九年级上册数学期中考试试题

合集下载

九年级上册数学期中测试卷及答案

九年级上册数学期中测试卷及答案

九年级上册数学期中测试卷及答案一、选择题(每题2分,共20分)1.下列哪个数是正数?A. -5B. 0C. 5D. 0.5(错误选项,但为保持原题形式列出)正确答案:C2.下列哪个图形是正方形?A. 长方形B. 圆形C. 正三角形D. 正方形正确答案:D3.下列哪个单位是长度的单位?A. 千克B. 米C. 升D. 度正确答案:B4.下列哪个数是整数?A. 0.5B. 1C. 2.5D. 3.5正确答案:B5.关于x的一元二次方程(a-1)x2-1=0的一个根是0,则a的值是?A. -1B. 1C. 1或-1D. -1或0正确答案:A(将x=0代入方程,得到a^2-1=0,解得a=1或a=-1。

但a-1不能为0,所以a不能为1,只能为-1。

)6.已知等腰三角形的腰和底的长分别是一元二次方程x^2-6x+8=0的根,则该三角形的周长为?A. 8B. 10C. 8或10D. 12正确答案:C(方程x^2-6x+8=0的解为x=2或x=4。

若腰为2,底为4,则不满足三角形的三边关系,所以腰为4,底为2,周长为10;若腰为4,另一腰也为4,底为2,周长也为10。

但考虑到题目问的是“该三角形的周长”,应包含所有可能情况,即8(当2为腰,但不符合三角形条件,此解应舍去,但在选择题中作为选项列出)或10。

)(注:此题在实际考试中应明确说明需验证三角形的三边关系,且通常只取符合条件的解。

但在此作为示例,保留了所有选项。

)7-10题(略,可根据实际考试要求补充完整题目及选项)二、填空题(每题2分,共20分)1.一个正方形的边长是5厘米,它的面积是多少平方厘米?答案:25平方厘米2.一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?答案:24厘米(或写为:8×2+4×2=24(厘米))3-10题(略,可根据实际考试要求补充完整题目及答案)三、解答题(每题10分,共30分)1.一个正方形的边长是10厘米,求它的周长和面积。

黑龙江省哈尔滨第一一三中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)

黑龙江省哈尔滨第一一三中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)

.如图所示的由六个小正方体组成的几何体的俯视图是().....如图,点A⊙O上的三点,已知∠AOB=100∘的度数是(C.50∘C.213D.,则下列比例式正确的是(C.AEEC =BFFC图象的一部分,图象过点③+c=0;④abc<.其中正确的个数是(C.3D.21~22题各7分,23~24题各,其中x=3tan30∘++1的方格纸中,有线段AB和线段为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,为底边画出等腰三角形CDK,点K在小正方形的顶点上,且FK,请直接写出线段FK的长x的图象与反比例函数的图象交于.如图,在平面直角坐标系中,已知正比例函数y=13)如图1,求证:∠EAC=∠ABO;)如图2,延长AE交⊙O于点D,连接OD交BC于点F,CD=CF,求证:AB=AD;)在(2)的条件下,延长BC至点I,连接AI交⊙O于点H,连接CH、DH、DI,连接AO并延长交=3OF,∠BAI=2∠HDI,CI=5,求⊙O的半径长..如图在平面直角坐标系中抛物线y=ax2+bx+4经过点A(−2,0)、B(4,0),点D为抛物线顶点.)如图1,求a、b的值;)如图2,横坐标为t的点P在第一象限对称轴右侧抛物线上,连接PA、PD、AD,△PAD的面积为S 与t之间的函数关系式,直接写出自变量t的取值范围;)在(2)的条件下,AP交y轴于点E,连接BC,点F在线段BC上,且在PE上方,连接PF、EF,∠PFE 90∘,S△PEF=9AE2,点Q在第四象限抛物线上,连接AQ,DQ,∠AQD=2∠PDQ,求线段PQ的长.16=1a,⇒a=−6.∴3≠0)把A(−6,−2)代入∵C(4,1),∴PC=4−1=3.OD=3∴S△POC=1/2PC×OD=1/2×2×2=9/224.(1)证明:∵CE,CF分别平分∠ACB,∠ACD∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180∘,∴2∠1+2∠3=180∘∴∠1+∠3=90∘,∵EF//BC∴∠5=∠2=∠1,∴EO=OC∵Rt△ECF中,∠5+∠6=90∘∵∠1+∠3=90,∴∠1=∠5,∴∠3=∠6∴OC=OF,∵EO=OC,OC=OF,∴EO=OF(2)当O运动到AC中点时,四边形AECF是矩形∵O为AC中点,∴AO=OC∵EO=OF,∴四边形AECF是平行四边形∵∠ECF=∠1+∠3=90∘∴平行四边形AECF是矩形25.(1)解:y=−10x+520,(2)(x−20)(−10x+520)=2520解得,x1=38,x2=34答:略(3)设,获利w元。

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024--2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1. 公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A. x2+1xB.x²-xy=0C.x²+2x=1D.ax²+bx=0(a、b为常数)2.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图()3. 已知线段a 、b 、c, 作线段x, 使b:a=x:c, 则正确的作法是( )A B C D4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A. B. C. D5. 若把方程x²-4x-1=0 化为(x+m)²=n 的形式,则n的值是( )A.5B.2C.-2D.-56. 如图,已知矩形ABCD中,E 为BC 边上一点,DF⊥AE 于点F, 且AB=6,AD=12, AE=10, 则DF的长为( )A.5B.113 C.365D.8数学试卷第1页(共6页)7.如图是某地下停车场的平面示意图,停车场的长为40 m,宽 为22m. 停车场内车道的 宽都相等,若停车位的占地面积为520m ².求车道的宽度(单位:m). 设停车场内车道 的宽度为xm, 根据题意所列方程为( )A.(40-2x)(22-x)=520B.(40-x)(22-x)=520C.(40-x)(22-2x)=520D.(40x)(22+x)=520 8.下列给出的条件不能得出△ABD O △ACB 的是( )A.ADAB =BDBC B.∠ADB=∠ACB C.AB 2=AD.AC D.∠ADB=∠ABC9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比13, 点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则点D 的坐标为( )A. (12,2) B. (13,1) C. (14,2)D.(1,2)图一 图二第9题 第10题10.如图(1).正方形ABCD 的对角线相交于点O. 点 P 为OC 的中点,点M 为边BC 上的一个动点,连接OM,过 点O 作OM 的亚线交CD 于点N, 点 M 从点B 出发匀速 运动到点C, 设BM=x.PN=y.y 随 x 变化的图象如图(2)所示,图中m 的值为( )A.22B.1C.2D.2数学试卷第2页(共6页)二、填空题(共5小题,每小题3分,共15分)11.已 知x=1 是关于x 的一元二次方程x+kx-6=0 的一个根,则k 的值为12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如 图①),使AB=CD 、EF=GH:然后摆放成如图②四边形;将直角尺紧靠窗框的一 个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是 形,根据的数学原理是:13.如图,四边形ABCD 是菱形,∠DAB=46°, 对角线AC,BD 于点O ,DH ⊥AB 于H, 连接OH, 则∠DHO= 度.14.如图,在平行四边形ABCD 中 ,E 是线段AB 上一点,连接AC,DE,A C 与 DE 相交于点F,若AE EB=23则S △ADFS△AEF=15.如图,在矩形纸片ABCD 中,AD=22,AB=2, 点P 是AB 的中点,点Q 是BC边上的一个动点,将△PBQ 沿PQ 所在直线翻折,得到△PE Q,连 接DE,CE, 则当 △DEC 是以DE 为腰的等腰三角形时,BQ 的长是 三、解答题(共8小题,共75分) 16. (8分)解方程:(1)x ²-6x+3=0; (2)3x ²-2x-1=0.数学试卷第3页(共6页)17. (8分)在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n1002003005008001000摸到黑球的次数m65118189310482602摸到黑球的频m0.590.630.620.6030.602n a(1)当n 很大时,摸到黑球的频率将会趋近(精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18. (9分)一张矩形纸ABCD, 将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E. 将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F, 折叠出四边形AECF.(1)求证;AF//CE;(2)当∠BAC= _度时,四边形AECF是菱形.数学试卷第4页(共6页)19 . (9分)已知关于x 的一元二次方程x²-ax+a-1=0.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根x1、x₂满足| x1-x₂|=3, 求a 的值;20 . (8分)2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500 个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到 8000元,并且更大优惠让利消费者,售价应定为多少钱?21. (11分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A'B',∠A'(∠A'=∠A), 以线段A'B'为一边,在给出的图形上用尺规作出△AB'C, 使得△A'B'C'心△ABC, 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线(不用尺规作图),并据此写出已知、求证和证明过程.数学试卷第5页(共6页)22. (10分)一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m ( 即FC=4m)放 在F 处 . 从 点 F 处向后退1.8m 到 点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得 的眼睛距地面的高度ED 、GH 为1.5m, 已 知 点B,C,D,F,H 在同一水平线上,且GH ⊥FH,ED ⊥CD,AB ⊥BH. (平面镜的大小忽略不计)方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m, 测 得DE=2m,CE= 2.5m.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知 两条边CE=0.4m,EF=0.2m,测得边CE 离地面距离DC=0.3m.三种方案中,方案 不可行,请根据可行的方案求出灯柱的高度.23 . (12分)在△ABC 中 ,AB=AC,∠BAC=α,点 D 为线段CA 延长线上一动点,连接 DB, 将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE, 连 接 BE,CE.(1)如图1,当α=60°时, ADCE 的值是 ;∠DCE 的度数为 ;(2)如图2,当α=90°时,请写出 ADCE的值和∠DCE 的度数,并就图2的情形说明 理由;(3)如图3,当α=120°时,若AB=8,BD=7,请直接写出点E 到 CD 的距离.数学试卷第6页(共6页)参考答案1--10DCBDCBACB11.5 12.矩形 有一个角是90度的平行四边形是矩形 13.23度 14.5/2 15.1或216.x1=3+ 6 x2=3-617. (1)0.25 (2)略18.(1)【证明】∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA.由翻折知,, ∠BCE =∴∠HAF=∠MCE,∴AF//CE.(2)【解】当∠BAC=30° 时,四边形 A E CF 为菱形.理由如下:∵四边形AB CD是矩形,∴∠D=∠BAD=90°,AB// CD,由(1)得AF//CE,∴四边形A ECF 是平行四边形.∵当四边形AECF 是菱形时,CF=AF,∴∠FCA=∠FAC.∵FC//AE, ∴∠FCA=∠CAB.又∵∠DAF=∠FAC,∴∠DAF=∠FAC=∠CAB.∵∠DAB=90°,∴∠BAC=30° .(2)30度19.(1)证明:∵△=(-a)²-4(a- 1)=a²-4a+4=(a-2)²≥0,∴该方程总有两个实数根;……………(2)解:由根与系数的关系得x₁+x₂=a,x₁x₂= a-1,∵Ix₁-x₂I=√(x₁-x₂)²=√a²-4(a-1)=√(a-2)²=3, ∴a-2=3 或a-2=-3,解得a=5 或a=-1.20.(1)设售价应定为x元,由题意可得:c²-100x+2400=0,解得:x₁=40,X₂=60,更大优惠让利消费者,∴x=40,答:售价应定为40元;(2)设这两周的平均增长率为y,由题意:解得:y₁=0.1=10%,y2=-2.1 (不合题意舍去),答:这两周的平均增长率为10%.21.(1)如图所示,△A'B'C '即为所求;(2)已知,如图,△A B C∽△A'B'C',D 是AB 的中点,D'是A'B'的中点,求证:证明:∵·D是A B的中点,D'是A'B'的中点,△ABC∽△A'B'C',△A'C'D'△ACD,22. 方案二、三不可行选方案一,∵∠ECD=∠ACB,∠EDC=∠ABC, ∴△ABC∽△EDC,设BC=xm,则AB=1.5xm,同理可得△ABF∽△GHF,·AB=1.5cm,BF=BC+CF=(4+x)m,GH=1.5m ,FH=1.5m,解得:x=8,∴AB=1.5x=12(m).23.∴△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC,同理可得:△BDE 是等边三角形,∴∠BDE=60°,BD=BE, ∴∠BDE=∠ABC,∴∠BDA=∠EBC,∴△ABD≌△CBE(SAS), ∴AD=CE,∠BCE=∠BAD=180°—∠BAC=120°,∠DCE=∠BCE一∠ACB=60°,故答案为:1,60;(2))∵AB=AC,∠BAC=90°, ∴∠ACB=∠ABC=45°,同理可得:∠BDE=40°,∴∠BDA=∠EBC, ∴△ABD∽△CBE,∠BCE=∠BAD=180°-∠BAC=90°, ∴∠DCE=∠BCE-∠ACB=45°;(3)如图1,图1作BF⊥CD于F,作EG⊥CD于G,作DHLCE, 交CE 的延长线于H,在Rt△AEF 中,AB=8,∠EAF=180°—∠BAC=60°, ∴AF=8·cos 60°=4,BF=8 sin 60°=4√3,在Rt△BDF 中,BD=7,BF=4√3,∵DF=√7²-(4√3)²=1,∴AD=AF 一DF=3, ∴CD=AD+AC=11,同理(2)可得:∠BCE=∠BAD=60°, ∴CE=√3AD=3√3,∠DCE=∠BCE—∠ACB=30°,在Rt△CDH 中,CD=11,∠DCE=30°,如图2,图2由上知:DF=1, AF=4,∴CD=13,AD=5,CE=√3AD=5√3,综上所述:点E 到CD 的距离为:。

河北省廊坊市2024-2025学年九年级上学期11月期中数学试题(含答案)

河北省廊坊市2024-2025学年九年级上学期11月期中数学试题(含答案)

河北省2025届九年级期中综合评估数学上册全部注意事项:共8页.总分120分,考试时间120分钟.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.音乐课上老师带领同学们玩“抽音符、唱音符”的游戏,老师手中卡片如下(叠放的为相同卡片),卡片背面相同,洗匀后背面朝上,嘉嘉从中抽取一张卡片,抽到的卡片可能性更大的是( )A .C (哆)音符B .D (来)音符C .E (咪)音符D .以上都不对2.根据如图所示的作图方式,可说明正方形的顶点C 在以的长为半径的()A .内B .外C .上D .以上都不对3.如图,与关于点中心对称,则下列结论不一定正确的是( )A .B .C .D .4.下列数中能使成立的的值为( )A .1B .2C .3D .45.抛物线如图所示,下列结论正确的是( )A .B .C .D.以上都不对AB A e ABC △DEF △O BC EF =ABC DEF ≅△△OA OB =//AB DE()220x -=x 2y ax bx c =++0a >0b >0c >6.如图,教室内的地面上有个倾斜的畚箕,手柄与箕面垂直,手柄与水平地面的夹角,小明将它扶起(将畚箕绕点顺时针旋转)后平放在地面,箕面绕点旋转的度数为( )A .B .C .D .7.淇淇作点关于原点的对称点时错看成了作轴的对称点,作得的点与正确点之间的距离为4,则的值为( )A .4B .2C .D .±28.如图,正六边形内接于,为的中点,连接,,四边形的面积为,正六边形剩余部分的面积为,则( )A .6B .4C .3D .29.已知关于的一元二次方程,当时,方程有两个相等的实数根,若将的值在的基础上增大,则此时方程根的情况是()A .有两个不相等的实数根B .有一个实数根C .有两个相等的实数根D .没有实数根10.如图,一块圆形钟表竖直放到一个长方体盒子中,钟表上刻度“2”和“10”恰好和盒子上边沿重合于,两点,若,的长为,则下列结论正确的是( )A .B .CB AB CB 31BCA ∠= A AB A 59 119 120 121(),6a x a 4±ABCDEF O e P BC OA OP AOPB 1S 2S 21S S =x 250x x c -+=0c t =c 0t AB M N BC a =¼MN b a b <a b=C .D .无法比较与11.在古代,一位智者为了保护自己的宝藏,设计了一个充满智慧挑战的宝箱,宝箱有两个钥匙孔,同时插对两把钥匙才可以开启宝箱,一位后人找到了三把外观相同的钥匙,分别为“日”“月”“星”,其中“日”和“星”为正确的钥匙,这位后人从三把钥匙中随机选择两把,能够打开宝藏的概率为()A.B .C .D .112.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的最小值为( )A .-4B .-2C .2D .4二、填空题(本大题共4个小题,每小题3分,共12分)13.废旧电池中含有一些重金属,随意丢弃会污染环境,淇淇和同学利用假期去捡拾废旧电池,则“淇淇捡到废旧电池”是__________事件.(填“必然”“随机”或“不可能”)14.如图,该图案绕其中心至少旋转__________度后能与原图案完全重合.15.定义新运算:.若方程的两个根为和,则__________.16.如图,在矩形中,,,以为直径作,将矩形绕点逆时针旋转,使所得矩形的边与相切,切点为,边与相交于点.连接,则与的位置关系为__________,若,则矩形的面积为__________.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)a b >a b1323122y ax c =+OABC A B C B y 22a c +m n m n mn =++★2320x x ++=1x 2x 121x x +=★ABCD 8BC =AB BC >AB O e ABCD B A BC D '''C D ''O e E A B 'O e F OE OE BC '8BF =ABCD17.(本小题满分8分)解方程:(1).(2).18.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的方格中,是格点三角形,为格点(网格线的交点).(1)画出关于点对称的.(2)将(1)中的绕点顺时针旋转得到,画出.19.(本小题满分8分)“记录永恒经典,传承非遗文化”,嘉嘉组织并拍摄了4部河北省非遗传承短视频,并利用自媒体平台展示和传播,记录内容分别为A—河北梆子,B—吴桥杂技,C—衡水内画,D—杨氏太极拳.为保证视频质量,嘉嘉邀请淇淇从4部作品中随机选择两部试看,并上传到自媒体平台.(1)淇淇选中“蔚县剪纸”非遗视频观看是__________事件.(填“不可能”“随机”或“必然”)(2)补全下列表格,并求出淇淇选择“A—河北梆子”和“C—衡水内画”两个短视频观看的概率.A B C DA CA DAB AB CB DBC AC DCD AD BD20.(本小题满分8分)图1为中医常用碾药工具——药碾,又名惠夷槽,图2是从药碾抽象出来的几何模型,延长交于点,,于点,连接,.图1 图2(1)求证:为的切线.(2)若,,求的长.223x x-=()()21310x x+-+=ABC△OABC△O111A B C△111A B C△1C90221A B C△221A B C△AB Oe C D DO AE⊥E CE12∠∠=CE Oe10cmOD=260∠= OE21.(本小题满分9分)中秋节期间某超市销售一款进价为20元/盒的月饼,市场调查发现,这款月饼每天的销售量y (单位:盒)与销售单价x (单位:元)满足如下关系:.设这款月饼每天的销售利润是w 元.(1)求w 与x 之间的函数关系.(2)当这款月饼的销售单价是多少元时,这款月饼的销售利润最大?最大利润是多少元?22.(本小题满分9分)情景 七巧板又称“智慧板”,是我国古代劳动人民智慧的结晶.为了能更加理性地认识“七巧板”,数学杨老师带领同学们展开了以“七巧板‘巧’在何处”为主题的学习活动.操作 制作七巧板:将一个边长为10cm 的正方形纸片沿对角线折叠,会得到一个等腰直角,再将其沿它的对称轴对折,再对折,直至点O 与点D 重合(图1),然后将其展平,便会得到一个带有折痕的正方形(图2),这些折痕将其分成16个全等的等腰直角三角形,最后沿图中实线进行裁剪,便可得到一副七巧板(图2).(1)图2的成品七巧板中,三角形②绕点O 顺时针至少旋转__________°能与三角形①重合,除三角形①与②外,三角形__________与__________也能通过平移与旋转重合.(2)三角形②按(1)中的旋转方式旋转与三角形①重合的过程中,求扫过的面积.探究 用自制的“七巧板”进行创意拼图,并赋予图案一定的意义.(3)如,“冲浪小组”用七巧板拼出了“一只飞舞的蝴蝶”,寓意:自由与追求.则__________.图323.(本小题满分10分)如图,抛物线与轴交于点,与轴交于点.是第一象限内抛物线上的一个动点,连接,.(1)求抛物线的解析式.()402535y x x =-+≤≤ABCD BD ABD △OB S =阴影区域2cm 23y ax x c =++x ()4,0A y ()0,4C P PA AC(2)如图1,连接,当时,求的面积.(3)如图2,过点作轴于点,交于点,直线能否将分成面积相等的两部分?若能,请求出点的坐标;若不能,请说明理由.图1 图224.(本小题满分12分)如图,以为直径作,为上一点,,与交于点,,.图1 图2(1)如图1,当经过点时,__________.(2)在(1)的条件下,求证:.(3)如图2,将从图1的位置开始绕点顺时针旋转与重合时停止转动),与交于点,设的中点到的距离为.②当时,求的长;②直接写出旋转过程中的最大值.PC //PC AB PCA △P PD x ⊥D AC E AC PAD △P AB O e C O e OQP ABC ≅△△OQ BC G 6AC =8BC =OP C PC =BG CG =OQP △O (OP OB OP BC H PQ M BC d OP AB ⊥BH d河北省2025届九年级期中综合评估数学参考答案1.B 2.B 3.C 4.B 5.C 6.D 7.D 8.C 9.D 10.A 11.A12.D 提示:由题意可知点,四边形为正方形,点.将点代入中,得.,.,,,的最小值为4.故答案为D .13.随机 14.90 15.016.平行 80 提示:如图,延长交于点.与相切,.四边形为矩形,,,.矩形绕点逆时针旋转所得到的矩形为,,,,()0,B c OABC ∴,22c c A ⎛⎫- ⎪⎝⎭,22c c A ⎛⎫- ⎪⎝⎭2y ax c =+224c ac c =+0c < 2ac ∴=-()20a c +≥ 2220a ac c ∴++≥2224a c ac ∴+≥-=22a c ∴+EO BF M C D '' O e 90OEC ∠∴=' A BC D '''//A B C D '''∴EM A B ∴⊥'142BM FM BF ∴=== ABCD B A BC D '''90C C ∠∠∴==' AB CD =8BC BC ='=四边形为矩形,.设,则.,,解得,,矩形的面积为.17.解:(1),,,…………2分,,.…………4分(2),,…………6分,,.…………8分18.解:(1)如图,即所求.…………4分(2)如图,即所求.…………8分19.解:(1)不可能.…………3分(2)补全表格如下:AB C D ABA CA DA BAB CB DB CAC BC DCD AD BD CD ∴EMBC '8ME BC ='∴=OB OE x ==8OM x =-222OM BM OB += ()22284x x ∴-+=5x =10AB CD ∴==∴ABCD 10880⨯=223x x -=22131x x -+=+()214x -=12x -=±13x ∴=21x =-()()21310x x +-+=()()1130x x ++-=()()120x x +-=11x ∴=-22x =111A B C △221A B C △…………6分由表格可知,共有12种等可能的结果,其中符合条件的结果有2种,所以淇淇选择“A 一河北梆子”和“C 一衡水内画”两个短视频观看的概率.…………8分20.解:(1)如图,连接.,.…………1分,,…………2分.,,,,…………4分为的切线.…………5分(2),,,…………6分,…………7分.…………8分21.解:(1)由题意得…………2分.…………4分(2)对称轴,在范围内,,当时,取最大值,…………7分21=126P =OC OD OC = D OCD ∠∠∴=DO AE ⊥ 90AED ∠∴= 290D ∠∠∴+= 12∠∠= 190OCD ∠∠∴+= 90OCE ∠∴= OC CE ∴⊥CE ∴O e 260∠=12∠∠=1260CEA ∠∠∠∴=== 30OEC AED CEA ∠∠∠∴=-= 2220cm OE OC OD ∴===()20w x y=-⋅()()2040x x =--+260800x x =-+-()603021x =-=⨯-2535x ≤≤10-< ∴30x =w此时(元).答:当这款月饼的销售单价是30元时,这款月饼的销售利润最大,最大利润是100元.…………9分22.解:(1)90;③,⑤.…………2分(2)四边形为正方形,,.…………3分,,,…………5分.…………7分(3)25.…………9分23.解:(1)将点与点代入,得…………2分解得抛物线的解析式为.…………3分(2),.…………3分将代入中,得,解得(舍去),,…………5分点,,.…………6分(3)由题意可设直线的解析式为,2306030800100w =-+⨯-= ABCD 90AOB ∠∴= AO BO =222AO BO AB += 22100BO ∴=BO ∴=OB ∴()225cm 2π=()4,0A ()0,4C 23y ax x c =++16120,4,a c c ++=⎧⎨=⎩1,4,a c =-⎧⎨=⎩∴234y x x =-++//PC AB 4p c y y ∴==4P y =234y x x =-++2344x x -++=10x =23x =∴()3,4P 3PC ∴=1134622PCA P S PC y ∴=⋅=⨯⨯=△AC 4y kx =+将点代入上式,得,解得,直线的解析式为.…………7分设点,则点的坐标为.,,,…………9分整理得,解得,(舍去),点.…………10分24.解:(1)1.…………2分(2)证明:,.,,,.…………4分为的直径,,,,.…………6分(3)①如图1,连接.图1由(2)知,,,.()4,0A 044k =+1k =-∴AC 4y x =-+()2,34P m m m -++E (),4m m -+PEA DEA S S = △△PE DE ∴=()23444m m m m ∴-++--+=-+2540m m -+=11m =24m =∴()1,6P OQP ABC ≅ △△COG A ∠∠∴=OA OC = OCA A ∠∠∴=COG OCA ∠∠∴=//OG AC ∴AB O e 90ACB ∠∴= 90OGB ACB ∠∠∴== OG BC ∴⊥BG CG ∴=AH 90C ∠=OA OB = OH AB ⊥AH BH ∴=设,则,.…………8分在中,,即,解得,即.…………10分②.…………12分提示:如图2,连接交于点.图2由题意可知,当时,取最大值,此时,.,,,,,,,,.为的中点,,,.BH x =AH x =8CH x =-Rt CHA △222CH AC AH +=()22286x x -+=254x =254BH=3-OM BC N OM BC ⊥d BN CN =142BN BC ∴==90C ∠= 6AC =8BC=10AB ∴==152OB AB ∴==3ON ∴==OQP ABC ≅ △△6OP AC ∴==8PQ BC ==M PQ 142PM PQ ∴==OM ∴==3d MN ∴==。

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。

其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

2024年北京二中初三(上)期中数学试题及答案

2024年北京二中初三(上)期中数学试题及答案

2024北京二中初三(上)期中数 学考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列平面直角坐标系中的数学曲线既是轴对称图形,又是中心对称图形的是( )A. B.C. D. 2.抛物线()2225y x =−−−的顶点坐标是( )A.()2,5−B.()2,5C.()2,5−−D.()2,5−3.若关于x 的方程2210ax ax −+=的一个根是1−,则a 的值是( )A.1B.1−C.13− D.3−4.下表是用计算器探索函数253y x x =+−时所得的数值:x 0 0.25 0.5 0.75 1y 3− 1.69− 0.25− 1.31 3则方程2530x x +−=的一个解x 的取值范围为( )A.00.25x <<B.0.250.5x <<C.0.50.75x <<D.0.751x << 5.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.218cmD.227cm 6.如图,将ABC △绕点C 顺时针旋转90°得到EDC △.若点A ,D ,E 在同一条直线上,30ACB ∠=°,则ADC ∠的度数是( )A.60°B.65°C.70°D.75°7.在一次聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了90份礼物,则参加聚会的人有( )A.9人B.10人C.11人D.12人8.如图,等边ABC △的边长为2,点O 是ABC △的中心,120FOG ∠=°绕点O 旋转FOG ∠,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD OE =; ②DOE △的面积等于BDE △的面积;③四边形DBEO 的面积始终保持不变; ④BDE △的周长的最小值为3.上述结论中,所有正确结论的序号是( )A.①③B.①②④ C .②③④ D .①③④第Ⅱ卷(非选择题共84分)二、填空题(共16分,每题2分)9.点()1,2−关于原点对称的点坐标是______.10.写出一个开口向上,并且与y 轴交于点()0,1的抛物线的解析式______.11.已知关于x 的一元二次方程220x x a −−=有两个相等的实数根,则a 的值是______.12.把抛物线21y x =−向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为______.13.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧,若该等边三角形的边长为3,则这个“莱洛三角形”的周长是______.14.已知二次函数21y x x =−−,当x m <时,y 随x 的增大而减小,则m 的取值范围是______.15.如图,P A ,PB 分别切O 于A ,B 两点,40P ∠=°,点C 是O 上一点,则ACB ∠的度数为______.16.2024年4月1日,北京二中喜迎300年华诞,小元和小聪两名同学合作制作四个主题为“春”“夏”“秋”“冬”的书签,为校庆献礼,每个书签都先由小元进行绘画,然后再由小聪题字,两位同学完成每个书签各自的工序需要的时间(单位:分钟)如下表所示:______分钟;(2)若想用最短的时间完成这四个书签的制作,制作的顺序应该是______.三、解答题(共68分,其中第17—22题每题5分,第23—26题每题6分,第27—28题每题7分)17.解方程:2280x x −−=.18.如图,在平面直角坐标系中,ABC △三个顶点的坐标分别为()4,4A ,()2,3B ,()5,2C .(1)①以点B 为旋转中心,画出将ABC △按顺时针方向旋转90°后的11A BC △;②以原点O 为旋转中心,画出将ABC △按逆时针方向旋转180°后的222A B C △;(2)在(1)的条件下,222A B C △可以由11A BC △绕某点按顺时针方向旋转得到,则该点坐标为______,旋转角的度数为______.(3)ABC △的外接圆半径长______.19.如图1所示,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图2是一款拱门的示意图,其中拱门最下端18AB =分米,C 为AB 中点,D 为拱门最高点,圆心O 在线段CD 上,27CD =分米,求拱门所在圆半径的长.图1 图220.下面是小宁设计的“作三角形的高”的尺规作图过程.已知:ABC △.求作:AD BC ⊥,垂足为D .作法:如图所示,①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于P ,Q 两点; ②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点D (点D 不与点C 重合),连接AD .所以线段AD 就是所求作的高.根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:AP CP =,AQ =___①___,∴点P 、Q 都在线段AC 的垂直平分线上,∴直线PQ 为线段AC 的垂直平分线,∴O 为AC 中点.∵AC 为直径,O 与线段BC 交于点D ,∵∠ADC=___②___°.(___③___)(填推理的依据)AD BC ∴⊥.21.第十七届北京国际茶业及茶艺博览会于2024年9月6日至9日在北京全国农业展览馆举办,展览馆工作人员利用一边靠墙(墙长26米)的空旷场地为提前到场的观众设立面积为300平方米的封闭型长方形等候区,如图,为了方便观众进出,在两边空出两个宽各为1米的出入口,共用去隔栏绳48米.请问,工作人员围成的这个长方形的相邻两边长分别是多少米?22.已知二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如表: x … 3− 1− 1 3 …y … 3− 0 1 0 …(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为______时,3y >−.23.已知关于x 的一元二次方程()2430x m x m +−+−=. (1)求证:该方程总有两个实数根;(2)若该方程只有一个实数根为负数,求m 的取值范围.24.如图,AB 为O 的直径,C 为O 上一点,D 是弧BC 的中点,过点D 作AC 的垂线,交AC 的延长线于点E ,连接AD .(1)求证:DE 是O 的切线;(2)连接CD ,若30CDA ∠=°,2AC =,求CE 的长.25.2024年巴黎奥运会8月6日单人10米决赛中,全红婵以425.60分的总分夺得金牌,陈芋汐获得银牌,在精彩的比赛过程中,全红婵选择了一个极,具难度的207C (向后翻腾三周半抱膝),如图2所示,建立平面直角坐标系xOy ,如果她从点A 起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y (单位:米)与水平距离x (单位:米)近似满足二次函数关系.图1 图2(1)在平时训练完成一次跳水动作时,全红婵的水平距离x 与竖直高度y 的几组数据如下表: 水平距离x /m 3 h 4 4.5竖直高度y /m 10 11.25 10 6.25根据表中数据,直接写出h 的值为______,满足的二次函数关系式为:______;(2)在(1)的条件下,记全红婵训练时入水点的水平距离为1d ;比赛当天的某一次跳水中,全红婵的竖直高度y 与水平距离x 近似满足二次函数关系:254068y x x =−+−,记比赛当天入水点的水平距离为2d ,判断1d 与2d 的大小关系,并说明理由.26.在平面直角坐标系xOy 中,抛物线()()22130y ax a x a =−++>的对称轴为直线x t =. (1)t =______(用含a 的式子表示);(2)已知点12,y a ⎛⎫− ⎪⎝⎭,25,y a ⎛⎫ ⎪⎝⎭在抛物线上,若12y y =,求出a 的值; (3)已知点()12,y −,()21,y ,334,y a ⎛⎫+⎪⎝⎭在抛物线上,比较1y ,2y ,3y 的大小,并说明理由. 27.如图,ABC △中,ACB α∠=,AC BC =,点D 在AB 上(不与A ,B 重合),取AD 的中点F ,连结CD ,CF ,将线段CD 绕点C 顺时针旋转180α−°得到线段CE ,连结AE ,BE .(1)依题意,请补全图形;(2)判断BE 与CF 的数量关系,并证明;(3)当90α=°,4AC BC ==时,设BE 与CF 相交于点H ,则点D 在AB 上运动的过程中,线段AH 的最小值为______.28.在平面直角坐标系xOy 中,设O 的半径为r ,对于O 外一点P ,给出如下定义:若O 上存在点M ,使点P 绕点M 逆时针旋转120°后的对应点Q 落在O 的内部或O 上,则称点P 是点M 关于O 的“逆转点”.备用图(1)如图,当1r =,()1,0M 时,①点()2,1A −,3,22B ⎛ ⎝⎭,()3,0C 中,点______是点M 关于O 的“逆转点”; ②若点P 是点M 关于O 的“逆转点”,则点P 的横坐标的最大值是______;(2)当r =P 是直线3y =+P 的横坐标为t ,当点P 是点M 关于O 的“逆转点”时,求出t 的取值范围.北京二中教育集团2024—2025学年度第一学期初三数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.BACCA 6-8.DBD二、填空题(共16分,每小题2分)9. (1,-2) 10.例如21y x =+ 11.-1 12.2(1)2y x =++ 13.3π 14.12m ≤ 15.70︒或110︒ 16.35,夏秋春冬三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分, 第27-28题每题7分)17.解:(4)(2)0x x -+= ………………………………………… 3分 ∴1242x x ==-, ………………………………………… 5分18.(1)略 ………………………………………… 2分(2)(-3,2),90° ………………………………………… 4分 (3)102 ………………………………………… 5分19.解:连接AO ,CD 过圆心,C 为AB 的中点,CD AB ∴⊥, ……………………… 1分18AB =,C 为AB 的中点,9AC BC ∴==, ……………………… 2分设圆的半径为x 分米,则OA OD x ==分米,27CD =,27OC x ∴=-,在Rt OAC ∆中,222AC OC OA +=, …………………………………… 3分 2229(27)x x ∴+-=,15x ∴=(分米), …………………………………… 4分 答:拱门所在圆的半径是15分米. ………………………………… 5分 20.(1)图略 ………………………………………………… 1分 (2)①CQ ………………………………………………… 2分②90°………………………………………………… 3分 ③直径所对的圆周角是直角 ……………………………… 5分21.解:设封闭型长方形等候区的边AB 为x 米, …………… 1分由题意得,x(48−2x +2)=300, …………… 2分 整理得,x 2−25x +150=0,解得x 1=10,x 2=15, …………… 3分 当x =10时,BC =30>26;当x =15时,BC =20<26, ∴x =10不合题意,应舍去. …………… 4分 答:封闭型长方形等候区的边AB 为15米,BC 为20米. …… 5分22.解:(1)设二次函数的表达式为(1)(3)y a x x =+-,把(1,1)代入得12(2)a =⨯⨯-, 解得14a =-,∴二次函数的表达式为1(1)(3)4y x x =-+-, 即2113424y x x =-++; ……………………………… 2分 (或顶点式:21(1)14y x =--+) (2)如图,……………………………… 3分(3)35x -<< ……………………………… 5分23.(1)证明:由题意得,∆=24-b ac =2(4)41(3)--⨯⨯-m m=244-+m m =2(2)-m ≥0,……………………………… 1分 ∴该方程总有两个实数根. ……………………………… 2分(2)解:2(4)30x m x m +-+-=,解得 1=3-x m ,2=1-x . ……………………………… 3分 ∵只有一个实数根为负数,∴3-m ≥0, ……………………………… 4分 ∴m ≥3. ……………………………… 5分24.(1)证明:连接OD ,D 是BC 的中点,BAD CAD ∴∠=∠,………………… 1分 OA OD =,OAD ODA ∴∠=∠,即BAD ODA ∠=∠,CAD ODA ∴∠=, //OD AE ∴, …………………………………… 2分 DE AC ⊥,∴∠ODE =180°-∠AED =90° DE OD ∴⊥半径,DE ∴是O 的切线; ……………………………… 3分(2)解:连接OC ,CD ,30CDA ∠=︒,223060AOC CDA ∴∠=∠=⨯︒=︒, OA OC =,AOC ∴是等边三角形, AC OA OD ∴==, ∵由(1)可得//OD AC ,∴四边形ACDO 是菱形,2CD AC ∴==,60CDO CAO ∠=∠=︒, DE 是O 的切线,90ODE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 112CE CD ∴==. ……………………………… 6分 (或连接BC 构造小矩形,酌情给分)25.(1)3.5,25( 3.5)11.25y x =--+; ……………………………… 3分(2)d 1<d 2 ……………………………… 4分25( 3.5)11.25y x =--+,当0y =时:205( 3.5)11.25x =--+, 解得:5x =或2x =(不合题意,舍去); ……………… 5分 15d ∴=米;254068y x x =-+-,当0y =时:2540680x x -+-=, 解得:21545x =+或21545x =-+(不合题意,舍去); ∴2215455d =+>,12d d ∴< ……………………………… 6分26.(1)1a a+ ………………………………1分 (2)∵y 1=y 2∴点(2a -,y 1),(5a,y 2)关于直线x=t 对称 ∴ 5a -1a a +=1a a +-(2a-) ……………………………2分 解得12a = ……………………………3分 (3)111a t a a+==+ ,∵a >0 ∴t >1 ……………………………4分∵(34a +,y 3)关于直线x=t 对称点为(12a--,y 3) ∴1221t a ---<<< ∵当x <t 时,y 随x 的增大而减小 ……………………………5分 ∴y 3>y 1>y 2 ……………………………6分 (或代数法直接做差,对一个给2分)27.(1)………………………………………1分(2)BE =2CF ………………………………………2分 证明:延长EC 至M ,使CM =CE ,连接BM∵F 是AD 的中点∴CF ∥DM ,2CF=DM∵∠ACB =α∴∠BCM =180°-∠ACB=180°-α=∠ECD∴∠BCM +∠BCD =∠ECD +∠BCD即∠DCM=∠ECB∴在△DCM 和△ECB 中CD CE DCM ECB CM CB =⎧⎪∠=∠⎨⎪=⎩∴△DCM ≌△ECB (SAS ) ………………………………… 6分∴BE =DM= 2CF(或倍长中线,第一个全等给1分,倒角给2分,第二个全等给1分)(3)2 ………………………………………8分28.(1)①B ………………………………1分 ②52………………………………3分 (2)如图,点M 关于⊙O 的“逆转点”所形成的区域是圆环,外圆半径为3+……………………………4分直线3y =+y 轴交点M (0,3+……………5分 连接ON ,则ON =OM ,且∠MON =120° ……………………6分 作NH ⊥x 轴于点H ,则∠NOH =30°故N x=3322+-=-∴32+-≤t ≤0 ………………………………7分。

重庆市南开中学校2024-2025学年九年级上学期期中数学试题(解析版)

重庆市南开中学校2024-2025学年九年级上学期期中数学试题(解析版)

重庆南开中学2024-2025学年度上学期期中考试初2025届数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.17−的相反数是( ).A.17− B.17C. −7D. 7【答案】B【解析】【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数, 0的相反数是0.【详解】解:17−的相反数是17,故选:B.2. 下列化学仪器示意图中,是轴对称图形的是()A. 蒸馏烧瓶B. 烧杯C. 圆底烧瓶D. 分液漏斗【答案】C【解析】【分析】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.根据轴对称图形的定义逐项分析即可.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选C .3. 二次函数()20y ax bx c a ++≠的图象如图所示,则下列选项正确的是( )A. 0a >B. 0b >C. 240b ac −<D. 0c >【答案】A【解析】 【分析】本题考查根据二次函数图象判断各项系数和式子的符号,熟练掌握二次函数图象与系数的关系是解题的关键.根据抛物线的开口方向和对称轴的位置确定a 、b 的符号,由抛物线与x 轴的交点个数确定∆的符号,由抛物线与y 轴的交点位置确定c 的符号,即可得出答案.【详解】解:A 、∵抛物线的开口向上,∴0a >,故此选项符合题意;B 、∵抛物线的对称轴在y 轴右侧,∴02b a−>, ∵0a >,∴0b <,故此选项不符合题意;C 、∵抛物线与x 轴的两个交点,∴240b ac ∆=−>,故此选项不符合题意;D 、∵抛物线与y 轴的交点在负半轴上,∴0c <,故此选项不符合题意;故选:A .4. 将ABC 沿BC 方向平移至DEF ,点A ,B ,C 的对应点分别是D ,E ,F ,使得:5:3BC EC =,则ABC 与GEC 的周长之比为( )A. 2:3B. 2:5C. 5:3D. 3:5【答案】C【解析】 【分析】本题考查平移的性质,相似三角形的判定与性质,熟练掌握平移的性质、相似三角形的判定与性质是解题的关键.根据平移的性质得到AB GE ∥,从而可得到ABC GEC △∽△,利用相似三角形周长于相似比可得答案. 【详解】解:∵ABC 沿BC 方向平移至DEF ,∴AB DE ∥,即AB GE ∥,∴A EGC ∠=∠,B GEC ∠=∠,∴ABC GEC △∽△,∴ABC 与GEC 的周长之比:5:3BCEC =, 故选:C .5. 中国选手郑钦文顺利入围2024年WTA 年终总决赛女子单打项目,该项目第一阶段采用组内循环赛制,即每两名选手之间比赛一场.现计划安排28场组内循环赛,共有几名选手参加组内循环赛?设一共有x 名选手参加组内循环赛,根据题意可列方程为( )A. ()128x x −=B. ()128x x +=C. ()11282x x +=D. ()11282x x −= 【答案】D【解析】【分析】此题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.设一共有x 名选手参加组内循环赛,则每个队参加()1x −场比赛,则共有()112x x −场比赛,可以列出一个一元二次方程. 【详解】解:由题意可列方程为:()11282x x −=, 故选:D .6. 估计+)A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间【答案】D【解析】【分析】本题考查二次根式的混合运算,无理数的估算,解题的关键是熟练掌握二次根式的运算法则.先利用二次根式的运算法则将原式化简,再对无理数进行估算.【详解】解:++,3<<∵67∴9310+<故选:D.7. 南南用相同的小圆圈按照一定的规律摆成了“中”字,第①个图形中有10个小圆圈,第②个图形中有16个小圆圈,第③个图形中有22个小圆圈,…,按照此规律排列下去,则第⑧个图形中小圆圈的个数是()A. 42B. 52C. 46D. 58【答案】B【解析】【分析】考查了图形的变化类问题,解题的关键是仔细观察图形并找到进一步解题的规律,难度不大.仔细观察图形变化,找到图形变化规律,利用规律求解.×+=个小圆圈,【详解】第①个图形中一共有16410×+=个小圆圈,第②个图形中一共有26416×+=个小圆圈,第③个图形中一共有36422…,∴第n 个图形中一共有()64n +个小圆圈,∴第⑧个图形中小圆圈的个数是86452×+=,故选:B .8. 如图,AB 是O 的直径,AE 、CE 、CB 为O 的弦,132AO =,12AE =,则sin BCE ∠=( )A. 512B. 1312C. 513D. 125【答案】C【解析】【分析】本题考查了圆周角定理,求一个角的正弦值,勾股定理;根据AB 是O 的直径,得出90AEB ∠=°,再运用勾股定理算出5BE ,再结合 EBEB =,则BCE BAE ∠=∠,所以5sin sin 13BE BCE BAE AB ∠=∠==,即可作答. 【详解】解:连接BE ,如图:∵AB 是O 的直径,∴90AEB ∠=°, ∵132AO =, ∴13AB =,在Rt ABE △中,5BE ,∵ EBEB =,∴BCE BAE ∠=∠, ∴5sin sin 13BE BCE BAE AB ∠=∠==, 故选:C . 9. 如图,在正方形ABCD 中,O 是对角线BD 的中点,E 为正方形内的一点,连接BE ,CE ,使得CB CE =,延长BE 与ECD ∠的角平分线交于点F .若BEC α∠=,连接OF ,则FOD ∠的度数为( )A. 290α−°B. 1452α°+C. 1902α°−D. 245α−°【答案】A【解析】 【分析】连接DF ,先证明∴()SAS CEF CDF ≌,得到CEF CDF ∠=∠,从而得180CDF CEF α∠=∠=°−,继而90BFD ∠=°,然后利用直角 三角形的性质,得出OF OB =,从而有45OFB OBF α∠=∠=−°,然后由三角形外角的性质可求解.【详解】解:连接DF ,如图,∵正方形ABCD∴BC CD =,45CBD CDB ∠=∠=°,∵CB CE =∴CE CD =,CBE BEC α∠=∠=, ∴45DBE α∠=−°,∵CF 是ECD ∠角平分线∴ECF DCF ∠=∠ ∵CF CF =,ECF DCF ∠=∠,CE CD =, ∴()SAS CEF CDF ≌∴CEF CDF ∠=∠,∴180CDF CEF α∠=∠=°−∴18045135BDFCDF CDB αα∠=∠−∠=°−−°=°− ∴1354590BDF DBE αα∠+∠=°−+−°=° ∴90BFD ∠=°∵O 是对角线BD 的中点,∴OF OB =∴45OFB OBF α∠=∠=−° ∴4545290FOD OFB OBF ααα∠=∠+∠=−°+−°=−° 故选:A .【点睛】本题考查正方形的性质,直角三角形的性质,等腰三角形的性质,三角形外角的性质,全等三角形的判定与性质,证明90BFD ∠=°是解题的关键.10. 给定三个互不相等的代数式,先将任意两个代数式作差(相同的两个代数式只作一次差),再将这些差“绝佳操作”.例如:对于m ,n ,p 作“绝佳操作”,得到m n m p n p −+−+−.下列说法:①对2,4−,5作“绝佳操作”结果是18;②对m ,n ,p 作“绝佳操作”的结果一共有8种;③对22a ,66a −,42a 作“绝佳操作”的结果为28,则a的值为1−或1−;其中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查新定义和绝对值化简,解一元二次方程,理解万岁新定义是解题的关键,注意分类讨论. 利用绝对值的性质进行逐个计算判断即可. 【详解】解:①()242545−−+−+−−的的18=,故①正确;②当m n p >>时,则22m n m p n p m n m p n p m p −+−+−=−+−+−=−,当m p n >>时,则22m n m p n p m n m p n p m n −+−+−=−+−−+=−,当n m p >>时,则22m n m p n p m n m p n p n p −+−+−=−++−+−=−, 当n p m >>时,则22m n m p n p m n m p n p n m −+−+−=−+−++−=− 当p m n >>时,则22m n m p n p m n m p n p p n −+−+−=−−+−+=−当p n m >>时,则22m n m p n p m n m p n p p m −+−+−=−+−+−+=− ∴对m ,n ,p 作“绝佳操作”的结果一共有6种,故②错误;③当226642a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=,化简得:2260a a −−=,解得:1a =+1a =−; 当224266a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:2340a a −−=,解得:4a =(舍去)或1a =−;当266242a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:6828a −=,解得:6a =(舍去); 当266422a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:23100a a −+=,∵()234110310∆=−−××=−<∴无解;当242266a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:8a −=,解得:8a =−(舍去), 当242662a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:4828a −+=,解得:5a =−(舍去),综上,a 的值为11−,故③错误;∴只有①正确,共1个,二、填空题:(本题共8个小题,每小题4分,共32分)请将每个小题的答案直接填在答题..卡.中对应的横线上. 11. 计算:()01tan3012−°−−=________. 【答案】12##0.5 【解析】【分析】本题主要考查实数混合运算,零指数幂,负整理指数幂,特殊角的三角函数,解题的关键是掌握分负整数指数幂、零指数幂的规定,熟记特殊锐角的三角函数值.【详解】解:()01tan3012−°−−112 =−−112=− 12=. 故答案为:12. 12. 正八边形每个外角的度数为_____.【答案】45°##45度【解析】【分析】本题主要考查了正多边形外角和定理,根据任何一个多边形的外角和都是360°求解即可.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数是:360845°÷=°.故答案为:45°.13. 为了全面推进素质教育,助力学生健康成长,公能学校开设了多门选修课程.其中南南和开开想从刺绣、糖画、国家疆土、巧匠工坊中选修一门课程,两名同学恰好选修同一门课程的概率为________. 【答案】14【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:用A 、 B 、C 、D 分别表示刺绣、糖画、国家疆土、巧匠工坊,画树状图如图,共有16种等可能的结果,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率为:41164=. 14. 如图,点A 在反比例函数()0k yk x=≠图象上,过点A 作AB x ⊥轴于点B ,连接OA ,若ABO 的面积为2,则k =________.【答案】4【解析】【分析】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k .本知识点是中考的重要考点,同学们应高度关注.根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是122k =,再根据反比例函数的图象位于第二象限即可求出k 的值. 【详解】解:根据题意可知:221AOB S k == , 又反比例函数的图象位于第一象限,0k >,则4k =.故答案为:4.15. 若二次函数232y x x =−+过点(),3m ,则代数式2262023m m −+=________. 【答案】2025【解析】【分析】本题考查的是抛物线的性质.掌握“点在抛物线上,则点的坐标满足函数解析式”是解本题的关键.由于抛物线经过点(),3m ,则231m m −=,把2262023m m −+整理后整体代入即可. 【详解】∵二次函数232y x x =−+过点(),3m , ∴2323m m −+=, ∴231m m −=,∴()222620232320232120232025m m m m −+=−+=×+=. 故答案为:2025.16. 关于x 的一元一次不等式组()341221x x x x m − ≤−+≥−+至少有2个整数解,且关于y 的分式方程13222m y y−=−−−的解为非负整数,则符合条件的整数m 的值之和为________. 【答案】2 【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组,掌握相应的计算方法是关键. 先解不等式组,确定m 的取值范围25<≤m ,再把分式方程去分母转化为整式方程,解得22m y −=,由分式方程有非负整数解,确定出的值,即可解答.【详解】解:()341221x x x x m − ≤−+≥−+①② 解①得:2x ≤, 解②得:23m x −≥, ∴223m x −≤≤, ∵不等式组至少有2个整数解, ∴213m −≤, 解得:5m ≤;13222m y y−=−−−, 去分母得:1243m y −=−+, 解得:2my =, ∵分式方程的解为非负整数,且2y ≠ ∴0m ≥且4m ≠的偶数, 又∵5m ≤ ∴2m =,0∴符合条件的整数m 的值之和为202+=. 故答案:2.17. 如图,在矩形ABCD 中,4=AD ,点E 为AB 中点,将矩形沿着EF 所在的直线翻折至矩形ABCD 所在的平面,点B ,C 的对应点分别是B ′,C ′,B E ′与CD 交于点G ,使得CF GF =,连接AB ′,B F ′,AF ,若25B G GF ′=,则GF =________;AB F S ′= ________.【答案】 ①. 5 ②. 985【解析】【分析】过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形,根据矩形的性质,结合折叠的性质可得4GH B C ′′==,GF GE =,令5GF CF a ==,则2B G C H a ′′==,5CF C F a ′==,可知3HF C F C H a ′′=−=,根据勾股定理即可求解,则2B G ′=,7BE B E ′==,令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,再证明B OG B AE ′′△∽△,DOA MOB ′△∽△,结合相似三角形的性质求得2855B M AD ′==,由1122AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅△△△,即可求解. 【详解】解:在矩形ABCD 中,4AD BC ==,AB CD =,90B C D ∠==∠=°,AB CD ∥,则BEF DFE ∠=∠,由折叠可知,BE B E ′=,CF C F ′=,4BC B C ′′==,90C C ′∠=∠=°,90EB C B ′∠=∠=°,BEF B EF ′∠=∠,则B EF DFE ′∠=∠, ∴GF GE =,为过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形, ∴4GHB C ′′==,B G C H ′′=, ∵25B G GF ′=,CF GF =,令5GFCF a ==,则2B G C H a ′′==,5CF C F a ′==, ∴3HF C F C H a ′′=−=,由勾股定理可得:222GH GF HF =−,即:()()222453a a =−,解得:1a =,∴5GF =,则2B G ′=,7BEB E ′==, 令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,∵点E 是AB 的中点,∴7AE BE ==,即14ABCD ==, ∵AB CD ∥,∴B OG B AE ′′△∽△,B G B O GF OA ′′==∴OG B GAE B E ′=′,即277OG =, ∴2OG =,∴7OF OG GF =+=,则2OD CD OF CF =−−=, ∵DOA MOB ′∠=∠ ∴DOA MOB ′△∽△,∴25B M B O AD OA ′′==,则2855B M AD ′==, ∴1118987422255AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅=××+=, 故答案为:5,985. 【点睛】本题考查矩形与折叠问题,勾股定理,相似三角形的判定及性质,平行线分线段成比例等知识点,熟练掌握相关图形的性质是解决问题的关键.18. 一个四位数M 各数位上的数字均不为0,若将M 的千位数字和个位数字对调,百位数字和十位数字对调,得到新的四位数N ,则称N 为M 的“翻折数”,规定()11M NF M +=.例如:1235的“翻折数”为5321,()12355321123559611F +==,则()2678F =________;若()5001200101M x y =+++(M ,y 为整数,59x ≤≤,18y ≤≤),M 的“翻折数”N 能被17整除,则()F M 的最大值为________. 【答案】 ①. 1040 ②. 757 【解析】【分析】根本题主要考查了有理数的混合运算,二元一次方程的解,列代数式,本题是阅读型题目,准确理解题干中的定义和公式并熟练应用是解题的关键.据()11M NF M +=代入求解()2678F 即可;首先表示出s 和t 的“翻折数”,然后求出3153x y ++的取值范围,进而分类讨论求得x ,y 的值,然后代入()11M NF M +=求解即可. 【详解】根据题意可得,()267887622678104011F +==;∵()5001200101M x y =+++(M ,y 为整数59x ≤≤,18y ≤≤), ∴M 的千位数字为6,百位数字为210x −,十位数字为1y +,个位数字为1, ∴M 的“翻折数”N 为()()10001001102106y x +++−+201001006x y =++()175593153x y x y =+++++,∵59x ≤≤,18y ≤≤, ∴333153150x y ≤++≤, ∵M 的“翻折数”N 能被17整除, ∴3153x y ++能被17整除, ∵x ,y 都是整数, ∴3153x y ++是整数,∴431533x y +=+,51,68,85,102,119,136,∴当431533x y +=+时,x ,y 无整数解, 当131535x y +=+时,13x y = = (舍去)或62x y = =,当831536x y +=+时,x ,y 无整数解, 当531538x y +=+时,x ,y 无整数解, 当2315310x y +=+时,36x y == (舍去)或85x y = = ,当9315311x y +=+时,x ,y 无整数解, 当6315313x y +=+时,x ,y 无整数解,∴当62x y = =时,()5001200610216231M =+×+×+=,1326N =,()6231132668711F M +==, 当85x y = =时,()5001200810516661M =+×+×+=,1666N =,()6661166675711F M +==, ∴()F M 的最大值为757, 故答案为:1040,757.三、解答题:(本大题共8个小题,第19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()22()m m n m n +−+(2)2214123a a a a −+÷ +【答案】(1)2n −; (2)321a a +−. 【解析】【分析】本题考查了整式的运算和分式的混合运算.解题的关键是掌握整式和分式混合运算顺序和运算法则.(1)利用完全平方公式和单项式乘多项式展开,再合并即可;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果即可. 【小问1详解】解:()22()m m n m n +−+2222(2)m mn m mn n =+−++22222m mn m mn n =+−−− 2n =−;【小问2详解】解:2214123a a a a −+÷ + 2221413a a a a a+−÷+ ()()()321·2121a a a a a a ++=+− 321a a +=−. 20. 为了全面了解学生对校史的掌握情况,公能学校开展了校史知识竞赛.现从七、八年级的学生中各随机抽取20名学生的比赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分为四组:A .90100x <≤;B .8090x <≤;C .7080x <≤;D .6070x <≤;),下面给出了部分信息: 七年级20名学生的竞赛成绩为:68,76,78,79,84,85,86,86,86,86, 88,89,89,91,91,94,94,95,95,100.八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. 七、八年级所抽学生的校史知识竞赛成绩统计表年级 七年级 八年级 平均数8787中位数 87 b众数 a92根据以上信息,解答下列问题:(1)填空:a =________;b =________;m =________;(2)根据以上数据分析,你认为在此次知识竞赛中,该校七、八年级中哪个年级学生对校史的掌握情况更好?请说明理由(写出一条理由即可);(3)公能学校七年级有500名学生、八年级有600名学生参加此次校史知识竞赛,请估计七、八年级参加此次知识竞赛的成绩优秀(90)x >的学生共有多少人? 【答案】(1)86;87;40(2)八年级学生安全知识竞赛成绩较好,理由见解析 (3)415 【解析】【分析】(1)根据众数和中位数定义求a 、b 值,先求出B 组人数占的百分比为35%,即可由%110%15%35%m =−−−求出m 值;(2)根据两个年级成绩的平均数相同,但八年级的中位数高于七年级,可得出结论; (3)用各年级的总人数乘以年级的优秀率,再相加,列式计算即可求解. 【小问1详解】解:在七年级20名学生的竞赛成绩中86出现的次数最多,故众数86a =; ∵八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. ∴B 组人数占的百分比为:7100%35%20×=, ∵C 组人数占的百分比为15%,D 组人数占的百分比为10%, ∴A 组人数占的百分比为%110%15%35%40%m =−−−=,即40m =. ∴八年级20名学生竞赛成绩的中位数在B 组,的∴把八年级20名学生的竞赛成绩从小到大排列,排在中间的两个数分别是87,89,故中位数8789872b +=, 故答案:86;87;40. 【小问2详解】解:八年级学生安全知识竞赛成绩较好,理由如下:因为两个年级成绩的平均数相同,但八年级的中位数高于七年级,所以得到八年级学生安全知识竞赛成绩较好(答案不唯一); 【小问3详解】 解:750060040%20×+× 175240+415=(人), 答:估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数大约是415人.【点睛】本题考查众数,中位数,统计表,扇形统计图,用样本估计总体,掌握相关统计量的意义以及计算方法是解答本题的关键.21. 在学习了平行四边形与正方形的相关知识后,智慧小组进行了更深入的探究.他们发现,如图所示的正方形ABCD ,分别取BC ,CD 的中点M ,N ,连接AM ,DN 交于点E ,过B 作AM 的垂线,交AM 于点Q ,交AD 于点P .则四边形BPDN 是平行四边形.(1)用尺规完成以下基本作图:过B 作AM 的垂线,交AM 于点Q ,交AD 于点P (只保留作图痕迹).(2)根据(1)中所作图形,智慧小组发现四边形BPDN 是平行四边形成立,并给出了证明,请补全证明过程.证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥.又∵M ,N 分别为BC ,CD 的中点,∴12DM CD =,12CN BC =,∴ ① ,在ADM 与DCN 中,为AD CD ADM C DM CN =∠=∠ =∴()ADM DCN SAS ≌.∴ ② .又∵90CDN ADN ∠+∠=°,∴90DAM ADN ∠+∠=°,∴90AED ∠=°,又∵BP AE ⊥,∴90AQP AED ∠=∠=°,∴ ③ .又∵DP BN ∥ ∴四边形BPDN 是平行四边形.进一步思考,智慧小组发现任取BC ,CD 的上点N ,M (M 不与C ,D 重合),DM CN =,连接AM ,DN ,过B 作AM 的垂线,交AD 于点P ,则四边形BPDN 是 ④ .【答案】(1)见解析 (2)DM CN =;DAM CDN ∠=∠;∥BP DN ;进一步思考:四边形BPDN 是平行四边形 【解析】【分析】(1)利用尺规基本作图——经过直线外一点作已知直线的第一线作法作出图形即可;(2)先证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠.从而证得90AQP AED ∠=∠=°,即可得到∥BP DN .又由正方形的性质得DP BN ∥,即可得出结论;进一步思考:证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠,再证明∥BP DN ,又由正方形的性质得DP BN ∥,即可得出结论. 【小问1详解】解:如图所示,BP 就是所求作的经过点B 垂直于AM 于Q ,交AD 于P 的直线,【小问2详解】证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 又∵M ,N 分别为BC ,CD 的中点, ∴12DM CD =,12CN BC =, ∴DM CN =,在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 进一步思考:如图,∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 故答案为:平行四边形.【点睛】本题考查正方形的性质,全等三角形的判定与性质,尺规基本作图—作垂线,平行四边形的判定.熟练掌握正方形的性质,和平行四边形的判定是解题的关键.22. 重庆金沙天街某家蛋糕店推出了“流沙羊角”和“开心果羊角”两款特色蛋糕.(1)购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,求“流沙羊角”和“开心果羊角”的单价分別为多少元?(2)国庆节当天,蛋糕店进行促销活动,将“流沙羊角”的单价降低了2m 元,“开心果半角”单价降低了m 元,节日当天“流沙羊角”的销量是“开心果羊角”销量的1.2倍,且“流沙羊角”的销售额为960元,“开心果羊角”的销售额为750元,求m 的值.【答案】(1)“流沙羊角”的单价为20元,“开心果羊角”的单价为17元 (2)2 【解析】【分析】本题考查二元一次方程组的应用,分式方程的应用,正确列出方程组或方程是解题的关键. (1)设“流沙羊角”的单价为x “开心果羊角”的单价为y 元,根据购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,列出方程组,求解即可. (2)根据销量等于销售额除以销售单价,以“流沙羊角”的销量是“开心果羊角”销量的1.2倍,列出分式方程求解即可. 【小问1详解】解:设“流沙羊角”的单价为x 元,“开心果羊角”的单价为y 元,根据题意,得37254x y x y +=+= , 解得:2017x y = =, 答:“流沙羊角”的单价为20元,“开心果羊角”的单价为17元. 【小问2详解】 解:根据题意,得960750 1.220217m m=×−−, 解得:2m =,经检验,2m =是方程的解且符合题意, ∴m 的值为2.23. 如图1,在菱形ABCD 中,5AB =,8BD =,动点P 从点A 出发,沿着A B C −−的路线运动,到达C 点停止,过点P 作PQ BD ∥交菱形的另一边于点Q .设动点P 行驶的路程为x ,点P 、Q 的距离为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数y 的图象,并写出函数y 的一条性质;(3)函数11y x b 2=+与函数y 只有一个交点,求b 的取值范围. 【答案】(1)()()80558165105x x y x x ≤≤ =−+<≤ ; (2)作图见解析,当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小; (3)50b −≤<或112b =. 【解析】【分析】(1)分点P 在AAAA 上和点P 在BC 上两种情况讨论,利用相似三角形的判定及性质构造等量关系,即可得到答案;(2)根据(1)所得函数关系式,利用描点法画图,再写出该函数的性质即可;(3)结合函数图象,将()5,8、()0,0和()10,0代入11y x b 2=+,分别求出b 的值,即可得出b 的取值范围.【小问1详解】解:如图,点P 在AAAA 上时,05x ≤≤,∵PQ BD ∥, ∴APQ ABD ∽,∴AP PQ AB BD =即58x y=, ∴85y x =, ∵5AB =,如图,点P 在BC 上时,∵四边形ABCD 是菱形, ∴5BC AB ==, ∴10PC x =−,当点P 在BC 上时,510x <≤, ∵PQ BD ∥, ∴CPQ CBD ∽,∴CP PQ CB BD =即1058x y −=, ∴8165y x =−+,综上可知,y 关于x 的函数表达式为()()80558165105x x y x x ≤≤ =−+<≤ 【小问2详解】解:由(1)所得关系式可知,x0 5 8 10 y83.2函数图象如下:性质:当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小;(答案不唯一) 【小问3详解】解:如图,由图象可知,函数11y x b 2=+的图象在3l 和2l 之间时,与函数y 只有一个交点, 将()5,8代入11y x b 2=+,得:1852b =×+,解得:112b =, 将()0,0代入11y x b 2=+,得:0b =, 将()10,0代入11y x b 2=+,得:5b =−, ∴b 的取值范围为50b −≤<或112b =.【点睛】本题考查了菱形的性质,相似三角形的判定及性质,求一次函数解析式,描点法画函数图象,一次函数图象和性质,两直线交点问题等知识,利用数形结合和分类讨论的思想解决问题是关键.24. 如图,M 为沙坪坝区物流中心,N ,P ,Q 为三个菜鸟驿站,N 在M 的正南方向4.3km 处,Q 在M 的正东方向,P 在Q 的南偏西37°方向2.5km 处,N 在P 南偏西64°方向.(sin370.60°≈,cos370.80°≈,tan370.75°≈,sin640.90°≈,cos640.44°≈,tan64 2.05°≈)(1)求驿站P ,驿站N 之间的距离(结果精确到0.1km ); (2)“双11”期间,派送员从沙坪坝区物流中心M 出发,以30km/h 的速度沿着M N P Q ———的路线派送快递到各个驿站,派送员途径N ,P 两个驿站各停留6min 存放快递,请计算说明派送员能否在40min 内到达驿站Q ?【答案】(1)5.2km (2)能,理由见解析 【解析】【分析】本题考查解直角三角形的应用,将实际问题转化成解直角三角形的问题,利用解直角三角形的 知识求解是解题的关键.(1)过点P 作PA MN ⊥于A ,PB MQ ⊥于B ,先解Rt PBQ △,求得2km PB =,再证明2km AM PB ==,从而得出 2.3km AN =,然后解Rt PAN △,即可求解. (2)求出派送员所需总时间,再与40min 比较即可得出答案. 【小问1详解】解:过点P 作PA MN ⊥于A ,PBMQ ⊥于B ,如图,根据题意,得37BPQ PQD ∠=∠=°,64PNA NPC ∠=∠=°, 4.3km MN =, 2.5km PQ =, 在Rt PBQ △中,∵cos PB BPQ PQ∠=, ∴()cos 2.5cos37 2.50.802km PBPQ BPQ =⋅∠=×°≈×=, ∵PA MN ⊥,PBMQ ⊥,90NMQ ∠=°,∴四边形AMBP 是矩形, ∴2km AM PB ==,∴()4.32 2.3km AN MN AM =−=−=,在Rt PAN △中,∵cos PNA ∠∴()2.3 2.3 5.2km cos cos 640.44ANPNPNA ==≈≈∠°,答:驿站P ,驿站N 之间的距离约为5.2km . 【小问2详解】解:∵30km/h 0.5km/min =,∴()()4.3 5.2 2.50.56236min ++÷+×=, ∵36min<40min ,∴派送员能在40min 内到达驿站Q .25. 如图1,在平面直角坐标系中,直线112y x =−+与抛物线()230y ax x a =−+≠交于A ,B 两点,且点A 在x 轴上,直线与y 轴交于点C .(1)求抛物线的表达式;(2)P 是直线AB 上方抛物线上一点,过P 作PQ y ∥轴交直线AB 于点Q ,求PQ AQ 的最大值,并求此时点P 的坐标;(3)在(2)PQ AQ 的最大值的条件下,连接BP ,将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上,M 是新抛物线上一动点,当MAB BPQ ∠=∠时,直接写出所有符合条件的点M 的坐标.【答案】(1)2134y x x =−−+(2)PQ AQ +的最大值为4,()2,4P −(3)点M 的坐标为()2,2或 【解析】【分析】(1)先由一次函数解析式求出点()2,0A ,再把()2,0A 代入23y ax x =−+,求出a 值即可;(2)延长PQ 交y 轴于D ,证明OAC DAQ ∽,得AC OC AQ DQ =1DQ =,求得DQ AQ =,再设21,34P x x x −−+ ,则1,12Q x x−+ ,则211242PQ x x =−−+,112QD x =−+,所以()21244PQ AQ PQ QD PD x +=+==−++,利用二次函数最值即可求解. (3)根据平移的性质求得抛物线平移后的解析式为2114y x x =−++,再分两种情况:当点M 在直线AB 上方时,当点M 在直线AB 下方时,分别求解即可. 【小问1详解】解:对于直线112y x =−+, 令0y =,则1102x −+=,解得:2x =, ∴()2,0A ,把()2,0A 代入23y ax x =−+,得0423a −+, 解得:14a =−, ∴抛物线的表达式2134y x x =−−+. 【小问2详解】解:延长PQ 交y 轴于D ,对于直线112y x =−+, 令0x =,则1y =, ∴CC (0,1), ∵()2,0A∴AC ==∵PQ y ∥轴,即QD OC ∥, ∴OAC DAQ ∽∴AC OC AQ DQ =1DQ=,∴DQ AQ =, 设21,34P x x x −−+ ,则1,12Q x x −+,∴2211113124242PQ x x x x x=−−+−−+=−−+,112QD x =−+∴()221132444PQ AQ PQ QD PD x x x =+==−−+=−++ ∵104−< ∴当2x =−时,PQ AQ +的最大值为4; ∴()2,4P −. 【小问3详解】解:联立,2134112y x x y x =−−+=−+, 解得:1143x y =− = ,2220x y = = ,∴()4,3B −,由(2)知,在PQ AQ +的最大值的条件下,抛物线的顶点为点()2,4P −,对称为直线PQ , 当2x =−时,则()12122y =−×−+=, ∴()2,2Q −, 则2PQ =,PB QB∴BPQ BQP ∠=∠, ∵将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上, ∴点Q 平移后与点A 重合, ∵()2,2Q −,()2,0A ,∴抛物线沿射线BA 方向平移,是向下平移了2个单位,向右平移了4个单位,∴抛物线顶点()2,4P −平移后到点()2,2P ′,点()4,3B −平移后到点()0,1B ′,即B ′与C 重合,∴BPQ B P A ′′ ≌,抛物线平移后的解析式为()221122144y x x x =−−+=−++,∴BPQ B P A ′′∠=∠, ∵()0,1B ′,()2,2P ′,∴P B =′=′∵()0,1B ′,()2,0A ,∴AB ′=,∴P B AB ′′′=, ∴B AP B P A ′′′′∠=∠, 当点M 在直线AB 上方时,∵MAB BPQ ∠=∠, ∴MAB B P A ′′∠=∠, ∴点M 与点P ′重合, ∴()2,2M ,当点M 在直线AB 下方时,设21,14M x x x−++, 过点M 作ME PQ ∥,交AB 于E ,交x 轴于N ,则MEA BQP ∠=∠,1,12E x x−+, 则AOC ANE △∽△,∴AC OCAE EN=,则E AE EN AC =⋅=, ∵MAB BPQ ∠=∠, ∴BPQ MAE △∽△,∴BQ PQ ME AE=,则BQ ME PQ AE =,=,整理得:32E M y y =−, 即:231111224x x x −+=−−++,解得:x =(x =,此时,M y =∴M , 综上,符合条件的点M 的坐标为()2,2或. 【点睛】本题属二次函数综合题目,主要去向不明了待定系数法求抛物线解析式,抛物线的性质,抛物线的平移,相似三角形的判定与性质,综合性较强,熟练掌握相关性质是解题的关键.26. 在ABC 中,AC BC =,D 为线段AB 上一点,连接CD .(1)如图1,若30B ∠=°,AC AD =,过A 作AE CD ⊥于O ,交BC 于E ,2CE =,求线段BE 的长;(2)如图2,过点B 作BF CD ⊥交CD 延长线于点F ,以BC 为斜边在ABC 的右侧作等腰直角三角形BCG ,过点G 作GH AB ∥,交DC 的延长线于点H ,HC FB =.猜想线段AD ,BD ,CD 的数量关系,并证明你的猜想;(3)如图3,60ACB ∠=°,过A 作AQ BC ⊥于Q ,作ACB ∠的角平分线交AQ 于M ,取CM 的中点N ,连接QN .点K 为直线BC 上的动点,连接NK ,将QKN 沿着NK 所在直线翻折至ABC 所在平面得到Q KN ′ ,连接MQ ′,取MQ ′中点P ,连接CP .将12CD 绕着点D 顺时针旋转至直线AB 上方DR 处,使得BDR ACD ∠=∠.当CP 取得最小值时,连接AP ,PR ,AR ,当ARP △以AP 为腰的等腰三角形时,请直接写出DR AP的值. 【答案】(1)(2)AD BD =+(3 【解析】【分析】(1)利用等腰三角形的性质得120ACB ∠=°,75ACD ∠=°,得45DCE ∠=°,根据线段垂直平分线性质,得2CE DE ==,得90CED ∠=°,即得BE = (2)过点C 作CI AB ⊥于I ,得AI BI =,根据等腰直角BCG 中,90BG CG BGC =∠=°,,BF CD ⊥,得点G 、C 、F 、B 在以BC 为直径的圆上,得GCH GBF ∠=∠,结合HC FB =,得()SAS GCH GBF ≌,得GF GH BGF CGH =∠=∠,, 得90FGH ∠=°,证明45IDC H ∠=∠=°,得DI =,根据BI BD DI =+,AD AI DI =+,即得AD BD =+;(3)证明当'Q 与C 重合时,点P 与点N 重合,PC 取得最小值,当AP AR =时,设CD 中点为T ,连接RT BR CR ,,,由对称性知,点R 在ABC ∠的平分线上,得CR AR =,由BDR ACD ∠=∠,得60CDR CAD ∠=∠=°,根据RT DT CT ==,得DTR 是等边三角形,得30RCT ∠=°,90CRD ∠=°,得tan DR DCR CR ∠=;②延长CM 交AB 于L ,过B 作BS AC ∥,交DR 延长线于S ,连接CS ,则AL BL =,60CBS ACB ∠=∠=°,得60CBS CDS ∠=∠=°,得B 在过C 、D 、S 三点的圆上,得60CSD CBD ∠=∠=°,得 CDS 是等边三角形,当D 与点B 重合时,T 与Q 重合,点R 在BS 上,根据150NQB NQR ∠=∠=°,BQ RQ NQ NQ ==,,得()SAS BQN RQN ≌,得BN RN =,得AN RN =,设ABC 的边长为2,则1AL =,CL =,根据23CM CL =,N 是CM 中点,得NL =,得AN =DR AP =【小问1详解】解:AC BC = ,30B ∠=°。

安徽省安庆市大观区安庆市第四中学2024-2025学年九年级上学期11月期中数学试题

安徽省安庆市大观区安庆市第四中学2024-2025学年九年级上学期11月期中数学试题

安庆四中2024-2025学年第一学期九年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x22.如果,那么的值是()A.B.C.D.3.下列各组中的四条线段成比例的是()A.1,1,2,3B.3,6,4,7C.5,6,7,8D.2,3,6,9 4.对于抛物线y=(x﹣1)2﹣1,下列说法正确的是()A.抛物线的开口向下B.有最大值,最大值是﹣1C.抛物线的顶点坐标是(1,1)D.当x>3时,y随x的增大而增大5.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1.4B.1.1C.1.2D.1.36.观察下列每组三角形,不能判定相似的是()7.在反比例函数的图象上有三个点(﹣2,y1),(﹣1,y2),,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y3<y2C.y1<y2<y3D.y3<y2<y18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣2,记m=a+b,n=a﹣b,则下列选项中一定成立的是()A.m=n B.m<n C.m>n D.n﹣m<39.如图,在△ABC中,AD是BC边上中线,F是AD上一点,且AF:FD=1:5,连接CF并延长交AB 于E,则AE:EB等于()A.1:6B.1:8C.1:9D.1:1010.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1二.填空题(本大题共4小题,每小题5分,满分20分)11.若点C是线段AB的一个黄金分割点,AB=2,AC>BC,则AC的长为12.已知一条抛物线的形状与抛物线y=2x2+3形状相同,与另一条抛物线y=﹣(x+1)2﹣2的顶点坐标相同,这条抛物线的表达式为.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的不等式ax2+bx+c>0的解集为.14.如图,矩形OABC顶点A、C分别在x、y轴上,双曲线分别交BC、AB于点D、E,连接DE并延长交x轴于点F,连接AC.下列结论:①DE∥CA;②S四边形ACDF=k;③若BD=2CD,则AE=2BE;④若点E为DF的中点,且S△AEF=3,则k=12;其中正确的有.(填写所有正确结论的序号)三.解答题(本大题共9小题,满分90分)15.(本题8分)已知线段a、b满足a:b=3:2,且a+2b=42.(1)求线段a、b的长;(2)若线段c是线段a、b的比例中项,求线段c的长.16.(本题8分)如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,,BF=9cm,求EF和FC的长.17.(本题8分)综合与实践:【问题情景】某生物小组探究“酒精对人体的影响”,资料显示,一般饮用低度白酒100毫升后,血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似的用如图所示的图象表示.国家规定,人体血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.【实践探究】(1)求部分双曲线BC的函数表达式;【问题解决】(2)参照上述数学模型,假设某人晚上20:00喝完100毫升低度白酒,则此人第二天早上9:00能否驾车出行?请说明理由.18.(本题8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点E是CA 延长线上一点,点F是AB上一点,且∠EDF=45°.(1)求证:△BFD∽△CDE;(2)若BF=3,CE=8,求AB的长.19.(本题10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,=;(填两数字之比)(2)如图②,在线段AB上找一点P,使=(利用网格和无刻度的直尺作图,保留痕迹,不写作法);(3)如图③,大小4×4的正方形方格中,△ABC的顶点A,B,C都在小正方形的格点上,请在图中画出与△ABC相似且面积不相等的一个三角形.20.(本题10分)已知二次函数y=x2﹣2ax+3﹣2a.(1)当抛物线过点(2,1),①求该抛物线的表达式.②当﹣1<x<4时,求y的范围.(2)若函数图象上有两个不同的点A(x1,y1),B(x2,y2),且x1+x2=﹣2,求证:y1+y2>8.21.(本题12分)综合与实践:利用正方形硬纸板设计制作带盖长方体盒子四边形ABCD是边长均为30cm的正方形硬纸片,“睿智小组”设计出不同方式的带盖长方体包装盒,并画出了示意图(图①,图③)及折合成的带盖长方体盒子(图②、图④),其中,实线表示剪切线,虚线表示折痕(设计、折合及计算过程中,纸板厚度及剪切接缝处损耗忽略不计),请你观察、操作、验证并思考完成该小组提出的问题.设计方案一:如图①,将正方形硬纸片ABCD的四个角分别剪去大小相同的两个正方形和两个长方形(阴影部分所示),再沿虚线折合得到一个底面为长方形MNQP的包装盒(如图②所示).(1)若底面积MNQP为162cm2,求MG的长.设计方案二:如图③,将正方形硬纸板ABCD切去四个全等的等腰直角三角形(阴影部分所示),其中点E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图④所示),形成有一个底面为正方形GHMN的包装盒,设GF=x cm.(2)请直接写出线段BF的长(用含x的代数式表示);(3)求长方体盒子的侧面积为S(cm2)与x的函数关系式.22.(本题12分)如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.23.(本题14分)如图,抛物线y=ax2+bx÷4经过点A(﹣2,0),点B(4,0),与y轴交于点C,过点C作直线CD∥x轴,与抛物线交于点D,作直线BC,连接AC.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD+∠CAO=90°的点E的坐标;(3)点M在y轴上,且位于点C的上方,点N在直线BC上,点P为直线BC上方抛物线上一点,是否存在点N使四边形CMPN为菱形,如果存在,请直接写出点N的坐标.如果不存在,请说明理由.。

浙江省金华市东阳市江北五校联考2024-2025学年九年级上学期11月期中考试数学试题(含答案)

浙江省金华市东阳市江北五校联考2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年第一学期九年级数学练习(二)试题卷本卷考试范围:九年级上册1-3章考生须知:1.全卷共三大题,24小题,满分为120分。

考试时间为120分钟。

2.本卷答案必须填写在答题纸的相应位置上,写在试题卷、草稿纸上均无效。

3.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!卷Ⅰ说明:本卷共有一大题,10小题,共30分。

请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满。

一、选择题(本题共10小题,每小题3分,共30分)1.二次函数的一次项系数是( )A.-2B.6C.-6D.-12.一个袋子里有7个红球、4个黄球和1个绿球,从中任意摸出1个球,摸出的球( )A.一定是绿球B.一定是黄球C.一定是红球D.红球的可能性大3.已知的半径为,若,则点与的位置关系是( )A.点在外 B.点在上 C.点在内D.不能确定4.下列变量之间具有二次函数关系的是( )A.圆的周长与半径B.在弹性限度内,弹簧的长度与所挂物体的质量C.正三角形的面积与边长D.匀速行驶的汽车,路程与时间5.已知,,三点可以确定一个圆,则以下点坐标不满足要求的是( )A. B. C. D.6.如图是二次函数的图象,表明无论为何值,函数值永远为负,则下列结论成立的是()2261y x x =-+-O e 9cm 10cm OA =A O e A O e A O e A O e C ry x S a s t()1,2M ()3,3N -(),P x y P (3,5)(3,5)-(1,7)-(1,3)-2y ax bx c =++x yA.,B.,C.,D.,7.以原点为旋转中心,将点按逆时针方向旋转,得到的点的坐标为( )A. B. C. D.8.将的圆周12等分,点、、是等分点,如图,的度数可能为( )A. B. C. D.9.如下表是二次函数中与的部分对应值,则方程的一个根的取值范围是( )…1 1.1 1.2 1.3 1.4……-0.75-0.465-0.160.1650.51…A. B. C. D.10.如图,平面直角坐标系中,经过三点,,,点是上的一动点.当点到弦的距离最大时,点的坐标是( )A. B. C. D.卷Ⅱ说明:本卷共有两大题,14小题,共90分.请用黑色字迹的钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题共6小题,每小题3分,共18分)11.从初中数学6本书中随机抽取1本,则抽到的那本为九年级的概率为_____.12.二次函数,当时,随的增大而______.(填“增大”或“减小”)0a >240b ac ->0a >240b ac -<<0a 24>0b ac -0a <240b ac -<()4,5P 90 Q (4,5)-(4,5)-(5,4)-(5,4)-O e A B C ADB ∠3045606522.5y ax bx =+-x y 22.50ax bx +-=1x xγ11 1.1x <<11.1 1.2x <<11.2 1.3x <<11.3 1.4x <<P e ()8,0A ()0,0O ()0,6B D P e D OB D (9,3)(9,6)(10,3)(10,6)()21y x =-0x <y x13.已知的一条弦把圆的周长分成1:5的两个部分,则弦所对的弧的度数为_____.14.小明在一次投篮过程中,篮球在空中的高度(单位:米)与在空中飞行的时间(单位:秒)满足函数关系:,当篮球在空中的飞行时间_____秒时,篮球距离地面最高.15.如图,在扇形中,,将扇形进行折叠,使点落在弧的中点处.若折痕_____.16.函数在有最大值6,则实数的值是_____.三、解答题(本题共8小题,共72分,各小题都必须写出解答过程)17.(8分)平面直角坐标系中,点、、、在上.(1)在图中清晰标出点的位置;(2)点的坐标是_____.18.(8分)如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1,2,3,4,5五个数字,甲、乙两人玩一个游戏,其规则如下:任意转动转盘一次,转盘停止后指针指向某个数字所在的区域,如果该区域所标的数字是偶数,则甲胜;如果该区域所标的数字是奇数.则乙胜.(1)转出的数字为3的概率是_____.(2)转出的数字不大于3的概率是_____.O e AB AB h t 2412h t t =-+=AOB 90AOB ∠=AOB O AB C DE =222y x ax =-+-13x -≤≤a ()2,9A ()2,3B ()3,2C ()9,2D P e P P(3)你认为这样的游戏规则对甲、乙两人是否公平?为什么?19.(8分)如图,已知为的直径,是弦,且于点.连接、、.(1)求证:;(2)若,,求的直径.20.(8分)团扇是中国传统工艺品,代表着团圆友善、吉祥如意,某社团组织学生制作团扇,扇面有圆形和正方形两种,每种扇面面积均为.完成扇面后,需对扇面边缘用缎带进行包边处理(接口处长度忽略不计),如图所示:(1)圆形团扇的半径为_____(结果保留),正方形团扇的边长为_____;(2)请你通过计算说明哪种形状的扇面所用的包边长度更短.21.(8分)已知二次函数(是常数).(1)求证:无论为何值,该二次函数图象与轴一定有交点;(2)已知该二次函数的图象与轴交于,两点,且,求的值.22.(10分)网络直播已经成为一种热门的销售方式,某销售商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元,每日销售量与销售单价(元)满足一次函数关系,下表记录的是有关数据,经调查发现销售单价不低于成本价且不高于30元.设销售板栗的日获利为(元).(元)789430042004100(1)求日销售量与销售单价之间的函数解析式:(不用写自变量的取值范围)(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?23.(10分)如图1,,是半圆上的两点,点是直径上一点,且满足AB O e CD AB CD ⊥E AC OC BC CAO BCD ∠∠=3BE =8CD =O e 2400cm πcm cm ()223y x m x m =--+-m m x x A B 2AB =m /kg ()y kg x /kg /kg w x /kg ()y kg y x w C D ACB P AB,则称是的“相望角”,如图,(1)如图2,若弦,是弧上的一点,连接交于点,连接.求证:是的“相望角”;(2)如图3,若直径,弦,的“相望角”为,求的长.24.(12分)如图,抛物线与轴交于,两点,与轴交于点,是抛物线上的任意一点(不与点重合),点的横坐标为,抛物线上点与点之间的部分(包含端点)记为图象.(1)求抛物线的解析式;(2)当点到轴的距离为8时,求的值;(3)当图象的最大值与最小值的差为4时,求的取值范围.APC BPD ∠∠=CPD ∠CD CE AB ⊥D BC DE AB P CP CPD ∠CD 6AB =CE AB ⊥CD 90CD 2y x bx c =-++x ()1,0A ()5,0B -y C P C P m C P G P x m G m2024-2025学年第一学期九年级数学练习(二)参考答案一、选择题(共10小题,每小题3分,共30分)1.B2.D3.A4.C5.C6.D7.C8.D9.C 10.A 二、填空题(共6小题,每小题3分,共18分)11.12.减小 13.或 14. 15. 16.或三、解答题(共8小题,共72分)17.(8分)解:弦的垂直平分线是,弦的垂直平分线是,因而交点的坐标是.18.(8分)解:(1)一共有5个数字,每个数字被转出的概率相同,转出的数字为3的概率是,(2)一共有5个数字,数字不大于3的有3个,转出的数字不大于3的概率是,(3)这样的游戏规则对甲、乙两人不公平,理由如下:一共有5个数字,其中奇数有3个,偶数有2个,且每个数字被转出的概率相同,任意转动转盘一次,转出奇数的概率为,转出偶数的概率为,,乙获胜的概率大,这样的游戏规则对甲、乙两人不公平.19.(8分)(1)证明:为的直径,是弦,且于点,,;4分(2)解:设的半径为,则,,,,1360 3003224π-92-AB 6y =CD 6x =P (6,6) ∴15∴35∴35252355∴<∴∴AB O e CD AB CD ⊥E »»BCBD ∴=CAO BCD ∴∠=∠O e R 3OE OB BE R =-=-AB CD ⊥ 8CD =118422CE CD ∴==⨯=在中,由勾股定理可得,,解得,的直径为.20.(8分)解:(1)由题意得:,,,20;(2),圆形团扇的周长为:,正方形团扇的边长为,正方形团扇的周长为:,,圆形团扇所用的包边长度更短.21.(8分)解:(1)当时,,,一元二次方程有实数根,无论为何值,该二次函数图象与轴一定有交点;(2)当时,,得,,,,或.22.(10分)解:(1)设与之间的函数关系式为,Rt CEO △222OC OE CE =+()22234R R ∴=-+256R =O ∴e 253)cm =()20cm = cm ∴)2cm π= 20cm ∴()20480cm ⨯=80<=80∴<∴0y =()2230x m x m --+-=()()()222224134441281640m m m m m m m m =---⨯⨯-=-+-+=-+=-≥⎡⎤⎣⎦△∴()2230x m x m --+-=∴m x 0y =()2230x m x m --+-=()242m m x -±-==13x m ∴=-21x =()3142AB m m ∴=--=-=6m ∴=2m =y x ()0y kx b k =+≠把,和,,代入得:,解得,日销售量与销售单价之间的函数关系式为;(2)由题意得:,,对称轴为直线,由已知得,,当时,有最大值为48400元.当销售单价定为28元时,销售这种板栗日获利最大,最大利润为48400元.23.(10分)(1)证明:直径,弦,垂直平分弦,,,,是的“相望角”;(2)解:由题意知,是的“相望角”,,,直径,弦,,,,,如图1,记圆心为,连接,,则图1,,由勾股定理得,的长为.7x =4300y =8x =4200y =7430084200k b k b +=⎧⎨+=⎩1005000k b =-⎧⎨=⎩∴y x 1005000y x =-+()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+1000a =-< 28x =630x ≤≤∴28x =w ∴w AB CE AB ⊥AB ∴CE APC APE ∴∠=∠APE BPD ∠=∠ APC BPD ∴∠=∠CPD ∴∠»CD CPD ∴∠»CD90CPD ∠=45APC BPD ∴∠=∠= 6AB =CE AB ⊥PEC PCE ∴∠=∠45APC APE ∠=∠= 90CPE ∴∠= 45PEC PCE ∠=∠= O OC OD 132OC OD AB ===»»CDCD = 290COD PEC ∴∠=∠=CD ==CD∴24.(12分)解:(1)抛物线与轴交于,两点,将点,点的坐标代入得:,解得抛物线的解析式为;(2)是抛物线上的任意一点(不与点重合),点的横坐标为,,点到轴的距离为8时,得到:或,当时,整理得,解得或;当时,整理得,解得或;综上,的值为-1或-3或或;(3)抛物线与轴交于点,是抛物线上的任意一点(不与点重合),抛物线上点与点之间的部分(包含端点)记为图象.当时,,点的坐标为,图象的最大值与最小值的差为4,①当点在点上方时,,且,,解得或0(舍去),,②当点在点下方时,此时点在点左侧,不满足题意,点在点右侧,,解得或(舍去),综上所述,的取值范围是或.2y x bx c =-++x ()1,0A ()5,0B -A B 2y x bx c =-++102550b c b c -++=⎧⎨--+=⎩45b c =-⎧⎨=⎩∴245y x x =--+P C P m ()2,45P m m m ∴--+ P x 2458m m --+=2458m m --+=-2458m m --+=2430m m ++=1m =-3m =-2458m m --+=-24130m m +-=2m =-+2m =-m 2-2-245y x x =--+y C P C C P G 0x =5y =∴C (0,5) G P C ()224529y x x x =--+=-++ 954-=2455m m --+=4m =-42m ∴-≤≤-P C P C ∴P C ()25454m m ∴---+=2m =-+2m =--m 42m -≤≤-2m =-+。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。

2024-2025学年河南省周口市郸城县多校联考九年级上学期期中考试数学试题

2024-2025学年河南省周口市郸城县多校联考九年级上学期期中考试数学试题

2024-2025学年河南省周口市郸城县多校联考九年级上学期期中考试数学试题1.下列各组数中的四条线段,是比例线段的是()A.1,2,3,8B.1,4,2,6C.5,6,2,3D.2.若相似三角形的相似比为1:4,则面积比为()A.1:16B.16:1C.1:4D.1:2 3.下列各式中,为最简二次根式的是()A.B.C.D.4.用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是()A.(x﹣5)2=4B.(x+5)2=4C.(x﹣5)2=121D.(x+5)2=1215.如图,直线l 1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.且AB=3,AC=8,则的值为()A.B.C.D.6.如图,以点O为位似中心,作四边形的位似图形,已知若四边形的周长是2,则四边形的周长是()A.4B.6C.16D.187.已知关于x的方程有两个不相等的实数根,则m的取值范围是()A.B.C.且D.且8.已知矩形的顶点A、B、C的坐标分别为,将该矩形向右平移3个单位长度得到矩形,则点的坐标为()A.B.C.D.9.若,则()A.2B.4C.D.10.如图,中,,,点是的中点,点在线段上,,交于点,过点作的垂线交的延长线于点,下列结:①;②;③;④.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,在和中,,点E在边上,添加一个条件后,能判定与相似,这个条件是_______________.(添加一个即可)12.设,则的值是_____.13.两个相邻偶数的积是168.求这两个偶数.若设较小的偶数为x,列方程为______.14.如图,在一块斜边长的直角三角形木板上截取一个正方形,点D在边上,点E在斜边上,点F在边上,若,则正方形的面积为______.15.如图,在边长为2个单位长度的正方形ABCD中,E是AB的中点,点P从点D出发沿射线DC以每秒1个单位长度的速度运动,过点P作PF⊥DE于点F,当运动时间为______秒时,以P、F、E为顶点的三角形与△AED相似.16.(1)解方程:;(2)计算:17.如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A 2B2C2,使它与△ABC的相似比为,并写出点B2的坐标.18.如图,在四边形中,相交于点E,点F在上,且,(1)求证:;(2)若,求的长.19.小敏与小霞两位同学解方程的过程如下框:小敏:小霞:两边同除以,得,则.移项,得,提取公因式,得.则或,解得,.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.20.如图,在中,D 、E 、F 分别为边的中点,相交于点O ,.试求出线段的长.(结果保留根号)21.如图,有一块形状为的斜板余料,已知,要把它加工成一个形状为平行四边形的工件,使在上,D ,E 两点分别在上,且.(1)求斜边上的高;(2)求平行四边形的面积.22.某网店为满足航空航天爱好者的需求,推出了“中国空间站”模型.已知该模型平均每天可售出20个,每个盈利40元.为了扩大销售,该网店准备适当降价,经过一段时间测算,每个模型每降低1元,平均每天可以多售出2个.(1)若每个模型降价4元,平均每天可以售出多少个模型?此时每天获利多少元?(2)在每个模型盈利不少于25元的前提,要使“中国空间站”模型每天获利1200元,每个模型应降价多少元?23.【问题呈现】如图①,和都是等边三角形,连接.求证:.【类比探究】如图②,和都是等腰直角三角形,,连接、.请直接写出的值.【拓展提升】如图③,和都是直角三角形,,且连接.(1)求的值;(2)延长交于点F,交于点G.求证:.。

人教版九年级上册数学期中考试试卷及答案详解

人教版九年级上册数学期中考试试卷及答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。

人教版九年级数学上册期中考试卷

人教版九年级数学上册期中考试卷

人教版九年级数学上册期中考试卷一、选择题1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是( )A .B .C .D .2.一元二次方程 3x 2−x −2=0 的二次项系数是 3,它的一次项系数是( )A . −1B . −2C . 1D . 03.关于函数y=﹣3,y=的图象及性质,下列说法不正确的是( ). A .它们的对称轴都是y 轴 B .对于函数y=,当x >0时,y 随x 的增大而减小 C .抛物线y=﹣3不能由抛物线y=平移得到 D .抛物线y=﹣3的开口比y=的开口宽4.解方程x 2﹣3x =0较为合适的方法是( )A .直接开平方法B .配方法C .公式法D .分解因式法 5.已知(-3,y 1),(-2,y 3),(1,y 3)是二次函数y=-2x 2-8x+m 图象上的点,则( )A .y 2>y 1>y 3B .y 2>y 3>y 1C .y 1<y 2<y 3D .y 3<y 2<y 1 6.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是A .(1,0)B .(2,0)C .(-2,0)D .(-1,0) 7.三角形两边长分别为2和3,第三边的长是方程2x 2﹣13x +15=0的根,则该三角形的周长为( )A .B .10C .D .或10 22x 212x -212x -22x 212x -22x 212x -8.如图,在△ABC 中∠ACB =90°,将△ABC 绕点C 逆时针旋转得到△A 1B 1C 1,此时点A 的对应点A 1恰好在AB 边上,点B 的对应点为B 1,则下列结论一定正确的是( )A .AB =B 1C B .CA 1=A 1B C .A 1B 1⊥BCD .∠CA 1A =∠CA 1B 19. 如图,抛物线()20y ax bx c a =++≠x 的图象与x 轴交于()2,0-,()1,0x 其中110x -<<.有下列五个结论:①0abc >;②0a b c -+<;③20a c -<;④()()30a b a b --<;⑤若(),m n m n <为关于x 的一元二次方程()()1210a x x x +-+=的两个根,则32m n -<+<-.你认为其中正确的有( )A .4个B .3个C .2个D .1个10.如图,在正方形ABCD 中,AB =4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动.设AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.把点)2,0A 绕着坐标原点顺时针旋转90,得到点B ,那么点B 的坐标是 . 12.将抛物线223y x x =+-化为2()y a x h k =-+的形式是 .13.在平面直角坐标系中,若抛物线226(1)y x x k =++-与x 轴有两个交点,则k 的取值范围是__________.14.若关于x 的一元二次方程x 2+2x ﹣k +3=0有两个不相等的实数根,则k 的取值范围是_______.15.已知二次函数22(1)y x m =--的图象上有三点11,2A y ⎛⎫ ⎪⎝⎭,()22,B y 和()32,C y -,则1y ,2y 和3y 的大小关系为______. 16.一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是31,每个支干长出___个小分支.三、解答题17. 用适当的方法解下列方程(1)(x ﹣2)2﹣5(x ﹣2)+6=0. (2)x (x ﹣2)=10x ﹣20.18.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.19. 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.20.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=2,OC=3,求AO的长.21.某超市新上架一款产品,每个成本为6元,在销售过程中(个)与销售价格x(元/个)的关系如图所示,其图象是线段AB.(1)求y与x之间的函数表达式;(2)若该超市每天销售这款产品的利润为w(元),请写出w与x之间的函数表达式,并求该超市每天销售这款产品的最大利润.(利润=总销售额一总成本).22.如图,二次函数y=ax2+bx+c的图像交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.。

辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)

辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷九年级数学2024.11(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,是关于的一元二次方程的是( )A .B .C .D .2.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .3.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线4.已知的半径为5,点在外,则的长可能是( )A .3B .4C .5D .65.若关于的一元二次方程有两个不相等的实数根,则的值可以是( )A .B .1C .2D .36.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,则可列方程为()A .B .C .D .7.如图,为的直径,弦,垂足为点,若的半径为13,,则的长为()x 310x -=23x y +=2210x x +-=410x -=()1,3()1,3--()1,3-()1,3-()3,1O P O OP x 220x x k -+=k 1-x ()21001121x +=()21001%121x +=()10012121x +=()()210010011001121x x ++++=AB O CD AB ⊥E O 24CD =AE(第7题)A .5B .6C .7D .88.抛物线的对称轴是直线,且经过点,则的值为( )A .3B .C .6D .9.如图,在中,,将绕点按逆时针方向旋转得到,点恰好在边上,连接,则的长为( )(第9题)A .8B .C .D .610.如图,在矩形中,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,设经过的时间为的面积为,则下列图象中能大致反映与之间的函数关系的是()(第10题)A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.一天中,钟表时针从上午6时至上午9时旋转的度数为______.12.若是方程的一个实数根,则代数式的值为______.13.如图,是的切线,为切点,如果,则的长为______.221y x bx =++32x =()1,k k 3-6-Rt ABC △90,60,4ACB A AC ︒︒∠=∠==CAB △C CDE △D AB BEBEABCD 4cm,8cm AB BC ==P A 1cm /s AB B Q B 2cm /s BC C ,x s PBQ △2cm y y x x t =210x x --=22024t t -+,,AB AC BD O ,,P C D 8,5AB AC ==BD(第13题)14.如图是二次函数的部分图象,由图象可知,当时,自变量的取值范围是______.(第14题)15.如图,抛物线:与轴交于两点,点在第四象限的抛物线上,连接,将线段绕点逆时针旋转,得到线段,当点恰好落在轴上时,点的坐标为______.(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明,演算步骤或推理过程)16.(10分)(1)用配方法解方程:;(2)用公式法解方程:.17.(8分)如图所示,在正方形网格中,的顶点均在格点上,请在所给平面直角坐标系中按要求作图.2y ax bx c =++0y >x 223y x x =--x ,A B C BC CB C 90︒CD D y C 269x x -=-22340x x +-=ABC △(第17题)(1)以点为旋转中心,将绕点顺时针旋转得,画出,并写出的坐标;(2)直接写出线段与的关系:______.18.(8分)如图,四边形是的内接四边形,延长相交于点,且.求证:是等腰三角形.(第18题)19.(8分)如图,矩形画框由边框和内衬组成,其中画框的边框宽度相等,画框外框长为,宽为,且边框的面积为整个画框面积的,求这个矩形画框的边框宽度是多少厘米?(第19题)20.(8分)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间符合一次函数关系,如图所示.(第20题)(1)求与之间的函数关系式,并直接写出自变量的取值范围;(2)设商场销售这种商品每天获利(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?A ABC △A 90︒11ABC △11AB C △11,B C BC 11B C ABCD O ,DC ABE 2ABC E ∠=∠ADE △32cm 20cm 310y x y x x w21.(8分)如图1,是的直径,是弦,是的中点,与交于点,点在延长线上,且.(第21题图1)(1)求证:为的切线;(2)如图2,连接,若,求的长.(第21题图2)22.(12分)如图1,在中,,点是线段上一点(不与点重合),,以为旋转中心,将线段顺时针旋转得到线段,连接.(第22题图1)(1)求(用含的式子表示);(2)求证;;(3)如图2,当时,求的面积.(第22题图2)23.(13分)已知是自变量的函数,当时,称函数为函数的“相关函数”.AB O AC DAB CD AB E F AB CF EF =CF O BD 8,4CF BF ==BD ABC △,90AC BC ACB =∠=︒D AB ,A B ()045ACD αα︒∠=<<︒D DC 90︒DE EB EDB ∠αBE CB⊥2,AD CD ==BCD △1y x 213y xy =+2y 1y例如:函数,当时,则函数是函数的“相关函数”.(1)点在函数的图象上,判断点是否在函数的“相关函数”的图象上,并说明理由;(2)函数的“相关函数”为与的图象交于两点,点在点的左侧,的图象与轴交于点,点在的图象上,其横坐标为.①当点在第一象限时,过点作,垂足为点,当为何值时,线段的长度最大?最大值是多少?②当时,在的图象上,点与点之间部分(含点和点)的最大值与最小值之差为,求关于的函数解析式,并直接写出自变量的取值范围;③在②的条件下,函数图象上的点到直线的距离为时,直接写出自变量的值.(备用图)12y x =22132323y xy x x x =+=⋅+=+2223y x =+12y x =(),A m n 13y x =(),3B m mn +1y 2y 12y x =-+21,y y 2y ,A B A B 2y y C P 2y t P P PQ AB ⊥Q t PQ 0t >2y C P C P h h t t h 4h =72t金普新区2024-2025学年度第一学期期中质量检测九年级数学评分参考(※其他正确解法或证法请参照赋分)一,选择题(本题共10小题,每小题3分,共30分)1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.B 9.C 10.B二、填空题(本题共5小题,每小题3分,共15分)11.;12.2025;13.3;14.;15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)解:(2)解:∴方程有两个不相等的实数根∴17.(8分)90︒15x -<<269x x -=-26999x x -+=-+()230x -=30x -=123x x ==22340x x +-=2,3,4a b c ===-()22Δ43424410b ac =-=-⨯⨯-=>x ==12x x ==(1)如图即为所求作.;(2)且18.(8分)证明:∵,,∴,又∵四边形是的内接四边形,∴,又∵,∴,∴,∴,∴是等腰三角形.19.(8分)解:设这个矩形画框的边框宽度是厘米.由题意得,解得,(不符题意,舍去)答:这个矩形画框的边框宽度是2厘米.20.(8分)解:(1)设:与之间的函数关系式为.由图象,把代入得,解得,∴与之间的函数关系式为.(2)∵,∴∵,开口向下,对称轴为直线,∴当随的增大而增大,∴当时,答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.21.(8分)(1)证明:如图1,连接.∵,∴,∵,∴,∵是中点,∴,∴,又∵,∴,()()113,1,2,3B C --11BC B C =11BC B C ⊥2ABC E ∠=∠ABC E BCE ∠=∠+∠E BCE ∠=∠ABCD O 180A DCB ∠+∠=︒180DCB BCE ∠+∠=︒A BCE ∠=∠A E ∠=∠AD ED =ADE △x ()()33222023220110x x ⎛⎫--=⨯⨯- ⎪⎝⎭122,24x x ==y x ()0y kx b k =+≠()()25,70,35,50y kx b =+70255035k b k b =+⎧⎨=+⎩2120k b =-⎧⎨=⎩y x 2120,2036y x x =-+≦≦2x 120y =-+()20w x y=-()()202120x x =--+()2240800x =--+20a =-<40x =2036,x w ≤≤x 36x =()223640800768w =-⨯-+=最大值,OD OC CF EF =ECF CEF ∠=∠OC OD =OCD ODC ∠=∠DAB AD BD =AOD BOD ∠=∠180AOD BOD ∠+∠=︒90BOD ∠=︒∴在中,,又∵,∴,∴,即,∴,又∵是半径,∴是切线.(2)证明:如图2,连接.设,∵,∴,∴,∵由(1)得,,∴在中,根据勾股定理,即,解得,∴,∴在中,根据勾股定理,∴22.(12分)(1)解:∵线段顺时针旋转得到线段,∴,∵,∴,∴,∴,∴,.(2)证明:如图,过点作,交延长线于点.∴,由(1)得,,∴,∴,∴,∵线段顺时针旋转得到线段,Rt EOD △90ODE OED ∠+∠=︒OED CEF ∠=∠90ODE CEF ∠+∠=︒90OCD ECF ∠+∠=︒90OCF ∠=︒OC CF ⊥OC O CF O ,OD OC OE x =8,4CF EF BF ===844EB EF BF =-=-=4,8OC OB OE EB x OF OE EF x ==+=+=+=+90OCF BOD ∠=∠=︒Rt OCF △222OC CF OF +=()()222488x x ++=+2x =46OB OD x ==+=Rt OBD △222OB OD BD +=BD ===DC 90︒DE 90CDE ∠=︒,90AC BC ACB =∠=︒,90A CBA A CBA ∠=∠∠+∠=︒45A CBA ∠=∠=︒45CDB A ACD α∠=∠+∠=+︒()909045EDB CDB α∠=-∠=-︒︒+︒45α=︒-D MD DB ⊥BC M 90MDB ∠=︒45CBA ∠=︒18045M MDB CBA ∠=-∠-=︒∠︒M CBA ∠=∠MD BD =DC 90︒DE∴,∵,∴,即,∴,∴,∴,即.(3)证明:过点作,且使,连接.过点作,垂足为点.∴,∴,即,又∵由(1)得,∴,∴,∴,∵在中,根据勾股定理,∴,∵在中,根据勾股定理,∴,∵,∴是中点,又∵,∴,∴.23.(13分)(1)解:点是在函数的“相关函数”的图象上.∵点在函数的图象上,∴,∵,∴,∴当时,,,90DC DE CDE =∠=︒90MDB CDE ∠=∠=︒MDB CDB CDE CDB ∠-∠=∠-∠MDC BDE ∠=∠()SAS MCD BDE ≌△△45M DBE ∠=∠=︒90CBE CBA DBE ∠=∠+∠=︒BE CB ⊥C CN CD ⊥CN CD =,BN DN C CP AB ⊥P 90DCN ACB ︒∠==∠DCN DCB ACB DCB ∠-∠=∠-∠ACD BCN ∠=∠,AC BC CD CN ===∠45A CBA ∠=∠=︒()SAS ACD BCN ≌△△2,45AD BN A CBN ==∠=∠=︒454590DBN CBA CBN ∠=∠+∠=︒+=︒︒Rt DCN △222CD CN DN +=22220DN =+=Rt DBN △222DB BN DN +=4DB ===,AC BC CP AB =⊥P AB 90ACB ∠=︒()()111243222CP AB AD DB ==+=⨯+=1143622BCD S DB CP =⋅=⨯⨯=△(),3B m mn +1y 2y (),A m n 13y x =3n m =213y xy =+233y x x =⋅+,3x m n m ==2333y m m mn =⋅+=+∴点是在函数的“相关函数”的图象上.(2)解:①∵函数的“相关函数”为,∴,如图,过点作轴,垂足为点,交直线于点.∴,∵把代入得,,把代入得,,∴,∴又∵由题意得,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴在中,根据勾股定理,∴,∴,∵点在的图象上,其横坐标为.∴,∴,∴,∴,∵,开口向下,对称轴为直线,∴当时,(),3B m mn +1y 2y 12y x =-+2y ()21323y xy x x =+=-++223x x =-++()214x =--+P PN x ⊥N AB M 90PNF ∠=︒0x =1y 12y =10y =1y 2x =()()0,2,2,0E F 2OE OF ==90EOF ∠=︒,90OEF OFE OEF OFE ∠=∠∠+∠=︒45OEF OFE ∠=∠=︒18045NMF PNF OFE ∠=-∠-=︒∠︒45PMQ NMF ∠=∠=︒PQ AB ⊥90PQM ∠=︒18045QPM PQM PMQ ∠=-∠-=︒∠︒PMQ QPM ∠=∠PQ QM =Rt DBN △222PQ QM PM +=PM ===PQ PM =P 2y t ()2,23P t t t -++(),2M t t -+231PM t t =-++)223312PQ t t t ⎫=-++=-⎪⎭0a =<3,032t t -<<32t =PQ =最大值②令,∴,∵,抛物线顶点坐标,∴(ⅰ)当时,,∴,(ⅱ)当时,,∴(ⅲ)当时,,∴,综上,.③或.20,3x y ==()0,3C ()2,23P t t t -++()1,401t ≤<22223,3y t t y =-++=最大最小222332h t t t t =-++-=-+12t ≤<224,3y y ==最大最小431h =-=2t ≥2224,23y y t t ==-++最大最小()2242321h t t t t =--++=-+222,011,1221,2t t t h t t t t ⎧-+≤<⎪=≤<⎨⎪-+≥⎩1t =1+。

上海市杨浦区2024-2025学年九年级上学期期中考试数学试题

上海市杨浦区2024-2025学年九年级上学期期中考试数学试题

上海市杨浦区2024-2025学年九年级上学期期中考试数学试题一、单选题1.已知53x y =,3y ≠-那么下列等式不成立...的是()A .83x y y +=B .23x y y -=C .5533x y +=+D .3533x y +=+2.下列图形,一定相似的是()A .两个等边三角形B .两个等腰三角形C .两个矩形D .两个菱形3.已知在Rt ABC △中,90C ∠=︒,AB n =,那么下列关系式正确的是()A .sin AC n A =⋅B .cos AC n A=⋅C .tan AC n A =⋅D .cot AC n A=⋅4.已知向量a 与非零向量c 方向相同,且其长度为c 长度的3倍;向量b 与c 方向相反,且其长度为c 长度的6倍,那么下列等式中成立的是()A .12a b=B .12a b =- C .2a b = D .2a b=- 5.已知ABC V 的三边都不相等,如果ABC V 与DEF 相似,且B D ∠=∠,那么下列等式一.定不成立....的是()A .AB BC DE DF =B .AB BC DF DE =C .AB BC DE EF =D .AB AC DE EF=6.如图,已知在ABC V 中,点G 是中线AH 上一点,且34AG AH =,点D 、E 分别在边AB AC 、上,DE 经过点G ,那么下列结论中,错误的是()A .如果3AD BD =,那么DE BC∥B .如果点E 与点C 重合,那么:3:2AD BD =C .AB AC AD AE +的和是一个定值D .AD AE AB AC+的和是一个定值二、填空题7.计算:tan 60cos30︒+︒=.8.计算:()()33222b a a b -+-= 9.已知线段b 是线段a ,c 的比例中项,4cm a =,6cm b =,那么c =cm .10.如果两个相似三角形的相似比是4:9,那么它们的周长比是.11.已知在ABC V 中,点D 是边AB 的中点,ACD B ∠=∠,4BD =,那么AC 的长是12.如图,已知123l l l ∥∥,:1:2AB BC =,如果10DF =,那么DE =.13.已知点P 位于第一象限内,6OP =,且OP 与x 轴正半轴夹角的正弦值为23,那么点P 的坐标是14.如图,在ABC V 中,正方形DEFG 内接于ABC V ,点D 、E 分别在边AB AC 、上,点G 、F 在边BC 上,如果10AB AC ==,12BC =,那么DE 的长是.15.如图,已知点P 在等边三角形ABC 的边BC 的延长线上,120PAQ ∠=︒,射线AQ 与CB 的延长线交于点Q ,如果3BC =,8CQ =,那么CP =.16.如图,在ABC V 中,DE BC ∥,连接CD ,如果BCD ADE S S =△△,8AC =,那么AE =.17.为了测量校门口路灯AB 的高度,小明准备了两根标杆CD EF 、和皮尺,按如图的方式放置,已知 1.5CD EF ==米,在路灯的照射下,标杆CD 的顶端C 在标杆EF 留下的影子为G ,标杆EF 在地面上的影长是FH ,经测量得0.5FG =米, 1.5DF =米,3FH =米,那么灯杆AB 的长是米.18.如图,在Rt ABC △中,90C ∠=︒,7AC BC ==,点D 在边A 上,34AD BD =,点E 在射线BC 上,将DEB 沿着D 翻折,点B 落在点F 处,如果点A E F 、、在同一直线上,那么BE =.三、解答题19.如图,在ABC V 中,点E 为AC 中点,点D 在边AB 上,AED B ∠=∠,9AB =,6AC =.(1)求AD 的长;(2)设AB a =,BC b =用向量a 、b 表示向量DE ,即DE = ______.20.如图,在ABC V 中,120C ∠=︒,4BC =,3sin 5B =,求AC 的长.21.如图,AC 与BD 相交于点O ,将ADO △、ABO 、BOC 的面积分别记为1S 、2S 、3S ,当AD BC ∥时,试探究1S 、2S 、3S 有怎样的等量关系,并说明理由.22.在学习“三角形的重心”一课时,小王向同桌小刘提出这样一个问题:四边形有没有重心,如果四边形有重心,它的重心如何确定呢?小刘在周末查阅了相关资料,得到如下的信息:①四边形也有重心;②在平面内,图形A 与图形B 拼成一个图形C ,那么图形C 的重心一定在图形A 的重心与图形B 的重心连接的线段上.根据以上信息,解决下列问题:如图,有两张全等的直角三角形纸片,其中一张记为Rt ABC ,C 为直角顶点,1cot 2B =,将这两个三角形拼成一个四边形,使得斜边重合.(1)请画出所有符合要求的四边形,并作出所作四边形的重心G ;(不用写作法,保留痕迹,写出结论)(2)直接..写出线段AG 与线段BG 之比的比值.23.已知:如图,在ABC V 中,AB AC =,点D 在边CB 的延长线上,点E 在线段AD 上,DE CE =.(1)求证:EAF ECA ∽;(2)如果3CF EF =,连接EB ,求证:EB CD ⊥.24.如图,在锐角ABC V 中,AD 是高,tan 3ABC ∠=,点E 是AB 的中点.(1)求BED ∠的正切值;(2)点F 在线段ED 的延长线上,且CF ED ⊥,连接BF ,如果BF CF =,求BC AC 的值.25.如图1,已知梯形ABCD ,AD BC ∥,AB AD CD ==,AB BC <.(1)当6AB =,1cos 3C =时,求梯形ABCD 的面积;(2)作CD 的垂直平分线交射线AB 于点E ,交CD 于点F .①如图2,当点E 与点B 重合时,求C ∠的余弦值;②当EF 经过BC 的中点时,求AB BC的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中考试试题
一、选择题(每小题3分,共计24分)
1、一元二次方程2
350x x --=中的一次项系数和常数项分别是( ) A 、1,-5
B 、1,5
C 、-3,-5
D 、-3,5
2、计算: 0
2
2
2sin304cos 30tan 45+-=( ) A 、4
B

C 、3
D 、2
3、下列命题中,逆命题正确的是( ) A 、全等三角形的面积相等 B 、全等三角形的对应角相等 C 、等边三角形是锐角三角形 D 、直角三角形的两个锐角互余
4、将方程2
650x x --=左边配成一个完全平方式后,所得方程是( ) A 、2
(6)41x -=
B 、2
(3)4x -=
C 、()2
314x -=
D 、2
(6)36x -=
5、如图1:点O 是等边△ABC 的中心,A ′、B ′、C ′分别是OA ,OB ,OC 的中点,则△ABC 与
△A ′B ′C ′是位似三角形,此时,△A ′B ′C ′与ABC 的位似比、位似中心分别为
( )
A 、2,点A
B 、
1
2,点A ′
C 、2,点O
D 、1
2
,点O
6、如图2,A B ∥CD,AE ∥FD ,AE 、FD 分别交BC 于点G ,H ,
则图中与△ABG 相似的三角形共有( )
A 、4 个
B 、3个
C 、2个
D 、1个
7、某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为x ,根据题意得方程( )
A 、2
5000(1)5000(1)7200x x +++= B 、2
5000(1)7200x += C 、2
5000(1)7200x +=
D 、2
50005000(1)7200x ++=
8、如图3,CD 是Rt △ABC 斜边AB 上的高,AB=8,BC=6,则co s ∠BCD 的值是( )
A 、3
5
B 、3
4
C 、43
D 、4
5
C
D
C 图
2D
B
二、填空题(每小题3分,共30分)
9、方程2
2x x =的解是 。

10、在Rt △ABC 中,∠C=90°AB=2,AC=1,则SinB= 。

11、“互补的两个角一定是一个锐角和一个钝角”是 命题(填“真”或“假”),我们可举出反例: 。

12、两个相似多边形的面积的和等于1562
cm ,且相似比等于2:3,则较大多边形的面
积是 2
cm 。

13、若方程2
40x x m -+=有两个实数根,则m 的取值范围是 。

14、如图4,在平行四边形ABCD 中,E F ∥AB ,DE:DA=2:5, EF=4,则CD 的长为 。

15、当x = 时,代数式2
24x x -与代数式2
28x x -+
16、已知α是锐角,且5
13
Sin α=
,则tan α= 。

17、如图5,电灯P 在横杆AB 的正上方,
AB 在灯光下的影子为CD ,A B ∥CD,AB=2米,CD=5米, 点P 到CD 的距离是3米,则P 到AB 的距离是 米。

18、已知等腰三角形的一边为3,另两边是方程2
40x x m -+=的两个实根,则m 的值为 。

三、计算题(共30分)
19、(本题满分6分)解方程:2(1)32x x x -=-。

20、(本题满分8分)如图6,在△ABC 中,已知AB =,∠B=45°, ∠C=60°,求△ABC
的面积。

B
C
图4
D
21、(本题满分8分)如图7,在△ABC 中,点D 在AB 上,点E 在AC 上,且 D E ∥BC,AD=CE,DB=1cm ,AE=4cm. (1)求CE 的长。

(2)若四边形BCDE 的面积为4 C ㎡,求△ADE 的面积。

22、(本题满分8分)如图8,在观测点E 测得小山上铁塔顶点A 的仰角为60°,铁塔底部B 点的仰角为45°,已知塔高AB=20m ,观察点E 到地面的距离EF=35m ,求小山BD 的高(精确到0.1m
≈1.732)
四、创新与探究(16分)
23、(本题满分8分)小明家用瓷砖装修卫生间,还有一块墙角面未完工(如图9[1]),他想在现有的六块瓷砖余料中(如图9[2])挑选2块或3块余料进行铺设。

请你帮小明设计各种不同的铺设方案(分别在下面图9[3]、9[4] 、9[5]中画出铺设示意图,并标出所选用每块余料的编号)
C B A
4
图9(5)图9(4)图9(3)
图9(2)
图9(1)4
4
42
2
224
24、(本题满分8分)如图10,在正方形网格上有6个斜三角形: ①△ABC ②△CDB ③△DEB ④△FBG ⑤△HGF ⑥△EKF
请在三角形②~⑥中,找出与①相似的三角形的序号是 (把你认为正确的一个三角形的序号填上)并证明你的结论。

五、综合与运用(20分)
25、(本题满分10分)经调查研究,某工厂生产的一种产品的总利润y (元)与销售价格
x (元/件)的关系式为 24136093200y x x =-+-, 其中100≤x <245
(1)销售价格x 是为多少元时,可以使总利润达到22400元? (2)总利润可不可能达到22500元?
26、(本题满分10分)如图11,在正方形ABCD 中,AB=2,P 是BC 边上与B 、C 不重合的任意一点,DQ ⊥AP 于点Q
(1)判断△DAQ 与△APB 是否相似,并说明理由。

(2)当点P 在BC 上移动时,线段DQ 也随之变化,设PA=x ,DQ=y ,求y 与x 间的函数关系式,并求出x 的取值范围。

K

10图11
D。

相关文档
最新文档