二元一次方程组及其应用 单元测试题4套(含答案)

合集下载

完整版二元一次方程组应用题经典题及答案

完整版二元一次方程组应用题经典题及答案

完整版二元一次方程组应用题经典题及答案二元一次方程组是数学中的一个重要概念,它广泛应用于解决各种实际问题。

本文将通过一道经典题及其解答,来展示如何完整地解决一道二元一次方程组的应用题。

问题:某公司有一项工程需要进行,考虑到成本问题,公司决定将工程分成两部分,分别承包给两个不同的工程队。

假设甲工程队每小时的工作效率为a,乙工程队每小时的工作效率为b,且a、b均为正整数。

若甲工程队单独完成工程需要24小时,乙工程队单独完成工程需要32小时。

问:甲、乙两工程队合作完成这项工程需要多少小时?解题思路:为了解决这个问题,我们需要先列出方程组,然后解方程组得到答案。

根据题意,我们可以列出以下方程组:24a = 1 (甲工程队单独完成工程所需时间)32b = 1 (乙工程队单独完成工程所需时间)ab + ba = 1 (甲、乙两工程队合作完成工程所需时间)接下来,我们解这个方程组。

首先,将第一个方程式两边同乘以b,得到:24ab = b (1)将第二个方程式两边同乘以a,得到:32ab = a (2)将(1)式和(2)式两边分别相加,得到:24ab + 32ab = a + b整理得到:ab = 1/56 (3)将(3)式代入(1)式或(2)式,得到:a = 6 或b = 6因此,甲、乙两工程队合作完成这项工程需要的时间为:x = 1/(1/24 + 1/32) = 19.2 小时综上所述,我们通过解二元一次方程组得到了问题的答案。

这个问题是二元一次方程组应用的一个经典案例,通过解决这个问题,我们可以更深入地理解二元一次方程组的概念和应用。

二元一次方程组应用题经典题有答案二元一次方程组的应用题是数学中的经典题型之一,掌握这类问题的解法对于解决实际问题非常有帮助。

下面我们来看一道经典的二元一次方程组应用题,并给出相应的答案。

问题:某班共有40名学生,其中男生人数是女生人数的1.5倍。

已知每个男生每学期花费的学杂费为300元,而每个女生每学期花费的学杂费为400元。

第八章 二元一次方程组 (单元测试)【解析版】

第八章 二元一次方程组 (单元测试)【解析版】

第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)

人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。

第十章 二元一次方程组单元测试(含答案)

第十章 二元一次方程组单元测试(含答案)

第十章 二元一次方程组 单元测试第Ⅰ卷(选择题,共16分)一、选择题(每题2分 ,共16分)1.下列方程中,属于二元一次方程的是( ) A .3-5x=2x+2 B .8-x=1y+1 C .m -3n=5s D .3s+11=5t 2.原创题若x 、y 都是质数,则二元一次方程2005x y += 的解有( ) A.1组; B.2组; C.3组; D.无数组. 3.自编题 设x ay b=⎧⎨=⎩是方程3x -y=0的一个解,那么 ( )A. a,b 一定为正数;B. a,b 一定是负数;C. a,b 必同为0;D. a,b 不可能异号.4. 自编题 若二元一次方程组22x y k k x y +=⎧⎪⎨-=⎪⎩的解也是二元一次方程3x -4y=6的解,则k 的值为 ( )A. -6B. 6C. 4D. 8 5. 原创题若|3523+-y x |+(6x+5y -8)2=0,则x 2-xy+y 2的值为 ( A)A.943 B. -943 C. 957D. 957-6.一列快车和一列慢车的长度分别为180米和225米,若同向行驶,从快车追及慢车到全部超过81秒,如果快、慢车速分别为x 米/秒和y 米/秒,那么表示其等量关系的方程是 ( ) A. 81(x -y)=225; B. 81(x -y)=180; C. 81(x -y)=225-180; D. 81(x -y)=225+1807. 原创题一张试卷一共只有25道选择题,做对一题得4分,做错一题倒扣2分,李明同学做了全部试题,得了88分,那么他做对了( )A 、21题B 、22题C 、23题D 、24题8.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )住院医疗费(元) 报销率(%) 不超过500元的部分 0 超过500~1000元的部分 60 超过1000~3000元的部分 80 ……A 、1000元B 、1250元C 、1500元D 、2000元第Ⅱ卷(非选择题,共84分)二、填空题(每题2分 ,共16分) 9. 自编题如果方程6123=+y x 变形为用y 的代数式表示x,那么____________. 10. 自编题方程3x+4y=10正整数解是_______________. 11.若x :y =3:2,且1323=+y x ,则=x ,y = . 12.若100,2x x y y =-=⎧⎧⎨⎨==⎩⎩是二元一次方程mx -ny -10=0的解,则m+n=______. 13.自编题方程组20,x y x y a+=⎧⎨-=⎩的解是15,,x y b =⎧⎨=⎩,则a=_______,b=________.14.自编题方程组200,2_____x y x y +=⎧⎨-=⎩的解是150,_____.x y =⎧⎨=⎩15.原创题某种商品的市场需求量E (千件)和单价F (元/件)服从需求关系13E+F -173=0,•则当单价为4元时,市场需求量为________;若出售一件商品要在原单价4元的基础上征收税金1元,市场需求变化情况是__________.16.甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲、乙两种糖果的混合比例应为甲︰乙= .三、解答题(第17题每题4分 ,第18、19题每题6分,其余每题8分共68分) 17. 用适当的方法解下列二元一次方程组: (1)解方程组7,28.x y x y +=⎧⎨-=⎩①②(2)00000042,0.8 1.1421.x y x y +=⎧⎨+=⨯⎩18.原创题若方程组4322,(3) 3.x ymx m y+=⎧⎨+-=⎩①②的解满足x=2y,求m的值.19.原创题用一根长60cm的铁丝围成一个长方形,且使长方形的宽是长的57,•求长方形的长与宽.20.用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?21.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?22.甲、乙两人环绕长为400米的环形跑道散步.如果两人从同一点背道而行,•那么经过2分钟相遇;如从同一点同向而行,那么经过20分钟两人相遇,如甲的速度比乙快,求两人散步速度各是多少?23.商场销售A、B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B 种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?24. 原创题有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?25.原创题 阅读理解.解方程组⎪⎪⎩⎪⎪⎨⎧=-=+1412723yxy x 时,如果设n y m x ==1,1,则原方程组可变形为关于m 、n 的方程组⎩⎨⎧=-=+142723n m n m 。

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷学校:___________姓名:___________班级:___________一、选择题(本大题共12小题,共36.0分)1. 方程ax −4y =x −1是二元一次方程,则a 的取值为( )A. a ≠0B. a ≠−1C. a ≠1D. a ≠2 2. 下列方程组不是二元一次方程组的是( )A. {x −y =41x+y=4B. {4x +3y =62x +y =2 C. {x −y =4x +y =2D. {12(y −1)=212(x−1)=13. 方程组{3x +2y =7, ①4x −y =13, ②下列变形正确的是( )A. ①×2−②消去xB. ①−②×2消去yC. ①×2+②消去xD. ①+②×2消去y 4. 方程组{ax −y =12x +by =2的解为{x =1y =1,则a ,b 的值为( )A. a =2,b =0B. a =−2,b =0C. a =−2,b =2D. a =2,b =25. 二元一次方程2x +y =5的正整数解对数为( )A. 1对B. 2对C. 3对D. 4对 6. 已知|3x +2y −4|与9(5x +7y −3)2互为相反数,则x 、y 的值是( )A. {x =1y =1B. {x =2y =−1C. {x =−1y =2D. 无法确定7. 小明用17元买了1支笔和某种笔记本3个,已知笔记本的单价比笔的单价的2倍还多1元,设笔每支x 元,笔记本每本y 元,则所列方程组为( )A. {x +3y =17x =2y +1B. {x +3y =17y =2x +1C. {y +3x =17x =2y +1D. {y +3x =17y =2x +18. 用“●”“■”“●”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A. 5个B. 4个C. 3个D. 2个9. 用四个完全一样的长方形和一个小正方形拼成如图所示的大长方形的长和宽,已知大正方形的面积是121,小正方形的面积是9,若用x ,y(x >y)表示长方形的长和宽,则下列关系中不正确的是( ) A. x +y =11 B. x 2+y 2=180 C. x −y =3 D. x ⋅y =2810. 如果二元一次方程ax +by +2=0有两个解{x =2y =2与{x =1y =−1,那么下列各组中仍是这个方程的解的是( )A. {x =3y =5 B. {x =6y =2 C. {x =5y =3 D. {x =2y =6 11. 已知x =2m +1,y =2m −1,用含x 的式子表示y 的结果是( ) A. y =x +2B. y =x −2C. y =−x +2D. y =−x −212. 已知{x =1y =2z =3是方程组{ax +by =2by +cz =3cx +az =7的解,则a +b +c 的值是( )A. 3B. 2C. 1D. 无法确定二、填空题(本大题共6小题,共18.0分)13. 已知二元一次方程x +2y =2,用含x 的代数式表示y ,则y = ______ . 14. 已知{x =1y =−1是方程3mx −y =m 的一个解,则m =______.15. 已知{x =2y =3是方程4x +ky =2的解,则k =______.16. 甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了______张. 17. 在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =♦,其中y 的值被墨渍盖住了,不过,我们可解得出p = ______ .18. 对于X 、Y 定义一种新运算“∗”:X ∗Y =aX +bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3∗5=15,4∗7=28,那么2∗3=_____. 三、解答题(本大题共6小题,共46.0分) 19. (8分)解方程组(1){y =2x 3y +2x =8(2){x +y =2x+15−y−12=−1.20. (6分)在等式y =ax 2+bx +c 中,当x =O 时y =0;当x =1时,y =−1;当x =−1时,y =2,求a ,b ,c 的值. 21. (8分)若关于x 、y 的二元一次方程组的解x ,y 互为相反数,求m 的值.22. (8分)已知方程组{ax +5y =15①4x −by =−2②,由于甲看错了方程①中的a 得到方程组的解为{x =−13y =−1,乙看错了方程②中的b 得到方程组的解为{x =5y =4,(1)求a 、b 的值. (2)求原方程组的解.23. (8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A 、B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A 、B 两种饮料各多少瓶?24. (8分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润A 型B 型 进价(元/件) 60 100 标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?二元一次方程组单元测试卷【答案】 1. C 2. A 3. D4. A5. B6. B7. B8. A 9. B10. A 11. B12. A13.2−x 214. −12 15. −2 16. 20 17.3 18. 219. 解:(1){y =2x ①3y +2x =8 ②,把①代入②得:6x +2x =8,即x =1, 把x =1代入①得:y =2,则方程组的解为{x =1y =2;(2)方程组整理得:{2x −5y =−17 ①x +y =2 ②,①+②×5得:7x =−7,即x =−1, 把x =−1代入②得:y =3, 则方程组的解为{x =−1y =3.20. 解:根据题意得{c =0①a +b +c =−1②a −b +c =2③ ,②+③得2a +2c =1④, 把①代入④得2a =1, 解得a =12,把a =12,c =0代入②得12+b +0=−1, 解得b =−32,所以方程组的解为{a =12b =−32c =0.21. 解:将x =−y 代入二元一次方程租{3x +5y =22x +7y =m −18可得关于y ,m 的二元一次方程组{−3y +5y =2−2y +7y =m −18,解得m =23.22. 解:(1)将{x =−13y =−1,代入方程组中的第二个方程得:−52+b =−2, 解得:b =50,将{x =5y =4代入方程组中的第一个方程得:5a +20=15, 解得:a =−1.故a 的值是−1,b 的值是50. (2)把a =−1,b =50代入方程组得{−x +5y =15①4x −50y =−2②,①×10+②得:−6x =148, 解得:x =−743,将x =−743代入①得:y =−2915. 则原方程组的解为{x =−743y =−2915.23. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得:{x +y =1002x +3y =270,解得:{x =30y =70,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.24. 解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得 {60x +100y =600040x +60y =3800, 解得:{x =50y =30.答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得3800−50(100×0.8−60)−30(160×0.7−100)=3800−1000−360 =2440(元). 答:服装店比按标价售出少收入2440元.1. 【解答】解:方程ax −4y =x −1变形得(a −1)x −4y =−1, 根据二元一次方程的概念,方程中必须含有两个未知数, 所以a −1≠0,即a ≠1. 故选C .2. 解:A 、第一个方程不是整式方程,则方程组不是二元一次方程组; B 、C 、D 、正确. 故选A .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.3. 解:方程组{3x +2y =7, ①4x −y =13, ②,变形得:①+②×2消去y . 故选D方程组中第二个方程两边乘以2,与第一个方程相加消去y 即可.4. 解:把{x =1y =1代入{ax −y =12x +by =2得{a −1=1 ①2+b =2 ②解得{a =2b =0,故选:A .根据方程组的解满足方程,把解代入方程组,可得关于a 、b 的方程组,解方程组,可得答案.5. 解:2x +y =5, 解得:y =−2x +5,当x =1时,y =3;当x =2时,y =1, 则方程的正整数解为2对. 故选B将x 看做已知数求出y ,即可确定出方程的正整数解.6. 【解答】解:根据题意得:|3x +2y −4|+9(5x +7y −3)2=0, 可得{3x +2y =4①5x +7y =3②,②×3−①×5得:11y =−11,即y =−1, 将y =−1代入①得:x =2, 则方程组的解为{x =2y =−1,故选B7. 解:设笔每支x 元,笔记本每本y 元,由题意得,{x +3y =17y =2x +1.故选B .设笔每支x 元,笔记本每本y 元,根据用17元买了1支笔和某种笔记本3个,笔记本的单价比笔的单价的2倍还多1元,列方程组即可.8. 解:设“●”“■”“●”分别为x 、y 、z ,由图可知, {2x =y +z z =x +y,解得x =2y ,z =3y , 所以x +z =2y +3y =5y ,即“■”的个数为5, 故选A .设“●”“■”“●”分别为x 、y 、z ,由图列出方程组解答即可解决问题. 解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决. 9. 解:由题意得,大正方形的边长为14,小正方形的边长为2 ∴x +y =11,x −y =3, 则{x +y =11x −y =3, 解得:{x =7y =4.故可得B 选项的关系式不正确. 故选:B .根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.10. 解:把{x =2y =2与{x =1y =−1代入方程ax +by +2=0有{2a +2b +2=0a −b +2=0,解得{a =−32b =12,所以二元一次方程为−32x +12y +2=0,把A {x =3y =5代入方程得,左边=−32×3+12×5+2=0,右边=0,左边=右边,则是该方程的解. 故选A .把二元一次方程ax +by +2=0的两个解{x =2y =2与{x =1y =−1分别代入方程得到{2a +2b +2=0a −b +2=0,解方程组得到{a =−32b =12,所以二元一次方程为−32x +12y +2=0;然后把四个选项代入方程检验,能使方程的左右两边相等的x ,y 的值即是方程的解. 注意掌握二元一次方程的求解及二元一次方程组的求解方法.11. 【解答】解:由x =2m +1,y =2m −1, 得到x −y =2, 解得:y =x −2, 故选B .12. 解:由题意将{x =1y =2z =3代入方程组得:{a +2b =2①2b +3c =3②c +3a =7③,①+②+③得:a +2b +2b +3c +c +3a =2+3+7, 即4a +4b +4c =4(a +b +c)=12, 则a +b +c =3. 故选A .由题意,可将x ,y 及z 的值代入方程组得到关于a ,b ,c 的方程组,将方程组中三个方程左右两边相加,变形后即可求出a +b +c 的值.此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中每一个方程左右两边相等的未知数的值,本题的技巧性比较强,求a +b +c 不要求出a ,b 及c 的值,而是整体求出. 13. 解:方程x +2y =2, 解得:y =2−x 2, 故答案为:2−x 2.把x 看做已知数求出y 即可.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14. 解:把{x =1y =−1代入方程得:3m +1=m ,解得:m =−12. 故答案是:−12.把{x =1y =−1代入方程,即可得到一个关于m 的方程,解方程即可求解. 本题考查二元一次方程的解的定义,要求理解把x ,y 的值代入原方程后,方程左右两边一定相等.15. 解:把{x =2y =3代入方程4x +ky =2,得4×2+3k =2, 解得k =−2. 故答案为−2.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k 的一元一次方程,从而可以求出k 的值.本题考查二元一次方程的解的定义,解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.16. 解:设购买甲电影票x 张,乙电影票y 张, 由题意得,{x +y =4020x +15y =700,解得:{x =20y =20,即甲电影票买了20张.故答案为:20.设购买甲电影票x 张,乙电影票y 张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.此题考查了二元一次方程组的应用,属于基础题,解答本题的关键是根据题意等量关系得出方程组.17. 解:将x =0.5代入x +y =1,得0.5+y =1, 则y =0.5,将x =0.5,y =0.5代入x +py =2,有0.5+0.5p =2, 解得p =3.根据方程组解的定义,把x =0.5代入x +y =1求出y 的值,再将x 、y 的值代入x +py =2即可求出p 的值.此题考查了对方程解的理解,直接代入方程求值即可. 18. 解:∵X ∗Y =aX +bY ,3∗5=15,4∗7=28, ∴3a +5b =15 ①,4a +7b =28 ②, ∴②−①得:a +2b =13 ③, ①−③得:2a +3b =2, 而2∗3=2a +3b =2.本题是一种新定义运算题目.首先要根据运算的新规律,得出3a +5b =15①,4a +7b =28②,2∗3=2a +3b .本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力.认真审题,准确的列出式子是解题的关键. 19. (1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20. 先根据题意得到三元一次方程组{c =0①a +b +c =−1②a −b +c =2③ ,再把②与③相加可计算出a ,然后把a 与c 的值代入②可计算出b .本题考查了解三元一次方程组:利用代入法或加减法,把三元一次方程组的问题转化为解二元一次方程组的问题.21. 考查了解二元一次方程的能力和对方程解的概念的理解.利用x ,y 的关系代入方程组消元,从而求得m 的值.22. 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a的值,从而求解;(2)先确定出正确的方程组,求出方程组的解即可得到原方程组的解.23. 设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.24. (1)设A种服装购进x件,B种服装购进y件,由总价=单价×数量,利润=售价−进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据总利润=A种服装的利润+B中服装的利润,求出其解即可.本题考查了销售问题的数量关系的运用,列二元一次方程组解实际问题的运用,解答时由销售问题的数量关系建立二元一次方程组是关键.。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

单元测试(四) 二元一次方程组

单元测试(四)  二元一次方程组

单元测试(四) 二元一次方程组(时间:45分钟满分:100分) 一、选择题(每小题3分,共24分)1.已知3,2xy=-=⎧⎨⎩是方程2x+ky=4的一个解,则k的值是( )A.2B.3C.4D.52.方程3x+2y=15的自然数解有( )A.1个B.2个C.3个D.无数个3.若a+b=3,a-b=7,则ab=( )A.-10B.-40C.10D.404.方程组224x yx y-=+=⎧⎨⎩,的解是( )A.12xy==⎧⎨⎩B.31xy==⎧⎨⎩C.2xy==-⎧⎨⎩D.2xy==⎧⎨⎩5.如果3a7x b y+7和-7a2-4y b2x是同类项,那么x,y的值是( )A.x=-3,y=2B.x=2,y=-3C.x=-2,y=3D.x=3,y=-26.以二元一次方程组37,1x yy x+=-=⎧⎨⎩的解为坐标的点(x,y)在平面直角坐标系的( )A.第一象限B.第二象限C.第三象限D.第四象限7.小亮解方程组2212x yx y+=-=⎧⎨⎩●,的解为5xy==⎧⎨⎩,★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )A.82==⎧⎨⎩●★B.82==-⎧⎨⎩●★C.82=-=⎧⎨⎩●★D.82=-=⎨-⎧⎩●★8.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是( )A.207717066x yx y+=+=⎧⎪⎨⎪⎩B.207717066x yx y-=+=⎧⎪⎨⎪⎩C.207717066x yx y+=-=⎧⎪⎨⎪⎩D.77170 667720 66x yx y+=-=⎧⎪⎪⎨⎪⎪⎩二、填空题(每小题4分,共16分)9.若一个二元一次方程的解为2,1,xy==-⎧⎨⎩则这个方程可以是__________(只要求写出一个).10.用加减消元法解方程组31,421,x yx y+=-=⎨+⎧⎩①②由①×2-②得__________.11.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为__________元.12.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为__________.三、解答题(共60分)13.(10分)解方程组:(1)21,3211x yx y+=-=⎧⎨⎩①;②(2)()()()3223,21.3412x y x yx y x y+--=⎧-+-=-⎪⎨⎪⎩14.(8分)已知2,3xy==-⎧⎨⎩是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.15.(8分)已知关于x,y的方程组5,4522x yax by+=+=-⎧⎨⎩与21,80x yax by-=--=⎧⎨⎩有相同的解,求a,b的值.16.(10分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.17.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?18.(12分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的式子表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?参考答案1.D2.C3.A4.D5.B6.A7.B8.D9.如x+y=1 10.2x=-3 11.440 12.9613.(1)①+②,得4x=12.解得x=3.把x=3代入①,得3+2y=1.解得y=-1.所以原方程组的解是3,1. xy==-⎧⎨⎩(2)原方程组整理得:53,511 1.y x x y ⎨-=-=-⎧⎩①② 由①,得x=5y-3.③把③代入②,得25y-15-11y=-1.解得y=1. 将y=1代入③,得x=5×1-3=2.所以原方程组的解为2,1.x y ==⎧⎨⎩14.∵2,3x y ==-⎧⎨⎩是关于x,y 的二元一次方程3x=y+a 的解, ∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.15.由题意可将x+y=5与2x-y=1组成方程组5,2 1.x y x y +=-=⎧⎨⎩解得2,3.x y ==⎧⎨⎩把2,3x y ==⎧⎨⎩代入4ax+5by=-22,得8a+15b=-22.① 把2,3x y ==⎧⎨⎩代入ax-by-8=0,得2a-3b-8=0.② ①与②组成方程组,得81522,2380.a b a b +=---=⎧⎨⎩解得1,2.a b==-⎧⎨⎩ 16.设大宿舍有x 间,小宿舍有y 间.根据题意,得 5086360.x y x y +=+=⎧⎨⎩,解得30,20.x y ==⎧⎨⎩ 答:大宿舍有30间,小宿舍有20间.17.(1)设去了x 个成人,y 个学生,依题意,得12,40400.5400.x y x y +=+⨯=⎧⎨⎩解得8,4.x y ==⎧⎨⎩ 答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384(元).∵384<400,∴按团体票购票更省钱.18.(1)地面总面积为:6x+2y+18(m2).(2)由题意,得6221,6218152.x yx y y-=++=⨯⎧⎨⎩解得4,3.2xy⎧==⎪⎨⎪⎩∴地面总面积为:6x+2y+18=6×4+2×32+18=45(m2).∴铺地砖的总费用为:45×80=3 600(元).。

二元一次方程组单元测试题(2)

二元一次方程组单元测试题(2)

二元一次方程组单元测试题(2)考试时间:90mins 总分:100分 命题:超级飞一.选择题(每小题3分,共30分) 1、下列各式中是二元一次方程的是( ). A.240x -=B.3x +C.0x y z ++=D.2x y =2、已知214237m n x y --+=-是关于x 、y 的二元一次方程,则m 、n 的解是( )(A ) 21m n =⎧⎨=⎩(B )132m n =⎧⎪⎨=-⎪⎩ (C ) 132m n =⎧⎪⎨=⎪⎩ (D ) 152m n =⎧⎪⎨=⎪⎩ 3、方程组21243x y x y +=⎧⎨+=⎩,的解的情况是( ).A.一个解B.二个解C.无解D.无数个4、下列各组数值是方程162x y -=的解的一组是( ) A.06x y =⎧⎨=-⎩,.B.810x y =-⎧⎨=⎩,.C.32x y =⎧⎨=⎩,.D,32x y =⎧⎨=-⎩,.5、由方程组43x m y m +=⎧⎨-=⎩,.可得出x 与y 的关系是( )A.1x y +=B.1x y +=-C.7x y +=D.7x y +=-6、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行12千米,那么甲1小时追上乙;如果乙先走1小时,甲只用12小时追上乙,则乙的速度是( ) A.6千米/时 B.12千米/时 C.18千米/时 D.36千米/时7、已知⎩⎨⎧==34y x ,是方程组52ax by bx ay +=⎧⎨+=⎩,的解,则a b ,的值为( ).A.21a b =⎧⎨=⎩,;B.21a b =-⎧⎨=⎩,; C.21a b =-⎧⎨=-⎩,; D.21a b =⎧⎨=-⎩,8、如果二元一次方程组24x y ax y a +=⎧⎨-=⎩,的解是二元一次方程35280x y --=的一个解,则a =()A.3B.2 C.7 D.69、若2540x y z +-=,3970x y z +-=,则x y z +-的值为( ). A.0B.1C.2D.不能求出10、若方程组⎩⎨⎧=+=+bay x y x 21有唯一解,那么a 、b 的值应当是( )(A ) a ≠2,b 为任意实数 (B ) a =2,b ≠0(C ) a =2,b ≠2 (D ) a ,b 为任意实数二.填空题(每小题3分,共21分) 1、方程30x ay -=的一个解是32x y =⎧⎨=⎩,,那么a 的值为_____. 2、若25(1)0x y x y --++=,那么21x y +-=_____.3、当k =_____________时,下列方程①2350x y --=,②3420x y --=,③3y k x =+有公共解.4、二元一次方程2530x y +=的所有正整数解为_____.5、甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的31等于丙数的21,假设甲、乙、丙三个数分别为x 、y 、z ,则可得方程组为 。

二元一次方程组及其应用单元测试题4套(含答案)

二元一次方程组及其应用单元测试题4套(含答案)

⼆元⼀次⽅程组及其应⽤单元测试题4套(含答案)⼆元⼀次⽅程组单元检测1姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)⼀、根据图1所⽰的计算程序计算y 的值,若输⼊2=x ,则输出的y 值是() A .0 B .2- C .2 D .4 ⼆、将⽅程121=+-y x 中含的系数化为整数,下列结果正确的是() A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 三、如果==21y x 是⼆元⼀次⽅程组?=+=+21ay bx by ax 的解,那么a ,b 的值是() A .??=-=01b a B .==01b a C .==10b a D .?-==10b a 四、如果⼆元⼀次⽅程组?=+=-a y x ay x 3的解是⼆元⼀次⽅程0753=--y x 的⼀个解,那么a 的值是( )A .3B .5C .7D .9五、如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( )A .??==31y x B .==22y x C .==21y x D .==32y x六、若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( ) A .s =3,t =-2 B .s =-3,t =2 C .s =-3,t =-2 D .s =3,t =2 七、⽅程3y +5x =27与下列的⽅程________所组成的⽅程组的解是??==43y x ( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对⼋、⼆元⼀次⽅程组??=-=+ky x k y x 7252的解满⾜⽅程31x -2y =5,那么k 的值为( )A .53B .35C .-5D .1九、甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,在下列⽅程组中正确的是 ( )A .=-=+360)(24360)(18y x y xB .??=+=+360)(24360)(18y x y xC .=-=-360)(24360)(18y x y xD .=+=-360)(24360)(18y x y x⼗、在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y ⼗⼀、如果??=+-=-+0532082z y x z y x ,其中xyz≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 ⼗⼆、如果⽅程组??=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 ⼆、填空题(共4题每题3分共12分)⼗三、已知42+=a x ,32+=a y ,如果⽤x 表⽰y ,则y = .⼗四、在等式5×⼝+3×Δ=4的⼝和Δ处分别填⼊⼀个数,使这两个数互为相反数.⼗五、如果2006200520044321=+-+-+n m n m y x 是⼆元⼀次⽅程,那么32n m +的值是.⼗六、如图,点A 的坐标可以看成是⽅程组的解.三、解答题(共7题 6+6+7+7+8+8+10 共52分)⼗七、(1)??-==+73825x y y x (2)?=-=+423732y x y x⼗⼋、若⽅程组??=+=-31y x y x 的解满⾜⽅程组?=+=-84by ax by ax ,求a ,b 的值.⼗九、定义“*”:(1)(1)x yA B x A BA B *=++++,已知321=*,432=*,求43*的值.⼆⼗、某⽔果批发市场⾹蕉的价格如下表购买⾹蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上每千克的价格6元5元4元张强两次共购买⾹蕉50千克,已知第⼆次购买的数量多于第⼀次购买的数量,共付出264元,请问张强第⼀次,第⼆次分别购买⾹蕉多少千克?⼆⼗⼀、为保护学⽣视⼒,课桌椅的⾼度都是按⼀定的关系配套设计的,研究表明:假设课桌的⾼度y (cm)是椅⼦的⾼度x (cm )的⼀次函数,下表列出两套符合条件的课桌椅的⾼度:第⼀套第⼆套椅⼦的⾼度X(cm) 40.0 37.0 桌⼦⾼度y(cm)75.070.2(1)请确定x y 与的函数关系式;(2)现有⼀把⾼39cm 的椅⼦和⼀张⾼为78.2cm 的课桌,它们是否配套?为什么?⼆⼗⼆、(1)求⼀次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三⾓形的⾯积.⼆⼗三、阅读下列解题过程,借鉴其中⼀种⽅法解答后⾯给出的试题:问题:某⼈买13个鸡蛋,5个鸭蛋、9个鹅蛋共⽤去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共⽤去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各⼀个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各⼀个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知----=++---=++)2(20.3342)1(25.99513z y x z y x ;视x 为常数,将上述⽅程组看成是关于y 、z 的⼆元⼀次⽅程组,化“三元”为“⼆元”、化“⼆元”为“⼀元”从⽽获解.解法1:视x 为常数,依题意得?-----=+----=+)4(220.334)3(1325.995x z y x z y解这个关于y 、z 的⼆元⼀次⽅程组得??-=+=xz xy 2105.0于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述⽅程组看成是关于x 、y 的⼆元⼀次⽅程组,解答⽅法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得 25.9)2(4)(5=++++z x z y x , 20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代⼊(1)、(2)可以得到如下关于a 、b 的⼆元⼀次⽅程组??----=----=+)6(20.34)5(25.945b a b a由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运⽤整体的思想⽅法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代⼈①、②将原⽅程组转化为关于a 、b 的⼆元⼀次⽅程组从⽽获解.请你运⽤以上介绍的任意⼀种⽅法解答如下数学竞赛试题:购买五种教学⽤具A 1、A 2、A 3、A 4、A 5的件数和⽤钱总数列成下表:那么,购买每种教学⽤具各⼀件共需多少元?品名次数 A 1 A 2 A 3 A 4 A 5 总钱数第⼀次购买件数 l 3 4 5 6 1992 第⼆次购买件数l 5 7 9 11 2984参考答案⼀、选择题1.D2.A3.B4.C5.C6.D7.B8.B9.A10.A11.C12.B ⼆、填空题 13.x -1 14.2,-2 15.9 16.??+--=512x y x y 三、解答题17、(1){21=-=x y (2){21==x y 18、解:解⽅程组??=+=-31y x y x 得:{21==x y将{21==x y 分别代⼊⽅程组=+=-84by ax by ax 得{8242=+=-b a b a 解这个⽅程组得{32==a b所以3=a 、2=b 19.?-==13275Y X ,351442013277543=-=*.20.解:设张强第⼀次购买了⾹蕉x 千克, 第⼆次购买了⾹蕉y 千克,由题意可知025x <<, ①当02040x y <≤,≤时,由题意可得,=+=+5026456y x y x 解得{1436==x y②当02040x y <≤,>时,由题意可得?=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当025x <<时,则2530y <<,则张强花的钱数为5X+5Y=5×50=250<264(不合题意,舍去) 所以张强第⼀次买14千克⾹蕉,第⼆次买36千克⾹蕉. 21.解:(1)设y kx b =+,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当X=39时,由116.1+=k y 得y=1.6×39+11=73.4≠78 所以不配套.22、解:(1)由-=-=22121x y x y 解得:??=-=3232x y 所以点P 的坐标为-32,32,(2)当X=0时,由Y=2×0-2=-2,所以点A 坐标是(0,-2). 当Y=0时,由0=-21X-1,得X=2,所以点B 坐标是(2,0). (3)如图112222222233PAB S =??-=△23、1000元⼆元⼀次⽅程单元检测2姓名:时间:成绩:⼆⼗四、选择题(共12题每题3分共36分) 1. 已知下列⽅程组:(1)-==23y y x ,(2)=-=+423z y y x ,(3)=-=+0131y x y x ,(4)=-=+0131y x y x ,其中属于⼆元⼀次⽅程组的个数为() A.1 B.2 C.3 D.42. 已知532b a x y +与2244a b x y --是同类项,则a b 的值为()A.2B.-2C.1D.-13. 已知⽅程组-=-=+1242m ny x ny mx 的解是-==11y x ,那么m 、n 的值为()A.?-==11n m B.==12n m C.==23n m D.==13n m4. 三元⼀次⽅程组??=+=+=+651x z z y y x 的解是()A.??===501z y x B. 015x y z ?=?=??=?C.===401z y xD.===014z y x5. 若⽅程组=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为()A.-4B.4C.2D.16. 若关于x 、y 的⽅程组?=-=+k y x ky x 73的解满⾜⽅程2x +3y =6,那么k 的值为()A.-23B.23C.-32D.-237. 若⽅程y =kx +b 当x 与y 互为相反数时,b ⽐k 少1,且x =21,则k 、b 的值分别是() A.2,1 B.32,35 C.-2,1 D.31,-328. 某班学⽣分组搞活动,若每组7⼈,则余下4⼈;若每组8⼈,则有⼀组少3⼈.设全班有学⽣x ⼈,分成y 个⼩组,则可得⽅程组()A.=-=+y x y x 3847B.=++=x y x y 3847C.+=-=3847x y x yD.+=+=3847x y x y9. 某车间56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有名⼯⼈⽣产螺栓,其它⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,所列⽅程正确的是()A.=?=+y x y x 2416256B.=?=+y x y x 1624256C.==+y x y x 241628D.?==+y x y x 16245610. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、⼄两种奖品共 30件,其中甲种奖品每件16元,⼄种奖品每件12元,求甲⼄两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,⼄种奖品y 件,则⽅程组正确的是()A.301216400x y x y +=??+=?B.301612400x y x y +=??+=?C. 121630400x y x y +=??+=?D. 161230400x y x y +=??+=?11. 灾后重建,四川从悲壮⾛向豪迈.灾民发扬伟⼤的抗震救灾精神,桂花村派男⼥村民共15 ⼈到⼭外采购建房所需的⽔泥,已知男村民⼀⼈挑两包,⼥村民两⼈抬⼀包,共购回15 包.请问这次采购派男⼥村民各多少⼈?A .男村民3⼈,⼥村民12⼈B .男村民5⼈,⼥村民10⼈C .男村民6⼈,⼥村民9⼈D .男村民7⼈,⼥村民8⼈12. 在早餐店⾥,王伯伯买5颗馒头,3颗包⼦,⽼板少拿2元,只要50元.李太太买了 11颗馒头,5颗包⼦,⽼板以售价的九折优待,只要90元.若馒头每颗x 元,包⼦每颗y 元,则下列哪⼀个⼆元⼀次联⽴⽅程式可表⽰题⽬中的数量关系?A .=++=+9.09051125035y x y xB .÷=++=+9.09051125035y x y xC .=+-=+9.09051125035y x y xD .÷=+-=+9.09051125035y x y x⼆⼗五、填空题(共4题每题3分共12分)13. 已知⼆元⼀次⽅程1213-+y x =0,⽤含y 的代数式表⽰x ,则x =_________;当y =-2时,x =.14. 在(1)-==23y x ,(2)-==354y x ,(3)1472x y ?==??这三组数值中,_____是⽅程组 x -3y =9的解,______是⽅程2 x +y =4的解,______是⽅程组?=+=-4293y x y x 的解.15. 已知=-=54y x ,是⽅程41x +2 my +7=0的解,则m =_______.16. 若⽅程组=-=+137by ax by ax 的解是-=-=12y x ,则a =_________,b =_______.⼆⼗六、解答题(共7题 6+6+7+7+8+8+10 共52分(此处分值可以根据具体情况来定))17. -=-=-.557832y x y x18. =+=+.15765545.04332y x y x19. 已知⽅程组?+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.20. 已知⽅程组-=+=-1332by ax y x 与=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.21. 已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.22.某校去年⼀年级男⽣⽐⼥⽣多80⼈,今年⼥⽣增加20%,男⽣减少25%,结果⼥⽣⼜⽐男⽣多30⼈,求去年⼀年级男⽣、⼥⽣各多少⼈.23.B两地相距20千⽶,甲、⼄两⼈分别从A、B 两地同时相向⽽⾏,两⼩时后在途中相遇,然后甲返回A地,⼄继续前进,当甲回到A地时,⼄离A地还有2千⽶,求甲、⼄两⼈的速度.参考答案⼀、选择题1.B2.C3.D4.A5.C6.B7.D8.C9.A 10.B 11.B 12. B ⼆、填空题13.x =62y -;x =32.14.(1),(2);(1),(3);(1).15.-53.16.a =-5,b =3.三、解答题17.【答案】-=-=.65y x 【答案】=-=.223y x19.【提⽰】解已知⽅程组,⽤n 的代数式表⽰x 、y ,再代⼊ x +y =12.【答案】n =14.20.【提⽰】先解⽅程组=+=-1123332y x y x 求得x 、y ,再代⼊⽅程组?=+-=+3321by ax by ax 求a 、b .【答案】=-=52b a .21.【提⽰】由题意得关于a 、b 的⽅程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5. 22.【提⽰】设去年⼀年级男⽣、⼥⽣分别有x ⼈、y ⼈,可得⽅程组=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200. 23.【提⽰】由题意,相遇前甲⾛了2⼩时,及“当甲回到A 地时,⼄离A 地还有2千⽶”,可得列⽅程组的另⼀个相等关系:甲、⼄同向⾏2⼩时,相差2千⽶.设甲、⼄两⼈的速度分别为x 千⽶/时,y 千⽶/时,则=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千⽶/时,⼄的速度为4.5千⽶/时.⼆元⼀次⽅程组单元检测3姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)1. 下列是⼆元⼀次⽅程的是()A .x x =-63B .y x 23=C .132=+y x D .xy y x =-32 2. 在⽅程组=+=-1253by x y ax 中,如果-==121y x 是它的⼀个解,那么a 、b 的值为( )A .a =1,b =2B .不能惟⼀确定C .a =4,b =0D .a =21,b =-1 3. ⽅程41ax y x -=-是⼆元⼀次⽅程,则a 的取值为()A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠24. 已知57x y =??=?满⾜⽅程kx ﹣2y =1,则k 等于()A .3B .4C .5D .65. ⼆元⼀次⽅程32325x y x y -=??+=?的解是()A 、10x y =??=?B 、322x y ?==?C 、232x y =??= D 、71x y =??=-? 6. ⽼师问⼀⼥⽣有⼏个兄弟姐妹,她答:“有⼏个兄弟就有⼏个姐妹”,⽼师⼜问她的哥哥有⼏个兄弟姐妹,他答:“我的姐妹是兄弟的2倍”,则他们的兄弟姐妹中,男孩、⼥孩的⼈数各是()A 、4、3B 、2、5C 、3、4D 、5、27. 在等式b kx y +=中,当1=x 时,5=y ;当2-=x 时,11=y ,则k 、b 的值为A.??-==27b kB.??=-=27b k C.-==72b k D.=-=72b k8. 若352220x y x y +++--=,则223x xy -的值是()A 、14B 、-4C 、-12D 、129. ⼆元⼀次⽅程组327,25x y x y -=??+=?的解是()A .32x y =??=?B .12x y =??=?C .42x y =??=?D .31x y =??=?10. ⼩明在解关于x 、y 的⼆元⼀次⽅程组331x y x y +?=??-?=?时得到了正确结果1x y =⊕=?后来发现“?”、“⊕”处被墨⽔污损了,请你帮他找出“?”、“⊕”处的值分别是()A . ?=1,⊕=1B . ?=2,⊕=1C . ?=1,⊕=2D . ?=2,⊕=211. 为迎接2013年“亚青会”,学校组织了⼀次游戏:每位选⼿朝特制的靶⼦上各投三以飞镖,在同⼀圆环内得分相同.如图所⽰,⼩明、⼩君、⼩红的成绩分别是29分、43分和33分,则⼩华的成绩是()⼩明⼩君⼩红⼩华A .31分B .33分C .36分D .38分12. 下列⽅程中,是⼆元⼀次⽅程的是() A .3x -2y =4z B .6xy +9=0 C .1x +4y =6 D .4x =24y - ⼆、填空题(共4题每题3分共12分)13. 若?==53y x 是⽅程22=-y mx 的⼀个解,则=m 。

第五章 二元一次方程组单元测试卷(含解析)

第五章 二元一次方程组单元测试卷(含解析)

第五章二元一次方程组单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程组是二元一次方程组的是()A.B.C.D.2.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定3.用代入法解方程组时,下列说法中,正确的是()A.直接把①代入②,消去y B.直接把①代入②,消去xC.直接把②代入①,消去y D.直接把②代入①,消去x4.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.65.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.6.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟8.已知等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()A.12 B.12或14 C.15 D.15或149.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利()A.25% B.40% C.50% D.66.7%10.小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h以上,则小林应选择()更省钱.A.中国联通B.“神州行”储值卡C.一样D.无法确定二.填空题(共8小题,满分24分,每小题3分)11.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组12.在y=kx+b中,当x=﹣1时,y=0;当x=1时,y=5,则k=,b=.13.知一次函数y=﹣x+m和y=x+n的图象都经过A(﹣2,0),则A点可看作方程组的解.14.甲乙两地相距50千米,星期天上午8:00小明同学骑山地自行车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系如图所示,则小明父亲出发小时后,行进中的两车相距24千米.15.某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?16.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=分钟.17.方程组:的解是.18.若方程组无解,则y=kx+3图象不经过第象限.三.解答题(共7小题,满分66分)19.(12分)解方程组:(1)(2)(3).20.(8分)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.21.(8分)若方程组和方程组有相同的解,求a,b的值.22.(8分)目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?23.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.25.(12分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.观察时间x该地区沙漠面积比原有面积增加的数量y第一年底0.2万公顷第二年底0.4万公顷第三年底0.6万公顷(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?参考答案与试题解析1.解:A、是二元二次方程组,故A不符合题意;B、是分式方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故选:D.2.解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m=2,则m2=4.故选:A.3.解:将①代入②,得:3y﹣2y=2,由此可知①代入②可消去x,故选:B.4.解:根据题意得:,①+②得:3a=9,即a=3,把a=3代入②得:b=0,则a+b=3,故选:C.5.解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故选:A.6.解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.7.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.8.解:x,y满足方程组,解得,当x=3为等腰三角形的腰时,3+3=6,不满足三角形三边条件,三角形不存在,当x=6为等腰三角形的腰时,3+6>6,三角形存在,周长为6+6+3=15,故选:C.9.解:设进价为x,根据题意得(1+20%)x=80%解得x=则按原标价出售,可获利1÷﹣1=50%.故选:C.10.解:设通话时间为x分钟,则联通收费为(0.4x+36)元,神州行收费为0.6x元,3h=180分钟,得通话时间在3小时时联通收费为0.4×180+36=108元,神州行收费为0.6×180=108元,即通话时间在3小时时,收费一样.而在3h以上时0.4x+36<0.6x,故选择联通故选:A.11.解:先围绕列一组算式,如﹣2+1=﹣1,﹣2﹣1=﹣3,然后用x,y代换,得等.答案不唯一,符合题意即可.12.解:∵在y=kx+b中,当x=﹣1时,y=0;当x=1时,y=5,∴,两个方程相减得:k=,两个方程相加,得b=.∴k=,b=.13.解:把A(﹣2,0)分别代入y=﹣x+m和y=x+n得3+m=0,﹣1+n=0,解得m=﹣3,n=1,所以一次函数解析式为y=﹣x﹣3和y=x+1,因为一次函数y=﹣x﹣3和y=x+1的交点坐标为(﹣2,0),所以可看作方程组的解.故答案为.14.解:小明同学行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系为y=12x,小明同学的爸爸行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系为y=36x ﹣72,由12x﹣(36x﹣72)=24,解得x=2,由36x﹣72﹣12x=24,解得x=4不合题意舍弃,故答案为2.15.解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.16.解:设公共汽车的速度为V1,甲的速度为V2.由题意得由①﹣②得0=5V1﹣25V2,即V1=5V2③将③代入①得s=10(V1﹣V1)∴=8故答案为8.17.解:方程组整理得:,①×2+②得:15y=﹣15,即y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.故答案为:.18.解:∵方程组无解,∴直线y=kx+3与y=(3k+1)x+2平行,∴k=3k+1,解得k=﹣,在直线y=﹣x+3中,∵﹣<0,3>0,∴直线y=﹣x+3经过第一、二、四象限,不经过第三象限.故答案为三.19.解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.20.解:(1)∵点A(3,0),AB=5∴BO===4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴×BC×AO=9∴×BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣2.21.解:由题意知,解得:,将代入ax+y=b和x+by=a得:,解得:.22.解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:,解得:,答:甲种节能灯有80只,则乙种节能灯有40只;(2)根据题意得:80×(30﹣25)+40×(60﹣45)=1000(元),答:全部售完120只节能灯后,该商场获利润1000元.23.解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.24.解:(1)设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故每个小长方形的面积为60;(2)设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则12x+y=12×1+8=20.即小明把13个纸杯整齐叠放在一起时,它的高度约是20cm.(3)设小长方形的长为x,宽为y,根据题意得,解得,∴S=17×14﹣8×8×3=46.阴影故答案为:20.25.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,答:需要7.5年,该地区的沙漠面积能减少到95万公顷.。

(完整版)初一数学二元一次方程组测试题及答案

(完整版)初一数学二元一次方程组测试题及答案

0.《二元一次方程组》单元测试题一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是().(A)(B)(C)(D)2.二元一次方程组的解是( )(A)(B)(C)(D)3.根据图1所示的计算程序计算的值,若输入,则输出的值是()(A)0 (B)(C)2 (D)44.如果与是同类项,则,的值是( )(A)(B)(C)(D)5.已知是方程组的解,则a+b= ( ).(A)2 (B)-2 (C)4 (D)-46.如图2,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是( )(A)(B)(C)(D)7.如果是方程组的解,则一次函数y=mx+n的解析式为( )(A)y=-x+2 (B)y=x-2 (C)y=-x-2 (D)y=x+28.已知是二元一次方程组的解,则2m-n的算术平方根为()(A)(B)(C)2 (D)49.如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )(A)3 (B)5 (C)7 (D)910.如图3,一次函数和(a≠0,b≠0)在同一坐标系的图象.则的解中()(A)m>0,n>0 (B)m>0,n<0 (C)m<0,n>0 (D)m<0,n<0二、填空题(每小题4分,共20分)11.若关于x,y的二元一次方程组的解满足x+y=1,则k的取值范围是.12.若直线经过一次函数的交点,则a的值是.13.已知2x-3y=1,用含x的代数式表示y,则y =,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.15.如图4,点A的坐标可以看成是方程组的解.三、解答题16.解下列方程组(每小题6分,共12分)(1) (2)17.已知是关于x,y的二元一次方程组的解,求出a+b的值.18.(8分)为了净化空气,美化环境,我市青羊区计划投资1.8万元种银杏和芙蓉树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种银杏树和芙蓉树各多少棵?19.(10分)已知与的值互为相反数,求:(1)、的值;(2)的值.20.(本题12分)如图5,成都市某化工厂与A,B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_____________________,y表示________________________乙:x表示_____________________,y表示________________________(2)甲同学根据他所列方程组解得x=300.请你帮他解出y的值,并解决该实际问题.参考答案一、1-5、DCDCB 6-10、BDCCA二、11.k=2; 12.-6; 13.,; 14. 35; 15.三、16.(1)x=0.5,y=5 (2)x=-3 , y=17.a+b=118.设银杏树为x,芙蓉树为y.由题意可得:解得19.20.解:(1)甲:x表示产品的重量,y表示原料的重量;乙:x表示产品销售额,y表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元。

人教新版七年级下册《第8章_二元一次方程组》2024年单元测试卷+答案解析

人教新版七年级下册《第8章_二元一次方程组》2024年单元测试卷+答案解析

人教新版七年级下册《第8章二元一次方程组》2024年单元测试卷一、选择题:本题共2小题,每小题3分,共6分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.学校计划用200元钱购买A、B两种奖品两种都要买,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.1种B.2种C.3种D.4种2.“十一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A. B.C. D.二、填空题:本题共3小题,每小题3分,共9分。

3.《九章算术》卷八方程【七】中记载:“今有牛五、羊二,值金十两.牛二、羊五,值金八两.牛、羊各值金几何?”题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?若设一头牛值金x两,一只羊值金y两,则可列方程组为______.4.若关于x,y的二元一次方程组的解为,则多项式A可以是__________写出一个即可5.某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2分,负1场得1分.如果某队在10场比赛中得到16分,那么这个队胜负场数可以是______写出一种情况即可三、解答题:本题共6小题,共48分。

解答应写出文字说明,证明过程或演算步骤。

6.本小题8分已知与是同类项,求a,b的值.7.本小题8分解方程组8.本小题8分某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?检查中发现,紧急情况时因学生拥挤,出门的效率降低安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.9.本小题8分用加减消元法解下列方程组:10.本小题8分本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价元超过1千克的部分元/千克上海7b北京10实际收费:目的地质量千克费用元上海2北京3求a,b的值.11.本小题8分放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.求笔记本的单价和单独购买一支签字笔的价格;小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.答案和解析1.【答案】B【解析】解:设购买A种奖品x件,B种奖品y件,依题意得:,又,y均为正整数,或,共有2种购买方案.故选:设购买A种奖品x件,B种奖品y件,利用总价=单价数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有2种购买方案.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.2.【答案】A【解析】解:依题意,得:故选:根据“准备了49座和37座两种客车共10辆,且466人刚好坐满”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.【答案】【解析】解:由题意可得,,故答案为:根据“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两”,得到2个等量关系,即可列出方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找到等量关系,列出相应的方程组.4.【答案】答案不唯一【解析】【分析】本题考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.根据方程组的解的定义,应该满足所写方程组的每一个方程.因此,可以围绕列一组算式,然后用x,y代换即可.【解答】解:关于x,y的二元一次方程组的解为,而,多项式A可以是答案不唯一故答案为:答案不唯一5.【答案】胜6场,负4场【解析】解:设这个队胜x场,负y场,根据题意,得解得故答案是:胜6场,负4场.设这个队胜x场,负y场,根据在10场比赛中得到16分,列方程组并解答即可.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6.【答案】解:由题意,得,解得【解析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得关于a、b的方程,根据解方程,可得答案.本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.【答案】解:,解:①②得:,解得:,把代入①得:,解得:,则原方程组的解为【解析】点拨方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】解:设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,由题意,得,解得:答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.共有学生:,在拥挤的状态下5分钟通过:,建造的这4道门是符合安全规定.【解析】设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,根据当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.两个关系列方程组求解.根据的数据,可以求出拥挤时5分钟四道门可通过的学生人数,与这栋楼学生数比较得出答案.此题考查的知识点是二元一次方程组的应用,关键是现根据已知列方程组求解,然后计算拥挤时,5分钟内4道门能通过的学生数与现有学生数比较.9.【答案】解:①+②得:,解得:,把代入①得:,解得:,则方程组的解为【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【答案】解:依题意得:,解得:答:a的值为15,b的值为【解析】根据寄往上海和北京的快递的重量及所需费用,即可得出关于a,b的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.【答案】解:设签字笔x元/支,笔记本y元/本,依题意可得:解得:答:签字笔2元/支,笔记本3元/本;合买一盒签字笔.购买前:小贤有元,小艺有元,总共30元.由于整盒购买比单只购买每支可优惠元,因此,小贤和小艺可一起购买整盒签字笔,费用为15元,3本笔记本费用为9元,2件工艺品需6元,总共需30元;他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.还多一支签字笔.【解析】设签字笔x元/支,笔记本y元/本,由题意:小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.列出方程组,解方程组即可;购买前:小贤有元,小艺有元,总共30元.再分别计算费用即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

北师大版八年级数学上册《第五章二元一次方程组》单元测试卷及答案

北师大版八年级数学上册《第五章二元一次方程组》单元测试卷及答案

北师大版八年级数学上册《第五章二元一次方程组》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列方程中,是二元一次方程的是( )A .2x −1y =0B .x +xy =2C .3x +y =0D .x 2−x +1=02.方程3x −2y =5x −1可变形为( )A .y =x −12B .y =2x −1C .y =−x +12D .x =y +12 3.用加减消元法解二元一次方程组{x −y =7①3x −2y =9② 时,下列方法中能消元的是( ) A .①×2+① B .①×2﹣① C .①×3+① D .①×(﹣3)﹣①4.已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−3y =1B .{x =3y =−1C .{x =−3y =−1D .{x =1y =−35.二元一次方程x+2y=3的解的个数是( )A .1B .2C .3D .无数6.若{x =2y =−1是关于x 、y 的二元一次方程ax +y =3的一组解,则a 的值为( ). A .−3 B .1 C .3 D .27.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为( )A .10B .15C .45D .258.小明和小强两人从A 地匀速骑行去往B 地,已知A ,B 两地之间的距离为10km ,小明骑山地车的速度是13km/h ,小强骑自行车的速度是8km/h ,若小强先出发15min ,则小明追上小强时,两人距离B 地( )A .4.8kmB .5.2kmC .3.6kmD .6km9.小明在解关于x ,y 的二元一次方程组{x +⊗y =33x −⊗y =1时得到了正确结果{x =⊕y =1 后来发现“⊗”“①”处被污损了,则“⊗”“①”处的值分别是( )A .3,1B .2,1C .3,2D .2,210.某店家为提高销量自行推出一批吉祥物套装礼盒,一个礼盒里包含1个玩偶和2个钥匙扣.已知一个玩偶的进价为60元,一个钥匙扣的进价为20元,该店家计划用5000元购进一批玩偶和钥匙扣,使得刚好配套装成礼盒.设购进x 个玩偶,y 个钥匙扣,则下列方程组正确的是( )A .{x =2y 60x +20y =5000B .{x =2y 20x +60y =5000C .{2x =y 60x +20y =5000D .{2x =y 20x +60y =5000二、填空题11.二元一次方程组{y =3x −12y +x =5的解为 . 12.(m −3)x +2y |m−2|+6=0是关于x ,y 的二元一次方程,则m = .13.已知|a +b +2|+(a −2b −4)2=0.则ab = .14.用代入法解二元一次方程组{2x +5y =21 ①x +2y =8 ②较简单的解法步骤是:先把方程 变形为 ,再代入方程 求得 的值,然后再代入方程 ,求出另一个未知数 的值,最后得出方程组的解为 .15.若m ,n 满足方程组{2m +5n =1m +6n =7,则m −n 的值为 . 16.打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花 元.17.学校在“学党史、讲党史、感党恩”活动中,计划用750元购进《中国共产党简史》和《四史专题讲座》两书,《中国共产党简史》每本35元,《四史专题讲座》每本30元,有 种购书方案.18.若关于x 、y 的二元一次方程组{a 1(x +1)+2b 1y =c 1a 2(x +1)+2b 2y =c 2的解为{x =3y =2 ,则关于x 、y 的二元一次方程组{a 1x −b 1y =c 1a 2x −b 2y =c 2的解为 . 三、解答题19.解方程组:(1){2x −y =3x +2y =4 (2){3x +3y =−1x 2+y 3=120.已知y 关于x 的一次函数y =kx +b (k ≠0).当x =4时y =6;当x =2时y =2.(1)求k,b 的值;(2)若A (m,y 1),B (m +1,y 2)是该函数图象上的两点,求证:y 2−y 1=k .21.已知关于x ,y 的二元一次方程组{3x −5y =36bx +ay =−8 与方程组{2x +5y =−26ax −by =−4有相同的解. (1)求这两个方程组的相同解;(2)求(2a +b )2024的值.22.樱桃素有“春果第一枝”的美誉,海阳大樱桃果大、味美、宜鲜食,享有很高的知名度.某水果店计划购进“美早”与“水晶”两个品种的大樱桃,已知2箱“美早”大樱桃的进价与3箱“水晶”大樱桃的进价的和为282元,且每箱“美早”大樱桃的进价比每箱“水晶”大樱桃的进价贵6元.求每箱“美早”大樱桃的进价与每箱“水晶”大樱桃的进价分别是多少元?23.为了响应国家“脱贫致富”的号召,某煤炭销售公司租用了甲、乙两种类型的货车若干辆为贫困地区运输了880吨的煤炭,已知每辆甲类型货车运输煤炭40吨,每辆乙类型货车运输煤炭50吨,所有甲类型货车运输的煤炭比所有乙类型货车运输的煤炭多80吨,求煤炭销售公司租用甲乙两种类型货车各多少辆?24.为了进一步加强素质教育和爱国主义教育,丰富校园文化生活,陶冶学生高尚情操,某校组织开展了“一二九歌咏”比赛.甲、乙两班共有学生102人(其中甲班人数多于乙班人数,且甲班人数不够100人)报名统一购买服装参加演出.下表是某服装厂给出的演出服装的价格表,如果两班分别单独购买服装,总共要付款6580元.购买服装的套数1∼5050∼100≥101每套服装的价格(单位:元)706050(1)如果甲、乙两班联合起来购买服装,那么比各自购买服装总共可节省多少钱?(2)甲、乙两班各有多少名学生报名参加演出?参考答案1.C2.C3.B4.A5.D6.D7.C8.A9.B10.C11.{x =1y =212.113.014. ① x =8−2y ① y ① x {x =−2y =5. 15.−616.40017.318.{x =4y =−419.(1){x =2y =1(2){x =203y =−720.{k =2b =−221.(1){x =2y =−6(2)122.每箱“美早”大樱桃的进价为60元,每箱“水晶”大樱桃的进价为54元23.租用甲种类型货车12辆,乙种类型货车8辆24.(1)1480元(2)甲班人数为56人,乙班人数为46人。

七年级数学下册《第八章-二元一次方程组》单元测试卷及答案

七年级数学下册《第八章-二元一次方程组》单元测试卷及答案

七年级数学下册《第八章二元一次方程组》单元测试卷及答案一、单选题1.关于x,y的方程组3212x yx y-=⎧⎨+=⎩的解是()A.11515xy⎧=⎪⎪⎨⎪=⎪⎩B.11xy=⎧⎨=⎩C.21xy=⎧⎨=-⎩D.34xy=⎧⎨=⎩2.已知二元一次方程组235x yx y+=⎧⎨-=⎩,则2x y+的值为()A.2-B.0C.6D.8 3.将方程2x+y=5写成含x的式子表示y的形式,正确的是()A.y=2x﹣5B.y=5﹣2x C.x=522x-D.x=522x-4.用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得()A.2y=2B.3x=6C.x﹣2y=﹣2D.x+y=65.若21xy=-⎧⎨=⎩是关于x,y的方程组322x yx ay-=-⎧⎨+=⎩的解,则a的值为()A.6B.5C.4D.36.若1xy=⎧⎨=⎩是二元一次方程3ax y+=的一个解,则下列x,y的值也是该方程的解的是()A.1xy=⎧⎨=⎩B.3xy=⎧⎨=⎩C.21xy=⎧⎨=⎩D.2xy=⎧⎨=⎩7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x+y=0,则a的值为()A.-1B.1C.0D.无法确定8.已知二元一次方程5x+(k-1)y-7=0的一个解是13xy=⎧⎨=-⎩,求k的值()A.13B.13-C.53D.53-9.已知关于x,y的二元一次方程组2332x y ax y a+=-⎧⎨-=⎩,有下列说法:①当a=2时,方程的两根互为相反数 ②不存在自然数a ,使得x ,y 均为正整数 ③x ,y 满足关系式x -5y =6 ④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④B .①③④C .②③D .①②④10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设有鸡x 只,兔y 只,可列出的方程组为( )A .352494x y x y +=⎧⎨+=⎩B .2352294x y x y -=⎧⎨+=⎩C .2352247x y x y +=⎧⎨+=⎩D .352294x y x y +=⎧⎨-=⎩二、填空题11.已知方程2x+y =7,用关于x 的代数式表示y 得:y = .12.已知31x y =⎧⎨=⎩是方程mx -y=2的解,则m 的值是 .13.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是410x y =⎧⎨=⎩,则方程组111222459459a x b y c a x b y c +=⎧⎨+=⎩的解是 . 14.已知关于x ,y 的二元一次方程组2586235x y a x y a +=+⎧⎨-=-⎩的解x ,y 互为相反数,则a 的值为 .三、计算题15.用指定的方法解下列方程组:(1)23328y x x y =-⎧⎨+=⎩(代入法)(2) 34165633x y x y +=⎧⎨-=⎩(加减法)16.解方程组6342312a b c a b c a b c ++=⎧⎪-+=⎨⎪+-=⎩.四、解答题17.当y =-3时,二元一次方程3x +5y =-3和3y -2ax =a +2(关于x ,y 的方程)有相同的解,求a 的值.18.阅读以下内容:已知x ,y 满足25x y +=,且3753238x y m x y +=-⎧⎨+=⎩,,求m 的值.(1)三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x ,y 的方程组3753238x y m x y +=-⎧⎨+=⎩,,再求m 的值.乙同学:先将方程组中的两个方程相加,再求m 的值. 丙同学:先解方程组25238x y x y +=⎧⎨+=⎩,,,再求m 的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再简要说明你选择这种思路的理由.请先选择思路,再解答题目.我选择 同学的思路(填“甲”或“乙”或“丙”).19.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求5a b -的平方根.20.先阅读,再解方程组.解方程组104()5x y x y y --=⎧⎨--=⎩,①②时,可由①得1x y -=③,然后再将③代入②,得415y ⨯-=,解得1y =-,从而进一步得01.x y =⎧⎨=-⎩,这种方法被称为“整体代入法”.请用上述方法解方程组232023529.7x y x y y --=⎧⎪-+⎨+=⎪⎩, 五、综合题21.学校七年级举行数学说题比赛,计划购买笔记本作为奖品.根据比赛设奖情况,需购买笔记本共30本.已知A 笔记本的单价是12元,B 笔记本的单价是8元.(1)若学校购买A ,B 两种笔记本作为奖品.设购买A 种笔记本x 本. ①根据信息填表(用x 的代数式表示).型号 单价(元/本)数量(本)费用(元)A 笔记本12x12xB 笔记本 8(2)为缩减经费,学校最终花费186元购买A ,B ,C 三种笔记本作为奖品.若C 笔记本的单价为5元,则购买A 笔记本的数量是 本,B 笔记本的数量是 本,C 笔记本的数量是 本(请直接写出答案).22.已知关于x y 、的二元一次方程组252ax y x by +=⎧⎨-=⎩①②.(1)若1a =,请写出方程①的所有正整数解 (2)由于甲看错了方程①中的a 得到方程组的解为21x y =-⎧⎨=⎩,乙看错了方程②中的b 得到方程组的解为13x y =⎧⎨=⎩,求a b 、的值及原方程组的解.23.在抗击新冠肺炎疫情期间,为更好的稳定学校正常的教学秩序,某工厂向学校捐献消毒液共40箱.其中A 型消毒液每箱8瓶,B 型消毒液每箱12瓶.学校共有24个班级,每班每天需要1瓶消毒液,班级每天所使用的消毒液占学校每天消耗消毒液的60%(1)若该工厂的消毒液可供学校使用两周(每周5天教学日),这批消毒液中A 型,B 型各有多少箱?(2)一周后,疫情得到有效控制,学校消毒液的使用量每天减少了原来的30%,这批消毒液至少比原计划能多使用多少天?参考答案与解析1.【答案】B【解析】【解答】解:∵3212x y x y -=⎧⎨+=⎩①② ∴①+②×2,5x=5 解得x=1把x=1代入②,解得y=1故方程组的解为11x y =⎧⎨=⎩故答案为:B .【分析】利用加减消元法求解二元一次方程组即可。

精品-二元一次方程组单元测试题及答案

精品-二元一次方程组单元测试题及答案

二元一次方程组单元测试题及答案一、选择题(每题 3分,共24分)5、方程2x - y =8的正整数解的个数是2x — 3y =11 — 4m7、关于关于x 、y 的方程组丿的解也是二元一次方程 x+3y+7m=20的解,则m 的3x +2y =21 -5m值是() A 0B、1 C、2 D 、-28、方程组丿么一厂5,消去3x_2y =8y 后得到的方程是()A 3x -4x —10 = 0B 、3x - 4x + 5 = 8 C、3x —2(5 — 2x) =8D、3x — 4x+10 = 81、 表示二元一次方程组的是('x + y = 5,八4;"x + y = 3, 沁=2;'x = y +11, 2 c2x 一 2x = y + x2、 '3x +2y = 7,4x — yx = _1,X =3,x = —3,A 丿B 、丿C 、丿D 、丿y= 3;y = =-1;3、'x =3y, y +4z =0.A 121 12、-121 124、 设方程组丿'ax -by =1, (a - 3 X - 3by =4.的解是丿x = 1, y = —1 那么a,b 的值分别为()A - 2,3;B 、3,-2;2,-3;-3,2.6、在等式y = x 2 mx n 中,当 x = 2时,y = 5; x二 -3 时, 二-5.贝y x 二 3 时,A 23、-13 、-5、13方程组丿的解是()=13.x= -1y - -3.四、列方程解应用题(每题 7分,共28分)1、 初一级学生去某处旅游,如果每辆汽车坐4 5人,那么有15个学生没有座位;如果每辆汽车坐6 0人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、 某校举办数学竞赛,有12 0人报名参加,竞赛结果:总平均成绩为6 6分,合格生平均成绩为二、填空题(每题3分,共24分)1、 y = — x + —中,若 x = —3—,贝 H y = _______ 。

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

人教版七年级下册 第八章二元一次方程组单元试题一、选择题一、选择题((共10小题,每小题3分,共30分) 1.二元一次方程组îíì x +y =7,3x -y =5的解是的解是( ( ( )A.îíìx =4,y =3B .îíì x =5,y =2C .îíìx =3,y =4D .îíìx =-=-22,y =92.已知方程组îíì2x +y =4,x +2y =5,则x +y 的值为的值为( ( ( )A .-.-1 1 1B B .0C .2 2D D .3 3.下列各方程中,是二元一次方程的是.下列各方程中,是二元一次方程的是( ( ( ) A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 1D .x +y =14.已知x 2m m-1+3y 4-2n n=-=-77是关于x ,y 的二元一次方程,则m ,n 的值是的值是( ( ( )A.îíìm =2,n =1B .îíì m =1,n =-32 C .îíì m =1,n =52D .îíìm =1,n =325.方程kx +3y =5有一组解是îíìx =2,y =1,则k 的值是的值是( ( ( )A .1B .-.-1C 1 C .0 0D D.2 6.二元一次方程x +2y =10的所有正整数解有的所有正整数解有( ( ( ) A .1个 B .2个 C .3个 D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,道题,答错了答错了y 道题道题((不答视为答错不答视为答错)),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是道,那么下面列出的方程组中正确的是( ( ( )A.îíìx +y =6060,,x -7y =4 B .îíì x +y =6060,,y -7x =4C .îíìx =6060--y ,x =7y -4D .îíìy =6060--x ,y =7x -48.关于x ,y 的方程组îíìx +py =0,x +y =3的解是îíìx =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是的值是( ( ( )A .-.-112 B.12 C .-.-114 D .149.若.若||x +y -5|5|与与(x -y -1)2互为相反数,则x 2-y 2的值为的值为( ( ( ) A .-.-5 5 5 B B .5 C .13 13D .15 1010..《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为钱,可列方程组为( ( ( )A.îíì 8x -3=y ,7x +4=yB .îíì 8x +3=y ,7x -4=yC .îíìy -8x =3,y -7x =4D .îíì8x -y =3,7x -y =4二、填空题二、填空题((共5小题,每小题4分,共20分) 1111.方程组.方程组îíìx +y =1,3x -y =3的解是的解是. 1212..“六一”前夕,“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,已知已知1套文具和3套图书需104元,元,33套文具和2套图书需116元,则1套文具和1套图书需套图书需 元.元.13.已知关于x ,y 的二元一次方程组îíì2x +y =k ,x +2y =-1的解互为相反的解互为相反 人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)分)1. 下列方程中,是二元一次方程的是(下列方程中,是二元一次方程的是() A . x xy 212=+ B . 222=-y x C . 31=+yxD . y y x =+23 2. 以îíì-==11y x 为解的二元一次方程组是(为解的二元一次方程组是( ) A .îíì=-=+10y x y x B .îíì-=-=+10y x y x C .îíì=-=+20y x y x D .îíì-=-=+20y x y x 3.程1523=+y x 在自然数范围内的解共有(在自然数范围内的解共有() A .1对 B .2对 C .3对 D .无数对.无数对4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是(的值分别是( ) A .îíì-==12n m B .îíì-=-=12n m C .îíì==12n m D .îíì=-=12n m5.5.关于关于x 、y 的二元一次方程îíì=-=+ky x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值是(的值是() A .43- B .43 C .34 D .34- 6.6.若二元一次方程若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—.—3C 3 C .—.—4D 4 D .4 7.若îíì==21y x 与îíì==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是(的是() A .îíì-==43y x B .îíì==34y x C .îíì-=-=43y x D .îíì==43y x8.为了研究吸烟是否对肺癌有影响,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是(,根据题意,下面列出的方程组正确的是() A .îíì=´+´=-10000%5.0%5.222y x y xB .îïíì=+=-10000%5.0%5.222y x y x C .îíì=´-´=+22%5.0%5.210000y x y xD .ïîïíì=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = .10.10.已知方程组已知方程组îíì=+=-②①.123,432y x y x 用加减法消去x 的方法是的方法是,用加减法消去y 的方法是法是. 11.11.以方程组以方程组îíì=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第)在平面直角坐标系中的第象限.12.已知îíì==12y x 是二元一次方程组îíì=-=+18my nx ny mx 的解,则n m -2的算术平方根是的算术平方根是 . 13. 若方程组îíì=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = . 14.已知方程组îíì=+=-241121254y x y x ,则2)(y x +的值为的值为. 15.15.“今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有知一共有 人,狗价为人,狗价为 元.元. 16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为,则甲余下的钱数为 元,乙余下的钱数为元,乙余下的钱数为元. 三、解答题(共56分)分) 17.17.(每题(每题5分,共10分)解下列方程组:分)解下列方程组:(1)îíì=+=+64302y x y x ;(2)îíì=+=-3241123b a b a .18.18.((8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值的值. .19(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.的值.xcmcm28ycmcm224第19题图题图20.(9分)已知方程组îíì-=--=+4652by ax y x 与方程组îíì-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值的值. .21.21.((10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)小题)1.下列方程是二元一次方程的是(.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=5 2.以方程组.以方程组 îíìx +y =102x +y =6的解为坐标的点(x,y)在(在() A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限.第四象限3.在方程组.在方程组== 中,代入消元可得(中,代入消元可得( ) A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=7 4.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为(的值为( ) A .-1B .1C .1或-1D .0 5.若关于x ,y 的二元一次方程组的二元一次方程组= = 的解为的解为= = ,则a+4b 的值为(的值为( ) A .17B .197C .1D .3 6.如果方程x-y=3与下面的方程组成的方程组的解为与下面的方程组成的方程组的解为== ,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,应分配多少人生产螺栓,多少人生产螺母,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为(人生产螺母,则所列方程组为( )A .= =B .= =C .= = D .==8.关于x ,y 的方程组的方程组= = 的解是的解是== ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是(的值是( ) A .- 12B .12C .- 14D .14 9.A 、B 两地相距900km,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是(的次数是( ) A .5B .4C .3D .2 10.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数(动动脑子想一想,图中的?表示什么数( ) A .25B .15C .12D .14二.填空题(共5小题)小题)11.把方程5x+y=3改写为用含x 的式子表示y 的形式是的形式是. 12.已知已知= 是方程ax+by=3的一组解(a ≠0,b ≠0),任写出一组符合题意的a 、b 值,则a= ,b= .13.已知方程组.已知方程组= = 和== 的解相同,则2m-n= . 14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了个文件袋共花了 元.元.15.甲乙二人分别从相距20km 的A ,B 两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是 .三.解答题(共10小题)小题) 16.解下列方程(组).解下列方程(组) (1) = =(2)==(3) == =17.已知.已知== , = = 都是关于x ,y 的二元一次方程y=x+b 的解,且m-n=b 2+2b-4,求b 的值.的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为的整数解,甲求出一组解为== ,而乙把ax-by=7中的7错看成1,求得一组解为,求得一组解为== ,试求a 、b 的值.的值.19.阅读下列解方程组的部分过程,回答下列问题.阅读下列解方程组的部分过程,回答下列问题解方程组解方程组 =,① = ,②现有两位同学的解法如下:现有两位同学的解法如下: 解法一;由①,得x=2y+5,③ 把③代入②,得3(2y+5)-2y=3.…….…… 解法二:①-②,得-2x=2.…….……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.以上两种方法的共同点是. (2)请你任选一种解法,把完整的解题过程写出来)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h .如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,(每个足球的价格相同,(每个足球的价格相同,每个篮每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组【方法体验】已知方程组= ①= ②求4037x+y 的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空:【方法迁移】根据上面的体验,填空: 已知方程组已知方程组==则3x+y-z=. 【探究升级】已知方程组【探究升级】已知方程组 = =求-2x+y+4z 的值.小明凑出的值.小明凑出 "-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m ﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”文,问甲,乙二人原来各有多少钱?”24.【阅读材料】.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,普通成人持储值卡乘坐地铁出行,每个自然每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.元.【解决问题】【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?坐地铁的消费金额各是多少元?答案:答案:1.B2.B3.D4.A5.D6.A7.B 8.A9.B10.B11. y=-5x+312.1,113.514.50 15. 16.解:(1)= ① = ② ,①+②×5,得:13x=26,x=2, 将x=2代入②,得:4-y=3,y=1, 所以方程组的解为所以方程组的解为 == ;(2)将方程组整理成一般式为)将方程组整理成一般式为= ① = ② , ①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12, 所以方程组的解为(3)= ① = ②= ③, ①+②,得:3x+4y=24 ④,④, ③+②,得:6x-3y=。

精选2019年七年级下册数学单元测试第四章《二元一次方程组》完整版考核题库(含答案)

精选2019年七年级下册数学单元测试第四章《二元一次方程组》完整版考核题库(含答案)

2019年七年级下册数学单元测试题第四章 二元一次方程组一、选择题1.若2212m n n x y --与13218m m x y --是同类项,则2m n +值为( ) A . -4 B . 163- C .-2 D .103- 答案:A2.关于x 、y 的方程组232(1)10x y kx k y -=⎧⎨++=⎩的解互为相反数,则k 的值是( ) A . 8 B . 9 C .10 D . 11答案:D3.设“●,▲,■”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么在右盘处应放“■”的个数为( )A .2个B .3个C .4个D .5个答案:D4.二元一次方程2x+y=7的正数解有( )A .一组B .二组C .三组D .四组答案:C5.已知方程ax+by=10的两个解为1105x x y y =-=⎧⎧⎨⎨==⎩⎩与,则a 、b 的值为( ) A .10101010 (44)10a a a a B C D b b b b ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩ 答案:B6.下列各式中,是二元一次方程的是( )A .32=xyB .72=+y x xC .3=+y xD .422=+y x 答案:C7.下列各组数中①⎩⎨⎧==22y x ;②⎩⎨⎧==12y x ;③⎩⎨⎧-==22y x ;④⎩⎨⎧==61y x ,是方程104=+y x 的解的有( )A .1组B .2组C .3组D .4组答案:B8.用加减法解方程组232(1)523(2)x y x y -=⎧⎨+=-⎩,若消去 y ,下列正确的是( ) A .①×3+②×2,得160x =B . ①×2+②×3,得195x =-C . ①×3+②×2,得161x =-D .①×2+②×3,得19 1.x =-答案:B9.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( )A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人 D . 14 人,15 人 答案:C10.解方程组32(1)3211(2)x y x y -=⎧⎨+=⎩的最优解法是( ) A . 由①得32y x =-,再代人② B . 由②得3112x y =-,再代人①C . 由②一①,消去xD . 由①×2+②,消去y答案:C11.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个 B . 有且只有两个 C . 有且只有三个 D . 有无数个答案:D12.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l答案:B二、填空题13.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜 场. 解答题解析:614.写出一个二元一次方程,使它的一个解为21xy=-⎧⎨=⎩,.解析:不唯一,如1x y+=-15.下列数对:①2xy=⎧⎨=⎩;②2xy=⎧⎨=⎩;③11xy=⎧⎨=-⎩;④52xy=⎧⎨=⎩;⑤43xy=⎧⎨=⎩.其中属于方程0 x y+=的解是,属于方程2x y+=的解是,属于方程11243x y+=的解是.(填序号)解析:③,①②,⑤16.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有种不同的兑换方法(只兑换一种币值也可以).解析:317.已知方程230x-=与2330x y+-=,写出它们的两个共同点:.写出它们的两个不同点:.解析:共同点:都含未知数 x,都是一次方程等. 不同点:一个是一元方程,一个是二元方程;前一个方程的解是唯一的,后一个方程有无数个解18.方程组233410x yx y-=⎧⎨+=⎩的解是 ,方程组23431y xx y=-⎧⎨-=⎩的解是.解析:21xy=⎧⎨=⎩,45xy=⎧⎨=⎩19.写出一个解为32pq=⎧⎨=⎩的二元一次方程组:.解析:不唯一,如55 p qp q+=⎧⎨-=⎩20.已知关于 x,y 的方程组610x y mx y m+=⎧⎨+=⎩的解也满足2x311y-=,则m的值等于.解析:1221.化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩. 游戏时,每个男生都看见涂红色的人数是涂蓝色的人数的 2 倍;而每个女生都看见涂蓝色的人数是涂红色的人数的35,则晚会上男生有生有人,女生有人.解析: 9,1622.方程1(1)3x x-=-的解是.解析:14x=23.已知二元一次方程x + 3y =10:请写出一组正整数解.解析:略24.若方程组7336029510x y x y +-=⎧⎨+-=⎩的解也是方程21mx y +=的解,则m = . 解析:-3 25.若0132=++x x 则xx 312+= . 解析:-1 26.已知12=-y x ,则用含x 的代数式表示y 的结果是y=_________.解析:12-x27.已知二元一次方程x=35y+4,用含x 的代数式表示y________. 5203x - 解析:28.已知方程组3535x y x y +=⎧⎨-=⎩②得x=_________;①-②得y=__________. 3,-25解析:29.当3=x 或5-=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组单元检测1姓名: 时间: 成绩:一、选择题(共12题 每题3分 共36分)一、 根据图1所示的计算程序计算y 的值,若输入2=x ,则输出的y 值是( ) A .0 B .2- C .2 D .4 二、 将方程121=+-y x 中含的系数化为整数,下列结果正确的是( ) A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 三、 如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( ) A .⎩⎨⎧=-=01b a B .⎩⎨⎧==01b a C .⎩⎨⎧==10b a D .⎩⎨⎧-==10b a 四、 如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )A .3B .5C .7D .9五、 如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( )A .⎩⎨⎧==31y x B .⎩⎨⎧==22y x C .⎩⎨⎧==21y x D .⎩⎨⎧==32y x六、 若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( ) A .s =3,t =-2 B .s =-3,t =2 C .s =-3,t =-2 D .s =3,t =2 七、 方程3y +5x =27与下列的方程________所组成的方程组的解是⎩⎨⎧==43y x ( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对八、 二元一次方程组⎩⎨⎧=-=+ky x k y x 7252的解满足方程31x -2y =5,那么k 的值为( )A .53B .35C .-5D .1九、 甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是 ( )A .⎩⎨⎧=-=+360)(24360)(18y x y xB .⎩⎨⎧=+=+360)(24360)(18y x y xC .⎩⎨⎧=-=-360)(24360)(18y x y xD .⎩⎨⎧=+=-360)(24360)(18y x y x十、 在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y 十一、 如果⎩⎨⎧=+-=-+0532082z y x z y x ,其中xyz≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 十二、 如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 二、填空题(共4题 每题3分 共12分)十三、 已知42+=a x ,32+=a y ,如果用x 表示y ,则y = .十四、 在等式5×口+3×Δ=4的口和Δ处分别填入一个数,使这两个数互为相反数. 十五、 如果2006200520044321=+-+-+n m n m y x 是二元一次方程,那么32n m +的值是 . 十六、 如图,点A 的坐标可以看成是方程组 的解.三、解答题(共7题 6+6+7+7+8+8+10 共52分) 十七、 (1)⎩⎨⎧-==+73825x y y x (2)⎩⎨⎧=-=+423732y x y x十八、 若方程组⎩⎨⎧=+=-31y x y x 的解满足方程组⎩⎨⎧=+=-84by ax by ax ,求a ,b 的值.十九、 定义“*”:(1)(1)x yA B x A BA B *=++++,已知321=*,432=*,求43*的值.二十、 某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上 每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?二十一、 为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度y (cm)是椅子的高度x (cm )的一次函数,下表列出两套符合条件的课桌椅的高度:第一套 第二套椅子的高度X(cm) 40.0 37.0 桌子高度y(cm)75.070.2(1)请确定x y 与的函数关系式;(2)现有一把高39cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?为什么?二十二、 (1)求一次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.二十三、 阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知⎩⎨⎧----=++---=++)2(20.3342)1(25.99513z y x z y x ; 视x 为常数,将上述方程组看成是关于y 、z 的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.解法1:视x 为常数,依题意得⎩⎨⎧-----=+----=+)4(220.334)3(1325.995x z y x z y解这个关于y 、z 的二元一次方程组得⎩⎨⎧-=+=xz xy 2105.0于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述方程组看成是关于x 、y 的二元一次方程组,解答方法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得 25.9)2(4)(5=++++z x z y x , 20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代入(1)、(2)可以得到如下关于a 、b 的二元一次方 程组⎩⎨⎧----=----=+)6(20.34)5(25.945b a b a由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运用整体的思想方法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代人①、②将原方程组转化为关于a 、b 的二元一次方程组从而获解. 请你运用以上介绍的任意一种方法解答如下数学竞赛试题:购买五种教学用具A 1、A 2、A 3、A 4、A 5的件数和用钱总数列成下表:那么,购买每种教学用具各一件共需多少元?品名 次数 A 1 A 2 A 3 A 4 A 5 总钱数第一次购 买件数 l 3 4 5 6 1992 第二次购买件数l 5 7 9 11 2984参考答案一、选择题1.D2.A3.B4.C5.C6.D7.B8.B9.A10.A11.C12.B 二、填空题 13.x -1 14.2,-2 15.9 16.⎩⎨⎧+--=512x y x y 三、解答题17、(1){21=-=x y (2){21==x y 18、解:解方程组⎩⎨⎧=+=-31y x y x 得:{21==x y将{21==x y 分别代入方程组⎩⎨⎧=+=-84by ax by ax 得{8242=+=-b a b a 解这个方程组得{32==a b所以3=a 、2=b 19.⎩⎨⎧-==13275Y X ,351442013277543=-=*.20.解:设张强第一次购买了香蕉x 千克, 第二次购买了香蕉y 千克,由题意可知025x <<, ①当02040x y <≤,≤时,由题意可得,⎩⎨⎧=+=+5026456y x y x 解得{1436==x y②当02040x y <≤,>时,由题意可得⎩⎨⎧=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当025x <<时,则2530y <<,则张强花的钱数为5X+5Y=5×50=250<264(不合题意,舍去) 所以张强第一次买14千克香蕉,第二次买36千克香蕉. 21.解:(1)设y kx b =+,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当X=39时,由116.1+=k y 得y=1.6×39+11=73.4≠78 所以不配套.22、解:(1)由⎪⎩⎪⎨⎧-=-=22121x y x y 解得:⎪⎩⎪⎨⎧=-=3232x y 所以点P 的坐标为⎪⎭⎫⎝⎛-32,32,(2)当X=0时,由Y=2×0-2=-2,所以点A 坐标是(0,-2). 当Y=0时,由0=-21X-1,得X=2,所以点B 坐标是(2,0). (3)如图112222222233PAB S =⨯⨯-⨯⨯⨯=△23、1000元二元一次方程单元检测2姓名: 时间: 成绩:二十四、 选择题(共12题 每题3分 共36分) 1. 已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( ) A.1 B.2 C.3 D.42. 已知532b a x y +与2244a b x y --是同类项,则a b 的值为( )A.2B.-2C.1D.-13. 已知方程组⎩⎨⎧-=-=+1242m ny x ny mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为( )A.⎩⎨⎧-==11n m B.⎩⎨⎧==12n m C.⎩⎨⎧==23n m D.⎩⎨⎧==13n m4. 三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是( )A.⎪⎩⎪⎨⎧===501z y x B. 015x y z ⎧=⎪=⎨⎪=⎩C.⎪⎩⎪⎨⎧===401z y xD.⎪⎩⎪⎨⎧===014z y x5. 若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为( )A.-4B.4C.2D.16. 若关于x 、y 的方程组⎩⎨⎧=-=+k y x ky x 73的解满足方程2x +3y =6,那么k 的值为( )A.-23B.23C.-32D.-237. 若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是( ) A.2,1 B.32,35 C.-2,1 D.31,-328. 某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( )A.⎩⎨⎧=-=+y x y x 3847B.⎩⎨⎧=++=x y x y 3847C.⎩⎨⎧+=-=3847x y x yD.⎩⎨⎧+=+=3847x y x y9. 某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有名工人生产螺栓,其它工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是( )A.⎩⎨⎧=⨯=+y x y x 2416256B.⎩⎨⎧=⨯=+y x y x 1624256C.⎩⎨⎧==+y x y x 241628D.⎩⎨⎧==+y x y x 16245610. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共 30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件? 该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.301216400x y x y +=⎧⎨+=⎩B.301612400x y x y +=⎧⎨+=⎩C. 121630400x y x y +=⎧⎨+=⎩D. 161230400x y x y +=⎧⎨+=⎩11. 灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民 共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包, 共购回15 包.请问这次采购派男女村民各多少人?A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人12. 在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了 11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x 元,包子每 颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?A .⎩⎨⎧⨯=++=+9.09051125035y x y xB .⎩⎨⎧÷=++=+9.09051125035y x y xC .⎩⎨⎧⨯=+-=+9.09051125035y x y xD .⎩⎨⎧÷=+-=+9.09051125035y x y x二十五、 填空题(共4题 每题3分 共12分)13. 已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________;当y =-2时,x = .14. 在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)1472x y ⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_____是方程组 x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.15. 已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.16. 若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_________,b =_______.二十六、 解答题(共7题 6+6+7+7+8+8+10 共52分(此处分值可以根据具体情况来定))17. ⎩⎨⎧-=-=-.557832y x y x18. ⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x19. 已知方程组⎩⎨⎧+=+=+25332n y x n y x 的解x 、y 的和为12,求n 的值.20. 已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.21. 已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.22.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.23.B两地相距20千米,甲、乙两人分别从A、B 两地同时相向而行,两小时后在途中相遇,然后甲返回A地,乙继续前进,当甲回到A地时,乙离A地还有2千米,求甲、乙两人的速度.参考答案一、选择题1.B2.C3.D4.A5.C6.B7.D8.C9.A 10.B 11.B 12. B二、填空题13.x =62y -;x =32. 14.(1),(2);(1),(3);(1).15.-53. 16.a =-5,b =3.三、解答题17.【答案】⎩⎨⎧-=-=.65y x 【答案】⎪⎩⎪⎨⎧=-=.223y x 19.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12.【答案】n =14.20.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b . 【答案】⎩⎨⎧=-=52b a .21.【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5.22.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200.23.【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.二元一次方程组单元检测3姓名: 时间: 成绩:一、选择题(共12题 每题3分 共36分)1. 下列是二元一次方程的是( )A .x x =-63B .y x 23=C .132=+yx D .xy y x =-32 2. 在方程组⎩⎨⎧=+=-1253by x y ax 中,如果⎪⎩⎪⎨⎧-==121y x 是它的一个解,那么a 、b 的值为( ) A .a =1,b =2B .不能惟一确定C .a =4,b =0D .a =21,b =-1 3. 方程41ax y x -=-是二元一次方程,则a 的取值为( ) A 、a ≠0 B 、a ≠-1 C 、a ≠1 D 、a ≠24. 已知57x y =⎧⎨=⎩满足方程kx ﹣2y =1,则k 等于( ) A .3 B .4 C .5 D .65. 二元一次方程32325x y x y -=⎧⎨+=⎩的解是( )A 、10x y =⎧⎨=⎩B 、322x y ⎧=⎪⎨⎪=⎩C 、232x y =⎧⎪⎨=⎪⎩D 、71x y =⎧⎨=-⎩ 6. 老师问一女生有几个兄弟姐妹,她答:“有几个兄弟就有几个姐妹”,老师又问她的哥哥有几个兄弟姐妹,他答:“我的姐妹是兄弟的2倍”,则他们的兄弟姐妹中,男孩、女孩的人数各是 ( )A 、4、3B 、2、5C 、3、4D 、5、27. 在等式b kx y +=中,当1=x 时,5=y ;当2-=x 时,11=y ,则k 、b 的值为A.⎩⎨⎧-==27b kB.⎩⎨⎧=-=27b k C.⎩⎨⎧-==72b k D.⎩⎨⎧=-=72b k 8. 若352220x y x y +++--=,则223x xy -的值是( ) A 、14 B 、-4C 、-12D 、12 9. 二元一次方程组327,25x y x y -=⎧⎨+=⎩的解是()A .32x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .42x y =⎧⎨=⎩D .31x y =⎧⎨=⎩ 10. 小明在解关于x 、y 的二元一次方程组331x y x y +⊗=⎧⎨-⊗=⎩时得到了正确结果1x y =⊕⎧⎨=⎩后来发现“⊗”、“⊕”处被墨水污损了,请你帮他找出“ⓧ”、“⊕”处的值分别是( )A . ⊗=1,⊕=1B . ⊗=2,⊕=1C . ⊗=1,⊕=2D . ⊗=2,⊕=211. 为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是( ) 小明 小君 小红 小华A .31分B .33分C .36分D .38分 12. 下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C .1x +4y =6 D .4x =24y - 二、填空题(共4题 每题3分 共12分)13. 若⎩⎨⎧==53y x 是方程22=-y mx 的一个解,则=m 。

相关文档
最新文档