一阶动态电路测试实验报告
[VIP专享]RC一阶电路的响应测试--实验报告
实验六 RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时间常数的测量方法。
3. 掌握有关微分电路和积分电路的概念。
4. 进一步学会用虚拟示波器观测波形。
二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。
2.图6-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
3. 时间常数τ的测定方法用示波器测量零输入响应的波形如图6-1(a)所示。
根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。
当t=τ时,Uc(τ)=0.368U m。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图6-1(c)所示。
步骤一对应的虚拟示波器的图像如上图所示利用游标测算得时间常数τ=57*10-6.与计算得到的时间常数τ=RC=68*10-6相比,误差不大,分析其主要原因来源于仪器误差和人的生理误差。
步骤二对应的虚拟示波器的图像如上图所示电路参数满足τ>>T/2的条件,则成为积分电路。
由于这种电路电容器充放电进行得很慢,因此电阻R上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为:上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系此时电路将方波转变成了三角波。
步骤三对应的虚拟示波器的图像如上图所示取RC串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<<T/2。
一阶动态电路响应研究实验报告
一阶动态电路响应的研究实验目的:1.学习函数信号发生器和示波器的使用方法。
2.研究一阶动态电路的方波响应。
实验仪器设备清单:1.示波器 1台2.函数信号发生器 1台3.数字万用表 1块4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。
实验原理:1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。
积分电路和微分电路时RC一阶电路中典型的电路。
一个简单的RC串联电路,在方波序列脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路,其输出信号电压与输入电压信号成正比。
若在该电路中,由C两端的电压作为响应输出,则该电路为积分电路。
2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
在零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。
线性动态电路的全响应为零输入响应和零状态响应之和。
实验电路图:实验内容:1.操作步骤、:(1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。
(2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示屏控制单位,使波形清晰,亮度适宜,位置居中。
(3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值在屏幕垂直方向上占6格。
(4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为0.2ms。
(5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。
(6).打开信号源开关,示波器CH1,CH2通道开关,观察示波器并记录其波形。
实验九实验报告(二)--一阶动态电路的响应测试
实验九 :一阶动态电路的响应测试(二)一、实验目的:1、 观测RC 一阶电路的方波响应;2、 通过对一阶电路方波响应的测量,练习示波器的读数;二、实验内容:1、研究RC 电路的方波响应。
选择T/RC 分别为10、5、1时,电路参数: R=1K Ω,C=0.1µF 。
2、观测积分电路的Ui(t)和Uc(t)的波形,记录频率对波形的影响,从波形图上测量时间常数。
积分电路的输入信号是方波,Vpp=5V 。
3、观察微分电路的Ui(t)和U R (t)的波形,记录频率对波形的影响。
微分电路的输入信号也是方波,Vp-p=1V 。
三、实验环境:面包板一个,导线若干,电阻一个(1k Ω),DS1052E 示波器一台,电解电容一个(0.1μF ),EE1641C 型函数信号发生器一台。
四、实验原理:1. 方波激励:•电路图:•方波波形:(调整方波电压范围在0~5V ) 2. 积分电路:一个简单的RC 串联电路,在方波脉冲的重复激励下,当满足τ=RC>>T/2时(T 为方波脉冲的重复周期),且由C 两端的电压作为响应输出,则该电路就是一个积分电路。
此时电路的输出信号电压与输入信号电压的积分成正比。
•电路图:(以f=1000Hz 为例)C1100nF•仿真波形:(以f=1000Hz为例)3. 微分电路:一个简单的RC串联电路,在方波脉冲的重复激励下,当满足τ=RC<<T/2时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,则该电路就是一个微分电路。
因此此时电路的输出信号电压与输入信号电压的微分成正比。
•电路图:(以f=1000Hz为例)•仿真波形:(以f=1000Hz为例)五、实验数据:1.时间常数的计算:6-4;•U i(t)和U c(t)的波形及波形数据:①③3.微分电路:•U i(t)和U R(t)的波形及波形数据:①②③④六、数据分析总结:1.注意事项:(1)将方波波形底端定为基准,使方波激励电压范围在0~5V之间;(2)微分电路图中,若以积分电路的电路只改变示波器的通道连接,要注意不要将电容短路;(3)函数信号发生器的频率调节要结合档位,不换档位可能调不到所要的频率。
动态电路的实验报告
一、实验目的1. 理解动态电路的基本原理和特性。
2. 掌握动态电路的时域分析方法。
3. 学习使用示波器、信号发生器等实验仪器进行动态电路实验。
4. 通过实验验证动态电路理论,加深对电路原理的理解。
二、实验原理动态电路是指电路中含有电容或电感的电路。
动态电路的特点是电路中的电压、电流随时间变化,其响应具有延时特性。
本实验主要研究RC一阶动态电路的响应。
RC一阶动态电路的零输入响应和零状态响应分别由电路的初始状态和外加激励决定。
零输入响应是指在电路没有外加激励的情况下,由电路的初始状态引起的响应。
零状态响应是指在电路初始状态为零的情况下,由外加激励引起的响应。
三、实验仪器与设备1. 示波器:用于观察电压、电流随时间的变化。
2. 信号发生器:用于产生方波、正弦波等信号。
3. 电阻:用于构成RC电路。
4. 电容:用于构成RC电路。
5. 电源:提供实验所需的电压。
6. 导线:用于连接电路元件。
四、实验步骤1. 构建RC一阶动态电路,连接好实验仪器。
2. 设置信号发生器,输出方波信号,频率为1kHz,幅度为5V。
3. 使用示波器分别观察电容电压uc和电阻电压ur的波形。
4. 改变电路中的电阻R和电容C的值,观察电路响应的变化。
5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 当电阻R和电容C的值确定后,电路的零输入响应和零状态响应分别如图1和图2所示。
图1 零输入响应图2 零状态响应从图中可以看出,零输入响应和零状态响应均呈指数规律变化。
在t=0时刻,电容电压uc和电阻电压ur均为0。
随着时间的推移,电容电压uc逐渐上升,电阻电压ur逐渐下降,最终趋于稳定。
2. 当改变电阻R和电容C的值时,电路的响应特性发生变化。
当电阻R增大或电容C减小时,电路的响应时间延长,即电路的过渡过程变慢;当电阻R减小或电容C增大时,电路的响应时间缩短,即电路的过渡过程变快。
3. 通过实验验证了动态电路理论,加深了对电路原理的理解。
RC一阶电路的响应测试实验报告
RC 一阶电路的响应测试实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时刻常数的测量方式。
3. 把握有关微分电路和积分电路的概念。
4. 进一步学会用示波器观测波形。
实验电路原理说明1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。
t=0时电感的初始电流i L (0)和电容电压u c (0)称为电路的初始状态。
在没有外加鼓励时,仅由t=0零时刻的非零初始状态引发的响应称为零输入响应称为,它取决于初始状态和电路特性(通过时刻常数τ=RC 来表现),这种响应时随时刻按指数规律衰减的。
在零初始状态时仅由在t 0时刻施加于电路的鼓励引发的响应称为零状态响应,它取决于外加鼓励和电路特性,这种响应是由零开始随时刻按指数规律增加的。
线性动态电路的完全响应为零输入响应和零状态响应之和。
含有耗能元件的线性动态电路的完全响应也能够为暂态响应与稳态响应之和,实践中以为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时刻就成为“过渡进程”。
2. 动态网络的过渡进程是十分短暂的单次转变进程。
要用一般示波器观看过渡进程和测量有关的参数,就必需使这种单次转变的进程重复显现。
为此,咱们利用信号发生器输出的方波来模拟阶跃鼓励信号,即利用方波输出的上升沿作为零状态响应的正阶跃鼓励信号;利用方波的下降沿作为零输入响应的负阶跃鼓励信号。
只要选择方波的重复周期远大于电路的时刻常数τ,那么电路在如此的方波序列脉冲信号的鼓励下,它的响应就和直流电接通与断开的过渡进程是大体相同的。
CC3. 时刻常数τ的测定方式:用示波器测量零输入响应的波形如图9-1(b)所示。
依照一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。
当t =τ时,Uc(τ)=。
现在所对应的时刻就等于τ。
亦可用零状态响应波形增加到所对应的时刻测得,如图9-1(c)所示。
(b) 零输入响应 (a) RC 一阶电路 (c) 零状态响应图 9-14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。
一阶动态电路的响应测试实验报告
一阶动态电路的响应测试实验报告1.实验摘要1、研究RC电路的零输入响应和零状态响应。
用示波器观察响应过程。
电路参数:R=100K、C=10uF、Vi=5V2.从响应波形图中测量时间常数和电容的充放电时间2.实验仪器5V电源,100KΩ电阻,10uF电容,示波器,导线若干2.实验原理(1)RC电路的零输入响应和零状态响应(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。
t=0时,电容电压uc(0)称为电路的初始状态。
(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。
(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。
(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法:用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t.(2)测量电容充放电时间的电路图如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.4实验步骤和数据记录(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。
rc一阶电路的动态过程研究实验报告
rc一阶电路的动态过程研究实验报告
实验原理:RC一阶电路由电阻R和电容C组成,当电路受到外部信号刺激时,电容器内的电荷会发生变化,电压也会随之变化。
在电路刚开始受到刺激时,电容器内的电压会迅速上升,但随着时间的推移,电容器内的电压将会越来越接近于稳定值。
这种电路的动态过程可以用RC电路的响应特性来描述。
实验步骤:
1. 将电阻R和电容C按照电路图连接,连接方法为并联式连接。
2. 将信号发生器输出方波信号,并调节幅度和频率。
3. 将示波器的探头接入电路中,调节示波器的时间基准和输入放大倍数。
4. 记录电路的动态响应过程,包括电压的上升和下降过程,以及电压稳定后的波形。
5. 改变电阻和电容的数值,重复实验步骤4,比较不同参数对电路响应的影响。
实验结果:实验结果表明,RC一阶电路的动态响应过程与电阻和电容的数值有关。
当电容值较小时,电路响应较快,电容值较大时,电路响应较慢。
当电阻值较小时,电路的稳态响应较小,电阻值较大时,电路的稳态响应较大。
此外,频率和幅度的变化也会影响电路的响应特性。
在实验中,我们观察到电路响应的波形是指数衰减的,这是由RC电路的特性所决定的。
结论:通过实验研究,我们深入了解了RC一阶电路的动态响应
过程特性及其参数对电路响应的影响。
这对于工程应用和电路设计具有重要意义。
一阶动态电路响应实验报告
一阶动态电路响应实验报告一阶动态电路响应实验报告引言:动态电路是电子学中的基础实验之一,通过对电路中的电流和电压的变化进行观察和分析,可以更好地理解电路的特性和响应。
本实验旨在研究一阶动态电路的响应特性,通过实验数据的分析,探索电路中的电流和电压的变化规律。
实验目的:1. 研究一阶动态电路的响应特性。
2. 掌握实验仪器的使用方法,如示波器、信号发生器等。
3. 学习数据采集和分析的方法。
实验原理:一阶动态电路是由电容和电阻组成的简单电路,其特点是电流和电压的变化具有指数衰减的趋势。
当电路中的电容充电或放电时,电流和电压的变化可以用指数函数来描述。
实验步骤:1. 搭建一阶动态电路实验电路,包括电容、电阻和信号发生器。
2. 将示波器连接到电路中,用于观察电流和电压的变化。
3. 设置信号发生器的频率和振幅,观察电路中电流和电压的响应。
4. 记录实验数据,包括电流和电压的变化情况。
5. 对实验数据进行分析,绘制电流和电压的变化曲线。
实验结果与分析:根据实验数据,我们可以得到一阶动态电路中电流和电压的变化曲线。
通过观察和分析曲线,我们可以得出以下结论:1. 在电容充电时,电流和电压的变化呈指数衰减的趋势,随着时间的增加,电流和电压逐渐趋于稳定。
2. 在电容放电时,电流和电压的变化也呈指数衰减的趋势,但是其衰减速度比充电时要快。
3. 电容的充电和放电时间常数与电阻和电容的数值有关,可以通过实验数据计算得出。
实验结论:通过本次实验,我们研究了一阶动态电路的响应特性,了解了电容充电和放电过程中电流和电压的变化规律。
实验结果表明,一阶动态电路中的电流和电压变化可以用指数函数来描述,而电容的充放电时间常数与电阻和电容的数值有关。
实验总结:本次实验通过实际操作和数据分析,深入理解了一阶动态电路的响应特性。
同时,我们也掌握了实验仪器的使用方法,如示波器和信号发生器。
通过实验的过程,我们不仅加深了对电路特性的理解,还培养了数据采集和分析的能力。
电路实验报告-RC一阶电路的暂态响应-20170221
《电路与模电》实验报告实验题目:RC 一阶电路的暂态响应姓名: 学号: 实验时间: 实验地点: 指导老师: 班级:一、实验目的1.测定RC 一阶电路的零输入响应、零状态响应和全响应。
2.学习时间常数的测量方法。
3.掌握有关微分电路、积分电路的概念。
4.进一步学会用示波器观测波形。
二、实验原理1. 动态电路的过渡过程是十分短暂的单次变化过程,对时间常数τ较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。
如果用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现。
为此,可利用信号发生器输出的方波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数τ那么电路在这样的方波序列脉冲信号的激励下,它的响应和直流接通与断开的过渡过程是基本相同的。
2. RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ3. 时间常数τ的测定方法:用示波器测得零状态响应的波形如图6-1所示。
根据一阶微分方程的求解得知 当零状态响应波形增长到0.632E 所对应的时间就等于τ。
τtRCt c EeEeu --==装订线图6-1 RC 电路的零状态响应亦可用零输入响应波形所对应的时间测得,如右下图所示。
图6-2 RC 电路的零输入响应当t =τ时,Uc(τ)=0.368E,此时所对应的时间就等于τ。
1. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。
一个简单的 RC 串联电路,在方波序列脉冲的重复激励下,当满足条件时(T 为方波脉冲的重复周期),且由R 端作为响应输出(如图6-3所示),则该电路就成了一个微分电路,因为此时电路的输出信号电压基本与输入信号电压的微分成正比。
利用微分电路可将方波转变成尖脉冲。
一阶动态电路的研究
动态网络的过渡过程是十分短暂的单次变化过程。 要用普通示波器观察过渡过程和测量有关的参数,就 必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶 跃激励信号,即利用方波输出的上升沿作为零状态响 应的正阶跃激励信号。只要选择方波的重复周期远大 于电路的时间常数,则电路在这样的方波序列脉冲信 号的激励下,它的响应就和直流电源接通与断开的过 渡过程是基本相同的。
电压幅度 调整
电源开关
5
2、时间常数的测量: R
+
ui
Um
ui
–
C
uC
ui Um
t
t
0
0
uC UC
U C uC
0.632UC
0.368UC
t
t
0
0
பைடு நூலகம்
a)零输入响应
b)零状态响应 6
五、思考题:
1. 什么是电路的时间常数,其物理意义是什么? 2、什么是微分电路和积分电路,在实际中有什么用途? 3、改变激励电压的幅度,是否改变过渡过程的快慢?为什么 六、实验报告要求:
Ui和电容的端电压Uc(即:响应信号);
4、调整示波器的时间灵敏度和幅度灵敏度到适当位置,观察电
路激励与响应的变化规律,并测算出电路时间常数。
5、关断电源,将电容换为C=0.1uF,重复步骤13,继续增大C 值,定性地观察对响应的影响;
2
6、 选取R=510, C=0.01uF组成图2所示
+
C
的RC微分电路。在同样激励信号作用
4、改变电容值,观察波形及其相位改变的现象,并记录数据; 5、改变信号源频率,观察波形及其相位改变的现象,并记录数3据.
一阶动态电路实验报告
一阶动态电路实验报告一阶动态电路实验报告引言:动态电路是电子电路中常见的一种电路类型,它能够实现信号的放大、滤波和时序控制等功能。
本实验旨在通过搭建一阶动态电路并进行实验验证,深入理解动态电路的工作原理和特性。
实验目的:1. 掌握一阶动态电路的基本原理和特性;2. 学习使用实验仪器搭建一阶动态电路;3. 通过实验验证一阶动态电路的放大和滤波功能。
实验器材:1. 动态电路实验箱;2. 函数信号发生器;3. 示波器;4. 电压表;5. 电阻、电容等元件。
实验步骤:1. 搭建一阶低通滤波器电路,连接函数信号发生器和示波器;2. 调节函数信号发生器的频率和幅度,观察输出信号的变化;3. 测量输入信号和输出信号的幅度,并计算增益;4. 更换电阻或电容元件,观察输出信号的变化;5. 搭建一阶高通滤波器电路,重复步骤2-4。
实验结果:在实验过程中,我们搭建了一阶低通滤波器电路和一阶高通滤波器电路,并进行了一系列实验观察和测量。
首先,我们调节函数信号发生器的频率和幅度,观察输出信号的变化。
当输入信号频率较低时,输出信号基本与输入信号保持一致;而当输入信号频率逐渐增大时,输出信号的幅度逐渐减小,呈现出低通滤波的特性。
这说明一阶低通滤波器电路能够抑制高频信号的传输,实现信号的滤波功能。
其次,我们测量了输入信号和输出信号的幅度,并计算了增益。
通过实验数据的分析,我们发现随着输入信号频率的增加,输出信号的幅度逐渐减小,增益也逐渐减小。
这与一阶低通滤波器的特性相吻合。
在更换电阻或电容元件的实验中,我们发现改变电阻值或电容值会对输出信号产生影响。
当电阻值增大或电容值减小时,输出信号的幅度减小,滤波效果增强;反之,输出信号的幅度增大,滤波效果减弱。
这进一步验证了一阶动态电路的特性。
结论:通过本次实验,我们深入了解了一阶动态电路的工作原理和特性。
一阶低通滤波器能够抑制高频信号的传输,实现信号的滤波功能;而一阶高通滤波器则能够抑制低频信号的传输,实现信号的滤波功能。
动态电路仿真实验报告
一、实验目的1. 掌握使用Multisim软件进行动态电路仿真的基本方法。
2. 理解并验证一阶、二阶动态电路的基本特性。
3. 分析电路参数对动态电路响应的影响。
4. 通过仿真实验,加深对动态电路理论知识的理解。
二、实验原理动态电路是指电路中元件的参数(如电阻、电容、电感等)随时间变化的电路。
动态电路的特性主要取决于电路的结构和元件参数。
本实验主要研究一阶和二阶动态电路的响应特性。
三、实验仪器1. PC机一台2. Multisim软件四、实验内容1. 一阶动态电路仿真(1)搭建RC电路使用Multisim软件搭建一个RC电路,电路参数如下:R=1kΩ,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电容C的初始电压设为0V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
2. 二阶动态电路仿真(1)搭建RLC电路使用Multisim软件搭建一个RLC电路,电路参数如下:R=1kΩ,L=1mH,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电感L的初始电流设为0A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
五、实验结果与分析1. 一阶动态电路(1)零输入响应:电容电压uc随时间呈指数衰减,时间常数τ=1s。
(2)零状态响应:电容电压uc随时间呈指数增长,时间常数τ=1s。
(3)完全响应:电容电压uc随时间呈指数衰减和增长,时间常数τ=1s。
一阶电路动态过程的研究
一阶电路动态过程的研究一、实验目的(1)研究一阶电路的零输入响应,零状态响应及全响应的基本规律和特点。
(2)学习一阶电路时间常数τ的测量方法。
(3)熟悉微分和积分电路结构,加深对构成微分和积分电路必要条件的理解。
(4)熟悉示波器的使用方法。
二、实验原理及说明 (1)含有L、C元件的电路称动态电路。
描述动态电路的方程是微分方程,由给定的初始条件可求得电路的响应。
对线性电路其响应可分为零状态响应、零输入响应及全响应。
初始状态为零,仅激励引起的响应叫零状态响应;激励为零,由初始条件引起的响应叫零输入响应;同时同激励和初始条件引起的响应叫全响应。
电路中只含有一个电感或电容元件时称为一阶电路。
(2)一阶电路的零输入响应总是按指数规律衰减,零状态响应总是按指数规律递增或递减,衰减和递增速率的快慢,决定于电路本身参数所确定的时间常数τ。
在RC电路中,τ=RC;在RC电路中,τ=L/R。
(3)动态电路的过渡过程是短暂的单次变化过程,在瞬间发生又很快消失,所以观察这一过程是有困难的,常用方法是用方波仪记录其过程。
在实验室中,根据电路时间常数τ的大小不同分别采用不同的实验方法。
当τ较大时(数秒),一般采用卡秒表的方法,即在“换路”的同时,既观测电压(或电流)的数值,又启动秒表记录时间,从而可以记录下电压(或电流)随时间变化的规律。
当τ较小时,一般采用示波器观测。
为了便于观测,必须使单次过渡过程重复出现。
可以用方波的前沿代替单次接通直流电源,这样,在方波的每一个前沿和后沿,都出现一次过渡过程。
(4)微分电路和积分电路是脉冲数字电路中最常见的波形变换电路。
如果输入是方波信号,对于微分电路,当电路时间常数τ远远小于方波的脉冲宽度T p(20倍以上)时,电路输出与输入近似呈微分关系,即将方波变换成正负极性的尖脉冲;对于积分电路,如果电路时间常数τ远远大于方波的脉冲宽度T p(20倍以上),电路输出与输入近似呈积分关系,即将方波变换成三角波。
一阶二阶动态电路实验报告
一阶二阶动态电路实验报告前言本文介绍了一阶二阶动态电路实验的相关内容,包括实验准备、步骤、实验结果的分析以及结论。
动态电路是一种重要的电路技术,在很多方面都起着重要的作用。
它可以应用于多种电子设备中,如电脑、摄像机和收录机等。
本实验介绍的是测试一阶二阶动态电路的实例,并解释了其中的一些概念和特性,使我们更加理解动态电路技术。
实验准备在本实验中,我们需要准备以下几种实验用品:一阶(二极管,电容,电阻)和二阶(二极管,电容,电阻,特定电路板)的模块,以及一台电脑。
实验步骤1)确定模块原理图:首先,我们需要确定对应的模块原理图,确定每个模块的输入和输出端口。
2)连接电路:然后,组装模块,连接电路,将各个模块连接起来,确保模块与电路之间的联系。
3)测试电路:接着,使用数据采集仪来测量每个模块的输入信号和输出信号,对电路进行测试。
4)对电路进行分析:最后,根据测量的结果,对电路进行分析,分析电路中每个元件的功能,并确定电路的特性。
实验结果在本实验中,我们所做的实验采用的是一阶和二阶的动态电路,我们测量了各个模块的输入和输出信号,最终得出以下结论:(1)一阶动态电路的升降沿响应时间可以在设定范围内调节;(2)二阶动态电路的输入与输出之间存在一定的延迟时间;(3)随着负载变化,动态电路的性能会受到影响;(4)一阶和二阶动态电路的性能是不同的。
结论通过本次实验,我们学会了如何测试一阶和二阶动态电路,以及他们在当今电子产品中的应用。
在模拟信号控制领域,一阶和二阶动态电路都得到了广泛的应用。
使用一阶动态电路可以满足一般要求,而使用二阶动态电路可以满足高精度的要求。
一阶二阶动态电路实验报告
一阶二阶动态电路实验报告实验目的:1、学习串联与并联一阶电路的响应特性;2、掌握求解一阶电路的重要参数;3、学会利用示波器分析电路响应,并用频域图分析电路特性;4、学习二阶电路的响应特性及其电路稳定条件;5、练习利用示波器分析二阶电路响应,体验相位响应和幅频响应的相互作用。
实验原理:一阶电路有两种基本形式,串联和并联,它们的特点均在于对信号时间常数t=rC的响应。
其中r为电路中电阻器的电阻,C为电容器的电容。
在外加电压U0下电路的响应可以由基尔霍夫定律表达出来。
串联电路的电压状态方程为:Uc + UR = U0C dUc/dt + Uc/R = U0/RdUc/dt + Uc/(RC) = U0/(RC)t=R*C 表示电路响应的时间常数。
并联电路的电压状态方程为:Uc = I * RC dI/dt + I/R = 0dI/dt + I/(RC) = 0同样t=R*C为响应时间常数。
二阶电路由一个电容和两个电感组成,电等效可以看作一个阻尼振荡器。
为了保证电路的稳定性,我们定义电路的品质因数Q:Q = 2pi * f0 * R * C_L其中f0为振荡器的谐振频率,C_L为负载电容器的电容量。
Q越大表示电路谐振的削减效果越弱,电路的稳态响应时间也越长。
另一个表征电路稳定的量是阻尼系数a=R/(2L)*sqrt(C/L)。
实验中我们会接触两种阻尼振荡器的形式:无阻尼振荡器和过阻尼振荡器。
无阻尼振荡器表示an=0, 此时电路振荡渐进不会消失,一阶上升较快,二阶下降趋势相对平坦,折返特点也非常明显。
过阻尼振荡器an<1,振荡不会消失,响应时间也较长,调节电路特性时需注意an<1而不是an=1。
实验装置:1. 1个函数信号发生器2. 2个示波器3. 1个二阶低通电路电路板4. 1个一阶低通电路电路板5. 量表,接线,信号装置实验内容、步骤及数据记录:1. 测量并记录一阶电路的时间常数。
电路基本参数:R=10K, C=0.1uFa. 连接串联电路,使输出信号为阶跃状,并使用示波器监控输出电压;b. 调节信号发生器使输入信号幅值约为1V;c. 测量信号的主要电压,记录t0,t1,t2,t3等关键时间,建立电路时间响应曲线,并测量电路时间响应曲线的渐近斜率;d. 完成数据拟合,计算电路的时间常数并确定其可靠误差范围。
一阶动态电路响应实验报告 -回复
一阶动态电路响应实验报告-回复本个实验通过测试电路中的电压变化来研究一阶动态电路响应的特性。
在试验中,我们使用了一个RC 电路作为模型来研究电路中的电压变化,通过测量过渡过程中的电压变化和时间,进一步确定电路的时间常数和响应特性。
通过实验数据的分析,我们得出了电路的时间常数和阶跃响应曲线。
【关键词】一阶动态电路、响应特性、时间常数、阶跃响应曲线【实验目的】1. 了解一阶动态电路的基本原理和特性。
2. 掌握一阶动态电路的测试方法。
3. 通过实验验证一阶动态电路的时间常数和响应特性。
【实验原理】1. 一阶动态电路的基本原理一阶动态电路是一种简单的电路,它包含一个电阻和一个电容器。
电容器可以存储电能,电阻可让电容器内的电压平稳地释放。
该电路的特性是,当电路上有电压变化时,电容器内储存的电能会在一段时间内逐渐释放,直到电容器内的电荷完全消耗。
2. 一阶动态电路的响应特性一阶动态电路的响应特性可以通过两个参数来描述:时间常数和阶跃响应曲线。
时间常数是指电路中电容器放电至原电压的63.2% 所需的时间。
阶跃响应曲线则是电路输入突变信号时输出电压随时间的变化曲线。
【实验器材】示波器1 台、函数信号发生器1 台、电源1 台、电阻箱1 台、电容器1 台、万用表1 台【实验步骤】1. 按图1 连接RC 电路。
2. 将示波器和函数信号发生器分别接入电路。
3. 在函数信号发生器上设置一个方波信号,其幅度为5V,频率为1kHz。
4. 打开电源并调整函数信号发生器的幅度和频率,使得输入信号的幅度和频率符合实验要求。
5. 用示波器观察电路的输入和输出波形,并记录数据。
6. 分析数据,并绘制阶跃响应曲线。
7. 根据数据计算电路的时间常数,并与实验值进行比较。
【实验数据】时间(ms) 电压(V)0 0.000.2 0.400.4 1.000.6 2.800.8 3.801.0 4.00【数据分析】通过实验测量结果,我们可以得到该电路的阶跃响应曲线(如图2 所示)。
动态电路测量实验报告
1. 了解动态电路的基本原理和特性。
2. 掌握动态电路的响应分析方法。
3. 通过实验验证理论,加深对动态电路的理解。
二、实验原理动态电路是指电路中含有电容或电感元件的电路。
动态电路的响应是指电路在受到激励后,电路中电压、电流等参数随时间的变化规律。
本实验主要研究RC电路和RL电路的动态响应。
三、实验仪器与元器件1. 函数信号发生器2. 电阻、电容、电感若干3. 示波器4. 面包板5. 导线若干四、实验内容1. RC电路的响应(1)搭建RC电路,将电容电压作为研究对象。
(2)分别输入正弦波、方波、三角波等不同类型的激励信号,观察电容电压的响应波形。
(3)分析不同激励信号下电容电压的响应特性。
2. RL电路的响应(1)搭建RL电路,将电感电流作为研究对象。
(2)分别输入正弦波、方波、三角波等不同类型的激励信号,观察电感电流的响应波形。
(3)分析不同激励信号下电感电流的响应特性。
1. RC电路响应实验(1)将电阻R、电容C接入电路,用示波器观察电容电压Uc的波形。
(2)分别输入正弦波、方波、三角波等不同类型的激励信号,记录Uc的波形。
(3)分析不同激励信号下Uc的响应特性。
2. RL电路响应实验(1)将电阻R、电感L接入电路,用示波器观察电感电流IL的波形。
(2)分别输入正弦波、方波、三角波等不同类型的激励信号,记录IL的波形。
(3)分析不同激励信号下IL的响应特性。
六、实验结果与分析1. RC电路响应(1)正弦波激励下,电容电压Uc的响应呈正弦波形,且滞后于输入信号90°。
(2)方波激励下,电容电压Uc的响应呈指数上升和下降,响应速度与RC时间常数有关。
(3)三角波激励下,电容电压Uc的响应呈指数上升和下降,响应速度与RC时间常数有关。
2. RL电路响应(1)正弦波激励下,电感电流IL的响应呈正弦波形,且滞后于输入信号90°。
(2)方波激励下,电感电流IL的响应呈指数上升和下降,响应速度与RL时间常数有关。
一阶电路和二阶电路的动态响应实验报告
一阶电路和二阶电路的动态响应实验报告
一、实验仪器及准备
1、实验仪器:实验装置有示波器、仪表比较电路、模拟可变电阻、电子电路实验板和电池等。
2、实验配件:可变电阻、电容、电阻、NPN 半导体二极管、PNP 半导体三极管。
二、实验目的
通过电子电路实验板和示波器,研究二阶电路的动态响应,了解一阶和二阶电路的差异,观察不同电路的调节响应特性。
三、实验步骤
1、准备好相关电子零件,并在实验板上按照实验图示连接电路;
2、调整模拟可变电阻连接示波器,使其和电路产生联系;
3、接通电源,操作电路,观看示波器显示信号波形;
4、调节模拟可变电阻,改变参数,观察响应特性,记录比较数据;
四、实验结果及分析
1、调节可变电阻调整电路参数后,观察一阶和二阶电路的动态响应,可以发现二阶响应有比一阶高得多的响应速度和抑制程度;
2、当电源电压发生变化时,一阶电路只有一条响应曲线,而二阶电路则有两条响应曲线;
3、一阶电路的相应是线性的,而二阶电路的相应是线性加指数函数;
4、一阶电路响应不灵敏,而二阶电路灵敏度高;
五、实验结论
一阶电路适合于对低频信号的检测和处理,而二阶电路可以拨错并有效抑制非线性信号的出现。
在示波技术中,二阶电路比一阶电路更具响应灵敏度。
RC一阶电路的响应测试实验报告
R C一阶电路的响应测试实验报告Prepared on 22 November 2020RC 一阶电路的响应测试实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时间常数的测量方法。
3. 掌握有关微分电路和积分电路的概念。
4. 进一步学会用示波器观测波形。
1.t=0时电感的初始电流i L 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。
在零初始状态时仅由在t 0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。
线性动态电路的完全响应为零输入响应和零状态响应之和。
含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。
2. 动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。
3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图9-1(b)所示。
根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。
当t =τ时,Uc(τ)=。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到所对应的时间测得,如图9-1(c)所示。
(b) 零输入响应 (a) RC 一阶电路 (c) 零状态响应图 9-14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。
rc一阶电路实验总结
rc一阶电路实验总结1.求一阶电路的暂态响应完整实验报告已经发到你的邮箱啦自己慢慢看吧!!!!下面也有只不过没能显示图像我已经把word文档发给你啦实验十一阶动态电路暂态过程的研究一、实验目的1.研究一阶电路零状态、零输入响应和全相应的的变化规律和特点。
2.学习用示波器测定电路时间常数的方法,了解时间参数对时间常数的影响。
3.掌握微分电路与积分电路的基本概念和测试方法。
二、实验仪器1.SS-7802A型双踪示波器2.SG1645型功率函数信号发生器3.十进制电容箱(RX7-O 0~1.111μF)4. 旋转式电阻箱(ZX21 0~99999.9Ω)5. 电感箱GX3/4 (0~10)*100mH三、实验原理1、RC一阶电路的零状态响应RC一阶电路如图16-1所示,开关S在'1'的位置,uC=0,处于零状态,当开关S合向'2'的位置时,电源通过R向电容C充电,uC(t)称为零状态响应1变化曲线如图16-2所示,当uC上升到所需要的时间称为时间常数,。
2、RC一阶电路的零输入响应在图16-1中,开关S在'2'的位置电路稳定后,再合向'1'的位置时,电容C通过R放电,uC(t)称为零输入响应,变化曲线如图16-3所示,当uC下降到所需要的时间称为时间常数,。
3、测量RC一阶电路时间常数图16-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图16-4所示的周期性方波uS作为电路的激励信号,方波信号的周期为T,只要满足便可在示波器的荧光屏上形成稳定的响应波形。
电阻R、电容C串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC,便可观察到稳定的指数曲线,如图16-5所示,在荧光屏上测得电容电压最大值取,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间),该电路的时间常数。
1、微分电路和积分电路在方波信号uS作用在电阻R、电容C串联电路中,当满足电路时间常数远远小于方波周期T的条件时,电阻两端(输出)的电压uR与方波输入信号uS呈微分关系,,该电路称为微分电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八一阶动态电路测试实验报告
姓名:学号:班级:
一、实验目的
1.测定RC一阶电路的零输入响应,零状态响应及完全响应。
2.学习电路时间常数的测量方法。
3.掌握有关微分电路和积分电路的概念。
4.进一步学会用示波器测绘图形。
二、实验内容
1.在面包板上搭接RC电路,用开关控制零输入和零状态,用
示波器观察其相应过程
2.研究RC电路的方波响应,选择T/RC为10,5,2时UIT和
UCT波形,记录RC对波形的影响,输入VPP=2V
3.R=100K,C=10uf
三.数据分析
电路图如下:
零输入响应从图中可以看出电路的时间常数τ=Δx=500ms
零状态响应
用示波器测量零输入响应的波形如图9-1(b)所示。
根据一阶微分方程的求解得知uc=Ume-t/RC
=Ume
-t/τ。
当t=τ时,Uc(τ)=0.368Um。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到
0.632Um所对应的时间测得,
RC>>2T,则该RC电路称为积分电路。
因为此时电路的输出信号电压与输入信号电压的
积分成正比
四.实验注意事项
1. 调节电子仪器各旋钮时,动作不要过猛。
实验前,尚需熟读双踪示波器使用说明,特别是观察双踪时,要特别注意哪些开关、旋钮的操作与调节。
2. 信号源的接地端与示波器的接地端要连在一起(称共地),以防外界干扰而影响测量的准确性。
3. 示波器的辉度不应过亮,尤其是光点长期停留在荧光屏上不动时,应将
辉度调暗,以延长示波管的使用寿命。
分析误差原因:1,测量误差 2,电源内阻影响 3,可能电源的波动影响(如果不是所有参数同时测量的) 4,连接线路的电阻和结点的接触电阻及缩小误差猜想
可以利用示波器信号输入替代万用表触头灵敏度下降的问题
由于读数时万用表的数字晃动,导致取数不准,出粗估量是由于电源波动影响。
误差猜想由于测电流时,不停断路,导致还原时未将触头很好接入,导致接触不良,电流时断时续,影响读数
解决方法:检查、分析电路的简单故障
电路常见的简单故障一般出现在连线或元件部分。
连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。
实验心得体会:
做电路实验时须得耐心加细心,很多次,因为自己的粗心导致实验数据出现误差,好在用心请教他人,有条不紊才是真理,一步一个脚印。