广东省广州市2019届高三年级第一学期调研考试(一模)理科数学试题(解析版)
广东广州2019高三一模调研交流试题-数学(理)
广东广州2019高三一模调研交流试题-数学(理)本试卷共4页,21题,总分值150分,测试用时120分钟、参考公式:锥体的体积公式ShV 31=,其中S 是锥体的底面积,办是锥体的高、 假如事件A 、B 互斥,那么P 〔A+B 〕=P(A)+P(B)、【一】选择题:本大题共8小题,每题5分,总分值40分、在每题给出的四个选项中,只有一项为哪一项符合题目要求的、1、假设全集U=R ,集合A={x|l<x ≤3},B={x|2≤x ≤4},C={x|3<x ≤4},那么 A 、A=(C u B)∩C B. B=(C u A)∩C C. C=(C u A)∩B D. C=A ∩B2、复数ii z +-=22〔i 是虚数单位〕的虚部是 A 、i54 B 、i 54- C 、54 D 、54-3、函数)0(11log )(2=/-+=x xxx f 的图象在 A. 【一】三象限 B 、【二】四象限 C. 【一】二象限 D. 【三】四象限4、己知{a n }〔n ∈N*〕为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,那么{a n }的首项a 1=A 、14B 、16C 、18D 、20 是命题q 的A.必要不充分条件B.充分不必要条件 C 、充要条件D.既不充分与不必要条件6、如图1,正方体ABCD-A'B'C'D'中,M 、E 是AB 的 三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、 MN 的中点,那么四棱锥A'-EFGH 的侧视图为7、将一颗质地均匀的骰子〔它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具〕先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,向量),1,1(),2,2(=--=b n m a 那么和共线的概率为A 、181B 、121C 、91D 、1258、定义A*B 、B*C 、C*D 、D*A 的运算结果分别对应下图中的(1)、(2)、(3)、 (4),那么下图中的(M)、(N)所对应的运算结果可能是A.B*D 、A*DB.B*D 、A*CC.B*C 、A*DD.C*D 、A*D【二】填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分、 〔一〕必做题(9~13题)9、dxx e x ⎰-+11)2(=、10、),23,21(),1,3(21=-=e e 假设,,)3(2122e t e k b e t e a ⋅+⋅-=⋅-+=假设b a ⊥,那么实数k 和t 满足的一个关系式是,tt k 2+的最小值为____、、 11、在△ABC 中,假设A=75°,B=45°,AB=6,那么AC=12.点A(-l ,1)和圆C:,4)7()5(22=-+-y x 从点A 发出的一束光线通过x 轴反射到圆周C 的最短路程是__、13.如图2所示的程序框图,其输出结果为.〔二〕选做题〔14、15题,考生只能从中选做一题〕 14、〔几何证明选讲选做题〕如图3,圆O 是△ABC 的 外接圆,过点C 的切线交AB 的延长线于点D ,72=CD ,AB=BC=3,那么AC=、15、〔坐标系与参数方程选做题〕在极坐标系下,点)32,3(),3,1(ππB A ,O 是极点,那么△AOB 的面积等于【三】解答题:本大题共6小题,总分值80分,解答须写出文字说明、证明过程和演算步骤、 16、〔本小题总分值12分〕 己知函数b x b x x x f -+⋅=ωωω2cos 2cos sin 2)(〔其中b>0,ω>0〕的最大值为2,直线x=x 1、x=x 2是y=f(x)图象的任意两条对称轴,且|x l -x 2|的最小值为2π(1)求b ,ω的值;(2)假设32)(=a f ,求)465sin(a -π的值、 17、〔本小题总分值14分〕为了解今年某校高三毕业班预备报考飞行员学生的体重〔单位:千克〕情况, 将所得的数据整理后,画出了频率分布直方图〔如图4〕,图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12。
广东省广州市2019届高三调研测试数学(理)试题
试卷类型:B广州市2019届高三年级调研测试数 学(理科) 2019.12参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}2,1,0,1,2U =--,集合{}1,2A =,{}2,1,2B =-,则()UAB ð等于A .∅B .{}1C .{}1,2D .{}1,0,1,2-2.设复数113i z =-,232i z =-,则21z z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a+b 等于A .()2,1--B .()2,1C .()3,1-D .()3,1-4.等差数列{}n a 的前n 项和为n S ,已知85=a ,63=S ,则710S S -的值是A .24B .48C .60D .72 5.设随机变量()2~1,5X N ,且()()02P X P X a ≤=>-,则实数a 的值为A . 4B . 6C . 8D .106.在正四棱锥V ABCD -中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为A .6π B .4π C .3π D .2π 7.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,给出下面四个命题:①函数)(x f 的最小正周期为π; ②函数)(x f 是偶函数;③函数)(x f 的图象关于直线4x π=对称;④函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数,其中正确命题的个数是A .1个B .2个C .3个D .4个8.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是 A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称 B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.521⎪⎭⎫ ⎝⎛+x x 展开式中4x 的系数为 (用数字作答).10.向面积为S 的三角形ABC 内任投一点P ,则△PBC 的面积小于S的概率是. 11.已知程序框图如右,则输出的i = .12.已知实数y x ,满足0,1,2210.x y x y ≥⎧⎪≤⎨⎪-+≤⎩若目标函数y ax z +=()0≠a 取得最小值时的最优解有无数个,则实数a 的值为_____.13.已知直线()2y k x =-()0k >与抛物线28y x =相交于A 、B 两点,F 为抛物线的焦点,若2FA FB =,则k 的值为 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如右图,AB 是圆O 的直径,直线CE 与圆O 相切于点C ,AD CE ⊥于点D ,若圆O 的面积为4π,30ABC ∠=,则AD 的长为 . 15.(极坐标与参数方程选做题)在极坐标系中,点A 的坐标为4π⎛⎫⎪⎝⎭,曲线C 的方程为θρcos 2=,则OA (O 为极点)所在直线被曲线C 所截弦的长度为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=, 3cos 5ADC ∠=. (1)求sin ABD ∠的值; (2)求BD 的长.EABCD17.(本小题满分12分)某城市为准备参加“全国文明城市”的评选,举办了“文明社区”评选的活动,在第一轮暗访评分中,评委会对全市50个社区分别从“居民素质”和“社区服务”两项进行评分,每项评分均采用5分制,若设“社区服务”得分为x 分,“居民素质”得分为分,统计结果如下表:(1)若“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区可以进入第二轮评比,现从50个社区中随机选取一个社区,求这个社区能进入第二轮评比的概率; (2)若在50个社区中随机选取一个社区,这个社区的“居民素质”得分y 的均值(即数学期望)为16750,求a 、b 的值.18.(本小题满分14分)已知正方形ABCD 的边长为2,ACBD O =.将正方形ABCD 沿对角线BD 折起,使AC a =,得到三棱锥A BCD -,如图所示.(1)当2a =时,求证:AO BCD ⊥平面;(2)当二面角A BD C --的大小为120时,求二面角A BC D --的正切值.19.(本小题满分14分)设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF AF +=0(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.20.(本小题满分14分)已知数列{}n a 中,11a =,23a =,且112n n n a a a +-=+()2n ≥.(1)设1n n n b a a λ+=+,是否存在实数λ,使数列{}n b 为等比数列.若存在,求出λ的值,若不存在,请说明理由; (2)求数列{}n a 的前n 项和n S . 21.(本小题满分14分)已知函数()32()ln 2123x f x ax x ax =++--()a ∈R . (1)若2x =为)(x f 的极值点,求实数a 的值;(2)若)(x f y =在[)3,+∞上为增函数,求实数a 的取值范围;(3)当12a =-时,方程()()311+3x b f x x--=有实根,求实数b 的最大值.广州市2019届高三年级调研测试 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9.10 10.5911.9 12.1-13. 14.1 15三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)解:(1)因为3cos 5ADC ∠=,所以4sin 5ADC ∠==.…………………………………………………………2分 因为5sin 13BAD ∠=,所以12cos 13BAD ∠==.…………………………………………………………4分 因为ABD ADC BAD ∠=∠-∠,所以()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠ ………………………………6分 412353351351365=⨯-⨯=.…………………………………………………………8分 (2)在△ABD 中,由正弦定理,得sin sin BD ADBAD ABD =∠∠,………………………………10分所以533sin 132533sin 65AD BAD BD ABD⨯⨯∠===∠.……………………………………………………12分 17.(本小题满分12分)解:(1)从表中可以看出,“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)8的社区数量为24个.………………………………………………………………………2分 设这个社区能进入第二轮评比为事件A ,则()P A =24125025=. 所以这个社区能进入第二轮评比的概率为1225.……………………………………………………4分 (2)由表可知“居民素质”得分y 有1分、2分、3分、4分、5分,其对应的社区个数分别为()4a +个、()4b +个、15个、15个、9个.…………………………………………………………6分 所以“居民素质”得分y 的分布列为:28分因为“居民素质”得分y 的均值(数学期望)为16750, 所以501675095501545015350425041=⨯+⨯+⨯++⨯++⨯b a .…………………………………10分 即25a b +=.因为社区总数为50个,所以4750a b ++=.解得1a =,2b =.…………………………………………………………………………………12分18.(本小题满分14分)(1)证明:根据题意,在AOC ∆中,2==a AC ,2==COAO ,所以222AC AO CO=+,所以CO AO ⊥.………………………………………………………2分因为AC BD 、是正方形ABCD 的对角线,所以AO BD ⊥.………………………………………………………………………………………3分 因为BDCO O =,所以AO BCD ⊥平面.………………………………………………………………………………4分 (2)解法1:由(1)知,CO OD ⊥,如图,以O 为原点,OC ,OD 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系O xyz -,…………………………………………………………5分则有()0,0,0O ,()D ,)C,()0,B .设()00,0,A x z ()00x <,则()00,0,OA x z =,()OD =.………………………………6分 又设面ABD 的法向量为()111,,x y z =n ,则0,0.OA OD ⎧⋅=⎪⎨⋅=⎪⎩n n 即010110,0.x x z z +=⎧⎪=所以10y =,令10x z =,则10z x =-. 所以()00,0,z x =-n .………………………8分 因为平面BCD 的一个法向量为(0,0,1)=m ,且二面角A BD C --的大小为120,………………………………………………………………9分 所以1cos ,cos1202==m n ,得20203x z =. 因为2=OA ,所以22020=+z x .解得26,2200=-=z x .所以22A ⎛- ⎝⎭.………………………………10分 设平面ABC 的法向量为()222,,x y z =l,因为()26,2,,2,22BA BC ⎛⎫=-=⎪ ⎝⎭,则0,0.BA BC ⎧⋅=⎪⎨⋅=⎪⎩l l,即222220,20.x z ⎧-+=⎪⎨+=令21x =,则3,122=-=z y .所以(1,=-l .…………………………………………………………………………………12分 设二面角A BC D --的平面角为θ,所以cos cos ,5θ====l m .……………………………………………13分所以tan 3θ=. 所以二面角A BC D --的正切值为3.…………………………………………………………14分解法2:折叠后在△ABD 中,BD AO ⊥,在△BCD 中,BD CO ⊥.……………………………5分 所以AOC ∠是二面角A BD C --的平面角,即120AOC ∠=.………………………………………6分 在△AOC 中,2==CO AO ,所以AC=.………………………………………………………………………………………7分如图,过点A 作CO 的垂线交CO 延长线于点H , 因为BD CO ⊥,BD AO ⊥,且CO AO O =,所以BD ⊥平面AOC .…………………………………………………………8分 因为AH ⊂平面AOC ,所以BD AH ⊥.又CO AH ⊥,且CO BD O =,所以AH ⊥平面BCD .……………………………………9分 过点作A 作AK BC ⊥,垂足为K ,连接HK ,因为BC AH ⊥,AK AH A =,所以BC ⊥平面AHK .…………………………………10分 因为HK ⊂平面AHK ,所以BC HK ⊥.所以AKH ∠为二面角A BC D --的平面角.……………………………………………………11分 在△AOH 中,60AOH ∠=,AO =AH =OH =所以22CH CO OH =+==.………………………………………………………12分 在Rt △CHK 中,45HCK ∠=,所以232==CH HK ………………………………………13分 在Rt △AHK 中,tan AKH ∠=362326==KH AH .所以二面角A BC D --的正切值为3.…………………………………………………………14分 19.(本小题满分14分)(1)由题设知,2A ⎛⎫⎪⎭,)1F ,………………………………1分由112OF AF +=0,得⎪⎪⎭⎫ ⎝⎛---=-22222222a a a a .……………………………………3分 解得62=a .所以椭圆M 的方程为126:22=+y x M .…………………………………………………………4分 (2)方法1:设圆()12:22=-+y x N 的圆心为N ,则()()-⋅-=⋅ ………………………………………………………………6分 ()()NF NP NF NP =--⋅-…………………………………………………7分2221NP NF NP =-=-.………………………………………………………………8分从而求⋅的最大值转化为求2的最大值.………………………………………………9分 因为P 是椭圆M 上的任意一点,设()00,y x P ,…………………………………………………10分所以1262020=+y x ,即202036y x -=.…………………………………………………………11分因为点()2,0N ,所以()()121222020202++-=-+=y y x NP .……………………………12分因为0y ⎡∈⎣,所以当10-=y 时,2取得最大值12.……………………………13分所以⋅的最大值为11.………………………………………………………………………14分方法2:设点112200(,),(,),(,)E x y F x y P x y , 因为,E F 的中点坐标为(0,2),所以2121,4.x x y y =-⎧⎨=-⎩ ………………………………………………6分所以10201020()()()()PE PF x x x x y y y y ⋅=--+--……………………………………………7分 10101010()()()(4)x x x x y y y y =---+---222201011044x x y y y y =-+-+-22220001114(4)x y y x y y =+--+-.…………………………………………………9分因为点E 在圆N 上,所以2211(2)1x y +-=,即2211143x y y +-=-.………………………10分因为点P 在椭圆M 上,所以2200162x y +=,即220063x y =-.…………………………………11分所以PE PF ⋅200249y y =--+202(1)11y =-++.……………………………………………12分因为0[y ∈,所以当01y =-时,()min11PE PF⋅=.………………………………14分方法3:①若直线EF 的斜率存在,设EF 的方程为2y kx =+,………………………………6分 由⎩⎨⎧=-++=1)2(222y x kx y ,解得112+±=k x .………………………………………………………7分因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+y x ,即202036y x -=.…………………………………………………………8分所以002PE x y ⎛⎫=-+-⎪⎭,00,2PF x y ⎛⎫=-+- ⎪⎝⎭……………………………………………………9分 所以11)1(21)2(1)2(11202020222022++-=--+=+--++-=⋅y y x k k y k x . ……………………………………………………10分因为0y ⎡∈⎣,所以当10-=y 时,⋅取得最大值11.…………………………11分②若直线EF 的斜率不存在,此时EF 的方程为0x =, 由22(2)1x x y =⎧⎨+-=⎩,解得1y =或3y =.不妨设,()0,3E ,()0,1F .……………………………………………………12分 因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+y x ,即202036y x -=.所以()00,3PE x y =--,()00,1PF x y =--. 所以2220000432(1)11PE PF x y y y ⋅=+-+=-++.因为0y ⎡∈⎣,所以当10-=y 时,⋅取得最大值11.…………………………13分综上可知,⋅的最大值为11.………………………………………………………………14分20.(本小题满分14分)(1)方法1:假设存在实数λ,使数列{}n b 为等比数列,则有2213b b b =. ①……………………………………1分由11a =,23a =,且112n n n a a a +-=+,得35a =,411a =.所以1213b a a λλ=+=+,23253b a a λλ=+=+,343115b a a λλ=+=+,………………2分 所以()()()2533115λλλ+=++,解得1λ=或2λ=-.…………………………………………………………………………………3分 当1λ=时,1n n n b a a +=+,11n n n b a a --=+,且1214b a a =+=,有()1111122n n n n n n n n n n n a a a b a ab a a a a -+---+++===++()2n ≥.………………………………………………4分 当2λ=-时,12n n n b a a +=-,112n n n b a a --=-,且12121b a a =-=, 有()11111222122n n nn n n n n n n n a a a b a a b a a a a -+---+--===---()2n ≥.…………………………………………5分 所以存在实数λ,使数列{}n b 为等比数列.当1λ=时,数列{}n b 为首项是4、公比是2的等比数列;当2λ=-时,数列{}n b 为首项是1、公比是1-的等比数列.……………………………………6分 方法2:假设存在实数λ,使数列{}n b 为等比数列, 设1nn b q b -=()2n ≥,……………………………………………………………………………………1分 即()11n n n n a a q a a λλ+-+=+,……………………………………………………2分即()11n n n a q a q a λλ+-=-+.………………………………………………………………………3分与已知112n n n a a a +-=+比较,令1,2.q q λλ-=⎧⎨=⎩………………………………………………………4分 解得1λ=或2λ=-.…………………………………………………………………………………5分 所以存在实数λ,使数列{}n b 为等比数列.当1λ=时,数列{}n b 为首项是4、公比是2的等比数列;当2λ=-时,数列{}n b 为首项是1、公比是1-的等比数列.……………………………………6分(2)解法1:由(1)知111422n n n n a a -+++=⨯=()1n ≥,……………………………………7分当n 为偶数时,()()()()1234561n n n S a a a a a a a a -=++++++++…………………………8分2462222n =++++…………………………………………………………9分()22414124143nn +⎛⎫- ⎪⎝⎭==--.…………………………………………………10分 当n 为奇数时,()()()123451n n n S a a a a a a a -=+++++++………………………………11分351222n =++++…………………………………………………………12分()1228141125143n n -+⎛⎫- ⎪⎝⎭=+=--.……………………………………………13分 故数列{}n a 的前n 项和()()22124,3125,3n n n n S n ++⎧-⎪⎪=⎨⎪-⎪⎩为偶数,为奇数.………………………………………14分注:若将上述和式合并,即得()()21112432nn n S +⎡⎤--=-+⎢⎥⎢⎥⎣⎦.解法2:由(1)知()1121n n n a a ++-=-()1n ≥,…………………………………………………7分所以()11111112222n n n n n n n a a +++++-⎛⎫-==- ⎪⎝⎭()1n ≥,……………………………………………………8分当2n ≥时,31121212132122222222n n n n nn a a a a a a a a --⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2311112222n⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111122111111226212n n --⎡⎤⎛⎫⎛⎫---⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+=+--⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭.因为11122a =也适合上式,……………………………………………………………………………10分 所以2n n a =11111262n -⎡⎤⎛⎫+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()1n ≥.所以()11213nn n a +⎡⎤=+-⎣⎦.…………………………………………………………………………11分 则()()()()()()12323411222211113nn n S +⎡⎤=+++++-+-+-++-⎣⎦,………………12分()()()()()111412131211nn ⎡⎤----⎢⎥=+⎢⎥---⎢⎥⎣⎦……………………………………………………………13分()()21112432nn +⎡⎤--=-+⎢⎥⎢⎥⎣⎦.……………………………………………14分解法3:由(1)可知,()111142,211.n n n n n n a a a a -+-+⎧+=⨯⎪⎨-=⨯-⎪⎩…………………………………………………7分 所以()11213nn n a +⎡⎤=+-⎣⎦.…………………………………………………………………………8分则()()()()()()()()12345112121212121213n n nn n S -+⎡⎤=-+++-+++++-++-⎣⎦,……9分当n 为偶数时,()2345112222223n n n S +=++++++………………………………………10分()()241211243123nn +-=⨯=--.……………………………………………11分当n 为奇数时,()23451122222213n n n S +⎡⎤=++++++-⎣⎦………………………………12分()()2412111253123nn +⎡⎤-⎢⎥=⨯-=--⎢⎥⎣⎦.………………………………………13分故数列{}n a 的前n 项和()()22124,3125,3n n n n S n ++⎧-⎪⎪=⎨⎪-⎪⎩为偶数,为奇数.………………………………………14分注:若将上述和式合并,即得()()21112432nn n S +⎡⎤--=-+⎢⎥⎢⎥⎣⎦.21.(本小题满分14分)解:(1)22()2221af x x x a ax '=+--+()()222144221x ax a x a ax ⎡⎤+--+⎣⎦=+.……………1分 因为2x =为()f x 的极值点,所以()20f '=.…………………………………………………2分即22041aa a -=+,解得0a =.……………………………………………………………………3分又当0=a 时,()(2)f x x x '=-,从而2()x f x =为的极值点成立.……………………………4分(2)因为()f x 在区间[)3,+∞上为增函数,所以()()()2221442021x ax a x a f x ax ⎡⎤+--+⎣⎦'=≥+在区间[)3,+∞上恒成立.…………………5分①当0=a 时,()(2)0f x x x '=-≥在[3,)+∞上恒成立,所以()[3,)f x +∞在上为增函数,故0=a符合题意.………………………………………………………………………………………………6分 ②当0a ≠时,由函数()f x 的定义域可知,必须有10ax +>2对3x ≥恒成立,故只能0a >, 所以222(14)(42)0[3,)ax a x a x +--+≥∈+∞对上恒成立.…………………………………7分令22()2(14)(42)g x ax a x a =+--+,其对称轴为114x a=-,……………………………8分因为0a >所以1114a -<,从而()0[3,)g x ≥+∞在上恒成立,只要(3)0g ≥即可, 因为()3g =24610a a -++≥,a ≤≤.……………………………………………………………9分因为0a >,所以0a <≤.综上所述,a 的取值范围为30,4⎡⎢⎣⎦.………………………………………………………10分 (3)若12a =-时,方程3(1)(1)+3xb f x x --=可化为,x b x x x =-+--)1()1(ln 2. 问题转化为223ln (1)(1)ln b x x x x x x x x x x =--+-=+-在()0,+∞上有解,即求函数32ln )(x x x x x g -+=的值域.…………………………………………………………11分 以下给出两种求函数()g x 值域的方法:方法1:因为()()2ln g x x x x x =+-,令2()ln (0)h x x x xx =+->,则xx x x x x h )1)(12(211)(-+=-+=' ,…………………………………………………………12分 所以当01,()0x h x '<<>时,从而)1,0()(在x h 上为增函数,当0)(,1<'>x h x 时,从而),1()(+∞在x h 上为减函数,…………………………………………13分 因此()(1)0h x h ≤=. 而0x >,故()0b x h x =⋅≤,因此当1x =时,b 取得最大值0.…………………………………………………………………14分方法2:因为()()2ln g x x x x x =+-,所以2321ln )(x x x x g -++='.设2()ln 123p x x x x =++-,则21621()26x x p x x x x--'=+-=-.当106x +<<时,()0p x '>,所以()p x 在⎛ ⎝⎭上单调递增;当16x +>时,()0p x '<,所以()p x 在16⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减;因为()10p =,故必有106p ⎛⎫> ⎪ ⎪⎝⎭,又22441233210p e e e e ⎛⎫=-++-<-< ⎪⎝⎭,因此必存在实数0211,6x e ⎛⎫∈ ⎪ ⎪⎝⎭使得0'()0g x =,00,()0x x g x '∴<<<当时,所以()0()0,g x x 在上单调递减; 当0)(,10>'<<x g x x 时,所以()0(),1g x x 在上单调递增; 当()1,'()0,()1,x g x g x ><+∞时所以在上单调递减;又因为)41(ln )(ln ln )(232+≤-+=-+=x x x x x x x x x x x g ,当10,ln 04x x →+<时,则()0g x <,又(1)0g =. 因此当1x =时,b 取得最大值0. ………………………………………………………14分。
2019届广州市高三调研测试理科数学试题(含答案)(K12教育文档)
2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届广州市高三调研测试理科数学试题(含答案)(word版可编辑修改)的全部内容。
秘密 ★ 启用前 试卷类型: A2019届广州市高三年级调研测试理科数学2018.12 本试卷共5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔在答题卡的相应位置填涂考生号.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|02M x x =≤<,{}2|230N x x x =--<,则集合M N = A .{}|02x x ≤< B .{}|03x x ≤< C .{}|12x x -<< D .{}|01x x ≤<2.若复数i1ia z +=-(i 是虚数单位)为纯虚数,则实数a 的值为A .2-B .1-C .1D .2 3.已知{}n a 为等差数列,其前n 项和为n S ,若336,12a S ==,则公差d 等于A .1B .53C .2D .34.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 5.已知实数ln 22a =,22ln 2b =+,()2ln 2c =,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b a c <<D .a c b << 6.下列命题中,真命题的是 A .00,0x x R e ∃∈≤B .2,2x x R x ∀∈>C .0a b +=的充要条件是1ab=- D .若,x y R ∈,且2x y +>,则,x y 中至少有一个大于17.由()y f x =的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到1sin 36y x π⎛⎫=-⎪⎝⎭的图象,则()f x =A .31sin 26x π⎛⎫+ ⎪⎝⎭B .1sin 66x π⎛⎫- ⎪⎝⎭C .31sin 23x π⎛⎫+ ⎪⎝⎭D .1sin 63x π⎛⎫+⎪⎝⎭ 8. 已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中, 再从乙袋中随机取出1个球, 则从乙袋中取出的球是红球的概率为A .13B .12C .59D .299.已知抛物线()220y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为A 21B 31C 51D 22+10. 已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则数列{}n na 的前n 项和为 A .3(1)2n n -++⨯ B .3(1)2n n ++⨯ C .1(1)2n n ++⨯ D .1(1)2n n +-⨯ 11.如图为一个多面体的三视图,则该多面体的体积为 A .6 B .7 C .223 D .23312.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有两条,则实数a 的取值范围是 A .()(),40+-∞-∞,B .()0+∞,C .()(),1+-∞-∞1,D .(),1-∞-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45︒,且1,2a b ==,则a b -=____________.14.已知(42340123422x a a x a x a x a x +=++++,则()()2202413a a a a a ++-+= .15.已知实数x , y 满足20,350,0,0,x y x y x y -≤⎧⎪-+≥⎪⎨>⎪>⎪⎩则1142x yz ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的最小值为____________.16.已知在四面体A BCD -中,1AD DB AC CB ====,则该四面体的体积的最大值为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.17.(本小题满分12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且 B A A C B sin sin sin cos cos 222+=-。
2019届广东省广州市荔湾区高三上学期调研测试一理科数学试卷【含答案及解析】
2019届广东省广州市荔湾区高三上学期调研测试一理科数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________ 题号-二二三总分得分、选择题1. 已知集合M r- ^:\x- <斗}, y = ,则McN 二A .叶2 m:巧B.m < -21C . AX】}D .彳2. 设F是虚数单位,若复数-满足二+ ,则复数・的模|z| =A .一I __________________________B • I_________________________C •-___________________D •,3.在_ •中,一「讥、:,贝也长::为A •;_______________B • 1 ____________________________C - 2_______________________D . j-轴上,离心率等于一,且它的一个顶点恰好4. 椭圆•:的中心在原点,焦点在是抛物线;二疔!■-.-的焦点,则椭圆的标准方程为A .兰.疋=]___________________B .4 ?峠. 峙v v J___________ D .二_2_=1]石1??96.将函数M ; -U - ■■ | | ■- 的图象向左平移一个单位后的图形关于原点对称,则函数上的最小值为____ B .-?D ..丄I r + j <18. 已知不等式组i所表示的平面区域为 Q ,若直线 ・ =与平面区域厂有公共点, 则•的取值范围为是7.函数的图像大致为9. 某几何体的三视图如图所示,图中的四边形都是边长为垂直,则该几何体的体积是A . 2dB .少C .D . R-—10.(-+ T 心1-的展开式中-的系数是A . 1B . 2C . 3D . 1211. 如图,「、厂是双曲线—————..-■、■的左、右焦点,过「的n~ A*-的正方形,两条虚线互相直线与双曲线的左右两支分别交于点、‘ •若;…为等边三角形,则双曲线的离心率为、填空题L4.JI4U ULU CM CA =如图,在边长为1的正方形 —「 中任取一点,贝够点落在阴影部分中的概率为16. 已知直三棱柱一 中,_•;「-「,侧面 技【汀£1的面积为'则直三棱柱外接球表面积的最小值为 _______________________________________ .三、解答题12.的取值范围是o,-4?B.;',则方程,m-「恰有两个不同的实根时,实丄1! 41 cj13. 已知 H 、.广:COSf7 =—,则 弐】1(托-rz ) = ______________14. 在卜W 、中,Z5 = 90°. .IB = 5C = 1, UL4-H4 ULk#J/? LT = ? 4 W,则15.② 已知每吨该商品的销售利润为 2千元, 位:千元)求的分布列和期望. 21. (本小题满分12分)已知椭圆C:且过点 (1,仝). (1)求椭圆C 的方程;(2 )设与圆一- . ■二;:相切的直线表示该种商品两天销售利润的和 (单一 *JL-交椭圆C 与A,B 两点,求,-.面积12分)已知数列打 满足:j 一- I 'I ,,:(•…)•18. (本小题满分12分)如图,矩形 rWT 所在的平面与等边所在的平面垂直,尸=;厂=”;, 为的中点•(1)求证:,壬 (2 )求二面角‘;的余弦值19. (本小题满分12分)某批发市场对某种商品的日销售量 (单位:吨)进行统计,最近50天的 统计结果如下:p20. ly:宋体;font-size:10.5pt"> 日销售量 (吨)1 1 .5 2 频数 10 25 15 频率 0 . 2 汀(1)求表中的的值;(2)若以上表频率作为概率,且每天的销售量相互独立•求 :①5天中该种商品恰好有2天的销售量为1 . 5吨的概率;22. (本小题满分12分)已知函数- I .■ I..- (「为自然对数的底 数),曲线• - I I 在点,i.i 」i.i I ;处的切线方程为I = -; — j(1 )求•,,的值;(2)任意-,. 时,证明:I I -:23. (本小题满分10分)选修4-1 :几何证明选讲如图,小是的直径,C 是弧耳门的中点, 17.(本小题满分(1).*1求证:是等差数列,并求出 .■,的最大值,及取得最大值时直线的方程小交;,于点匸(1 )求证:•.=,「;(2 )若』门, O0的半径为6,求£C的长24. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系―中,曲线的参数方程为'A '",('为参数)b' =>in^以原点为极点,一轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为护吕垃("一:}=4逅.(1 )求曲线:的普通方程与曲线的直角坐标方程;(2 )设二为曲线:上的动点,求点■-至U 上点的距离的最小值.25. (本小题满分10分)选修4-5 :不等式选讲设函数/(x)= |2x+l|-|x-4(1 )解不等式:广;(2 )若/(.¥)+3卜一4|丄臥对一切实数戈均成立,求也的取值范围.参考答案及解析第1题【答案】A【解析】试题分析;根据题意「= 」所以Ml A={A|-2<A<1},故选A,第2题【答案】【解析】试题分析:根据题意有:=护叨「,所時I…故斷第3题【答案】【解析】op?从而有试题分析:根据题青有4 =180°- 105勺-4秤=册」很据正弦定理可知■—=—smo 吴订」I___ _"7T-第4题【答案】【解析】试题升折:根据题亂可知抛物线的焦点为〔0.2柘厂所以,对干椭圆而言,b = 2爲、结合离心率等于:,可知林二』,所以方程为兰—疋=1 ,故选D.2 16 12第5题【答案】【解析】丄试题分析;根据题意有,在运行的过程中…仁丄-2 , X = 4=7-/ = 3』4 i42 ]•仁話寺,i = 4 ,川二晋洛心八以此则就可以得出输出的煜以I沏壬分母~1W构咸以3为首现”为公差的等差数列,谕出的是第⑹页,所以愉出的结果为» 故选U第6题【答案】j【解析】试题分析:根JE题意可知,/(T)=5w(2r-^』当re[0,^1时,2工一)[一—学],所以函数3 2 3 3 3的最小倩为-返,故选D・第7题【答案】【解析】试题分析;根据函数的奇偶性』可知函数为奇跚,所法厨像关于原点榊矗故GD不对又因为在20 ,且比较接近于雾的地方,^6X>012r-2-p>0 、所次函数值大于黑團像在第一象限'所以E不对*故选H.第8题【答案】C【解析】试题分析;根ts题中所给的约東条件画出可行域,构成儿风】® C(QJ)为顶点.的三角形区域、因沖直线丁d T过点HO Y八如果使得育线与平面区域有公共点,可知"也=7或2如=3 ,故选J第9题【答案】A【解析】试题分析:根据題中所给的几何体的三视虱可矢喊几何体为一个正方体}法一个四棱锥构成的几何体、所以其体积为r-s-4 2 2 ,故选乩第10题【答案】C【解析】试题井析;根据題竜'式子的屣幵式中含Y的顷有(l-VIy展幵式中的常数项乘专丄r中的工以X及Q■血r展开式中的含疋的项乘以兰+艾中的丄两却分,所以其系数拠41亠]门,故选c.X X第11题【答案】【解析】试题分析:设正三角形的边长为剂,即|卫刖=|严|斗码卜瑕;结合双曲线的罡久可知\BF]=^.\BF^4a^\^2c ,根据等边三角昭可知QBF严口胪,应用余弦定理,可知斗cr + 16^J+2'2CT-4£7 -^-= 4c J r整理得仝二J7 ,故选£・n第12题【答案】【解析】试题分祈:r = lnr ,所^y' =丄7i殳切点为(和%),卯河M方程为F-儿二丄找『即,与直i^y=^重合时,有讣・丄>in;当直线与直线v =丄丫+ 1平行时,直y=—x 当x =】时,k A -丄工=liil一丄uO j当%T = 0 I 解得心二£ ・PJ T U^=-e4 斗 4 4工=总日寸』I HT-—r = ]n^-丄呂A O』当工二£时』lux—丄r = Ine5-丄』-c0 ,所決y = lnx与4I 4 1,v^7x在04)“°)上有2个交点,所以直线在厂斗和J'=匕之间时与函数于00有斤交点4 4 电•所以门巨>故选&1 e第13题【答案】5瞬析】试酚析:根据同角三甬函数关系式,结合角的取倩范围,可求得3」,根据诱导公式,可以求5 sinf/r - a) - sin a -—.第14题【答案】3【解析】试题分析:根擔题創t§^(o.ci),c(i o)^(o,i)尚“罚,可tnw.2),此时有ULUU UJU第15题【答案】£3【解析】试题分析:根据邈気可以求得阴影册i的面积为$二『(眉_2〕小=(扌吐-扌护)卜扌,故该点]_落在阴影部分中的概率?D?=I=L・第16题【答案】4何【解析】试题分析:根据题意,设心/ 则有励产丄,从而有其外接球的半徑为R =,L- +厶工1 m \ 4/;所臥其比表面积的最小值为—畅-第17题【答案】证明见解析,码二—— 2M +1(2)证明见解析.【解析】试题分析:第一问对题中所给的式子逬行变形'得出亠一"」利用等差数列的定义确定出数列 如爲1 阳等差数列,利用等差数列的通啖公式,求得其通项公式,第二问刊用裂项相消法对数列求和「得^ —!—}<7,从而得证・ 2M + 3 5试题解析;门〉得出{―}^ 对苜项「2禹公差的等差数列—=—4(??—1)^2 =2?i 4-1(2 用 *1)(2 芹+3) 212薜 + 1 2卄 3丿陌码+込的亠…+码□円=忘+茹亠…(2^ + l>(2n + 3)第18题【答案】C7j tf7-i + I CT^CT J+\ * ~r ■lfl 1Y1/12U1 5丿 2V5 7 1、 2n+3j lfl 1 21 3 2n+ 3<1)证明见解析;(2) -y4【解析】试题分析:第一问根据等边三角形,确定岀OC丄•佔,根抿面面垂直的性质,得出OC丄平面ABEF ,从而得出OC丄OE ,根据矩形的边长的关系,得出OF—OE ,从而根据线面垂直的判定定理,得出OE丄平面OFC ,从而得证OE丄FC ,第二冋应用平面的法向量求得二面角的余弦值•试题解析:⑴ 证明:连接0C , OF、因为AC = BC , 0是肋的中為故OC丄・又因为平面肋EF丄平面/EC ,面肋EFc面胭C =AB , OCu面皿C ,故OC丄平面ABEF .因为OEu面MEF ,于是OC丄OE •又矩形ABEF , AB = 2JF = 2 ;所以OF 丄OE •又因为0FcOC = O >故OE丄平面OFC ,所以他丄FC .(2)由(1)得,.4B = 2AF = 2 , ^.EF的中点D ,以O为原点,OC、OB、OD所衽的直线分别为圮儿- 轴,建立空间直角坐标系。
2019年广东省广州市高三年级调研测试(理数)试卷及答案
高考数学精品复习资料2019.5广州市20xx 届高三年级调研测试数 学(理 科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位, 则复数i2i-的模等于 A .5 B .3 C .33 D .552.设集合{}0322=--=x x x A ,{}12==x x B ,则B A Y 等于A .{}1-B .{}1,3C .{}1,1,3-D .R 3.已知向量(3,1)=a ,(,2)x =-b ,(0,2)=c ,若()⊥-a b c ,则实数x 的值为 A .43 B .34 C .34- D .43- 4.定义在R 上的函数()f x 满足2log (16), 0,()(1),0,x x f x f x x -≤⎧=⎨->⎩则()3f 的值为A .4-B .2C .2log 13D .45.函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<)的部分图象如图1所示,则函数()y f x =对应的解析式为 A .sin 26y x π⎛⎫=+ ⎪⎝⎭B .sin 26y x π⎛⎫=- ⎪⎝⎭C .cos 26y x π⎛⎫=+⎪⎝⎭D .cos 26y x π⎛⎫=-⎪⎝⎭6.执行如图2的程序框图,如果输入的N 的值是6,那么输出的p 的值是A .15B .105C .120D .7207.若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有A .1条B .2条C .3条D .4条8.对于实数a 和b ,定义运算“*”:a *2221, ,, .a ab a b b b ab a b ⎧-+-≤⎪=⎨->⎪⎩设()()21f x x =-*()1x -,且关于x的方程为()()f x m m =∈R 恰有三个互不相等的实数根1x ,2x ,3x ,则321x x x ⋅⋅的取值范围是 A .1,032⎛⎫-⎪⎝⎭ B .1,016⎛⎫- ⎪⎝⎭ C .10,32⎛⎫ ⎪⎝⎭ D .10,16⎛⎫⎪⎝⎭二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.在等比数列{}n a 中,若1323a a a =⋅,则4a = .10.若x ,y 满足约束条件0,0,1,3412,x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩则x y +的最大值为_______.11.如图3,设D 是图中边长为4的正方形区域,E 是D 内函数2y x =图象下方的点构成的区域.在D 内随机取一点,则该点落在E 中的概率为 .Oxy 1π611π12图1O xy2 4-2图3是否开始 1,1==p k p p k =⋅?k N <输出p图22k k =+输入N结束12.已知点P 在曲线4e 1x y =+(其中e 为自然对数的底数)上,α为曲线在点P 处的切线的倾斜角,则αtan 的取值范围是 .13.有4名优秀学生A ,B ,C ,D 全部被保送到甲,乙,丙3所学校,每所学校至少去一名,则不同的保送方案共有 种.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若3OC =,1OM =,则MN 的长为 . 15.(坐标系与参数方程选讲选做题)若点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R )上,则y x 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且3cos 23A C +=. (1)求cosB 的值;(2)若3a =,22b =,求c 的值. 17.(本小题满分12分)空气质量指数PM2.5 (单位:3/m μg )表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250>250空气质量类别优 良 轻度污染 中度污染 重度污染 严重污染从甲城市9月份的30天中随机抽取15天的PM2.5日均浓度指数数据茎叶图如图5所示. (1)试估计甲城市在9月份30天的空气质量类别为优或良的天数; (2)在甲城市这15个监测数据中任取2个,设X 为空气质量类别为优或良的天数,求X 的分布列及数学期望.3 2 0 45 56 47 6 9 78 8 0 79 1 8 0 9 图5ABCOM N图418.(本小题满分14分)在如图6的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(2)求直线BF 与平面ADE 所成角的正弦值. 19.(本小题满分14分)已知数列{a n }满足135a =,1321n n n a a a +=+,*n ∈N .(1)求证:数列1 1 n a ⎧⎫-⎨⎬⎩⎭为等比数列; (2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且1m a -,1s a -,1t a -成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.20.(本小题满分14分)设函数()313f x x ax =-()0a >,()221g x bx b =+-. (1)若曲线()x f y =与()x g y =在它们的交点()c ,1处有相同的切线,求实数a ,b 的值; (2)当12ab -=时,若函数()()()h x f x g x =+在区间()0,2-内恰有两个零点,求实数a 的取值范围; (3)当1a =,0b =时,求函数()()()h x f x g x =+在区间[]3,+t t 上的最小值.21.(本小题满分14分)如图7,已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线12222=-by a x 的两条渐近线为21,l l .过椭圆C 的右焦点F 作直线l ,使1l l ⊥,又l 与2l 交于点P ,设l 与椭圆C 的两个交点由上至下 依次为A ,B .(1)若1l 与2l 的夹角为60°,且双曲线的焦距为4,求椭圆C 的方程;Ox yBAF P l 1l l 2图6ABCDE F(2)求||||AP FA 的最大值.图7数学(理科)参考答案及评分标准说明:1.参考答案及评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 解:(1)在△ABC 中,A B C π++=.………………………………………………………………1分 所以coscos22A C Bπ+-= …………………………………………………………………………2分 3sin23B ==.………………………………………………………………………3分 所以2cos 12sin2BB =- ……………………………………………………………………………5分 13=.………………………………………………………………………………………7分 (2)因为3a =,22b =,1cos 3B =,由余弦定理2222cos b a c ac B =+-,………………………………………………………………9分 得2210c c -+=.……………………………………………………………………………………11分 解得1c =.……………………………………………………………………………………………12分题号 1 2 3 4 5 6 7 8 答案 D C A D A B C A 题号 9 10 11 12 13 14 15 答案 3 4 13 [)01,- 36 1 33,33⎡⎤-⎢⎥⎣⎦17.(本小题满分12分) 解:(1)由茎叶图可知,甲城市在9月份随机抽取的15天中的空气质量类别为优或良的天数为5天.…………………………………………………………………………………………………1分 所以可估计甲城市在9月份30天的空气质量类别为优或良的天数为10天.…………2分(2)X 的取值为0,1,2,………………………………………………………………………………3分因为()02510215C C 30C 7P X ===,………………………………………………………………………5分 ()11510215C C 101C 21P X ===,……………………………………………………………………………7分()20510215C C 22C 21P X ===.…………………………………………………………………………9分所以X 的分布列为:X0 1 2P73 2110 212所以数学期望32212221101730=⨯+⨯+⨯=EX .…………………………………………………12分18.(本小题满分14分)(1)证明1:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得BC AC 3=.……………………………………………………2分所以222AC BC AB +=.所以BC AC ⊥.………………………………………………………………………………………3分因为AC FB ⊥,BF BC B =I ,BF 、BC ⊂平面FBC ,所以⊥AC 平面FBC .………………………………………………………………………………4分 证明2:因为60ABC ︒∠=,设BAC α∠=()0120α<<o o ,则120ACB α∠=-o.在△ABC 中,由正弦定理,得()sin sin 120BC ABαα=-o.…………………………………………1分 因为BC AB 2=,所以()sin 1202sin αα-=o.整理得3tan 3α=,所以30α=o.…………………………………………………………………2分 所以BC AC ⊥.………………………………………………………………………………………3分 因为AC FB ⊥,BF BC B =I ,BF 、BC ⊂平面FBC ,所以⊥AC 平面FBC .………………………………………………………………………………4分……………………10分(2)解法1:由(1)知,⊥AC 平面FBC ,FC ⊂平面FBC ,所以FC AC ⊥.因为平面CDEF 为正方形,所以FC CD ⊥.因为AC CD C =I ,所以⊥FC 平面ABCD .……………………………………………………6分取AB 的中点M ,连结MD ,ME ,因为ABCD 是等腰梯形,且BC AB 2=,60DAM ∠=o,所以MD MA AD ==.所以△MAD 是等边三角形,且ME BF P .…………………………7分取AD 的中点N ,连结MN ,NE ,则MN AD ⊥.………8分 因为MN ⊂平面ABCD ,ED FC P ,所以ED MN ⊥. 因为AD ED D =I ,所以MN ⊥平面ADE . ……………9分 所以MEN ∠为直线BF 与平面ADE 所成角. ……………10分 因为NE ⊂平面ADE ,所以MN ⊥NE .…………………11分 因为32MN AD =,222ME MD DE AD =+=,…………………………………………12分 在Rt △MNE 中,6sin 4MN MEN ME ∠==.……………………………………………………13分 所以直线BF 与平面ADE 所成角的正弦值为64.………………………………………………14分 解法2:由(1)知,⊥AC 平面FBC ,FC ⊂平面FBC ,所以FC AC ⊥.因为平面CDEF 为正方形,所以FC CD ⊥.因为AC CD C =I ,所以⊥FC 平面ABCD .……………………………………………………6分所以CA ,CB ,CF 两两互相垂直,建立如图的空间直角坐标系xyz C -.………………………7分 因为ABCD 是等腰梯形,且BC AB 2=,60ABC ︒∠= 所以CB CD CF ==.不妨设1BC =,则()0,1,0B ,()0,0,1F ,()3,0,0A,31,,022D ⎛⎫- ⎪ ⎪⎝⎭,31,,122E ⎛⎫- ⎪ ⎪⎝⎭, 所以()0,1,1BF =-u u u r ,31,,022DA ⎛⎫= ⎪ ⎪⎝⎭u u u r ,()0,0,1DE =u u u r .………………………………………9分M N ABCDE Fx AB CDEFyz设平面ADE 的法向量为=()x,y,z n ,则有0,0.DA DE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即30,220.y x z ⎧+=⎪⎨⎪=⎩取1x =,得=n ()1,3,0-是平面ADE 的一个法向量.………………………………………11分 设直线BF 与平面ADE 所成的角为θ,则()()0,1,11,3,06sin cos ,422BF BF BF --⋅θ=〈〉===u u u rg u u u r u u u rg g n n n.……………………………13分 所以直线BF 与平面ADE 所成角的正弦值为64.………………………………………………14分19.(本小题满分14分) 解:(1)因为1321n n n a a a +=+,所以111233n n a a +=+.…………………………………………………1分 所以1111113n n a a +⎛⎫-=- ⎪⎝⎭.…………………………………………………………………………3分因为135a =,则11213a -=.…………………………………………………………………………4分所以数列11n a ⎧⎫-⎨⎬⎩⎭是首项为32,公比为31的等比数列.…………………………………………5分(2)由(1)知,112121333n n n a -⎛⎫-=⨯= ⎪⎝⎭,所以332n n na =+.……………………………………7分 假设存在互不相等的正整数m ,s ,t 满足条件,则有()()()22,111.s m t m t s a a a +=⎧⎪⎨-=--⎪⎩……………………………………………………………………9分 由332n n n a =+与()()()2111s m t a a a -=--,得2333111323232s m t sm t ⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭.……………………………………………………10分 即232323343m tm t s s ++⨯+⨯=+⨯.……………………………………………………………11分因为2m t s +=,所以3323mts+=⨯.……………………………………………………………12分因为332323m t m t s ++≥=⨯,当且仅当m t =时等号成立,这与m ,s ,t 互不相等矛盾.……………………………………………………………………13分 所以不存在互不相等的正整数m ,s ,t 满足条件.……………………………………………14分 20.(本小题满分14分) 解:(1)因为()313f x x ax =-,()221g x bx b =+-, 所以()2f x x a '=-,()2g x bx '=.…………………………………………………………………1分 因为曲线()x f y =与()x g y =在它们的交点()c ,1处有相同切线, 所以()()11g f =,且()()11g f '='。
(完整版)2019年广州市一模理科答案
2019年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭ 10.1sin 11.12.38 12.12或7213.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A>, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+== ⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===. ………10分 ∴POQ sin ∠==3……………11分∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴(4,OP OQ ==u u u r u . ……………8分∴cos cos ,3OP OQ POQ OP OQ OP OQ⋅∠=<>===u u u r u u u ru u u r u u u r u u u r u u u r . ……………10分∴POQ sin ∠==……………11分 ∴△POQ的面积为11223S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴直线OP的方程为2y x =,即0x -=. ……………7分 ∴点Q 到直线OP的距离为d ==. ……………9分∵OP =……………11分∴△POQ的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想) 解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知,()()()12P A P B m P C n ,,===. ……………1分(1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=. …………3分 (2)由题意知()()()()1101124P P ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分HF A BCA 1C 1B 1DE整理得 112mn =,712m n +=. 由m n >,解得13m =,14n =. ……………7分(3)由题意知()()()()1a P P ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, ………9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312.…………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA , ∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC , ∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =I ,∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===∴5EH =. (9)A ∵CE ∥BF ,CE ⊥平面1A AB ,∴BF ⊥平面1A AB . ……………10分∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在Rt △EHB中,BH ==cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF .∵E 为AB 的中点,∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA , ∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD ,∴CE ∥平面1A BD 分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =I ,∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH ∠===∴5EH =. (9)在Rt △EHB中,5BH ==. ∵Rt △EHB ~Rt △1A AB ,∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴, 建立空间直角坐标系A xyz -.则()000A ,,,1A ()004,,,B)10,,D ()02,,2.∴1AA =u u u r ()004,,,1A B =u u ur )14,-,1A D =u u u u r()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n 10A B u u u r ?,n 10A D u u u u r ?,得40220y z y z .ìï+-=ïíï-=ïî 令1y =,则1z x ==,∴平面A BD 1的一个法向量为n=)11,. ……………12分∵1AA ⊥平面ABC , ∴1AA u u u r=()004,,是平面ABC 的一个法向量.∴cos 111,⋅==u u u u ru u u u r u u u u r n AA n AA nAA ……………13分 ∴平面1A BD 与平面ABC……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+Q L ,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+L , ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++L , ② ……………2分 ② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列.∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分 当2n ≥时, 11(22)(22)2n n nn n n a S S +-=-=---=, ……………7分又12a =也满足上式,∴2nn a =. ……………8分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分 ⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. ……………8分(2)解:∵p q r ,,成等差数列,∴2p r q +=. ……………9分假设111p q r a a a ,,---成等比数列,则()()()2111p r q a a a --=-, ……………10分即()()()2212121prq--=-,化简得:2222prq+=⨯. (*) ……………11分 ∵p r ≠,∴2222pr q +>=⨯,这与(*)式矛盾,故假设不成立.……13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a ba b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. (3)分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=,∵C B A ,,三点共线, ∴BC BA //u u u r u u u r. (4)分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭, 化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ……………8分设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=. ……………9分代入②得 2141x x y =, ……………10分则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. (13)分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x xy y -=-,即2111212x y x x y -+=. (5)分∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分同理, 20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ……………8分∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x xy -=002, ……………9分∵点)3,2(A 在直线L 上, ∴300-=x y . ...............10分 ∴点P 的轨迹方程为3-=x y . (11)分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,……12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. (5)分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……………10分∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分 由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+, ∴()2212x a m x m m ++-++=()()1x m x m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++. ∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②当0m <时,由0Δ>,得k <-或k >若k <-1212k x ,+-=<2212k x ,++=<故x ∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点. ……………7分若k >11x ,=>21x ,=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)解法2:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. (4)分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δk k m k m =+--+=+>,(**) (5)分方程(*)的两个实根为122k x +-=, 222k x ++=.设()h x =()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >……………7分则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)(2)证法1:∵1m =, ∴()g x =()111x x -+-. ∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭L122412n n n nn n n C x C x C x ----=+++L . ……………10分令T 122412n n n nn n n C x C x C x ----=+++L , 则T 122412n n n n n n n n C x C x C x -----=+++L 122412n n n n n n n C x C x C x ----=+++L .∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++L ……11分≥121n n n n C C C -⋅+⋅++⋅L …12分()1212n n n nC C C -=+++L()012102n n n nn n n n n n C C C C C C C -=+++++--L()222n=-. ……………13分∴22nT ≥-,即()()1122nnng x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n≥-. ① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+……………12分 122k +=-. ……………13分 也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
2019届广州市高三调研测试理科数学(解析版)
1
1
切线,故 t 1,所以 a t t
t 1 (t 1) 2 ,
t 1
t 1
t 1
t 1
1
4
作出函数 y (t 1) 2 的图象如图所示,由图可知,
t 1
2
1 当 a 0 或 a 4 时,直线 y a 与函数 y (t 1) 2 的图象
t 1
5
5
有两个交点.
2
4
2ab
2ab 2
2 因为 0 C ,所以 C . ……………………………………………………6 分
3
(2) 因为 A ,所以 B .
6
6
……………………………………………………7 分
2 所以△ABC 为等腰三角形,且顶角 C .
3
1 因为 S△ABC 2 ab sin C
3 a2 4 4
4
(a0 a2 a4 )2 (a1 a3 )2 (a0 a1 a2 a3 a4 )(a0 a1 a2 a3 a4 ) (2 2)(2 2) 24 16 .
数学(理科)试题 A 第 4 页 共 16 页
2x y ≤ 0,
x 3y 5≥ 0,
x
y
1 1
15.已知实数 x , y 满足 x 0,
6
8
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知向量 a, b 的夹角为 45 ,且 a 1, b 2 ,则 a b ____________.
13.答案:1
2
解析: a b
a b
2
a
2
2 2a b b
a
2
2
a
b
cos 45
2019届广州一模理科数学答案
所以
1 = , 4t 2 4t 13 4
13 1 或t (舍去), 2 22
……………………………………………11 分
3t
解得 t
此时
CG 1 ,得 CG 1 CF 3 . 4 2 CF 4
3 .…………………………………………12 分 2
即所求线段 CF 上的点 G 满足 CG
设 G 3 ,t , 0 , 1 t 5 , 则 BE 3 , 2, 3
t 3 , BG 0 ,,
设平面 BEG 的法向量为 m x ,y,z ,
x 2 t, 3 x 2 y 3 z 0, m BE 0, 则由 得 ,取 y 3, m BG 0, ty 3z 0, z 3t ,
……………………………………………………………………………1 分
样本的质量指标平均值为
3020 30.2 . ……………………………………………2 分 100
根据样本质量指标平均值估计总体质量指标平均值为 30.2 . ………………………3 分 (2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为
(6m)2 36 3m2 4 0 , m R ,
由韦达定理得 y1 y2
6m 9 ,……………………………………8 分 , y1 y2 2 3m 4 3m2 4
SF1 AB
令t
1 F1 F2 y1 y2 y1 y2 2
解得 x
…………………11 分
1 3 ,即所求线段 CF 上的点 G 满足 CG . 2 2
2019年广东省广州市高考数学一模试卷(理科)-解析版
2019年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-2x<0},B={x|2x>1},则()A. B. C. D.2.已知a为实数,若复数(a+i)(1-2i)为纯虚数,则a=()A. B. C. D. 23.已知双曲线:的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,则C的离心率为()A. B. C. D. 34.刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O,圆O的半径为2,现随机向圆O内段放a粒豆子,其中有b粒豆子落在正十二边形内(a,b∈N*,b<a),则圆固率的近似值为()A. B. C. D.5.若等边三角形ABC的边长为1,点M满足,则=()A. B. 2 C. D. 36.设S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,S2m-1=11,则m=()A. 11B. 10C. 6D. 57.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A.B.C.D.8.(2-x3)(x+a)5的展开式的各项系数和为32,则该展开式中x4的系数是()A. 5B. 10C. 15D. 209.已知函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,且在,上单调递减,则ω的最大值是()A. B. C. D. 210.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.B.C.D.11.已知以F为焦点的抛物线C:y2=4x上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是()A. 2B.C.D. 412.已知函数,>,,的图象上存在关于直线x=1对称的不同两点,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设S n是等比数列{a n}的前n项和,若S3=6,S6=54,则a1=______.14.若函数的图象在点(1,f(1))处的切线过点(2,4),则a=______.15.已知关于x,y的不等式组,表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则m的取值范围是______.16.已知直四棱柱ABCD-A1B1C1D1,的所有棱长都是1,∠ABC=60°,AC∩BD=O,A1C1∩B1D1=O1,点H在线段OB1上,OH=3HB1,点M是线段BD上的动点,则三棱锥M-C1O1H的体积的最小值为______.三、解答题(本大题共7小题,共82.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知c cos B=(3a-b)cos C.(1)求sin C的值;(2)若,b-a=2,求△ABC的面积.18.如图,在三棱锥A-BCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.19.某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值.20.已知椭圆:>>的两个焦点和两个顶点在图O:x2+y2=1上.(1)求椭圆C的方程(2)若点F是C的左焦点,过点P(m,0)(m≥1)作圆O的切线l,l交C于A,B两点.求△ABF 的面积的最大值.21.已知函数f(x)=e2x-ax2,a∈R.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若f(x)在(0,+∞)上存在极大值M,证明:<.22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(a∈R).(1)写出曲线C1的普通方程和直线C2的直角坐标方程;(2)若直线C2与曲线C1有两个不同交点,求a的取值范围.23.已知函数f(x)=|x+a|-|2x-1|.(1)当a=1时,求不等式f(x)>0的解集;(2)若a>0,不等式f(x)<1对x∈R都成立,求a的取值范围.答案和解析1.【答案】D【解析】解:集合A={x|x2-2x<0}={x|0<x<2},集合B={x|2x>1}={x|x>0},A、A∩B={x|0<x<2},故本选项错误;B、A B={x|x>0},故本选项错误;C、A B,故本选项错误;D、A B,故本选项正确;故选:D.首先化简集合,再求交集,并集即可.本题主要考查集合的基本运算,比较基础.2.【答案】A【解析】解:(a+i)(1-2i)=a+2+(1-2a)i,∵复数是纯虚数,∴a+2=0且1-2a≠0,得a=-2且a≠,即a=-2,故选:A.根据复数的运算法则进行化简,结合复数是纯虚数,进行求解即可.本题主要考查复数的运算以及复数的概念,根据复数是纯虚数建立条件关系是解决本题的关键.3.【答案】C【解析】解:圆P:(x-2)2+(y+4)2=1的圆心(2,-4),双曲线的一条渐近线为:y=bx,双曲线的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,可得2b=4,所以b=2,a=1,则c=,则C的离心率为:.故选:C.求出圆心坐标,代入渐近线方程没去成b,然后求解双曲线的离心率.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】C【解析】解:由几何概型中的面积型可得:=,所以=,即π=,故选:C.由正十二边形的面积与圆的面积公式,结合几何概型中的面积型得:=,所以=,即π=,得解本题考查了正十二边形的面积及几何概型中的面积型,属中档题5.【答案】D【解析】解:由题意,可根据平行四边形法则画出如下图形:由图可知:=,∴===1•2•+1•2•1=3.故选:D.本题可根据平行四边形法则画出图形找到M点的位置,然后根据两个向量的数量积的性质进行计算.本题主要考查两个向量的数量积的计算,属基础题.6.【答案】C【解析】解:S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,则:,解得:a m=1.S2m-1===11,解得:m=6故选:C.直接利用等差数列的性质的应用和等差数列的前n项和公式的应用求出结果.本题考查的知识要点:等差数列的通项公式的性质的应用,等差数列的前n项和公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】B【解析】解:函数h=f(t)是关于t的减函数,故排除C,D,则一开始,h随着时间的变化,而变化变慢,超过一半时,h随着时间的变化,而变化变快,故对应的图象为B,故选:B.根据时间和h的对应关系分别进行排除即可.本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.8.【答案】A【解析】解:∵(2-x3)(x+a)5的展开式的各项系数和为32,则(2-1)(1+a)5=32,∴a=1,该展开式中x4的系数是2••a-1••a4=10a-5a4=5,故选:A.令x=1,可得展开式的各项系数和,再根据展开式的各项系数和为32,求得a的值,再利用通项公式可得该展开式中x4的系数.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于基础题.9.【答案】C【解析】解:函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,则:φ=.所以:f(x)=cos(ωx+),令:(k∈Z),解得:(k∈Z),由于函数在上单调递减,故:,当k=0时,整理得:,故:,所以最大值为.故选:C.直接利用函数的奇偶性和单调性,建立不等式组,进一步求出最大值.本题考查的知识要点:函数的奇偶性和单调性的应用,不等式组的解法的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.【答案】B【解析】解:由题意可知:几何体是一个圆柱与一个的球的组合体,球的半径为:1,圆柱的高为2,可得:该几何体的表面积为:+2×π×12+2π×2=7π.故选:B.画出几何体的直观图,利用三视图的数据求解表面积即可.本题考查三视图求解几何体的表面积,可知转化思想以及计算能力.11.【答案】B【解析】解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1设A(x1,y1),B(x2,y2),则∵|AF|=λ|BF|,∴x1+1=λ(x2+1),∴x1=λx2+λ-1∵|y1|=λ|y2|,∴x1=λ2x2,当λ=1时,弦AB的中点到C的准线的距离2.当λ≠1时,x1=λ,x2=,|AB|=(x1+1)+(x2+1)=.∵,∴(λ++2)max=.则弦AB的中点到C的准线的距离d=,d最大值是.∵,∴弦AB的中点到C的准线的距离的最大值是.故选:B.根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义得到中点到准线的距离,属于中档题..12.【答案】A【解析】解:当x>1时,f(x)==x+,设f(x)在(1,+∞)上的图象关于x=1的对称图象为g(x),则g(x)=f(2-x)=2-x+(x<1),由题意可知f(x)与g(x)在(-∞,1)上有公共点.∵g′(x)=-1+<0,∴g(x)在(-∞,1)上单调递减,又f(x)=ln(x+a)在(-∞,1)上单调递增,∴g(1)<f(1),即2<ln(1+a),解得a>e2-1.故选:A.求出f(x)关于直线x=1对称的函数g(x),则g(x)与f(x)在(-∞,1)上有公共解,根据两函数的单调性列出不等式即可得出a的范围.本题考查了函数零点与单调性的关系,属于中档题.13.【答案】【解析】解:∵S3==6,S6==54,∴=1+q3=9,解得q3=8,则q=2,∴=6,解得a1=故答案为:先利用等比数列的求和公式分别表示出S3及S6,代入已知的等式,两者相除并利用平方差公式化简后,得到关于q的方程,求出方程的解得到q的值即可求出首项此题考查了等比数列的性质,以及等比数列的前n项和公式,熟练掌握公式是解本题的关键.14.【答案】2【解析】解:函数的导数为:f′(x)=a+,f′(1)=a+3,而f(1)=a-3,切线方程为:y-a+3=(a+3)(x-1),因为切线方程经过(2,4),所以4-a+3=(a+3)(2-1),解得a=2.故答案为:2.求出函数的导数,利用切线的方程经过的点求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.【答案】( ,]【解析】解:作出x,y的不等式组对应的平面如图:交点C的坐标为(-m,-2),直线x-2y=2的斜率为,斜截式方程为y=x-1,要使平面区域内存在点P(x0,y0)满足x0-2y0=2,则点C(-m,-2)必在直线x-2y=2的下方,即-2≤-m-1,解得m≤2,并且A在直线的上方;A(-m,1-2m),可得1-2m≥-1,解得m,故m的取值范围是:(-∞,].故答案为:(-∞,].作出不等式组对应的平面区域,要使平面区域内存在点点P(x0,y0)满足x0-2y0=2,则平面区域内必存在一个C点在直线x-2y=2的下方,A在直线是上方,由图象可得m的取值范围.本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.16.【答案】【解析】解:因为直四棱柱ABCD-A1B1C1D1的底面是菱形,∠ABC=60°,边长为1,∴O1C1⊥平面BB1D1D,且O1C1=,O1B1=,∴C1到平面BB1D1D的距离为O1C1=,∵OH=3HB1,点M是线段BD上的动点,∴当M在B处时△O1MH的面积取得最小值.连接O1B,则O1B=OB1==,∴B1到O1B的距离d===,∵OH=3HB1,∴H到直线O1B的距离为d=.∴S ===,∴V =S•O1C1==.故答案为:.当M与B重合时△O1HM的面积最小,故三棱锥M-C1O1H的体积最小,求出△O1BH的面积,代入棱锥的体积公式计算即可.考查四面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查数形结合思想,是中档题.17.【答案】(本题满分为12分)解:(1)∵c cos B=(3a-b)cos C,∴由正弦定理可知,sin C cos B=3sin A cos C-sin B cos C,…1分即sin C cos B+cos C sin B=3sin A cos C,∴sin(C+B)=3sin A cos C,…2分∵A+B+C=π,∴sin A=3sin A cos C,…3分∵sin A≠0,∴cos C=,…4分∵0<C<π,∴sin C==;…6分(2)∵,cos C=,∴由余弦定理:c2=a2+b2-2ab cos C,可得:24=a2+b2-ab,…8分∴(a-b)2+ab=24,…9分∵b-a=2,∴解得:ab=15,…10分∴S△ABC=ab sin C==5…12分【解析】(1)已知等式利用正弦定理化简,再利用诱导公式变形,求出cosC的值,利用同角三角函数基本关系式可求sinC的值;(2)利用余弦定理及已知可求ab的值,利用三角形的面积公式即可计算得解.此题考查正弦、余弦定理的综合应用,涉及三角函数中的恒等变换应用,熟练掌握定理是解本题的关键,属于基础题.18.【答案】证明:(1)∵△ABC是等边三角形,∠BAD=∠BCD=90°,∴Rt△ABD=Rt△BCD,∴AD=CD,∵点P是AC的中点,则PD⊥AC,PB⊥AC,∵PD∩PB=P,∴AC⊥平面PBD,∵AC⊂平面ACD,∴平面ACD⊥平面BDP.解:(2)作CE⊥BD,垂足为E,连结AE,∵Rt△ABD≌Rt△BCD,∴AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由已知二面角A-BD-C为120°,∴∠AEC=120°,在等腰△AEC中,由余弦定理得AC=,∵△ABC是等边三角形,∴AC=AB,∴AB=,在Rt△ABD中,,∴BD=,∵BD=,∴AD=,∵BD2=AB2+AD2,∴AB=2,∴AE=,,由上述可知BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO是直线AD与平面BCD所成角,在Rt△AEO中,∠AEO=60°,∴AO=,AE=1,sin,∴直线AD与平面BCD所成角的正弦值为.【解析】(1)推导出AD=CD,PD⊥AC,PB⊥AC,从而AC⊥平面PBD,由此能证明平面ACD⊥平面BDP.(2)作CE⊥BD,垂足为E,连结AE,则AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由二面角A-BD-C为120°,得∠AEC=120°,由余弦定理得AC=,推导出BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO 是直线AD与平面BCD所成角,由此能求出直线AD与平面BCD所成角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】角:(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),则P(η=2)=,∴购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(2)(i)依题意X的取值分别为400,450,500,550,600,P(X=400)=0.4×0.4=0.16,P(X=450)=2×0.4a=0.8a,P(X=500)=2×0.4b+a2=0.8b+a2,P(X=550)=2ab,P(X=600)=b2,(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得a+b=0.6,∴b=0.6-a,∵P(X≤500)≥0.8,∴0.16+0.48+a2≥0.8,解得a≥0.4或a≤-0.4,∵a>0,∴a≥0.4,∵b>0,∴0.6-a>0,解得a<0.6,∴a∈[0.4,0.6),E(X)=400×0.16+450×0.8a+500(0.8b+a2)+1100ab+600b2=520-100a,当a=0.4时,E(X)的最大值为480,∴X的数学期望E(X)的最大值为480.【解析】(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),由此能求出购买该商品的3位顾客中,恰有2位选择分2期付款的概率.(2)(i)依题意X的取值分别为400,450,500,550,600,分别求出相应的概率,由此能求出X的分布列.(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得b=0.6-a,由P(X≤500)≥0.8,得a≥0.4,由b>0,得a<0.6,由此能求出X的数学期望E(X)的最大值.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)由椭圆:>>可知焦点在x轴上,∵圆O:x2+y2=1与x轴的两个交点坐标为(-1,0),(1,0),与y轴的两个交点的坐标分别为(0,1),(0,-1),根据题意可得b=c=1,故a2=b2+c2=2,故椭圆方程为+y2=1(2)设过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,则=1,即m2=t2+1设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,则△=(2tm)2-4(t2+2)(m2-2)=8>0,∴y1+y2=-,y1y2=,∴|y1-y2|===,∴△ABF的面积S=|PF|•|y1-y2|=,令f(m)=,m≥1∴f′(m)=,当m≥1时,f′(m)≤0,∴f(m)在[1,+∞)上单调递减,∴f(m)≤f(1)=,故△ABF的面积的最大值为【解析】(1)根据根据题意可得b=c=1,故a2=b2+c2=2,即可求出椭圆方程,(2)过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,可得m2=t2+1,设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,根据韦达定理和三角形面积即可表示出S=,构造函数,利用导数求出函数的最值即可求出面积的最大值本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、韦达定理、三角形面积计算公式、导数和函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)函数的导数f′(x)=2e2x-2ax,若f(x)在(0,+∞)上单调递增,即f′(x)≥0恒成立,即2e2x-2ax≥0,得a≤在(0,+∞)上恒成立,设h(x)=,则h′(x)==,当0<x<时,h′(x)<0,此时函数为减函数,由x>时,h′(x)>0,此时函数为增函数,即当x=时,函数h(x)取得极小值同时也是最小值,h()=2e,则a≤2e,即实数a的取值范围是(-∞,2e].(2)由(1)知,当a≤2e时,f(x)在(0,+∞)上单调递增,则不存在极大值,当a>2e时,<ln,ln a>ln,又f′(0)=2>0,f′()=2e-a<0,f′(ln a)=2e2ln a-2a lna=2a(a-ln a)>0,(易证明a-ln a>0),故存在x1∈(0,),使得f′(x1)==0,存在x2∈(,ln a),使得f′(x2)=0,则x∈(0,x1)时,f′(x)>0,x∈(x1,x2)时,f′(x)<0,x∈(x2,+∞)时,f′(x)>0,故f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,即当x=x1时,f(x)取得极大值,即M=,由0<x1<时,得1-x1>0,x1≠1-x1,由2-2ax1=0,得=ax1,故M==ax1-ax12=ax1(1-x1)<a•()2=,即<成立.【解析】(1)求函数的导数,利用函数的单调性转化为f′(x)≥0恒成立进行求解.(2)求函数的导数,结合函数极大值的定义,讨论a范围,进行证明即可.本题主要考查导数的应用,结合函数单调性,极值和导数的关系转化为导数问题是解决本题的关键.考查学生的运算和推导能力,综合性较强,难度较大.22.【答案】解:(1)曲线C1的普通方程为y=1-x2(-1≤x≤1),把x=ρcosθ,y=ρsinθ代入ρ(cosθ-a sinθ)=,得直线C2的直角坐标方程为y-ax=,即ax-y+=0,(2)由直线C2:ax-y+=0,知C2恒过点M(0,),由y=1-x2(-1≤x≤1),当时,得x =±1,所以曲线C1过点P(-1,0),Q(1,0),则直线MP的斜率为k1==,直线MQ的斜率k2==-,因为直线C2的斜率为a,且直线C2与曲线C1有两个不同的交点,所以k2≤a≤k1,即-,所以a的取值范围为[-,].【解析】(1)利用平方关系消去参数t可得C1的普通方程,利用x=ρcosθ,y=ρsinθ可得C2的直角坐标方程;(2)根据直线的斜率可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)函数f(x)=|x+1|-|2x-1|,f(x)>0即为|x+1|>|2x-1|,可得(x+1+2x-1)(x+1-2x+1)>0,即3x(x-2)<0,解得0<x<2,则原不等式的解集为(0,2);(2)若a>0,不等式f(x)<1对x∈R都成立,即有1>f(x)max,由f(x)=|x+a|-|2x-1|=|x+a|-|x-|-|x-|≤|x+a-x+|-0=|a+|,可得f(x)的最大值为|a+|=a+,(a>0),则a+<1,解得0<a<.【解析】(1)运用两边平方和平方差公式,可得不等式的解集;(2)由题意可得1>f(x)max,由绝对值不等式的性质可得f(x)的最大值,解不等式可得所求范围.本题考查绝对值不等式的解法和不等式恒成立问题的运用,考查运算能力,属于基础题.。
2019年广东省高考数学一模试卷(理科)(解析版)
2019年广东省高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={x|x ﹣1<2},B ={y|y =2x,x ∈A},则A ∩B =()A .(﹣∞,8)B .(﹣∞,3)C .(0,8)D .(0,3)2.(5分)复数z =﹣i (i 为虚数单位)的虚部为()A .B .C .D .3.(5分)双曲线9x 2﹣16y 2=1的焦点坐标为()A .(±,0)B .(0,)C .(±5,0)D .(0,±5)4.(5分)记S n 为等差数列{a n }的前n 项和,若a 2+a 8=34,S 4=38,则a 1=()A .4B .5C .6D .75.(5分)已知函数f (x )在(﹣∞,+∞)上单调递减,且当x ∈[﹣2,1]时,f (x )=x2﹣2x ﹣4,则关于x 的不等式f (x )<﹣1的解集为()A .(﹣∞,﹣1)B .(﹣∞,3)C .(﹣1,3)D .(﹣1,+∞)6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A .3πB .4πC .6πD .8π7.(5分)执行如图的程序框图,依次输入x 1=17,x 2=19,x 3=20,x 4=21,x 5=23,则输出的S 值及其统计意义分别是()A.S=4,即5个数据的方差为4B.S=4,即5个数据的标准差为4C.S=20,即5个数据的方差为20D.S=20,即5个数据的标准差为208.(5分)已知A,B,C三点不共线,且点O满足16﹣12﹣3=,则()A.=12+3B.=12﹣3C.=﹣12+3D.=﹣12﹣39.(5分)设数列{a n}的前n项和为S n,且a1=2,a n+a n+1=2n(n∈N*),则S13=()A.B.C.D.10.(5分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足==≈0.618.后人把这个数称为黄金分割数,把点C称为线段AB的黄金分割点在△ABC中,若点P,Q为线段BC的两个黄金分割点,在△ABC内任取一点M,则点M落在△APQ内的概率为()A.B.﹣2C.D.11.(5分)已知函数f(x)=sin(ωx+)+(ω>0),点P,Q,R是直线y=m(m>0)与函数f(x)的图象自左至右的某三个相邻交点,且2|PQ|=|QR|=,则ω+m=()。
2019年广州市一模理科数学试题及答案
2019 年广州市一模理科数学试题及答案广州市普通高中毕业班综合测试(一)理科数学第 Ⅰ 卷一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.( 1)已知集合 Ax x 1 , Bx x 2x 0 ,则AI B( A ) x 1 x1 (B ) x 0 x 1( C ) x 0 x 1 ( D ) x 0 x 1( 2)已知复数 z 3i,其中 i 为虚数单位,则复数z 的共轭复数 z 所对应的点在1 i( A )第一象限( B )第二象限( C )第三象限 (D )第四象限( 3)执行如图所示的程序框图,如果输入x 3 ,则输出 k 的值为开始输入 xkx 2x3kk 2x 100? 是输出 k结束否(A )6(B )8(C )10(D )12( 4)如果函数 f xsinx60 的相邻两个零点之间的距离为,则的值为6(A )3(B )6(C )12(D )24( 5)设等差数列a n 的前 n 项和为 S n ,且 a 2a 7a1224 ,则 S 13(A )52(B )78( C ) 104( D ) 208( 6)如果 P 1 , P 2 ,⋯, P n 是抛物线 C : y 2 4x 上的点 ,它们的横坐标依次为x 1 , x 2 ,⋯, x n , F是抛物线 C 的焦点,若 x 1 x 2 Lx n 10 ,则 PF 1P 2F LP n F( A ) n 10( B ) n 20( C ) 2n 10( D ) 2n 20( 7)在梯形 ABCD 中, AD P BC ,已知 AD4,BCuuuruuur uuur R ,则m6,若 CDmBA nBC m, n1 1n(A ) 3( B )(D ) 33( C )3x y 1 0,2( 8)设实数 x , y 满足约束条件x y 1 0, 则 x 2y 2的取值范围是x1,(A )1,17( B )1,17(C ) 1,17(D )2 , 1722( 9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该2019 年广州市一模理科数学试题及答案球的体积为( A )(B)20 5(C)5(D)5 536( 11)已知下列四个命题:p1:若直线l和平面内的无数条直线垂直,则 l;p2:若f x 2x 2 x,则 x R ,f x f x ;p3:若 f x x1,则 x00,, f x0 1 ;x 1p4:在△ABC中,若A B ,则 sin A sin B .其中真命题的个数是(A)1(B)2(C)3(D)4( 11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A)882 4 6(B)882 26(C)2 2 26(D)126224( 12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1234 5 ⋯20132014201520163579 ⋯⋯⋯⋯40274029403181216⋯⋯⋯⋯⋯⋯⋯805680602028⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16116⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( A )201722015(B)201722014(C)201622015(D)201622014第Ⅱ 卷本卷包括必考题和选考题两部分.第13 题~第21 题为必考题,每个试题考生都必须做答.第 22题~第 24 题为选考题,考生根据要求做答.二.填空题:本大题共 4 小题,每小题 5 分.( 13)一个总体中有60个个体,随机编号0,1,2,⋯, 596个小组,组号依,依编号顺序平均分成次为1, 2, 3,⋯, 66的样本,若在第1组随机抽取的号码.现用系统抽样方法抽取一个容量为为3,则在第5组中抽取的号码是.2019 年广州市一模理科数学试题及答案( 14)已知双曲线C:x2y2uuur uuur 1a0,b0的左顶点为A,右焦点为F,点B 0,b,且g,a2b2BA BF则双曲线 C 的离心率为.( 15)x2x 24x3的系数为的展开式中,.(用数字填写答案)( 16)已知函数f x 1x 1 ,x1,则函数 g x 2 x f x 2的零点个数为个.x24x2,x1,三.解答题:解答应写出文字说明,证明过程或演算步骤.( 17)(本小题满分12 分)如图,在△ ABC 中,点 D 在边 AB 上, CD BC ,C AC 5 3,CD 5,BD2AD .(Ⅰ)求 AD 的长;(Ⅱ)求△ ABC 的面积.A D B ( 18)(本小题满分 12 分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间55,65, 65,75,75,85 内的频率之比为4:2:1 .(Ⅰ)求这些产品质量指标值落在区间频率组距75,85 内的频率;0.030(Ⅱ)若将频率视为概率,从该企业生产的0.019这种产品中随机抽取 3 件,记这3 件产45,75 内的产0.012品中质量指标值位于区间品件数为X ,求X 的分布列与数学期望.0.00401525354555657585质量指标值( 19)(本小题满分12 分)如图,四棱柱ABCD A1B1C1D1的底面ABCD是菱形,AC I BD O,A1O底面 ABCD ,AB AA1 2 .D1C1(Ⅰ)证明:平面ACO1平面 BB1D1D ;B1A1(Ⅱ)若 BAD60o,求二面角 B OB1 C 的余弦值.DCOA B2019 年广州市一模理科数学试题及答案( 20)(本小题满分12 分)已知椭圆 C 的中心在坐标原点,焦点在x 轴上,左顶点为 A ,左焦点为F12,0,点B2,2在椭圆C 上,直线y kx k0与椭圆 C 交于E ,F两点,直线AE ,AF分别与y 轴交于点M ,N.(Ⅰ)求椭圆 C 的方程;(Ⅱ)以 MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.( 21)(本小题满分12 分)已知函数 f (x)e x +m x3, g x ln x1 2 .(Ⅰ)若曲线y f x 在点0 f0处的切线斜率为1,求实数 m 的值;,(Ⅱ)当 m 1时,证明: f x g( x)x3.请考生在第22、23、 24 题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.( 22)(本小题满分10 分)选修 4- 1:几何证明选讲如图所示,△ABC 内接于⊙ O ,直线 AD 与⊙ O 相切于点 A ,交 BC 的延长线于点D,过点 D作DE P CA 交BA的延长线于点E.FB(Ⅰ)求证:DE 2AEgBE ;E A.O (Ⅱ)若直线EF 与⊙ O 相切于点 F ,且 EF4, EA 2 ,CD求线段 AC 的长.( 23)(本小题满分10 分)选修4- 4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 2 sin,0,2.(Ⅰ)求曲线 C 的直角坐标方程;(Ⅱ)在曲线 C 上求一点 D ,使它到直线 l :x3t3,( t 为参数,t R )的距离最短,并求y3t2出点 D 的直角坐标.( 24)(本小题满分10 分)选修4- 5:不等式选讲设函数 f x x a x 1 a .(Ⅰ)当 a 1时,求不等式1的解集;f x2(Ⅱ)若对任意a0,1 ,不等式 f x b 的解集为空集,求实数 b 的取值范围.绝密★ 启用前2016 年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明 :1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一.选择题(1)D(2)D(3)C(4) B( 5)C(6) A(7)A(8)A(9)D(10) B( 11)A(12) B二.填空题( 13)43( 14)51(15)40(16)2 2三.解答题( 17)( Ⅰ) 解法一:在△ ABC 中,因为 BD2AD ,设 AD x x 0,则 BD2x .在△ BCD 中,因为CD BC, CD 5 , BD 2x ,所以 cos CDB CD5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分BD2x在△ ACD 中,因为 AD x , CD5,AC 5 3 ,由余弦定理得 cos ADC AD 2CD 2AC 2x252(5 3)2.⋯⋯⋯4分2AD CD2x 5因为CDB ADC,所以 cos ADC cos CDB ,即 x252(53) 25.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2x 52x解得 x5.所以 AD 的长为 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2019 年广州市一模理科数学试题及答案解法二: 在△ ABC 中,因为 BD 2AD ,设 AD x x 0,则 BD 2x .在△ BCD 中,因为 CD BC , CD 5 , BD 2x ,所以 BC4 x 2 25 .所以 cos CBDBC4x 2252 分BD2x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯在△ ABC 中,因为 AB 3x , BC4x 225 , AC 5 3 ,由余弦定理得 cosCBAAB 2 BC 2 AC 213x 2 100.⋯⋯⋯⋯ 4 分2 AB BC6x4x225所以4x 22513x 2 100.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分2x4x 26x25解得 x 5 .所以 AD 的长为 5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ) 解法一: 由(Ⅰ)求得AB 3x 15, BC4x 225 5 3 .⋯⋯⋯⋯⋯⋯ 8 分所以 cosCBD BC3 ,从而 sinCBD110 分BD2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2所以 S ABC1 AB BC sin CBA21 15 5 3 1753.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分22 4解法二: 由(Ⅰ)求得 AB 3x 15 , BC4x 2 255 3 .⋯⋯⋯⋯⋯⋯ 8 分因为 AC5 3 ,所以△ ABC 为等腰三角形.因为 cosCBDBC 3 ,所以 CBD30o .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分BD 2所以△ ABC 底边 AB 上的高 h1BC 5 3 .2 21 所以 S ABCAB h21155375 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分 2242019 年广州市一模理科数学试题及答案解法三:因为 AD 的长为 5 ,CD51.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分所以 cos CDB ==,解得 CDBBD2x23所以SS 所以 S1CD2253ADC AD sin.2341CD sin25310 分BCD BD2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23SADCSBCD75312 分ABC4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 18)解:(Ⅰ)设区间75,85 内的频率为x,则区间 55,65 ,65,75内的频率分别为4x和 2x.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分依题意得0.0040.0120.0190.03104x 2 x x 1 ,⋯⋯⋯⋯⋯⋯ 3 分解得 x0.05 .所以区间75,85内的频率为0.05.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了 3 次独立重复试验,所以 X 服从二项分布B n, p,其中n 3 .由(Ⅰ)得,区间45,75 内的频率为 0.3 0.2+0.1=0.6,将频率视为概率得p 0.6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因为 X 的所有可能取值为0, 1, 2, 3,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分且 P(X 0) C300.600.430.064, P(X1)C130.61 0.420.288 ,P( X 2) C320.620.410.432 , P( X3) C 330.630.400.216 .所以 X 的分布列为:X0123⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分P0.0640.2880.4320.216所以 X 的数学期望为EX 0 0.064 1 0.28820.432 3 0.216 1.8.(或直接根据二项分布的均值公式得到EX np30.6 1.8 )⋯⋯⋯⋯⋯12 分( 19)(Ⅰ)证明:因为A1O平面 ABCD ,D1C1 BD平面 ABCD ,所以 A1O BD .⋯⋯⋯⋯⋯⋯ 1 分A1B1因为 ABCD 是菱形,所以CO BD .⋯⋯⋯⋯⋯⋯2分DCAOI CO O ,O因为1A B所以 BD平面 A1CO .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分因为 BD平面 BB1 D1D ,所以平面 BB1 D1D平面 A1CO .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分平面 ABCD ,CO uur uuur uuur(Ⅱ)解法一:因为 A1O BD ,以 O为原点, OB, OC, OA1方向为 x ,y, z 轴正方向建立如图所示空间直角坐标系.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因为 AB AA1 2 ,BAD 60o,所以 OB OD1,OA OC3,OA1226 分AA1 OA 1 .⋯⋯⋯⋯⋯⋯则 B 1,0,0,C 0,3,0,A0,3,0, A10,0,1,uuur uuur0,3,1uuur uuur uuur1,3,1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯所以 BB1AA1, OB1OB +BB17 分设平面 OBB1的法向量为 n x, y, zz D1C1,uur uuur1,3,1A1因为 OB1,0,0, OB1,B1所以x0,x3y z0.D yCO令 y1,A Bx得 n0,1,39 分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯同理可求得平面OCB1的法向量为m1,0,1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分所以 cos n, m36.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分224因为二面角 B OB1 C 的平面角为钝角,所以二面角 B OB1 C 的余弦值为6.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分4解法二:由(Ⅰ)知平面 ACO1平面 BB1D1 D ,D1C1连接 A1C1与B1D1交于点O1,O1A1连接 CO1, OO1,因为 AA1CC1, AA1 // CC1,H K B1DC所以CAAC1 1为平行四边形.OA B因为 O ,O1分别是 AC ,A1C1的中点,所以 OA1O1C 为平行四边形.且O1C OA1 1.因为平面 ACO1I 平面 BB1D1 D OO1,过点 C作 CH OO1于 H ,则CH平面BB1D1D.过点H作HK OB1于 K ,连接 CK ,则 CK OB1.所以CKH 是二面角B OB1 C 的平面角的补角.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在 Rt OCO1中, CH O1 C OC1337 分OO12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2在 OCB1中,因为 A1 O A1B1,所以OB1OA12A1B12 5 .因为 A1 B1CD , A1B1 // CD ,所以 B1C A1 D AO12OD 2 2 .因为 B1C2OC 2OB12,所以OCB1为直角三角形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分所以 CK CB1OC236.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分OB155所以 KH CK 2CH 23.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2 5所以 cos CKH KH611 分CK.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4所以二面角 B OB1 C 的余弦值为64.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分( 20)(Ⅰ)解法一:设椭圆C的方程为x2y2 1 (a b0) ,a2b2因为椭圆的左焦点为F12,0,所以 a2b2 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分设椭圆的右焦点为F2 2,0 ,已知点B2,2在椭圆 C 上,由椭圆的定义知BF1BF22a ,所以 2a32242 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分所以 a 2 2 ,从而b 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以椭圆 C 的方程为x2y 2 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分84解法二:设椭圆 C 的方程为x2y21(a b 0) ,a2b2因为椭圆的左焦点为F12,0 ,所以a2b2 4 .①⋯⋯⋯⋯⋯⋯⋯ 1 分因为点 B 2,2在椭圆 C 上,所以421.②⋯⋯⋯⋯⋯⋯⋯ 2 分a2b2由①②解得, a2 2 ,b 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以椭圆 C 的方程为x2y 2 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分84(Ⅱ)解法一:因为椭圆 C 的左顶点为 A ,则点 A 的坐标为 2 2,0 .⋯⋯⋯⋯ 5 分因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E x, y(不妨设 x0 0 ),则点 F x0 ,y0.00y kx,8联立方程组22消去 y 得x2.x y12k 2184所以 x022,则 y22k.12k12 k22所以直线 AE 的方程为ykx 22.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分112k 2因为直线 AE , AF 分别与 y 轴交于点M,N,令 x0 得 y22k,即点M22k.⋯⋯⋯⋯⋯⋯⋯⋯7 分12k20,1112k2同理可得点 N0,22k.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分1 1 2k2所以 MN22k22k 2 2 12k 2.⋯⋯⋯⋯⋯⋯⋯ 9 分2k 22k2k1111设 MN 的中点为P,则点P的坐标为P0,2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分k22 2 12k 2则以 MN 为直径的圆的方程为x2y2k ,k即 x2y 222 y4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分k令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分解法二:因为椭圆 C 的左端点为A,则点 A 的坐标为22,0 .⋯⋯⋯⋯⋯ 5 分因为直线 y kx (k0) 与椭圆x2y2 1 交于两点E,F,8 4设点 E( x0 , y0 ) ,则点 F ( x0 , y0 ) .所以直线 AE 的方程为y y0x 22.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分x0 22因为直线 AE 与 y 轴交于点M,2 2 y0,即点 M 2 2 y0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分令 x 0 得 y0,x022x022同理可得点 N 0,22 y0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分x022所以MN2 2 y0 2 2 y016 y0.x0 2 2 x0 2 2x028因为点 E(x0 , y0 ) 在椭圆C上,所以x02y0281 .4所以MN 89 分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯y0设 MN 的中点为P,则点P的坐标为P0,2x0.⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分y02则以 MN 为直径的圆的方程为x2y 2x016.y0y02即x2y2 +22x0y 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分y0令 y0 ,得x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P2 2,0.⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分解法三:因为椭圆 C 的左顶点为A,则点 A 的坐标为 2 2,0.⋯⋯⋯⋯⋯ 5 分因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E 2 2 cos,2sin( 0),则点 F2 2 cos ,2sin .所以直线 AE 的方程为y2sin x 2 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2 2 cos 2 2因为直线 AE 与 y 轴交于点M,令 x0 得y2sin,即点M0,2sin.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分cos1cos1同理可得点 N0,2sin1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分cos所以MN2sin2sin4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分cos1cos1sin设 MN 的中点为P,则点P的坐标为 P0,2cos.⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分sin2cos 24则以 MN 为直径的圆的方程为x2y,sin sin2即 x2y24cos y 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分sin令 y0 ,得 x2 4 ,即x 2或x 2 .故以 MN 为直径的圆经过两定点 P12,0, P22,0.⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分( 21)(Ⅰ)解:因为f (x)e x+m x3,所以 f (x)e x +m3x2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分因为曲线y f x 在点0 f 0处的切线斜率为1,,所以 f0e m1,解得 m0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(Ⅱ)证法一:因为 f( x)e x+m x3, g x ln x12,所以f x g( x)x3等价于 e x+m ln x 120 .当 m 1时, e x +m ln x 1 2 e x 1 ln x 1 2 .要证 e x+ m ln x120 ,只需证明e x 1ln( x1) 20 .⋯⋯⋯⋯⋯⋯4分以下给出三种思路证明e x1ln( x1)20 .思路 1:设h x e x 1ln x 1 2 ,则h x e x 11.x1设 p x e x 11,则p x e x 1120 .x1x 1所以函数 p x h x e x 11在1,+上单调递增.⋯⋯⋯⋯⋯⋯⋯ 6 分x111因为 h e2 2 0 ,h 0 e 10 ,2所以函数 h x x11在1,+上有唯一零点1,0.ex1x0,且 x02⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分因为 h x0 ,所以e x0+11,即 ln x1x01 .⋯⋯⋯⋯⋯⋯9分0x0 10当 x1, x0时, h x0 ;当 x x ,时, h x0 ,所以当 x x0时,h x 取得最小值 h x0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分所以 h x h x0 = e x01ln x0 1 211x0 1 2 0 .x0综上可知,当 m 1 时, f x g ( x)x3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分思路 2:先证明e x1x2x R.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分设 h x e x 1x 2 ,则 h x e x+1 1 .因为当 x1时, h x0 ,当 x1时, h x0 ,所以当 x1时,函数 h x单调递减,当x 1 时,函数 h x 单调递增.所以 h x h10.所以 e x1x 2 (当且仅当x1时取等号).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分所以要证明e x1ln( x1)20 ,只需证明x2ln( x1)20 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分下面证明 x ln x10.设 p x x ln x 1 ,则p x 11x .x1x1当 1 x0 时, p x0 ,当 x0 时, p x0 ,所以当1x0 时,函数 p x单调递减,当x0 时,函数 p x 单调递增.所以 p x p 00 .所以 x ln x10(当且仅当 x0时取等号).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分由于取等号的条件不同,所以 e x1ln( x1)20 .综上可知,当 m 1时, f x g ( x)x3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分(若考生先放缩 ln x 1 ,或e x、 ln x1同时放缩,请参考此思路给分!)思路 3:先证明e x 1ln( x1)20.令 t x1,转化为证明 e t ln t2t0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分因为曲线y e t与曲线 y ln t 关于直线y t 对称,设直线 x x0x00 与曲线y e t、 y ln t 分别交于点A、B,点A、B到直线y t 的距离分别为 d1、 d2,则 AB 2 d1 d 2.其中 d1e x0x0, d2x0ln x0x00.22①设 h x0e x0x0x00,则 h x0e x0 1 .因为 x00 ,所以 h x0e x010.所以 h x0在 0,上单调递增,则h x0h 0 1 .所以 d1e x0x022.2②设 p x0x0ln x0 x0 0,则 p x01x011x0.x0因为当 0x0 1 时, p x00 ;当 x0 1 时, p x00 ,所以当0x0 1 时,函数p x0x0ln x0单调递减;当x01时,函数 p x0x0ln x0单调递增.所以 p x0p 1 1 .所以 d 2x0ln x022.2所以 AB 2 d1 d 22222 .22综上可知,当 m 1 时, f x g ( x)x3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分2019 年广州市一模理科数学试题及答案证法二:因为f ( x)e x +m x3,g x ln x1 2 ,所以 f x g( x)x3等价于 e x+m ln x120 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分以下给出两种思路证明e x +m ln x120.思路 1:设h x e x+ m ln x 1 2 ,则h x e x+m 1 .x1设 p x e x+ m1,则 p x e x+m12 0 .x1x1所以函数 p(x)h x e x+m1在 -1,+上单调递增.⋯⋯⋯⋯⋯⋯ 6 分x1因为 m 1 ,所以 h 1 e m e 1 e m + m e m e m e 1 e m 1 0 ,h 0 e m 1 0.所以函数 h x e x +m1在 -1,+上有唯一零点x0,且x01 e m ,0 .x1⋯⋯⋯⋯⋯⋯⋯ 8 分因为 h x00,所以e x0 +m1,即 ln x01x0 m .⋯⋯⋯⋯⋯⋯9分x0 1当 x0, x时, h x0 ;当 x x ,时, h x0.00所以当 x x0时,h x取得最小值h x0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分所以 h x h x0e x0 +m ln x0 1 21x0m 2x011x0 1m30.x0 1综上可知,当 m 1 时, f x g ( x) x3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分思路 2:先证明e x x 1 (x R ) ,且 ln( x1)x (x1) .⋯⋯⋯⋯⋯⋯⋯5分设 F ( x) e x x 1 ,则 F (x) e x1.因为当 x0 时,F ( x)0 ;当x0 时,F (x) 0,所以 F ( x) 在 (,0) 上单调递减,在(0,) 上单调递增.所以当 x 0 时, F ( x) 取得最小值 F (0) 0 .所以 F ( x)F (0)0 ,即 e xx 1 ( x R ) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分 所以 ln( x 1) x (当且仅当 x 0 时取等号).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分再证明 e x+m ln x 120.由 e x x 1 ( x R ) ,得 e x 1x 2 (当且仅当 x 1时取等号).⋯⋯⋯⋯ 9 分因为 x1 , m 1 ,且 e x 1x 2 与 ln( x 1)x 不同时取等号,所以 e x+m ln x 1 2 e m 1 e x 1 ln x 1 2e m 1 ( x 2) x 2 (e m 1 1)(x 2) 0 .综上可知,当 m 1 时, f xg ( x) x 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分( 22)(Ⅰ) 证明: 因为 AD 是⊙ O 的切线,FB所以DACB (弦切角定理) .⋯⋯⋯⋯⋯⋯ 1 分O因为 DE PCA ,.E A所以DACEDA.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分C所以 EDA B .D因为AEDDEB (公共角),所以△ AED ∽△ DEB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以DEAE .BEDE即 DE 2AEgBE .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(Ⅱ) 解: 因为 EF 是⊙ O 的切线, EAB 是⊙ O 的割线,所以 EF 2 EAgEB (切割线定理) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因为 EF4 , EA2 ,所以 EB 8 , AB EB EA 6 .⋯⋯⋯⋯⋯⋯⋯ 7 分由(Ⅰ)知DE 2AE gBE ,所以 DE 4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分因为 DE P CA ,所以△BAC∽△BED.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分所以BAAC .BE ED所以 AC BA ED 6 410 分BE3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8( 23)(Ⅰ)解:由2sin,0,2,可得2 2 sin .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分因为2x2y2,sin y ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分所以曲线 C 的普通方程为x2y2 2 y0 (或x2y 121).⋯⋯⋯⋯4分(Ⅱ)解法一:因为直线的参数方程为x3t 3,( t 为参数,t R),y3t2消去 t 得直线l的普通方程为y3x 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因为曲线 C : x2y 121是以G0,1 为圆心,1为半径的圆,设点 D x0 , y0,且点 D 到直线l: y3x 5 的距离最短,所以曲线 C 在点 D 处的切线与直线l :y3x 5 平行.即直线 GD 与 l 的斜率的乘积等于1,即y131.⋯⋯⋯⋯⋯⋯7 分x0因为 x02y021,1解得 x0332或x02.所以点 D 的坐标为31339 分2,或2,.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22由于点 D 到直线y3x5的距离最短,所以点 D 的坐标为33.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2,22019 年广州市一模理科数学试题及答案解法二:因为直线 l 的参数方程为x3t23,( t 为参数,t R ),y3t消去 t 得直线l的普通方程为3x y50.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因为曲线 C x22是以 G0,1为圆心, 1 为半径的圆,y 1 1因为点 D 在曲线 C 上,所以可设点D cos,1sin0,2.⋯⋯⋯ 7 分3 cos sin4所以点 D 到直线l的距离为 d22sin3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分因为0,2,所以当时, d min1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分6此时 D 33,所以点 D的坐标为3310 分2,2,.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22( 24)(Ⅰ)解:当a1等价于 x 1 x11时, f x.⋯⋯⋯⋯⋯⋯⋯⋯ 1 分22①当②当x1时,不等式化为 x1x1,无解;21x0 时,不等式化为x1 x11,解得x 0 ;24③当 x0 时,不等式化为x 1x 10 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分,解得 x2综上所述,不等式 f x 1 的解集为 1 ,.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分4(Ⅱ)因为不等式 f x b 的解集为空集,所以b f x max.⋯⋯⋯⋯⋯⋯⋯ 5 分以下给出两种思路求f x 的最大值.思路 1:因为f x x a x 1 a0 a 1 ,当 x a 时, f x x a x 1 aa 1 a < 0.当 a x1 a 时, f x x a x 1 a2x a1a£ 2 1 - a + a - 1 - a = a + 1 - a .当 x 1 a 时,f x x a x1a所以 f xmaxa 1 a .a 1 a .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分思路 2:因为 f x x a x1ax a x1aa1aa1 a ,当且仅当 x1 a 时取等号.所以 f xmaxa 1 a .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分因为对任意a0,1,不等式 f xb 的解集为空集,所以 b a1a.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分max以下给出三种思路求g a a1a 的最大值.思路 1:令g a a1 a ,所以 g 2 a 1 2 a 1 a 1a 221 a2 .当且仅当a1 a ,即 a 1时等号成立.2所以 g amax2 .所以 b 的取值范围为2,+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分思路 2:令g a a1 a ,因为 0 a 1 ,所以可设a cos20,2则 g a a 1 a cos sin 2 sin 2 ,4当且仅当时等号成立.4所以 b 的取值范围为2,+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分思路 3:令g a a1 a ,ì a ,x =22因为 0 a?+ y= 1 (0#x1,0 # y 1).1 ,设í则 x?1- a,y =问题转化为在2+ y2= 1(0#x1,0 # y1)的条件下,y x求 z = x+ y 的最大值.利用数形结合的方法容易求得z 的最大值为 2 ,此时 x = y = 2 .O x 2所以 b 的取值范围为2,+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分。
2019年广州市一模理科答案
2019年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭ 10.1sin 11.12.38 12.12或7213.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f xx ππ=+. ……………3分 (2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+== ⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ (5)分∴(4,P Q.∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===. ………10分 ∴POQ sin ∠==3……………11分∴△POQ 的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(2,2),(4,2)P Q -.∴(2,2),(4,OP OQ ==. ……………8分∴cos cos ,6OP OQ POQ OP OQ OP OQ⋅∠=<>=== ……………10分∴POQ sin ∠==3……………11分∴△POQ 的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴直线OP 的方程为2y x =,即0x -=. ……………7分∴点Q 到直线OP 的距离为d ==. ……………9分∵OP =……………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯= ……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想) 解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知,()()()12P A P B m P C n ,,===. ……………1分 (1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=. …………3分 (2)由题意知()()()()1101124P P ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分H F A BCA 1C 1B 1DE整理得 112mn =,712m n +=. 由m n >,解得13m =,14n =. ……………7分(3)由题意知()()()()1a P P ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, ………9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, (10)分∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312. …………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA , ∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC , ∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1ABAA A =, ∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH ∠===.∴5EH =. (9)A 分∵CE ∥BF ,CE ⊥平面1A AB ,∴BF ⊥平面1A AB . ……………10分 ∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在Rt △EHB中,BH ==cos 1ABA∠5BH EB ==.…13分 ∴平面1A BD 与平面ABC所成二面角(锐角)的余弦值为5……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF .∵E 为AB 的中点,∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA , ∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD ,∴CE ∥平面1A BD . 分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1ABAA A =, ∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH ∠===2.∴EH =. ……………9分在Rt △EHB中,BH ==. ∵Rt △EHB ~Rt △1A AB ,∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴, 建立空间直角坐标系A xyz -.则000A ,1A 004,B 10,D 022. ∴1AA =004,1A B=14,1A D =022.设平面A BD 1的法向量为n ()x y z ,,,由n 10A B ,n 10A D,得340220x y z yz.令1y ,则13z x .∴平面A BD 1的一个法向量为n 311. ……………12分∵1AA ⊥平面ABC , ∴1AA 004是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA n AA 5.……………13分 ∴平面1A BD 与平面ABC 所成二面角(锐角)的余弦值为5……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+, ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++, ② ……………2分② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列.∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分当2n ≥时, 11(22)(22)2n n nn n n a S S +-=-=---=, ……………7分又12a =也满足上式,∴2nn a =. ……………8分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分 ⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. ……………8分(2)解:∵p q r ,,成等差数列,∴2p r q +=. ……………9分假设111p q r a a a ,,---成等比数列,则()()()2111p r q a a a --=-, ……………10分即()()()2212121prq--=-,化简得:2222prq+=⨯. (*) ……………11分 ∵p r ≠,∴2222pr q +>=⨯,这与(*)式矛盾,故假设不成立.……13分∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a ba b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分 ∴ 椭圆1C 的方程为2211612x y +=. ……………3分解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=,)413,2(211x x BA --=, ∵C B A ,,三点共线,∴BC BA //. ……………4分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭, 化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ……………8分设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=. ……………9分代入②得 2141x x y =, ……………10分则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x xy y -=-,即2111212x y x x y -+=. ……………5分∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x xy -=. ① ……………6分同理, 20202y x xy -=. ② ……………7分综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ……………8分∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x xy -=002, ……………9分 ∵点)3,2(A 在直线L 上, ∴300-=x y . ……………10分 ∴点P 的轨迹方程为3-=x y . ……………11分 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,……12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ……………5分由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……………10分∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分由()2124732280Δ=-⨯⨯-=>, ……………13分 可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+, ∴()2212x a m x m m ++-++=()()1x m x m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++. ∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<2212k x ,++=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②当0m <时,由0Δ>,得k <-k >若k <-1212k x ,+-=<2212k x ,++=<故x ∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点. ……………7分若k >1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)解法2:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ……………4分令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δk k m k m =+--+=+>,(**) ……………5分方程(*)的两个实根为1x =, 2x =设()h x =()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-,故k > ……………7分则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中1x =2x =(2)证法1:∵1m =, ∴()g x =()111x x -+-. ∴()()1111nnnn n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭122412n n n nn n n C x C x C x ----=+++. ……………10分 令T 122412n n n n n n n C x C x C x ----=+++,则T 122412n n n nn n n n C x C x C x -----=+++122412n n n n n n n C x C x C x ----=+++.∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++ ……11分≥121n n n n C C C -⋅+⋅++⋅ …12分()1212n n n n C C C -=+++()012102n n nnn n n n n n C C C C C C C -=+++++--()222n=-. ……………13分∴22nT ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦. ……………14分 证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+ ……………12分 122k +=-. ……………13分 也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nnng x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
2019年广州市一模理科答案
2019年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭ 10.1sin 11.12.38 12.12或7213.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x的最小正周期为8,∴28T πω==,得4πω=. ……………2分∴()2sin()44f x xππ=+. ……………3分 (2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+== ⎪⎝⎭……………4分(4)2sin 2sin44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴OP PQ OQ ===……………8分 ∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===. ………10分 ∴POQ sin ∠==3……………11分∴△POQ 的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯= ……………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(2,2),(4,2)P Q -.∴(2,2),(4,OP OQ ==. ……………8分∴cos cos ,36OP OQ POQ OP OQ OP OQ⋅∠=<>===. ……………10分∴POQ sin ∠==……………11分∴△POQ 的面积为11223S OP OQ POQ sin =∠=⨯⨯⨯= ……………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴直线OP 的方程为2y x =,即0x -=. ……………7分∴点Q 到直线OP 的距离为d ==. ……………9分∵OP =……………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想) 解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知,()()()12P A P B m P C n ,,===. ……………1分(1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=. …………3分 (2)由题意知()()()()1101124P P ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分HF A BCA 1C 1B 1DE整理得 112mn =,712m n +=. 由m n >,解得13m =,14n =. ……………7分(3)由题意知()()()()1a P P ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, ………9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312.…………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA , ∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC , ∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1ABAA A =, ∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===∴5EH =. (9)A ∵CE ∥BF ,CE ⊥平面1A AB ,∴BF ⊥平面1A AB . ……………10分∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在Rt △EHB中,BH ==cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF .∵E 为AB 的中点,∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA , ∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD ,∴CE ∥平面1A BD 分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1ABAA A =, ∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH ∠===∴5EH =. (9)在Rt △EHB中,5BH ==. ∵Rt △EHB ~Rt △1A AB ,∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴, 建立空间直角坐标系A xyz -.则000A ,1A 004,B 10,D 022.∴1AA =004,1A B=14,1A D =022.设平面A BD 1的法向量为n ()x y z ,,,由n 10A B ,n 10A D,得340220x y z yz.令1y ,则13z x .∴平面A BD 1的一个法向量为n 311. ……………12分∵1AA ⊥平面ABC , ∴1AA 004是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA n AA ……………13分 ∴平面1A BD 与平面ABC ……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+, ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++, ② ……………2分② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列.∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分 当2n ≥时, 11(22)(22)2n n nn n n a S S +-=-=---=, ……………7分又12a =也满足上式,∴2nn a =. ……………8分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分 ⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. ……………8分(2)解:∵p q r ,,成等差数列,∴2p r q +=. ……………9分假设111p q r a a a ,,---成等比数列,则()()()2111p r q a a a --=-, ……………10分即()()()2212121prq--=-,化简得:2222prq+=⨯. (*) ……………11分 ∵p r ≠,∴2222pr q +>=⨯,这与(*)式矛盾,故假设不成立.……13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a ba b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. (3)分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=,∵C B A ,,三点共线,∴BC BA //. (4)分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭, 化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ……………8分设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=. ……………9分代入②得 2141x x y =, ……………10分则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. (13)分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x xy y -=-,即2111212x y x x y -+=. (5)分∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分同理, 20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ……………8分∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x xy -=002, ……………9分∵点)3,2(A 在直线L 上, ∴300-=x y . ...............10分 ∴点P 的轨迹方程为3-=x y . (11)分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,……12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. (5)分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-. ……………10分∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分 由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+, ∴()2212x a m x m m ++-++=()()1x m x m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++. ∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②当0m <时,由0Δ>,得k <-或k >若k <-1212k x ,+-=<2212k x ,++=<故x ∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点. ……………7分若k >11x ,=>21x ,=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)解法2:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. (4)分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δk k m k m =+--+=+>,(**) (5)分方程(*)的两个实根为122k x +-=, 222k x ++=.设()h x =()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >……………7分则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)(2)证法1:∵1m =, ∴()g x =()111x x -+-. ∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n nn n n C x C x C x ----=+++. ……………10分令T 122412n n n nn n n C x C x C x ----=+++,则T 122412n n n nn n n n C x C x C x -----=+++122412n n n n n n n C x C x C x ----=+++.∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++ ……11分≥121n n n n C C C -⋅+⋅++⋅ …12分()1212n n n n C C C -=+++()012102n n nnn n n n n n C C C C C C C -=+++++--()222n=-. ……………13分∴22nT ≥-,即()()1122nnng x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n≥-. ① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+……………12分 122k +=-. ……………13分 也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn ng x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
2019年广东省广州市高考数学一模试卷和答案(理科)
2019年广东省广州市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x<0},B={x|2x>1},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)已知a为实数,若复数(a+i)(1﹣2i)为纯虚数,则a=()A.﹣2B.C.D.23.(5分)已知双曲线的一条渐近线过圆P:(x﹣2)2+(y+4)2=1的圆心,则C的离心率为()A.B.C.D.34.(5分)刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O,圆O的半径为2,现随机向圆O内段放a粒豆子,其中有b粒豆子落在正十二边形内(a,b∈N*,b<a),则圆固率的近似值为()A.B.C.D.5.(5分)若等边三角形ABC的边长为1,点M满足,则=()A.B.2C.D.36.(5分)设S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m﹣1﹣a m2+a m+1=1,S2m﹣1=11,则m=()A.11B.10C.6D.57.(5分)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A.B.C.D.8.(5分)(2﹣x3)(x+a)5的展开式的各项系数和为32,则该展开式中x4的系数是()A.5B.10C.15D.209.(5分)已知函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,且在上单调递减,则ω的最大值是()A.B.C.D.210.(5分)一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.B.7πC.D.8π11.(5分)已知以F为焦点的抛物线C:y2=4x上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是()A.2B.C.D.412.(5分)已知函数,的图象上存在关于直线x=1对称的不同两点,则实数a的取值范围是()A.(e2﹣1,+∞)B.(e2+1,+∞)C.(﹣∞,e2﹣1)D.(﹣∞,e2+1)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设S n是等比数列{a n}的前n项和,若S3=6,S6=54,则a1=.14.(5分)若函数的图象在点(1,f(1))处的切线过点(2,4),则a=.15.(5分)已知关于x,y的不等式组,表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,则m的取值范围是.16.(5分)已知直四棱柱ABCD﹣A1B1C1D1,的所有棱长都是1,∠ABC=60°,AC∩BD =O,A1C1∩B1D1=O1,点H在线段OB1上,OH=3HB1,点M是线段BD上的动点,则三棱锥M﹣C1O1H的体积的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知c cos B=(3a﹣b)cos C.(1)求sin C的值;(2)若,b﹣a=2,求△ABC的面积.18.(12分)如图,在三棱锥A﹣BCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=,且二面角A﹣BD﹣C为120°,求直线AD与平面BCD所成角的正弦值.19.(12分)某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为其中0<a<1,0<b<1(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值.20.(12分)已知椭圆的两个焦点和两个顶点在图O:x2+y2=1上.(1)求椭圆C的方程(2)若点F是C的左焦点,过点P(m,0)(m≥1)作圆O的切线l,l交C于A,B 两点.求△ABF的面积的最大值.21.(12分)已知函数f(x)=e2x﹣ax2,a∈R.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若f(x)在(0,+∞)上存在极大值M,证明:.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(a∈R).(1)写出曲线C1的普通方程和直线C2的直角坐标方程;(2)若直线C2与曲线C1有两个不同交点,求a的取值范围.[选修4-5:不等式选讲](10分)23.已知函数f(x)=|x+a|﹣|2x﹣1|.(1)当a=1时,求不等式f(x)>0的解集;(2)若a>0,不等式f(x)<1对x∈R都成立,求a的取值范围.2019年广东省广州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x<0},B={x|2x>1},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:集合A={x|x2﹣2x<0}={x|0<x<2},集合B={x|2x>1}={x|x>0},A、A∩B={x|0<x<2},故本选项错误;B、A∪B={x|x>0},故本选项错误;C、A⊆B,故本选项错误;D、A⊆B,故本选项正确;故选:D.2.(5分)已知a为实数,若复数(a+i)(1﹣2i)为纯虚数,则a=()A.﹣2B.C.D.2【解答】解:(a+i)(1﹣2i)=a+2+(1﹣2a)i,∵复数是纯虚数,∴a+2=0且1﹣2a≠0,得a=﹣2且a≠,即a=﹣2,故选:A.3.(5分)已知双曲线的一条渐近线过圆P:(x﹣2)2+(y+4)2=1的圆心,则C的离心率为()A.B.C.D.3【解答】解:圆P:(x﹣2)2+(y+4)2=1的圆心(2,﹣4),双曲线的一条渐近线为:y=bx,双曲线的一条渐近线过圆P:(x﹣2)2+(y+4)2=1的圆心,可得2b=4,所以b=2,a=1,则c=,则C的离心率为:.故选:C.4.(5分)刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O,圆O的半径为2,现随机向圆O内段放a粒豆子,其中有b粒豆子落在正十二边形内(a,b∈N*,b<a),则圆固率的近似值为()A.B.C.D.【解答】解:由几何概型中的面积型可得:=,所以=,即π=,故选:C.5.(5分)若等边三角形ABC的边长为1,点M满足,则=()A.B.2C.D.3【解答】解:由题意,可根据平行四边形法则画出如下图形:由图可知:=,∴===1•2•+1•2•1=3.故选:D.6.(5分)设S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m﹣1﹣a m2+a m+1=1,S2m﹣1=11,则m=()A.11B.10C.6D.5【解答】解:S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m﹣1﹣a m2+a m+1=1,则:,解得:a m=1.S2m﹣1===11,解得:m=6故选:C.7.(5分)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A.B.C.D.【解答】解:函数h=f(t)是关于t的减函数,故排除C,D,则一开始,h随着时间的变化,而变化变慢,超过一半时,h随着时间的变化,而变化变快,故对应的图象为B,故选:B.8.(5分)(2﹣x3)(x+a)5的展开式的各项系数和为32,则该展开式中x4的系数是()A.5B.10C.15D.20【解答】解:∵(2﹣x3)(x+a)5的展开式的各项系数和为32,则(2﹣1)(1+a)5=32,∴a=1,该展开式中x4的系数是2••a﹣1••a4=10a﹣5a4=5,故选:A.9.(5分)已知函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,且在上单调递减,则ω的最大值是()A.B.C.D.2【解答】解:函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,则:φ=.所以:f(x)=cos(ωx+),令:(k∈Z),解得:(k∈Z),由于函数在上单调递减,故:,当k=0时,整理得:,故:,所以最大值为.故选:C.10.(5分)一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.B.7πC.D.8π【解答】解:由题意可知:几何体是一个圆柱与一个的球的组合体,球的半径为:1,圆柱的高为2,可得:该几何体的表面积为:+2×π×12+2π×2=7π.故选:B.11.(5分)已知以F为焦点的抛物线C:y2=4x上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是()A.2B.C.D.4【解答】解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=﹣1设A(x1,y1),B(x2,y2),则∵|AF|=λ|BF|,∴x1+1=λ(x2+1),∴x1=λx2+λ﹣1∵|y1|=λ|y2|,∴x1=λ2x2,当λ=1时,弦AB的中点到C的准线的距离2.当λ≠1时,x1=λ,x2=,|AB|=(x1+1)+(x2+1)=.∵,∴(λ++2)max=.则弦AB的中点到C的准线的距离d=,d最大值是.∵,∴弦AB的中点到C的准线的距离的最大值是.故选:B.12.(5分)已知函数,的图象上存在关于直线x=1对称的不同两点,则实数a的取值范围是()A.(e2﹣1,+∞)B.(e2+1,+∞)C.(﹣∞,e2﹣1)D.(﹣∞,e2+1)【解答】解:当x>1时,f(x)==x+,设f(x)在(1,+∞)上的图象关于x=1的对称图象为g(x),则g(x)=f(2﹣x)=2﹣x+(x<1),由题意可知f(x)与g(x)在(﹣∞,1)上有公共点.∵g′(x)=﹣1+<0,∴g(x)在(﹣∞,1)上单调递减,又f(x)=ln(x+a)在(﹣∞,1)上单调递增,∴g(1)<f(1),即2<ln(1+a),解得a>e2﹣1.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设S n是等比数列{a n}的前n项和,若S3=6,S6=54,则a1=.【解答】解:∵S3==6,S6==54,∴=1+q3=9,解得q3=8,则q=2,∴=6,解得a1=故答案为:14.(5分)若函数的图象在点(1,f(1))处的切线过点(2,4),则a=2.【解答】解:函数的导数为:f′(x)=a+,f′(1)=a+3,而f(1)=a﹣3,切线方程为:y﹣a+3=(a+3)(x﹣1),因为切线方程经过(2,4),所以4﹣a+3=(a+3)(2﹣1),解得a=2.故答案为:2.15.(5分)已知关于x,y的不等式组,表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,则m的取值范围是(].【解答】解:作出x,y的不等式组对应的平面如图:交点C的坐标为(﹣m,﹣2),直线x﹣2y=2的斜率为,斜截式方程为y=x﹣1,要使平面区域内存在点P(x0,y0)满足x0﹣2y0=2,则点C(﹣m,﹣2)必在直线x﹣2y=2的下方,即﹣2≤﹣m﹣1,解得m≤2,并且A在直线的上方;A(﹣m,1﹣2m),可得1﹣2m≥﹣1,解得m,故m的取值范围是:(﹣∞,].故答案为:(﹣∞,].16.(5分)已知直四棱柱ABCD﹣A1B1C1D1,的所有棱长都是1,∠ABC=60°,AC∩BD =O,A1C1∩B1D1=O1,点H在线段OB1上,OH=3HB1,点M是线段BD上的动点,则三棱锥M﹣C1O1H的体积的最小值为.【解答】解:因为直四棱柱ABCD﹣A1B1C1D1的底面是菱形,∠ABC=60°,边长为1,∴O1C1⊥平面BB1D1D,且O1C1=,O1B1=,∴C1到平面BB1D1D的距离为O1C1=,∵OH=3HB1,点M是线段BD上的动点,∴当M在B处时△O1MH的面积取得最小值.连接O1B,则O1B=OB1==,∴B1到O1B的距离d===,∵OH=3HB1,∴H到直线O1B的距离为d=.∴S===,∴V=S•O1C1==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知c cos B=(3a﹣b)cos C.(1)求sin C的值;(2)若,b﹣a=2,求△ABC的面积.【解答】(本题满分为12分)解:(1)∵c cos B=(3a﹣b)cos C,∴由正弦定理可知,sin C cos B=3sin A cos C﹣sin B cos C,…1分即sin C cos B+cos C sin B=3sin A cos C,∴sin(C+B)=3sin A cos C,…2分∵A+B+C=π,∴sin A=3sin A cos C,…3分∵sin A≠0,∴cos C=,…4分∵0<C<π,∴sin C==;…6分(2)∵,cos C=,∴由余弦定理:c2=a2+b2﹣2ab cos C,可得:24=a2+b2﹣ab,…8分∴(a﹣b)2+ab=24,…9分∵b﹣a=2,∴解得:ab=15,…10分∴S△ABC=ab sin C==5…12分18.(12分)如图,在三棱锥A﹣BCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=,且二面角A﹣BD﹣C为120°,求直线AD与平面BCD所成角的正弦值.【解答】证明:(1)∵△ABC是等边三角形,∠BAD=∠BCD=90°,∴Rt△ABD≌Rt△BCD,∴AD=CD,∵点P是AC的中点,则PD⊥AC,PB⊥AC,∵PD∩PB=P,∴AC⊥平面PBD,∵AC⊂平面ACD,∴平面ACD⊥平面BDP.解:(2)作CE⊥BD,垂足为E,连结AE,∵Rt△ABD≌Rt△BCD,∴AE⊥BD,AE=CE,∠AEC为二面角A﹣BD﹣C的平面角,由已知二面角A﹣BD﹣C为120°,∴∠AEC=120°,在等腰△AEC中,由余弦定理得AC=,∵△ABC是等边三角形,∴AC=AB,∴AB=,在Rt△ABD中,,∴BD=,∵BD=,∴AD=,∵BD2=AB2+AD2,∴AB=2,∴AE=,,由上述可知BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO是直线AD与平面BCD所成角,在Rt△AEO中,∠AEO=60°,∴AO=,AE=1,sin,∴直线AD与平面BCD所成角的正弦值为.19.(12分)某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为其中0<a<1,0<b<1(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值.【解答】角:(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),则P(η=2)=,∴购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(2)(i)依题意X的取值分别为400,450,500,550,600,P(X=400)=0.4×0.4=0.16,P(X=450)=2×0.4a=0.8a,P(X=500)=2×0.4b+a2=0.8b+a2,P(X=550)=2ab,P(X=600)=b2,∴X的分布列为:(2)P(X≤500)=P(X=400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得a+b=0.6,∴b=0.6﹣a,∵P(X≤500)≥0.8,∴0.16+0.48+a2≥0.8,解得a≥0.4或a≤﹣0.4,∵a>0,∴a≥0.4,∵b>0,∴0.6﹣a>0,解得a<0.6,∴a∈[0.4,0.6),E(X)=400×0.16+450×0.8a+500(0.8b+a2)+1100ab+600b2=520﹣100a,当a=0.4时,E(X)的最大值为480,∴X的数学期望E(X)的最大值为480.20.(12分)已知椭圆的两个焦点和两个顶点在图O:x2+y2=1上.(1)求椭圆C的方程(2)若点F是C的左焦点,过点P(m,0)(m≥1)作圆O的切线l,l交C于A,B 两点.求△ABF的面积的最大值.【解答】解:(1)由椭圆可知焦点在x轴上,∵圆O:x2+y2=1与x轴的两个交点坐标为(﹣1,0),(1,0),与y轴的两个交点的坐标分别为(0,1),(0,﹣1),根据题意可得b=c=1,故a2=b2+c2=2,故椭圆方程为+y2=1(2)设过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,则=1,即m2=t2+1设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2﹣2=0,则△=(2tm)2﹣4(t2+2)(m2﹣2)=8>0,∴y1+y2=﹣,y1y2=,∴|y 1﹣y2|===,∴△ABF的面积S=|PF|•|y1﹣y2|=,令f(m)=,m≥1∴f′(m)=,当m≥1时,f′(m)≤0,∴f(m)在[1,+∞)上单调递减,∴f(m)≤f(1)=,故△ABF的面积的最大值为21.(12分)已知函数f(x)=e2x﹣ax2,a∈R.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若f(x)在(0,+∞)上存在极大值M,证明:.【解答】解:(1)函数的导数f′(x)=2e2x﹣2ax,若f(x)在(0,+∞)上单调递增,即f′(x)≥0恒成立,即2e2x﹣2ax≥0,得a≤在(0,+∞)上恒成立,设h(x)=,则h′(x)==,当0<x<时,h′(x)<0,此时函数为减函数,由x>时,h′(x)>0,此时函数为增函数,即当x=时,函数h(x)取得极小值同时也是最小值,h()=2e,则a≤2e,即实数a的取值范围是(﹣∞,2e].(2)由(1)知,当a≤2e时,f(x)在(0,+∞)上单调递增,则不存在极大值,当a>2e时,ln,lna>ln,又f′(0)=2>0,f′()=2e﹣a<0,f′(lna)=2e2lna﹣2alna=2a(a﹣lna)>0,(易证明a﹣lna>0),故存在x1∈(0,),使得f′(x1)==0,存在x2∈(,lna),使得f′(x2)=0,则x∈(0,x1)时,f′(x)>0,x∈(x1,x2)时,f′(x)<0,x∈(x2,+∞)时,f′(x)>0,故f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,即当x=x1时,f(x)取得极大值,即M=,由0<x1<时,得1﹣x1>0,x1≠1﹣x1,由2﹣2ax1=0,得=ax1,故M==ax1﹣ax12=ax1(1﹣x1)<a•()2=,即成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(a∈R).(1)写出曲线C1的普通方程和直线C2的直角坐标方程;(2)若直线C2与曲线C1有两个不同交点,求a的取值范围.【解答】解:(1)曲线C1的普通方程为y=1﹣x2(﹣1≤x≤1),把x=ρcosθ,y=ρsinθ代入ρ(cosθ﹣a sinθ)=,得直线C2的直角坐标方程为y﹣ax=,即ax﹣y+=0,(2)由直线C2:ax﹣y+=0,知C2恒过点M(0,),由y=1﹣x2(﹣1≤x≤1),当时,得x=±1,所以曲线C1过点P(﹣1,0),Q(1,0),则直线MP的斜率为k1==,直线MQ的斜率k2==﹣,因为直线C2的斜率为a,且直线C2与曲线C1有两个不同的交点,所以k2≤a≤k1,即﹣,所以a的取值范围为[﹣,].[选修4-5:不等式选讲](10分)23.已知函数f(x)=|x+a|﹣|2x﹣1|.(1)当a=1时,求不等式f(x)>0的解集;(2)若a>0,不等式f(x)<1对x∈R都成立,求a的取值范围.【解答】解:(1)函数f(x)=|x+1|﹣|2x﹣1|,f(x)>0即为|x+1|>|2x﹣1|,可得(x+1+2x﹣1)(x+1﹣2x+1)>0,即3x(x﹣2)<0,解得0<x<2,则原不等式的解集为(0,2);(2)若a>0,不等式f(x)<1对x∈R都成立,即有1>f(x)max,由f(x)=|x+a|﹣|2x﹣1|=|x+a|﹣|x﹣|﹣|x﹣|≤|x+a﹣x +|﹣0=|a+|,可得f(x)的最大值为|a +|=a +,(a>0),则a +<1,解得0<a <.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届广州市高三年级调研测试理科数学本试卷共5页,23小题,满分150分,考试用时120分钟 一、选择题:本题共12小题,每小题5分,共60分。
1.设集合M=2{|02},{|230},x x N x x x ?=--<则集合M N Ç=( )A. {|02}x x ?B. {|03}x x ?C. {|12}x x -<<D. {|01}x x ?【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合N ,再由交集的定义即可得结果. 【详解】因为集合{}|02M x x=?,{}{}2|230|13N x x x x x =--<=-<<,{}|02M Nx x \??,故选A.【点睛】本题考查一元二次不等式的解法和集合的交集问题,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.若复数(1a iz i i+=-是虚数单位)为纯虚数,则实数a 的值为( ) A. -2 B. -1 C. 1 D. 2 【答案】C 【解析】 【分析】利用复数代数形式的除法运箅化简复数1a iz i+=-,再根据实部为0且虚部不为0求解即可. 【详解】()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数,1010a a ì+?ï\í-=ïî,即1a =,故选C.主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( ). A. 1 B. 53C. 2D. 3 【答案】C 【解析】试题分析:因为322123124S a a =??,所以32642d a a =-=-=,选C.考点:等差数列性质4.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线的方程为( ) A. 230x y +-= B. 210x y -+= C. 230x y +-= D. 210x y --= 【答案】D 【解析】圆心C(3,0),k PC =12-,∵点P 是弦MN 的中点,∴PC ⊥MN , ∴k MN k PC =-1,∴k MN =2,∴弦MN 所在直线方程为y -1=2(x -1), 即2x -y -1=0.考点:圆的弦所在的直线方程.5.已知实数ln222,22ln 2,(ln 2)a b c ==+=,则,,a b c 的大小关系是 A. c b a << B. c a b << C. b a c << D. a c b << 【答案】B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果. 【详解】由对数函数的性质0ln21<<, 所以22ln 22,+>所以由指数函数的单调性可得,200ln 2112222,0ln 2ln 21=<<=<<=,c a b \<<,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(本题三个数分别在三个区间()()()0,1,1,2,2,+? );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 6.下列命题中,真命题的是( ) A. 00,0x x R e $危B. 2,2xx R x "?C. 0a b +=的充要条件是1ab=- D. 若,x y R Î,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】根据指数函数的值域判断A ;根据特殊值判断B C 、;根据逆否命题与原命题的等价性判断D . 【详解】根据指数函数的性质可得x 0e >,故A 错误;2x =时,22x x >不成立,故B 错误;当0a b ==时,1ab=-不成立,故C 错误; 因为“2x y +>,则,x y 中至少有一个大于1”的逆否命题 “,x y 都小于等于1,则2x y +?”正确,所以“2x y +>,则,x y 中至少有一个大于1”正确,故选D.【点睛】本题主要考查指数函数的值域、特称命题与全称命题的定义,以及原命题与逆否命题的等价性,意在考查综合应用所学知识解答问题的能力,属于中档题. 7.由()y f x =的图象向左平移3p个单位,再把图象上所有点横坐标伸长到原来的2倍得到sin 36y x p 骣琪=-琪桫的图象,则()f x =( ) A. 3sin 26x p 骣琪+琪桫 B. sin 66x p 骣琪-琪桫 C. 3sin 23x p骣琪+琪桫D. sin 63x p 骣琪+琪桫 【答案】B 【解析】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,再把所得图象向右平移3p 个单位,即可得到()f x 的图象,根据三角函数的图象变换规律可得()f x 的解析式.【详解】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,可得函数66y sin x p骣琪=-琪桫的图象, 再把函数66y sin x p骣琪=-琪桫的图象向右平移3p 个单位,即可得到()66366f x sin x sin x p pp 轾骣骣犏琪琪=--=-琪琪犏桫桫臌的图象, 所以()f x = 66sin x p骣琪-琪桫,故选B. 【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8. 已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A.13 B. 12 C. 59 D. 29【答案】C 【解析】试题分析:甲取出的求有两种情况:(1)从甲取出1黄球1红球,概率为:132136213C C C ?,(2)从甲取出2红球,概率为:142136129C C C ?,故概率为125399+=.考点:1、古典概型;2、分类加法、分步乘法计数原理.9.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1 B. 31 C. 51 D. 22【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p骣琪琪桫,双曲线的焦点坐标为(),0c ,2p c \=,点A 是两曲线的一个交点,且AF x ^轴,将x c =代入双曲线方程得到2,b A c a骣琪琪桫, 将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+, 即4224440a a b b +-=,解得222ba=+ 22222222b c a a a -\==+)22232221c a=+=解得21ce a==,故选A . 【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.10.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( ) A. 3(1)2n n -++? B. 3(1)2n n ++? C. 1(1)2n n ++? D. 1(1)2n n +-? 【答案】D 【解析】当1q = 时,不成立,当1q ¹ 时,()3161171{1a q q a q -=-- ,两式相除得3631171163q q q -==-+ ,解得:2q = ,11a = 即1112n n n a a q --== ,12n n n a n -?? ,2112232......2n n s n -=+??+? ,2n s = ()211222......122n n n n -??+-?? ,两式相减得到:21122......22n n n s n --=++++-?()12212112n nn n n -=-?-?- ,所以()112nn s n =+-? ,故选D.11.如图为一个多面体的三视图,则该多面体的体积为( )A.203 B. 7 C. 223 D. 233【答案】C 【解析】该几何体为如图所示的几何体11EFBC ABCD -,是从棱长为2的正方体中截取去两个三棱锥后的剩余部分,其体积111111131111211212273232A B C D ABCD A A EF D D BC V V V V ---=--=-创创-创创=,故选C. 12.已知过点(,0)A a 作曲线:x C y x e =?的切线有且仅有两条,则实数a 的取值范围是( ) A. ()(--4)0+ト?,,B. ()0+¥, C. ()(--1)1+ト?,, D. ()--1¥, 【答案】A 【解析】 【分析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为20x a =,整理得到方程2000x ax a --=有两个解即可,240a a D=+>解出不等式即可.【详解】设切点为()00,x x x e ,(1)x y x e =+¢,000(1)x x x y x e =\=+?¢,则切线方程为:()00000=1()x x y x e x e x x -+?,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+?, 2001x a x \=+,即方程2000x ax a --=有两个解,则有2400a a a D=+>?或4a <-. 故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45°,且1,2a b ==,则a b -=__________ 【答案】1 【解析】 【分析】先利用平面向量的运算法则以及平面向量的数量积公式求出a b -平方的值,再开平方即可得结果. 【详解】因为向量,a b 的夹角为45°,1,2a b ==,()2222a b a b a b -=+-?222cos 45a b a b °=+-?21221212=+-创?,可得1a b -=,故答案为1.【点睛】本题主要考查平面向量的运算法则以及平面向量的数量积公式,属于简单题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a ba b q ?;二是向量的平方等于向量模的平方22a a =.14.已知423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+=__________. 【答案】1令1x =,得401234(23)a a a a a +=++++; 令1x =-,得401234(23)a a a a a -+=-+-+;两式相加得22024130123402413()()()()a a a a a a a a a a a a a a a ++-+=++++?+--444(2(23)(1)1=?=-=.点睛: “赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b +++?R 的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)n ax by a b +?R 的式子求其展开式各项系数之和,只需令1x y ==即可.15.已知实数,x y 满足203500x y x y x y ì-?ïï-+?ïí>ïï>ïî,则11()()42x y z =的最小值为__________.【答案】C 【解析】试题分析:不等式组20{350x y x y -?-+?表示的平面区域如下图所示,目标函数2111()()()422x y x y z +==,设2t x y =+,令20x y +=得到如上图中的虚线,向上平移20x y +=易知在点()1,2A 处取得最小值,min 4t =,所以目标函数4min 11()216z ==. 考点:线性规划.16.在四面体P ABC -中,1PA PB PC BC ====,则该四面体体积的最大值为________. 3由于平面PBC 是边长为1的正三角形,P ABC A PBC V V --= ,底面面积固定,要使体积最大,只需高最大,故当PA ^平面PBC 时体积最大,2133113V =创?.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin B C A A B -=+. (1)求角C 的大小;(2)若A=6p,△ABC 的面积为43M 为BC 的中点,求AM. 【答案】(1) 2;3C p=(2) 27【解析】 【分析】(1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出根据cos C 的值,可求角C 的大小;(2)求得()6B AC A pp =-+==,ABC D为等腰三角形,由三角形面积公式可求出CB CM 、的值,再利用余弦定理可得出AM 的值. 【详解】(1)∵222cos cos sin sin sin B C A A B -=+∴()2221sin 1sin sin sin sin B C A A B ---=+() ∴222sin sin sin sin sin C B A A B -=+由正弦定理得:222c b a ab -=+即222a b c ab +-=-∴22211cos 222a b c C ab +-=-=-即∵C 为三角形的内角,∴23C p= (2)由(1)知23C p =,∴()6B AC A pp =-+== ∴△ABC 为等腰三角形,即CA=CB 又∵M 为CB 中点 ∴CM=BM 设CA=CB=2x 则CM=BM=x1sin 432CABSCA CB C =鬃=∴CA=4,CM=2由余弦定理得:222cos 27CA CM CM CA C +-鬃=.【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积公式,属于中档题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 得分布列和数学期望.【答案】(1) 30.2;(2)分布列见解析, 400. 【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)X 的可能取值为:240, 300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为111,,236,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】(1)样本的质量指标平均值为0.0417.50.162.5??????30.2=. 根据样本质量指标平均值估计总体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为111,,236, 故从所有产品中随机抽一件,是一、二、三等品的概率分别为111,,236, 随机变量X 的取值为:240, 300,360, 420, 480,()()12111111240;3006636369P X P X C ==?==创=;()()112211115111360;420263318233P X C P X C ==创+?==创=, ()111480224P X ==?, 所以随机变量X 的分布列为:()115112403003604204804003691834E X \=?????.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A-CD-F 为60°,DE ∥CF ,CD ⊥DE ,AD=2,DE=DC=3,CF=6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B-EG-D 的余弦值为14. 【答案】(1)详见解析;(2)点G 满足32CG =. 【解析】 【分析】(1)先证明//BC 平面ADE ,//CF 平面ADE ,可得平面//BCF 平面ADE ,从而可得结果;(2)作AO DE ^于点O ,则AO ^平面CDEF ,以平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系,设()3,,0,15G t t-#,利用向量垂直数量积为零列方程组求得平面BEG 的法向量,结合面DEG 的一个法向量为()0,0,1n =,利用空间向量夹角余弦公式列方程解得12t =,从而可得结果.【详解】(1)因为ABCD 是矩形,所以BC ∥AD , 又因为BC 不包含于平面ADE , 所以BC ∥平面ADE ,因为DE ∥CF ,CF 不包含于平面ADE , 所以CF ∥平面ADE ,又因为BC ∩CF =C ,所以平面BCF ∥平面ADF , 而BF ⊂平面BCF ,所以BF ∥平面ADE .(2)∵CD ⊥AD ,CD ⊥DE∴∠ADE 为二面角A-CD-F 的平面角 ∴∠ADE=60° ∵CD ⊥面ADE\平面CDEF ^平面ADE ,作AO DE ^于点O ,则AO ^平面CDEF ,由2,3AD DE ==,得1,2DO EO ==,以O 为原点,平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴, 建立如图所示的空间直角坐标系O xyz -,则()()()()()3,3,1,0,0,1,0,0,2,0,3,5,0A C D E F --,()3OB OA AB OA DC =+=+=,设()3,,0,15G t t-#,则()()3,2,3,0,,3BE BG t =--=-,设平面BEG 的法向量为(),,m x y z =,则由00m BE m BG ì?ïí?ïî,得323030x y z ty z ì-+-=ïíï-=î,取233x ty z tì=-ïï=íïïî, 得平面BEG 的一个法向量为()23m t t =-, 又面DEG 的一个法向量为()0,0,1n =,23cos ,4413m n t m n m n t t ×\==-+,314t\=, 解得12t =或1322t =-(舍去),此时14CG CF =,得1342CG CF ==,即所求线段CF 上的点G 满足32CG =.【点睛】本题主要考查线面平行的判定定理、空间向量的应用,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20.已知椭圆C :22221(0,0)x y a b a b +=>>的离心率为12,点P 3(3,在C 上.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左右焦点,过2F 的直线l 与椭圆C 交于不同的两点A 、B ,求△1F AB 的内切圆的半径的最大值.【答案】(1) 22143x y += ;(2) 最大值为34.【解析】 【分析】 (1) 根据离心率为12,点33,骣琪琪在椭圆上,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果;(2)可设直线l 的方程为1x m y =+,与椭圆方程联立,可得()2234690m ymy ++-=,结合韦达定理、弦长公式,利用三角形面积公式可得12121221121234F ABm S F F y y m D +=-=+,换元后利用导数可得,1F ABS D 的最大值为3,再结11442F AB S a r rD =?可得结果.【详解】(1)依题意有22222123314c a a b c a bì=ïïï=+íïï+=ïî,解得231a b c ì=ïï=íï=ïî故椭圆C 的方程为22143x y +=.(2)设()()1122,,,A x y B x y ,设1F AB D 的内切圆半径为r ,1F AB D 的周长为121248AF AF BF BF a +++==,11442F AB S a rr D \=?,根据题意知,直线l 的斜率不为零, 可设直线l 的方程为1x my =+,由221431x y x my ìï+=íï=+ïî,得()2234690m y my ++-=, ()()22636340,m m m R D=++>?,由韦达定理得12122269,3434m y y y y m m --+==++, ()12212121212112142F ABm S F F y y y y y y D +\=-+-=,令t ,则1t ³,12124313F AB t S t t tD \==++, 令()13f t t t =+,则当1t ³时,()()21'10,3f t f t t=->单调递增,()()141,33F AB f t f S D \??,即当1,0t m ==时,1F AB S D 的最大值为3,此时max 34r =,故当直线l 的方程为1x =时,1F AB D 内切圆半径的最大值为34.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数21()(2ln ),x f x a x x a R x-=-+?. (1)讨论()f x 的单调性;(2)若()f x 的有两个零点,求实数a 的取值范围.【答案】(1) 当a≤0,()f x 在(0,2)上单调递增,在(2,+∞)递减;当104a <<,()f x 在(0,2)和a +?)上单调递增,在(2,aaa=14,()f x 在(0,+∞)递增;当a >14,()f x 在(02,+a 2)递减;(2) ()1,081ln2a 骣琪?琪-桫.【解析】 【分析】(1)求出()'f x ,分四种情况讨论a 的范围,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,可证明()()00022200000111112ln 0f x a x x a x x x x x =-+-?-?<,()f x 有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,可证明,当14a =时与当0a >且14a ¹时,至多一个零点,综合讨论结果可得结论.【详解】(1)()f x 的定义域为()0,+?,()()()2332122'1x ax x f x a xx x --骣-琪=-+=琪桫, (i )当0a £时,210ax -<恒成立,()0,2x Î时,()()'0,f x f x >在()0,2上单调递增; ()2,x ??时,()()'0,f x f x <在()2,+?上单调递减.(ii )当0a >时,由()'0f x =得,1232,x x x a a===-(舍去), ①当12x x =,即14a =时,()0f x ³恒成立,()f x 在()0,+?上单调递增;②当12x x >,即14a >时,x a骣琪Î琪桫或()2,x ??,()'0f x >恒成立,()f x 在(),2,a骣琪+?琪桫上单调递增;2x 骣Î时,()'0f x <恒成立,()f x 在2a骣琪琪桫上单调递减. ③当12x x <,即104a <<时,x a骣琪??琪桫或()0,2x Î时,()'0f x >恒成立,()f x 在()0,2,a骣琪+?琪桫单调递增,x 骣琪Î琪桫时,()'0f x <恒成立,()f x 在a骣琪琪桫上单调递减. 综上,当0a £时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?;当14a =时,()f x 单调递增区间为()0,+?,无单调递减区间为;当14a >时,()f x 单调递增区间为(),2,a 骣琪+?琪桫,单调递减区间为2a骣琪琪桫. (2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,令()()1212ln ,f x x x f x x =-=,则()12'10f x x=->在()2,+?成立,故()12ln f x x x =-单调递增,()()1052ln5122ln51f x ?=+->,()()0002220000111112ln 0f x a x x a x x x x x =-+-?-?<, ()f x \有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,1088ln 2a \>>--,当0a =时,()21x f x x-=,只有一个零点,不符合题意;当14a =时,()f x 在()0,+?单调递增,至多只有一个零点,不符合题意;当0a >且14a ¹时,()f x 有两个极值,()()1222ln 20,2ln 4f a f a a a a a骣琪=-+>=-琪桫, 记()2ln g x x x x x =-,()()'1ln 1ln 2g x x x xx=++-+, 令()ln h x x x=+,则()3221121'22x h x x x x -=-+, 当14x >时,()()'0,'h x g x >在1,4骣琪+?琪桫单调递增;当104x <<时,()()'0,'h x g x <在10,4骣琪琪桫单调递减, 故()()1''=22ln 20,4g x g g x 骣琪>->琪桫在()0,+?单调递增,0x ®时,()0g x ®,故2ln 0f a a a a a骣琪=->琪桫,又()()1222ln 204f a =-+>,由(1)知,()f x 至多只有一个零点,不符合题意, 综上,实数a 的取值范围为1,088ln 2骣琪-琪-桫.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.(二)选考题:共10分,请在22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C 的极坐标方程为23cos 2sin r q q =+,直线()1:6l R p q r =?,直线()2:3l R pq r =?,设极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求直线12,l l 的直角坐标系方程以及曲线C 的参数方程;(2)若直线1l 与曲线C 交于O 、A 两点,直线2l 与曲线C 交于O 、B 两点,求△AOB 的面积.【答案】(1)13:l y x = ; 2:3l y x ;32,12x cos y sin q q qì=ïíï=+î 为参数;(2)23【解析】 【分析】(1)利用极角的定义、直线的倾斜角的定义以及两直线过原点,可得到直线1l 与直线2l 的直角坐标方程;曲线C 的极坐标方程两边同乘以r 利用222,cos ,sin x y x y rr q r q =+== 即可得其直角坐标方程,然后化为参数方程即可;(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==,同理223OB r ==形面积公式可得结果.【详解】(1)依题意,直线1l 直角的坐标方程为3y x =, 直线2l 直角的坐标方程为3y x ,由2sin r q q =+得223cos 2sin rr q r q =+,222,cos ,x y x sin y r r q r q =+==,()()222314x y r \=-+-=,\曲线C 的参数方程为32cos (12x y sin a a aì=ïíï=+î为参数).(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==, 同理223OB r ==6AOBp?, 11142323222AOB S OA OB sin AOB D \=?创?,即AOB D 的面积为23【点睛】本题主要考查极坐标方程化为直角坐标方程与参数方程,属于中档题. 利用关系式cos sin x y r q r qì=ïí=ïî,222tan x y yxr q ì+=ïíï=ïî可以把极坐标方程与直角坐标方程互化,通过选取相应的参数可以把普通方程化为参数方程. 23.选修4-5:不等式选讲 已知函数()()13f x x a a R =-?. (1)当2a =时,解不等式()113x f x -+?; (2)设不等式()13x f x x -+?的解集为M ,若11[,]32M Í,求实数a 的取值范围.【答案】(1){|01}x x x 3或.(2)14[,]23-. 【解析】试题分析:(1)利用零点分段讨论求解.(2)利用11,32x 轾Î犏犏臌化简313x x a x -+-?得到1x a -?在区间11,32轾犏犏臌上是恒成立的,也就是11a x a -<<+是不等式11,32轾犏犏臌的子集,据此得到关于a 的不等式组,求出它的解即可.解析:(1)当2a =时,原不等式可化为3123x x -+-?.①当13x £时,原不等式可化为3123x x -++-?,解得0x £,所以0x £; ②当123x <<时,原不等式可化为3123x x --+?,解得1x ³,所以12x ?; ③当2x ³时,原不等式可化为3123x x --+?,解得32x ³,所以2x ³.综上所述,当2a =时,不等式的解集为{}|01x x x 3或. (2)不等式()13x f x x -+?可化为313x x a x -+-?,依题意不等式313x x a x -+-?在11,32轾犏犏臌恒成立,所以313x x a x -+-?,即1x a -?,即11a xa -#+,所以113112a a ì-?ïïíï+?ïî.解得1423a -#,故所求实数a 的取值范围是14,23轾-犏犏臌.。