使每行、每列以及每条对角线上的三个数的和相等.那么标有“★”的方格内应填入的数是________ .14.在图的九个方格里,每行、每列、每条对角线上的三个数的和都相等,则N=________ .15.所谓“三阶乘法幻方”是指在3×3的方格中填入9个不等于0的整数,使得每行、每列及每条对角线上的三个数之积都相等.请将如图的“乘法幻方”补充完整,则其中的“X”所代表的数是________ .二、解答题16.把2,3,4,…,10这九个数字填到图中的3X3方格内,使每行、每列及对角线上的三个数的和都相等.三、综合题17.智力填空(1)如图个正方形中各有一个数字,已知每一行、每一列及每条对角线上的三个数之和都相等那么右上角的数x=________ .(2)一个三位数与其数字之和之比可能取得的最大值是________ .(3)计算:(÷×÷×÷)×÷×÷×÷…,那么算到第130个数的结果是________ .四、应用题18.在如图中的空格内填入适当的数,使每行、每列、每条对角线上各数的和都等于27.19.你将﹣2,﹣1,0,1,2,3,4,5,6这9个数分别填入图中的9个空格内,使每行的3个数、每列的3个数、斜对角的3个数相加均为6.20.将1~9填在右面的方格中,使每一横行、竖行、斜行的数相加的和都相等21.把20个棋子放到图中的方格里,每个格子都要放,怎样放才能使每边的棋子加起来都是6个?22.在下面的空格里填上合适的数,使每一横行、竖行、斜行的三个数的和都相等.45.答案解析部分一、填空题1.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是24÷3=8;剩下的两个数的和是16,16=4+12=5+11=6+10=7+9;这个幻方是:【分析】根据题意,要使三阶幻方的幻和为24,所以中心数必为24÷3=8,那么与20在一条直线上的各个组的其余两个数的和为16,调整和为16两个数的位置填入幻方即可.2.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是:45÷3=15;经过推算其它各数位置如下:【分析】先求出中间数:45÷3=15;剩余的每两个数的和是30;由30=11+19=12+18=13+17=14+16;调整每一对数的位置填入表格即可.3.【答案】4【考点】奇阶幻方问题【解析】【解答】解:有分析可知因为20=1×4×5,1×9×8=72,8×3×6=144,9×7×2=126,1,×4×5=20,填表如下:故答案为:4.【分析】首先从最小的数20开始分析,20=1×4×5,所以下面一行的数字只能是1、4、5,而由于与1、4、5再乘得出72、105、48,5只能在中间位置,如果第一个数字是4,则得出第一行的第一个数字是2;105=5×21,只有3×7=21,正中间数是3,得不出9×3×()=126,是7,则有9×7×2=126,就与4×9×2矛盾,因此下面一行的数字顺序为1、4、5,得出*=4,进一步经过计算得出答案即可.4.【答案】9【考点】奇阶幻方问题【解析】【解答】解:由以上分析可得答案如下:因此A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的和都相等,设中间的数为x,则幻和为3x,由图可知,B=2x﹣5,10+1+(2x﹣5)=3x,解得x=6;由此求得幻和为18,进一步推出C=3,A=9,B=7,D=11,E=2.5.【答案】【考点】奇阶幻方问题【解析】【解答】解:可以写出这个五阶幻方是:【分析】本题用爬楼梯的方法求解:最小的数(11)放在第一行正中;按以下规律排列剩下的24个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4).6.【答案】9【考点】奇阶幻方问题【解析】【解答】解:如图,因为3×4×C=C×1×B,所以B=12;因为3×B×x=4×x×A,3所以A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的积都相等,由图可知,3×4×C=C×1×B,得出B=12,再由3×B×x=4×x×A,得出A=9;由此求得答案解决问题.7.【答案】【考点】奇阶幻方问题【解析】【解答】解:幻和是6×3=18;第二行第三列的数是:18﹣10﹣6=2;第三行第三列的数是:18﹣7﹣2=9;第一行第一列的数是:18﹣6﹣9=3;第一行第二列的数是:18﹣3﹣7=8;第三行第一列的数是:18﹣3﹣10=5;第三行第三列的数是:18﹣8﹣6=4;这个幻方就是:【分析】中间数是6,那么幻和是6×3=18;由此进行逐步推算即可.8.【答案】【考点】奇阶幻方问题【解析】【解答】解:8+12+16+20+24+28+32+36+40=216;幻和:216÷3=72;中间数:72÷3=24;这个幻方是:【分析】先求出这个9个数的总和,总和除以3就是幻和,再用幻和除以3就是中间数,根据中间数依次找出剩下数两两之和相等,填入方格.9.【答案】46【考点】奇阶幻方问题【解析】【解答】解:中间的数:108÷3=36;右下角:108﹣(54+36),=108﹣90,=18;左下角:108﹣(64+18),=108﹣82,=26;右上角:108﹣(36+26),=108﹣62,=46;要求的数是46;这个格子是:故答案为:46.【分析】使每行、每列及每条对角线的三个格中的数之和都等于108.那么最中间的数就是108÷3=36;由此求出右下角的数;再根据右下角的数和64两个数推算出左下角的数;进而推算出要求的数.10.【答案】【考点】奇阶幻方问题【解析】【解答】解:21÷3=7,中间数是7;21﹣7=14=2+12=4+10=5+9=6+8调整各个数的位置可得:【分析】幻和是21,所以中间数是21÷3=7,由此可以先前推算出前面的4个数是6、5、4、2,后面的四个数就是8、9、10、12;21﹣7=14=2+12=4+10=5+9=6+8,由此进行求解即可.11.【答案】90【考点】奇阶幻方问题九个数的和是:9×10=90;故答案为:90.【分析】表一中填入的是1~9这九个不同的自然数,中心数是5;表二中的中心数是10,还有另外两个数9、11,这三个数都是表一中相应位置上的数加5得来的,由此可把表一其它格中的数也加5填入表二即可;要求表二中九个数的和可用中心数乘9求得即可.12.【答案】【考点】奇阶幻方问题【解析】【解答】解:这个方格如下:【分析】(1)首先计算幻和:[(﹣2)+(﹣1)+0+1+2+3+4+5+6)]÷3=18÷3=6;再算出中心数:6÷3=2;剩余的每两个数的和是4:(﹣1)+5=4+0=(﹣2+6)=3+1;调整每一对数的位置填入表格即可.13.【答案】8【考点】奇阶幻方问题【解析】【解答】解:3+7+★=★+□+4,得出□=6,6×3=18,所以★=18﹣7﹣3=8;具体答案如下,故答案为:8.【分析】如图,首先由3+7+★=★+□+4,推出中间的数字为6;又因每行、每列以及每条对角线上的三个数的和相等,说明行、列以及对角线上的三个数的和是6的3倍为18,由此解决问题.14.【答案】18【考点】奇阶幻方问题【解析】【解答】解:每行、每列、每条对角线上的三个数的和是:8+6+16=30;中心数是:30﹣8﹣12=10,右上角的数是:30﹣16﹣10=4;第一行中间的数是:N=30﹣8﹣4=18.【分析】先确定每行、每列、每条对角线上的三个数的和,8+6+16=30;再确定对角线上的中心数:30﹣8﹣12=10,然后求出右上角的数:30﹣16﹣10=4;最后得出第一行中间的数N=30﹣8﹣4=18.15.【答案】8【考点】奇阶幻方问题【解析】【解答】解:如图:由20×16×A=A×4×B得出B=80,20×C×80=4×C×D得出D=400,20×400×X=80×E×X得出E=100,20×16×A=20×400×X得出A=25X,16×C×100=20×400×X得出C=5X,所以A×C×X=20×C×80,25X×X=1600X×X=64,X=8.故答案为:8.【分析】如图:因为每行、每列及每条对角线上的三个数之积都相等,可以得到20×16×A=A×4×B=B×E×X=X×D×20=A×C×X=20×C×B=4×C×D=16×C×E,选择合适的等式求得结论即可.二、解答题16.【答案】【考点】奇阶幻方问题【解析】【解答】解:2+3+…+8+9+10=54,幻和:54÷3=18;中间数:18÷3=6;剩下两个数=18﹣6=12=10+2=9+3=8+4=7+5,所以幻方如下:【分析】只看行,有三行,三行的总和是:2+3+…+8+9+10=54,由于每行上的三个数的和都相等,所以幻和是:54÷3=18;由于三个数的和是18,所以中心格的数字必须是:18÷3=6;然后把剩下的和为18﹣6=12的两个数:2和10,3和9,4和8,5和7,调整填入方格即可.三、综合题17.【答案】(1)16(2)100(3)【考点】奇阶幻方问题【解析】【解答】解:(1)如图,①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,所以3X+a+b+c+d+e+f=X+a+b+c+d+e+f+13+19X=16;(2)设三位数的百位、十位、个位分别是a,b,c,三位数表示为100a+10b+c;设(100a+10b+c):(a+b+c)=k则100a+10b+c=ka+kb+kc;由于abc均为自然数,可知,k最大值是100,此时b,c均为0;(3)130÷6=21…4,(÷×÷×÷)×(÷×÷×÷)×…×(÷×÷)=1×1×1×…×(÷)=×=.故答案为:(1)16;(2)100;(3).【分析】(1)如图,为了便于分析推导,先在方格内填入相应的字母来代替数,由于方格内已填好了两个数19和13,还有一个未知数x,根据“每一行、每一列以及两条对角线上的三个数的和都相等”可得等式:①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,三个等式左右两边各相加整理得出答案即可;(2)设三位数的百位、十位、个位分别是a,b,c;三位数表示为100a+10b+c;比值为k,探讨k的最大值得出答案即可;(3)÷×÷×÷=1每6个数为一组,用130除以6,看得到的余数是多少,确定最后算到那个数,进一步计算得出答案即可.四、应用题18.【答案】解:中心数为27÷3=9;第三列第二行的数为:27﹣5﹣10=12;第一列第三行的数为:27﹣5﹣9=13;第一列第一行的数为:27﹣13﹣6=8;第二列第一行的数为:27﹣8﹣5=14;第二列第三行的数为:27﹣14﹣9=4;把数填入图中得:【考点】奇阶幻方问题【解析】【分析】因为每行、每列、每条对角线上各数的和都等于27,所以幻和为27,中心数为27÷3=9,再据表格中的其它数,利用幻和取出即可.19.【答案】解:根据分析可得:【考点】奇阶幻方问题【解析】【分析】根据幻和是6,可得中心数是:6÷3=2;那么对角线、第二行、第二列剩下两个数的和就为:6﹣2=4;所以只要凑成:4=3+1=5+(﹣1)=0+4=﹣2+6,然后稍微调整一下即可得出答案.20.【答案】解:幻和:(1+2+3+4+…+9)÷3=45÷3=15;中间数:15÷3=5;其它两个数的和是10,1+9=2+8=3+7=4+6;【考点】奇阶幻方问题【解析】【分析】先求出这9个数的和,用这个9个数的和除以3求出幻和,再用幻和除以3求出中间数;再根据幻和减去中间数,就是剩下两个数的和,根据幻和,调整这些数的位置,得出幻方.21.【答案】解:四个角各放一个,其余四格各放4个,这样每边都是6个;如下图:【考点】奇阶幻方问题【解析】【分析】要使每边都是6个,从最简单的情况着手,即四个角的数量相等;如果四个角的数量都是3个,那么每边两个方格就有6个棋子,每边会空出一格不合适,所以角上的棋子数量不会超过2个;如果每个角上都是2个,那么每边中间的空格也是2个棋子,这样一共是2×8=16个棋子,不是20个,不合题意;如果每个角上都是1个,那么每边的中间的空格就是4个棋子,一共是1×4+4×4=20个棋子,符合题意.四个角各放一个,其余四格各放4个,这样每边都是6个.22.【答案】解:给未知的数编号如下:幻和是60×3=180a=180﹣48﹣60=72;b=180﹣72﹣12=96c=180﹣48﹣96=36d=180﹣24﹣72=84这个幻方就是:【考点】奇阶幻方问题【解析】【分析】中间数是60,那么幻和就是60×3=180,用这个幻和减去已知的数,即可得出其它的数,从而得解.23.【答案】解:第3行第3列的数是:45﹣24﹣3=18第3行第1列的数是:45﹣21﹣18=6第2行第2列的数是:45﹣24﹣6=15第2行第1列的数是:45﹣15﹣3=27第1行第1列的数是:45﹣27﹣6=12第2行第1列的数是:45﹣15﹣21=9【考点】奇阶幻方问题【解析】【分析】(1)根据横、竖、斜行的三个数的和都是45,用45减去24和3,求出第3行第3列的数是多少;(2)根据横、竖、斜行的三个数的和都是45,用45减去第3行第2列和第3行第3列的数,求出第3行第1列的数是多少;(3)根据横、竖、斜行的三个数的和都是45,用45减去24和第3行第1列的数,求出第2行第2列的数是多少;(4)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第2行第3列的数,求出第2行第1列的数是多少;(5)根据横、竖、斜行的三个数的和都是45,用45减去第2行第1列和第3行第1列的数,求出第1行第1列的数是多少;(6)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第3行第2列的数,求出第1行第2列的数是多少.。

小学奥数教程:幻方(一)全国通用(含答案)

小学奥数教程:幻方(一)全国通用(含答案)

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.知识点拨教学目标5-1-4-1.幻方(一)四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

(小学教育)2019年小学数学奥林匹克竞赛三阶幻方(含答案)

(小学教育)2019年小学数学奥林匹克竞赛三阶幻方(含答案)

2019年小学数学奥林匹克竞赛三阶幻方(含答案)同学们:在(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。

如果在(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。

一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。

(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。

a b cd e fg h i图1 图2分析:我们先用a、b、c、d、e、f、g、h、i分别填入九个空格内以代表应填的数。

看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。

同时可以看到图(2)中,e是一个中间数,也是关键数。

因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a、c、g、i它们各自都要参加一行,一列及一条对角线的求和运算。

如果e以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。

(2)求幻和:幻和(3)选择突破口,显然是e,看图2。

++=++=++=++=15因为:a e i b e h c e g d e f所以:()()()()a e i b e h c e g d e f +++++++++++也就是:()a b c d e f g h i e +++++++++⨯=360 又因为: 所以也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。

小学三年级奥数-幻方

小学三年级奥数-幻方
把3,4,5,6,…..18这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
42
42
42
42
42
42
42
42
所以 幻和=42
同学们 你们真的好棒哦!不要骄傲, 继续加油哦!
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
换位
归位
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
01
如何填幻方(幻方的构成)
02
定中间数 填四角数 算其余数
定中间数,填四角数,算其余数
将1~9九个自然数填入下图的九个方格里,使每行、每列、每条对角线上的三个数的和都相等。 把九个数最中间的一个填在方格的正中央,第二、四、六、八个数分别填在四个角上。 幻和=(1+2+3+…+8+9) ÷3=15
9
9、
8、
7、
6、
5、
13
12、
11、
10、
一.三阶幻方的编制和补充
二.四阶幻方的编制和补充
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!

四年级数学奥数培优讲义-专题16幻方(含解析)

四年级数学奥数培优讲义-专题16幻方(含解析)

专题16幻方1.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

A 是 、B 是  。

C 是 。

2.在如方格中,每行每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 。

13B 4A13.在如图方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次 ,B 应该是 。

4.在图中的方格中,每行、每列都有1一4这四个数,并且每个数在每行、每列都只出现一次 B 是 。

5.在如图所示的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

23B4A2A应该是 ,B应该是 。

6.小游戏:如图,九宫格中左上角为“开”,其余8格分别写着下一步的移动方法,就按照这格上的指示要求移动(如“左2”,即左移2格;“下1”,即下移1格);如果要把每一格都跳一遍(不重复),则第一次要放在第 列第 行的那一格。

7.如图的方格中,每行、每列都有1~4这四个数,且每个数在每行、每列都只出现一次.A是 ,B 是 .A.1B.2C.38.如图,在5×5的正方形方格中,排列着数字1、2、3、4、5,在每列中也恰好出现一次。

则写着X的空格中的数应当是 。

9.如表方格中每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。

想一想,A应该是 B应该是 。

322A13B10.在如图的方格里,每行、每列都有1~4这四个数,并且每个数在每行、每列都只能出现一次 。

11.在如图的方格中,每行、每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 ,C 是 .12.在如图的方格中,每行每列都有1~4这四个数,并且每个数在每行每列都只出现一次 ,B 是 .13.如图是一种精简版的“数独”游戏,每行每列都只有1~4这四个自然数,并且每个数在每行、每列都只出现一次 。

14.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都出现一次。

B应该是 ,A应该是 。

小学四年级奥数幻方教程

小学四年级奥数幻方教程

小学四年级数学提高教程——幻方与数阵图【知识点解析】一、幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。

幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。

幻方又称为魔方,方阵等,它最早起源于我国。

宋代数学家杨辉称之为纵横图。

关于幻方的起源,我国有“河图”和“洛书”之说。

相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。

伏羲氏凭借着“河图”而演绎出了八卦。

后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。

“洛书”所画的图中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。

二、幻方问题主要方法1、累加法利用累加的方法可以求出“幻和”和关键位置上的数字。

通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。

2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。

3、比较法利用比较的方法可以直接填出某些位置的数字。

注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。

4、掌握好3阶幻方中的规律。

【例题】1、如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。

它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9 这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自刖教学目标1.会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3.深入学习三阶幻方知识点拨一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3歹U,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做幻方”,由于它有3行3歹U,所以叫做三阶幻方”,这个相等的和叫做幻和”.洛书”就是幻和为15的三阶幻方.如下图:我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央. ”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3M3的数阵称作三阶幻方,4父4的数阵称作四阶幻方,5 M5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有:①求幻和:所有数的和盟亍数(或列数)②求中心数:我们把幻方中对角线交点的数叫中心数”,中心数=幻和与.③角上的数=与它不同行、不同列、不同对角线的两数和四、数独数独简介:(日语:数独寸是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

如今数独的雏型5-1-4-1. 幻方(一)8 1 63 5 74 9 21 15 14 412 6 7 98 10 1 1 513 3 2 1 6首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place。

现今流行的数独于1984年由日本游戏杂志《,元及通信二小力〉发表并得了现时的名称。

数独本是独立的数字”的省略,因为每一个方格都填上一个个位数。

数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。

总结4个小技巧:1、巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制。

2、相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法。

举例说明,A1可以填入1或者2, A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A行其他位置不可能出现1 或者2.3、相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格。

举例说明,A行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4, A2可以填入1、3, A3可以填入1、2、3, A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1 ,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定。

4、假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。

举例说明,B3可以填入1或者2, A3可以填入2或者3, B4可以填入1或者2,这个时候我们就应该假设B3 填入2,这样就可以确定A3填入3, B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始。

"tM作例题精讲模块一、构造幻方【例1】3 M3的正方形中,在每个格子里分别填入1〜9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方【难度】1星【题型】填空【解析】方法一:第一步:求幻和:(1+2+3+|||+9尸3=15第二步:求中心数:我们把幻方中对角线交点的数叫中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即15M4=60,显然,在这个总和中,中心数用了四次, 其余各数正好各用一次,所以中心数应是:(60-45)-3=5第三步:确定四个角上的数.由于在同一条直线上的三个数的和是15,所以如果某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同,所以四个角上的数必为偶数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解,下图为其中一解,其余解均可由其翻转或旋转得到:I29 47 5 3L_L方法二(对易法):南宋数学家杨辉概括为:九子斜排,上下对易,左右相更,四维挺出即:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.方法三(阶梯法):阶梯法也叫楼梯法,是法国数学家巴赫特创造的.这个方法看起来有点像对易法,但又完全不一样,十分简单而巧妙,适用于所有奇数阶幻方.这个方法把把1 (或最小的数)放在第一行正中,按以下规律排列剩下的数:14 27 5 38 6994 23 5 78 61n阶方阵从四周向外扩⑴⑵⑶(4每一个数放在前一个数的右上一格;如果这个数所要放的格已经超出了最顶行,如果这个数所要放的格已经超出了最右列,如果这个数所要放的格已经填好了其它的数, 把它放在前一个数的下面,具体如下图:那么就把它放在最底行,仍然要放在右一列.那么就把它放在最左列,仍然要放在上一行.或者同时超出了最顶行和最右列,那么就1 63 5 74 28 1 63 5 74 28 1 63 5 74 9 2这是法国人罗伯特总结出的方法,所以叫数依次右上连.上出框时往下填,右出框时往左填. 对于构造连续自然数(以及能构成等差数列的数)幻方阶幻方.・罗伯法的口诀:一居上行正中央,后排重便在下格填,右上排重一个样.它是最简单易行的,适用于所有奇数展成阶梯状,然后把n2个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内3阶幻方.方法二和方法三中将1〜9按8个不同的方位排列就可以得到本题8个不同的解.方法四(罗伯法):1 6罗伯法”【例2】3 M 3的正方形格子中,在每个格子里分别填入2〜10的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方【难度】2星【题型】填空【解析】 第一步:求幻和:(2+3+4+川+9十10)得3=18.第二步:求中心数:我们把幻方中对角线交点的数叫中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18x4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72 -54)+3 =6 .第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数. 第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解.下图为其中一解,其余解均可由其翻转或旋转得到:78 32 610二其他方法这里不再做介绍,同学们可以自己尝试练习.【答案】78 32610二二【例3】 用11, 13, 15, 17, 19, 21, 23, 25, 27编制成一个三阶幻方。

【解析】 方法一:给出的九个数形成一个等差数列, 1〜9也是一个等差数列.不难发现:中间方格里的数于偶数项的数,即13, 17, 21, 25,而且对角两数的和相等,即 13 + 25=17 + 21;余下各数就不又t 填写了 (见下图).1525与幻方相反的问题是反幻方.将九个数填入3父3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.方法二:用阶梯法,在三阶幻方的上下左右的中间添加一格,先将数字按从小到大的顺序,以斜行 方向从左下向右上依次填写,再把添加格内的数填到本行 格中.23 方法四:用罗伯法的口诀:一居上行正中央,后数依次右上连. 重便在下格填,右上排重一个样.【考点】构造幻方 【难度】2星 【题型】填空字应填等差数列的中间数,也就是第五个数,即应填 19;填在四个角上方格中的数是位(或本列)中相隔两行(或两列)的方2317 2517251119271119271321 132115 15 方法三:对易法: 九子斜排,上下对易, 11 左右相更,四维挺出.2727 17 2325191315r 23 211719251315「1521 1713 252711 19 21117 27 1315 19 23 |2511 2111上出框时往下填,右出框时往左填.排 23—【答案】[例5] 从1、2、3--20这20个数中选出9个不同的数放入 3X3的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。

这个9个数中最多有 个质数。

【考点】幻方性质【难度】4星【题型】解答【关键词】走美杯,四年级,初赛,第 4题 【解析】【例6】 请你将1〜25这二十五个自然数填入 5父5的空格内使每行、每列、每条对角线上的五数之和相等. 【考点】构造幻方【难度】2星【题型】填空【解析】①罗伯法:教师边写边说口诀:〜居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样见第二个图.这是法国人罗伯特总结出的罗伯法”,它对于构造连续自然数(以及能构成等差数列的数)幻方是最简单易行的,适用于所有奇数 阶幻方.17 24 18 15 235714 164 6 13 20 22 10 1219 21 311 18 252 9②阶梯法:阶梯法也叫楼梯法,是法国数学家巴赫特创造的.这个方法十分简单而巧妙,适用于所17 79319155取多方 7个质数【例4】 如下图的3x3的阵列中填入了 1〜9的自然数,构成大家熟知的 歹U,请选择9个不同自然数填入 9个方格中,使得其中最大者为 竖加、对角线方式相加的 3个数之和都相等.3阶幻方.现在另有一个3x3的阵 20,最小者大于5,且要求横加、4 9 2 35 7 816【考点】构造幻方【难度】3星【题型】填空【解析】观察原表中的各数是从 1〜9不同的九个自然数,其中最大的数是 对角线方式相加结果相等.根据题意,要求新制的幻方最大数为 表中的各数都增加11,就能符合新表中的条件了.如下图.9,最小的数是1,且横加、竖力口、20,而9+11 =20,因此,如果原有奇数阶幻方.这个方法把 n 阶方阵从四周向外扩展成阶梯状,然后把n 2个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内其对边部分去,即构成幻方.下面的图 ⑴和图⑵表示了如何用阶梯法构成 5阶幻方.图⑴中顶边以上的4、5、10三个数在图⑵中被移入底边上方相应 的3个原先为空的方格中,其余三侧照此处理.1622 21 ⑴ ⑵⑵练习:大家一起来练习用罗伯法写个七阶的幻方,注意强调细节.上出框与右出框的处理有时不 容易把握,老师隆重推荐大家一种方法——嵋^纸筒工即把上下边重合在一线,则上出框后往右上填的位置正好在下边的对应点上.强调这种方法适用于任意奇数阶幻方.【答案】17 241 81523 5 714 164613 20 2210 12 19 21 311 18 25 2 9模块二、幻方性质【例7】 将九个数填入下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k ,则中心方格中的数必为 k-3.rrn二一二【考点】幻方性质 【难度】4星【题型】解答【解析】略【答案】因为每行的三数之和都等于k,共有三行,所以九个数之和等于 3k .如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于 k,四条虚线上的所有数之和等于 4k ,其中只有中心方格中的数是 重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有: 九数之和+中心方格中的数>3=4k ,3k +中心方格中的数 >3=4k ,中心方格的数=k-73注意:例题中对九个数及定数 k 都没有特殊要求.这个结论对求解3M 3方格中的数阵问题很实用.【例8】 请编出一个三阶幻方,使其幻和为 24. 【考点】幻方性质【难度】3星【题型】填空【解析】⑴根据题意,要求其三阶幻方的幻和为24,所以中心数为24+3 = 8.⑵既然8是中心数,那么与 8在一条直线的各个组的其余两数的和为16,想一想哪两个数相加为 16呢? 1 + 15=16, 2 +14=16, 3 + 13=16, 4+12 = 16, 5+11=16, 6+10 = 16, 7+9=16 ⑶按上述条件进行估算后填出,然后再进行调整即可得正确的答案.131117 141815 1923 2024 253 16 9 22 15 20 821 14 27 25 13 1 19 24 12 5 18 611 417 10 235 141012【考点】幻方性质【难度】3星 【题型】填空【解析】 介绍三阶幻方时,我们已经知道了 1〜9的填法及各行各列三个数相加的和均为15,现在要求每一横60,显然1〜9每个数增加(60-15) -3=15就可以了.右上图为其中一【例9】 将九个数填入下图的空格中,使得每行、每列以及每条对角线上的三个数之和都相等,证明:c = (a b) 2cabc 2d-b *dab2a-c【考点】幻方性质 【难度】4星【题型】解答【解析】略【答案】设中心数为 d (如上图),因此每行、每列以及每条对角线上的三个数之和都等于 数为2d -b ,右下角的数为 2d -c .根据第一行和第三列可求出右上图中 3d —c — (2d —b)=3d -a — (2d3d -c -2d b =3d -a -2d cd -c b=d - a c2c = a b 所以 c = (a t)) 2【例10]在下图中的A 、B 、C 、D 处填上适当的数,使下图成为一个三阶幻方.A 12 D B1520 16上11【考点】幻方性质【难度】3星 【题型】填空【解析】 ⑴从1 行和 3 列得:A+12 + D =D +20+11, A+12=20+11, A=19.⑵ 观察对角线上的三个数的总和,实际上它即为每行、 每列的三个数的和.A+15+11 =19+15+11 =45.⑶ B =45—(16+19)=10 . (4) D =45 —(20 +11) =14 .⑸ C =45—(16+11)=18 . .. A=19、 B=10、C =18、D=14.【答案】 A=19、B=10、C=18、D=14【巩固】在图的九个方格里,每行、每列、每条对角线上的三个数的和都相等,则【答案】5 12 7 10 86 9411【巩固】将九个连续自然数填入下图的九个空格,使每一横行及每一竖列的三个数之和都等于60.1724 192220 18211623行及每一竖列的三个数之和为3d ,第一行中间的*的数,由此可得:对角线上的三个数的和:【答案】【关键词】希望杯,四年级,复赛,第 9题,5分 【解析】12 2—6=18 【答案】18【巩固】在图1所示的和方格表中填入合适的数 ,使得每行、每列以及每条对角线上的三个数的和相等。

相关文档
最新文档