三段式电动车充电器原理和维修技巧
电动车充电器工作原理及常见故障维修
![电动车充电器工作原理及常见故障维修](https://img.taocdn.com/s3/m/5176e1bb1ed9ad51f11df21b.png)
电动车充电器工作原理及常见故障维修(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电动车充电器工作原理及常见故障维修电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很是一件令人头疼的事。
出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员和广大的电子爱好者,提供维修资料,供维修参考用。
为了方便说明,本文还是从原理开始说起。
一.工作原理我们目前用的电动车充电器大部分都是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。
这类充电器的原理与开关电源的原理是基本相同的220V 的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
电动车三段式充电器的三个关键参数
![电动车三段式充电器的三个关键参数](https://img.taocdn.com/s3/m/b3edddfa9a89680203d8ce2f0066f5335a8167c0.png)
电动车三段式充电器的三个关键参数近几年,电动车普遍使用了所谓三段式充电器,第一个阶段叫恒流阶段,第二个阶段叫恒压阶段,第三个阶段叫涓流阶段。
从电子技术角度针对电池而言:第一个阶段叫充电限流阶段,第二个阶段叫高恒压阶段,第三个阶段叫低恒压阶段比较贴切。
第二阶段和第三阶段转换时,面板指示灯相应变换,大多数充电器第一、二阶段是红灯,第三阶段变绿灯。
第二阶段和第三阶段的相互转换是由充电电流决定的,大于某电流进入第一第二阶段,小于某电流进入第三阶段。
这个电流叫转换电流,也叫转折电流。
早期充电器,包括名牌车配套的充电器,虽然也变灯,但实际是恒压限流充电器,并不是三阶段充电器。
一般这类就一个稳定电压值,44.2V左右,对当时的高比重硫酸的电池还凑合。
关于三段式充电器的三个关键参数第一个重要参数是涓流阶段的低恒压值,第二个重要参数是第二阶段的高恒压值,第三个重要参数是转换电流。
这三个重要参数与电池数目有关,与电池的容量Ah有关,与温度有关,与电池种类有关。
为了方便大家记忆,下面以最常见的电动自行车(三块12V串联的10Ah电池)所用的三段式充电器为例简单介绍一下:首先讨论涓流阶段的低恒压值,参考电压为42.5V左右。
此值高将使电池失水,容易使电池发热变形;此值低不利于电池充足电。
此值在南方要低于41.5V;胶体电池要低于41.5V,如在南方还要低一点儿。
这个参数是相对严格的,不可以大于参考值。
其次讨论第二阶段的高恒压值,参考电压为44.5V左右。
此值高有利于快速充足电,但是容易使电池失水,充电后期电流下不来,结果使电池发热变形;此值低不利于电池快速充足电,有利于向涓流阶段转换。
这个值虽然没有第一个值那样严格,但是也不要过高。
最后讨论转换电流,参考电流为300毫安左右。
此值高有利于电池寿命,不容易发热变形,但不利于电池快速充足电;此值低(对外行)有利于充足电,但是由于较长时间高电压充电,容易使电池失水,使电池发热变形。
电动车充电器原理及维修
![电动车充电器原理及维修](https://img.taocdn.com/s3/m/d1173ba7f9c75fbfc77da26925c52cc58bd69004.png)
电动车充电器原理及维修全波整流器采用四个二极管和一个变压器来实现整流。
交流电经变压器降压后,通过四个二极管将电流导通的方向限制在单方向上,以得到一个正弦波的全波整流电路。
而半波整流器只使用两个二极管,将电流导通的方向限制在单方向上,即得到一个半波正弦电路。
整流后的电流是固定的直流电流,但它仍然具有很高的纹波。
为了去除这些纹波,需要使用滤波器。
滤波器是一种电容器,用于储存电荷并平滑输出电流。
通过选择适当的电容值,可以滤波并获得平稳的直流输出电压。
调节是电动车充电器中最重要的步骤之一、调节器可以控制输出的电流和电压,以满足电动车电池的需要。
常见的调节器包括线性稳压器和开关稳压器。
线性稳压器通过调节器件的导通和关断来调节电压。
当电流过大时,稳压器会降低输出的电压,从而保持电流恒定。
这种调节器的缺点是效率较低,因为它会将多余的电能以热量的形式消耗掉。
开关稳压器利用反馈回路和开关元件的开关操作来调节电压。
它通过以高频开关的方式来控制电流,从而降低能量损耗并提高转换效率。
开关稳压器通常有两种类型,即开关模式和开关流模式。
开关模式稳压器效率高,但电磁干扰较大,开关流模式稳压器的电磁干扰较小,但效率低。
维修电动车充电器可能涉及以下几个方面:检查输入电源、检查输出电压和电流、更换损坏的元件等。
首先,检查输入电源的稳定性和电压是否正常。
如果电源不稳定或电压过低,则可能导致充电器无法正常工作。
其次,检查输出电压和电流是否在规定范围内。
如果输出电压或电流不正确,可能是调节器件故障或滤波器电容损坏的原因。
此外,还需要检查充电器电路中的元件是否损坏,如二极管、电容器和稳压器等。
如果发现元件损坏,应及时更换。
总之,电动车充电器的原理和维修,主要是通过整流、滤波和调节这三个步骤来将交流电转换为直流电,并通过控制电流和电压为电动车电池充电。
在维修方面,需要检查输入电源、输出电压和电流以及元件的损坏情况,并及时更换损坏的元件来保证充电器的正常工作。
电动车充电器原理及带电路图维修
![电动车充电器原理及带电路图维修](https://img.taocdn.com/s3/m/731085c4eefdc8d377ee3222.png)
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表错误!未定义书签。
220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电.U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整R25(2。
5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1.T1为高频脉冲变压器,其作用有三个.第一是把高压脉冲将压为低压脉冲.第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯. R27是电流取样电阻(0。
1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA).通电开始时,C11上有300v左右电压.此电压一路经T1加载到Q1。
第二路经R5,C8,C3,达到U1的第7脚.强迫U1启动.U1的6脚输出方波脉冲,Q1工作,电流经R25到地.同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚.正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。
三段式电动自行车充电器的检修
![三段式电动自行车充电器的检修](https://img.taocdn.com/s3/m/542ff6c88bd63186bcebbcfd.png)
三段式电动自行车充电器的检修摘要本文通过“三阶段充电模式”基本原理的分析,观察电动车自行车充电器的故障现象及仪表测量所得的相关数据,一步步确定故障引起的原因。
并给出了单片机这个芯片的检测方式,最后达到排除故障的目的。
关键字充电器;充电;脉冲;单片机中图分类号u484 文献标识码a 文章编号 1674-6708(2013)93-0096-020引言充电器是电动自行车的重要电器部件,随着不可再生资源的日益缺乏,以再生资源“电”为能量的电动自行在家庭中的应用将越来越广泛,但由于电动自行车使用频繁、使用环境复杂以及不当的使用方法,因此会出现各种各样的故障。
在做充电器维护的时候,我们首先就得理解和掌握这种充电器的基本原理。
1三阶段充电模式三阶段充电模式的第一个阶段叫恒流充电阶段,第二个阶段叫恒压充电阶段,第三个阶段叫涓流充电阶段。
充电阶段的转换由充电电流决定。
这个电流叫转换电流,也叫转折电流。
对于电动自行车充电器而言,转折电流通常为300ma左右。
蓄电池初始充电期间因能量消耗过大,充电器先以1.7a左右的恒流对蓄电池快速充电,随着蓄电池存储能量的升高(两端电压升高),充电电流减小,被充电控制电路检测到后自动转换为恒压充电,继续为蓄电池补充能量,电压上升的幅度较小并且速度放慢,直到电压稳定;当充电电流小于300ma后自动转为涓流充电,以补偿蓄电池的自放电电流,并起到保养蓄电池的目的。
涓流充电阶段期间红led灭,绿led发光。
2三段式充电器的主要参数三段式充电器的主要参数:第一个是涓流阶段的参考电压值,第二个是恒压阶段的参考电压值,第三个是转换电流。
这三个重要参数不仅与蓄电池种类有关,还与蓄电池的容量和环境温度有关,本文以30v/10ah蓄电池所用的三段式充电器为例来介绍。
2.1涓流阶段的参考电压值涓流阶段的参考电压值在北方为42.5v左右,在南方要低于41.5v;胶体蓄电池在北方要低于41.5v,在南方还要更低一些。
电动车充电器原理及带电路图维修
![电动车充电器原理及带电路图维修](https://img.taocdn.com/s3/m/00e84c34b307e87100f6963e.png)
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
电动车充电器原理及维修
![电动车充电器原理及维修](https://img.taocdn.com/s3/m/d7244758fe00bed5b9f3f90f76c66137ef064f10.png)
电动车充电器原理及维修维修充电器基本电性故障1.关闭自动防溢泄压装置:在充电器工作时,内部可能发生电压过高的情况,此时自动防溢泄压装置会自动断开电源,防止电压继续上升导致短路或设备损坏。
然而,如果自动防溢泄压装置发生故障,它可能会误认为电压过高并不断断开电源。
这时候,需要修理或更换自动防溢泄压装置。
2.故障电磁继电器:电磁继电器在充电器中起到断开或连接主电路的作用。
当电磁继电器发生故障时,充电器无法正常工作。
这时,需要维修或更换电磁继电器。
3.故障半导体器件:充电器中有很多半导体器件,如二极管、晶体管等。
当这些器件中的任何一个发生故障时,充电器无法正常工作。
在这种情况下,需要检查和更换故障器件。
4.线路短路:电充电器的线路中可能会发生短路,导致电能无法正常传输。
这可能是由于线路温度过高、绝缘层损坏、线路连接松动等原因造成的。
在这种情况下,需要修复或更换短路线路。
5.故障电容器:电池充电器中的电容器起到电能存储的作用。
当电容器失效时,充电器无法储存足够的电能进行充电。
这时候,需要修理或更换电容器。
维修充电器机械部分故障充电器的机械部分也可能发生故障,这些故障包括:1.风扇老化或故障:风扇负责散热,保持充电器的正常工作温度。
当风扇老化或故障时,它可能无法正常工作,导致充电器过热,甚至损坏其他部件。
在这种情况下,需要更换风扇。
2.开关老化或故障:充电器的开关用于控制电源的连接和断开。
当开关老化或故障时,它无法正常工作,导致充电器无法启动或停止。
在这种情况下,需要修理或更换开关。
3.过载保护装置故障:过载保护装置会在充电器电流超过额定值时自动断开电源,以保护充电器和电池。
当过载保护装置发生故障时,它可能无法正常工作,导致电流过大,损坏充电器和电池。
在这种情况下,需要修理或更换过载保护装置。
在维修充电器时,安全是最重要的。
首先,需要断开充电器的电源,并使用绝缘工具进行维修。
其次,应仔细阅读充电器的维修手册,并按照手册上的步骤进行操作。
电动车充电器原理及带电路图维修
![电动车充电器原理及带电路图维修](https://img.taocdn.com/s3/m/4278d07633d4b14e84246891.png)
常用电动车充电器根据电路结构可大致分为两种.第一种就是以uc3842驱动场效应管得单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图与元件参数见图表1)图表错误!未定义书签。
220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定得300V左右得直流电.U1为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整R25(2、5欧姆)得阻值可以调整充电器得最大电流。
2脚为电压反馈,可以调节充电器得输出电压。
4脚外接振荡电阻R1,与振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一就是把高压脉冲将压为低压脉冲.第二就是起到隔离高压得作用,以防触电。
第三就是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压得作用。
调整w2(微调电阻)可以细调充电器得电压。
D10就是电源指示灯。
D6为充电指示灯。
R27就是电流取样电阻(0、1欧姆,5w)改变W1得阻值可以调整充电器转浮充得拐点电流(200-300 mA).通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3,达到U1得第7脚.强迫U1启动。
U1得6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈得电压经D4,C10整流滤波得到稳定得电压.此电压一路经D7(D7起到防止电池得电流倒灌给充电器得作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358得第二脚与第5脚.正常充电时,R27上端有0、15-0、18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压.此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358得6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。
电动车充电器工作原理及常见故障维修
![电动车充电器工作原理及常见故障维修](https://img.taocdn.com/s3/m/b687cb80d4bbfd0a79563c1ec5da50e2524dd1d5.png)
电动车充电器工作原理及常见故障维修输入电源部分主要是将家庭市电或者其他交流电源的电能通过绕组进行变压、整流、滤波等处理,得到低电压高频交流电,供给输出充电电路。
其中,变压器负责变换输入电源的电压,整流桥负责将交流电转换为直流电,滤波电容负责平滑输出电压。
输出充电电路部分主要是通过电流传感器、控制电路、开关电源等组成,实现对电动车电池组的充电控制。
电流传感器主要用于检测电池组的充电需求,控制电路根据检测结果调整充电电流和电压,确保电动车能够安全、高效地充电。
在实际使用中,电动车充电器可能会出现一些常见故障,下面介绍几种常见故障及维修方法。
1.充电器不工作或工作不正常:首先检查充电器的电源连接是否正常,确保输入电源的供电正常。
如果电源正常,检查充电器的保险丝是否熔断,如果熔断需更换新的保险丝。
如果以上情况排除,可能是控制电路故障,建议送修或更换充电器。
2.充电器发热:正常情况下充电器在工作时会有一定的发热,但如果发热过于明显可能是充电器内部散热不良。
可以尝试清理充电器散热风扇或附近的风道,确保散热良好。
如果清理后仍然过热,可能是充电器内部元件老化或故障,需更换相应元件。
3.充电器充电效果差:充电器充电时间过长或充电不充分可能是充电电路或充电控制电路出现问题。
首先检查电池组是否正常,如果电池组有损坏需更换电池组。
如果电池组正常,可能是充电电路内部元件老化,建议送修或更换充电器。
4.充电器产生噪音:充电器在工作时产生一定的噪音是正常现象,但如果噪音过大或出现异响可能是充电器内部元件松动或损坏。
建议停止使用充电器,并送修或更换充电器。
总之,电动车充电器是保证电动车正常运行的关键组件,正确理解充电器的工作原理及能够解决常见故障是非常重要的。
对于大部分故障来说,首先要检查电源连接是否正常,然后进一步检查内部元件的状态,必要时送修或更换充电器。
三段式智能电动车充电器通用原理大全
![三段式智能电动车充电器通用原理大全](https://img.taocdn.com/s3/m/820a48450a1c59eef8c75fbfc77da26925c5961f.png)
三段式智能电动车充电器通用原理大全第一篇:三段式智能电动车充电器通用原理大全三段式智能电动车充电器通用原理大全三段式充电方式是目前比较常见、应用比较广泛的电动车充电方式。
这种充电方法能够有效提高电动车充电效率,并有效保障充电安全,延长电动车电池的使用寿命。
三段式充电在充电起始阶段,用限流充电,也称为恒流充电;在充电中期:改为定压充电;而在充电后期:也是定压充电,但定压值比中期降低了一些,称为涓流充电,也称为浮充,在这一阶段,还可以采用脉冲模式。
如上图所示,1是充电状态轮换电流检测比较器,2是充电电流限流检测反馈放大器,3是电池电压检测反馈放大器(基本基准电压为第三阶段涓流充电恒压值)。
高标电动车充电器是雅迪电动车、爱玛电动车、新日电动车等全国整车制造前30强企业的御用电动车充电器。
下面来简单说一下三段式电动车充电器工作状态的转化条件:(1)充电电流>基准电流1,进入第一阶段电流:充电电流=基准电流2>基准电流1,进入第一阶段基准电流1<充电电流<基准电流2,进入第二阶段(2)充电电流<基准电流1,进入第三阶段需要说明的是,1、各控制信号共同作用的结果,控制开关电源振荡脉冲的宽度即开关管的通断比,通断比越大,输出电压高,充电电流就大。
高标电动车充电器有着限压保护等多重保护功能。
2、阶段的确定,是预先设定,赋值给电压比较器,充电电流或充电电压都是通过取样,并与电压比较器的赋值进行比较,通过电压比较器的输出改变电压负反馈量的大小,去控制输出电压。
不同的电压负反馈比例和电流负反馈量结合形成不同的充电阶段。
3、第一阶段电流反馈起主导作用,实质是限流(恒流);第二阶段电压负反馈和电流负反馈共同作用,主导作用由电流负反馈转向电压负反馈第三阶段电压反馈起主导作用。
后两个阶段实质上均是恒压阶段,差别是第三段的恒压值低于第二阶段的恒压值。
以上是三段式电动车充电器的基本原理,在日常多多接触,大家都会对其中的原理深入了解。
电动车充电器三段式充电原理和维修技巧
![电动车充电器三段式充电原理和维修技巧](https://img.taocdn.com/s3/m/ddae9c2d915f804d2b16c177.png)
此过程中因充电电流仍高于400-500MA,所以IC2(2)脚叠加电压仍维持负电压,IC2内比较器1输出高电平,LED2的充电灯维持点亮,U5导通而散热风扇维持转动,IC2内比较器2输出低电平维持LED2的充满灯灭,D17导通,D18截止,降低了IC1(1)脚的电压,使输出脉宽的受控时间变短而使输出电压维持在58.5-59.5V的较高水平上。
不接220V和蓄电池,先用一支高亮度LED跨接在C7,C8的两个正端上,用外接12V直流电压加在C6两端,如果控制电路IC1,U3,U4及磁芯变压器T1工作正常,可以看见此时LED发出明亮的光;然后先检查IC1内AMP1电压误差放大器的好坏,用镊子端接IC1的(1)和(14)脚,人为使IC1(1)脚电压高于(2)脚,这时AMP1输出高电平,使输出脉宽减小直至为0,此时可以看见LED熄灭,说明IC1内的电压误差放大器AMP1正常;再来检查IC1内AMP2电流误差放大器的好坏,因IC1(16)脚接地,要使AMP2输出高电平,必须在IC1(5)脚上加上负电压,怎么办呢,用一个很简单的方法,即用机械表的100欧姆挡,黑表笔接地,或数字表的二极管测试挡,红表笔接地,再用机械表的红表笔或数字表的黑表笔去碰IC1的(15)脚,因接上表笔时(15)脚为负电压,AMP2输出高电平,使输出脉宽减小直至为0,此时可以看见LED由亮变灭,说明IC1内电流误差放大器AMP2正常。
接上220V输入而不接蓄电池去解除充电器空载状态的方法。
பைடு நூலகம்
所测得的不接蓄电池充电器空载时的输出电压实际上就是充电器的浮充电压,此值一般为56.5V,说明浮充电压正常,怎样不接蓄电池而解除充电器的空载状态呢,还是用如前所述的万用表方法,当用机械表的红表笔或用数字表的黑表笔去碰IC2的(2)脚时,就相当于在IC2的(2)脚上加了一个负电压,此时IC2内的比较器1输出高电平,使LED2的充电灯(橙色)亮,U5导通,散热风扇转动,使IC2(6)脚电压升高,IC2内的比较器2输出低电平使LED2的充满灯(黄色)灭,同时D17因IC2(7)脚电压下降而导通,D18截止,降低了IC1(1)脚电压,此过程实际上就是人为进入了恒压充电状态,正常的话,此时输出电压应由空载时的55.5-56.5V上升到58.5-59.5V。
电动车充电器原理及带电路图维修doc资料
![电动车充电器原理及带电路图维修doc资料](https://img.taocdn.com/s3/m/44e1d568ccbff121dd368396.png)
电动车充电器原理及带电路图维修创世纪-电脑配件及耗材平价店/电动车充电器原理及维修常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
(原创技术资料)电动自行车智能三阶段充电器的工作原理及实用技术资料
![(原创技术资料)电动自行车智能三阶段充电器的工作原理及实用技术资料](https://img.taocdn.com/s3/m/6a10c7d104a1b0717ed5dd29.png)
电动自行车智能三阶段充电器的工作原理及实用技术资料王赟2010.12.28.我国电动自行车产业的飞速发展为电器维修行业提供了新的利润增长点。
充电器作为电动自行车的易损配套设备,其维修市场潜力巨大。
虽然目前的主流充电器都采用了开关电源式设计,但其控制过程与彩电、彩显等设备的开关电源有着明显的不同。
从电动自行车充电器的维修实际以及国内众多电子技术论坛的会员求助情况来看,很多维修人员对电动车充电器的工作过程和三阶段充电原理不明白,而且目前现有的技术资料对此鲜有论述,读者难以理解,因此在检修中缺少必要的理论指导,遇到简单的故障尚能排除,一旦遇到稍具难度的故障或者比较复杂的故障,检修便难以进行,而且存在很大的盲目性。
本文从电动车充电器的维修实际出发,围绕目前电动车市场上的主流充电器电路,用浅显易懂的语言,详尽地剖析2种典型的智能式三阶段充电器的工作原理和检修方法,并提供8个有实用价值的维修实例和13张代表性图纸以及6种典型充电器的三阶段充电过程中的实测数据等相关技术资料,供维修中参考。
一、电动自行车智能三阶段充电器的工作原理当今的电动自行车充电器,大量地采用了以PWM脉宽调制集成电路TL494N或者KA3842(UC3842)为核心控制电路,组成智能式开关电源,分三个阶段为蓄电池提供充电电压和电流。
由于目前我国的电动自行车普遍采用了36V/12AH的铅酸蓄电池,所以这里以适合于这种蓄电池的36V充电器为例,对采用TL494N和KA3842的电动自行车三阶段充电器的工作原理进行介绍。
1、以TL494N为核心的充电器工作原理。
参照型号为天津“彪”牌电动自行车采用的SP2000三阶段充电器。
预备知识:首先说一下什么是三阶段充电器。
三阶段充电器属于智能控制的能自动转换充电模式的充电器,所谓三阶段是指恒流充电阶段、恒压充电阶段、涓流充电阶段(又叫浮充阶段)。
在恒流充电阶段,充电电流是不变的,但输出电压在变。
电路根据充电电流的情况自动调整输出电压才能使电流保持在恒定的状态,一方面表现在当充电电流增大时,电路能自动降低输出电压,使电流减小,维持恒定;另一方面,随着蓄电池充进电量的增多,蓄电池两端电压会不断上升,为了防止充电电流变小,因此开关电源的输出端电压必须随着充电过程而逐渐上升。
电动车充电器工作原理及常见故障维修
![电动车充电器工作原理及常见故障维修](https://img.taocdn.com/s3/m/ced46553b52acfc789ebc962.png)
电动车充电器工作原理及常见故障维修电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正就是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很就是一件令人头疼的事。
出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员与广大的电子爱好者,提供维修资料,供维修参考用。
为了方便说明,本文还就是从原理开始说起。
一.工作原理我们目前用的电动车充电器大部分都就是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还就是占绝大多数,当然也有不少就是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上就是大同小异的)。
这类充电器的原理与开关电源的原理就是基本相同的220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路与滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时与充过一段时间后,蓄电池的容量与端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电与浮充充电这三个充电阶段。
二.常见故障分析及维修由于电动车充电器的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
电动车充电器工作原理及常见故障维修
![电动车充电器工作原理及常见故障维修](https://img.taocdn.com/s3/m/292dce5bf6ec4afe04a1b0717fd5360cbb1a8d50.png)
电动车充电器工作原理及常见故障维修电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很是一件令人头疼的事。
出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员和广大的电子爱好者,提供维修资料,供维修参考用。
为了方便说明,本文还是从原理开始说起。
一.工作原理我们目前用的电动车充电器大部分都是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。
这类充电器的原理与开关电源的原理是基本相同的220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
二.常见故障分析及维修由于电动车充电器的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
电动车充电器原理及维修-推荐下载
![电动车充电器原理及维修-推荐下载](https://img.taocdn.com/s3/m/b2aa5f44f242336c1eb95ebc.png)
电动车充电器原理及维修常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的3 00V左右的直流电。
U1为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C 8,C3,达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D 9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动车三段式充电器原理和维修技巧恒流,恒压和浮充是三段式充电的三个必须阶段,它的充电曲线见图2,对48V蓄电池而言,可以这样来描述其充电过程,在充电开始时保持一个充电电流1.8-2.5A,直到时间t1,此时充电电压逐渐上升---即恒流充电阶段;当充电电压上升到58.5-59.5V时,立即保持这个充电电压不变直到时间t2,此时充电电流逐渐下降---即恒压充电阶段;当充电电流下降到400-500mA的转换电流时,充电器立即转为55.5-56.5V的小电流充电---即浮充阶段。
三段式充电是一个自动充电的过程,要实现对充电电流和电压的自动控制,在电路的输入和输出之间必须有一个闭环的反馈回路,通过对输出电流和电压的反馈取样,再经过控制电路对信号的处理输出控制信号去调整输入端的工作状态,从而达到自动控制的目的。
下面以TL494为中心组成的一款充电器为列来比较详细的解说一下三段式充电的控制和转换过程(见图1)。
TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中,TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、AMP1和AMP2误差放大器、死区比较器,PWM比较器以及输出电路等组成,其中1、2脚是AMP1的同相和反相输入端;3脚是AMP1和AMP2的公共输出端,4脚外接C4使电源软启动,5、6脚分别用于外接振荡电阻和振荡电容,7脚为接地端;8、9 脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13 脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,15、16脚是AMP2的反相和同相输入端。
TL494的内部资料见图3.图1中的电流检测A和C点分别通过R13,R31等接至电源地上,利用充电电流流过R29产生的压降为IC1内AMP2电流误差放大器和IC2内比较器1提供充电电流检测的取样电压,因整机地接输出负极,所以从电源地(即C6负端)取得的电压为负电压,充电电流越大,在R29上产生的压降越大,由电源地取得的负电压就越大;图中IC1的AMP2电流比较器的(16)脚接地,(15)脚电压由R13引入电流检测负电压和由R14接+5V引入的正电压叠加而成,当(15)脚叠加电压为正时,AMP2输出低电平,对输出脉宽无控制作用,为负时AMP2输出高电平,使输出脉宽受控减小直至为0;在IC2的比较器1中,其(3)脚接地,(2)脚电压由R31引入的电流检测负电压和由R35接+5V引入的正电压叠加而成,当IC2的(2)脚电压为正时,比较器1输出低电平,LED2充电灯(橙色)灭,充满灯(黄色)亮,散热风扇停转;为负时,比较器1输出高电平,LED2充电灯亮,充满灯灭,散热风扇转动;在设计时由于R35(100K)比R14(24K)大很多,只有当充电电流下降到400-500mA时才能使IC2的(2)脚叠加电压为正,这时IC2的比较器1输出低电平,使充满灯亮,散热风扇停转,预示充电即将完成。
图1中的电压检测B点通过R29,C15,R27直接接于输出正极上,输出端的电压变化通过这3个元件反馈到IC1的(1)脚,AMP1电压误差放大器的(2)脚外接固定电压3.25V,(1)脚电压由电压检测B点引入的输出端取样电压和由D18提供的电压叠加而成,当(1)脚电压大于(2)脚的3.25V时,AMP1电压误差放大器输出高电平,使输出脉宽减小直至为0,反之对输出脉宽无限制作用。
充电器空载当充电器不接蓄电池处于空载时,输出电压因空载而升高,输出电流为0,R29上的压降为0;电流检测A点的引入电压和由R14引入的正电压使IC1的(15)脚的叠加电压为正,AMP2输出低电平,对输出脉宽无限制作用;电流检测C点引入电压和由R35引入的正压叠加使IC2的(2)脚电压为正,IC2比较器1输出低电平,使LED2充电灯(橙色)灭,U5截止,散热风扇停转,使IC2(6)脚电压降低,比较器2输出高电平,使LED2的充满灯(黄色)亮,同时D17因IC2的(7)脚电压升高而截止,D18导通向IC1(1)脚提供一个正电压,另一方面,电压检测B点电压因输出空载而升高,这两路电压的叠加使IC1(1)脚电压大于(2)脚,于是AMP1输出高电平使输出脉宽减小,振荡减弱,输出电压降低,之后,又通过电压检测B点引入使IC1(1)脚电压降低,当(1)脚电压低于(2)脚3.25V时,AMP1又输出低电平,对输出脉宽无限制作用,振荡加强,又使输出电压升高,如此反复,使空载电压保持在55.5-56.5V(与设计有关)上。
在充电器空载中,因输出电流为0,R29上压降为0V,此时由电流检测A点引入的电压和由R14接+5V 引入的正电压在IC1(15)脚上的叠加电压始终为正,AMP2输出低电平,在空载时对输出脉宽无限制作用。
恒流充电当充电器接上蓄电池时,输出电压因接上负载而下降,充电电流经充电器正极流向蓄电池并回到充电器负极,再经过R29流向电源地,会在R29上产生一个压降,因而会在C6的负极上(电源地)产生一个负电压,由于在充电前期充电电流远大于400-500MA,而R35(100K)阻值很大,所以电流检测C点引入负电压和由R35引入的正电压不足以使IC2的(2)脚电压为正,因而在恒流充电阶段,IC2的比较器1始终输出高电平,这个高电平使LED2的充电灯(橙色)亮,U5导通,散热风扇转动,使IC2(6)脚电压为高电平,IC2比较器2输出低电平,使ED2充满灯(黄色)灭,同时D17因IC2(7)脚电压降低而导通,D18截止,停止向IC1的(1)脚提供一个正电压,另一方面,电压检测B点的引入电压因输出电压下降而降低,这两组电压的下降使IC1(1)脚电压在恒流充电阶段始终低于(2)脚,因而在恒流充电阶段AMP1始终输出低电平,对输出脉宽无控制作用。
电流检测A点引入的负电压随着充电电流的增加而越来越大,和在IC1(15)脚R14的引入正电压叠加,当叠加的结果使IC1(15)脚电压变为负时,因IC1(16)脚接地,AMP2输出高电平,使输出脉宽减小,振荡减弱,充电电流减小,之后,电流检测A点的引入负压也减小,当减小到使IC1(15)脚电压为正时,AMP2又输出低电平,对输出脉宽无控制作用,振荡加强,充电电流又增大,如此反复,使充电电流保持在1.8-2.5A 上(与设计有关),可以看出恒流充电实际上是一个动态恒流的过程。
恒压充电在图2的电压电流时间曲线图中可以看出,随着恒流充电的进行,充电电压逐渐上升,当到时间T1,即充电电压上升至58.5-59.5V(与设计有关)时,由于电压检测B点的引入电压上升,最终使IC1的(1)脚电压大于(2)脚的3.25V,AMP1输出高电平,使输出脉宽减小,振荡减弱,输出电压降低,之后,电压检测B点的引入电压也降低,当IC1的(1)脚电压低于(2)脚后,AMP1又输出低电平,对输出脉宽无控制作用,振荡加强,输出电压上升,如此反复,使输出电压稳定在58.5-59.5V(与设计有关)上,这实际上也是一个动态恒压的过程。
此过程中因充电电流仍高于400-500MA,所以IC2(2)脚叠加电压仍维持负电压,IC2内比较器1输出高电平,LED2的充电灯维持点亮,U5导通而散热风扇维持转动,IC2内比较器2输出低电平维持LED2的充满灯灭,D17导通,D18截止,降低了IC1(1)脚的电压,使输出脉宽的受控时间变短而使输出电压维持在58.5-59.5V的较高水平上。
在恒压充电阶段,充电电流下降得比较快,电流检测A点的引入负电压因充电电流下降而减小它与R14的引入正电压在IC1(15)脚上的叠加电压始终为正,因而在恒压充电阶段AMP2始终输出低电平,失去对输出脉冲的控制作用。
浮充电随着恒压充电接近尾声,充电电流逐渐减小,R29上的压降也逐渐减小,到400-500MA(与设计有关)即时间T2时,电流检测C点的引入负电压和由R35引入的正电压在IC2(2)脚的叠加电压已经不能维持负电压,从而使IC2的(2)脚电压大于(3)脚,IC2内比较器1输出低电平,使LED2的充电灯(橙色)灭,U5截止,散热风扇停转,同时使IC2(6)脚电压下降,使IC2(5)脚电压大于(6)脚,IC2内比较器2输出高电平,使LED2的充满灯(黄色)亮,D17因IC2(7)脚电压升高而截止,D18导通,从而抬高IC1(1)脚电压,使电压检测点B的引入电压在较短的时间内就可以使IC1(1)脚电压大于(2)脚,也就是使输出脉宽受控的时间变长了,此时输出电压略低于59.5而稳定在55.5-56.5V上(与设计有关)。
在浮充电阶段,因充电电流小于400-500MA,R29上的压降已经变得很小了,因而电流检测A点的引入负电压和由R14引入的正电压在IC1(15)脚上的叠加电压始终为正,所以在浮充电阶段,IC1内的AMP2始终输出低电平,失去对输出脉宽的控制作用。
浮充电阶段和空载时的工作状态是基本相同的,不同的是,浮充电阶段它不仅要向蓄电池提供一个浮充电压,还提供一个400-500MA的浮充电流。
下面列举了一些厂家设计的电动车充电器参数供大家参考:24V12AH 36V12AH 48V12AH 48V20AH 48V24AH恒流电流值 1.8A 1.8A 1.8A 2.25A 2.5A恒压电压值29.5V 44.4V 58.5V 59.5V 59.5V转换电流值300MA 400MA 400MA 450MA 500MA浮充电压值27.5V 41.4V 55.5V 55.5V 56.5V检修技巧首先要排除短路故障,特别是主振荡电路的短路故障,遇到电流和电压检测电路上的电阻损坏时一定要用阻值和误差精度相同的电阻替换,否则可能改变恒流,恒压,转换电流或浮充参数,使蓄电池充不满电或黄色灯不亮进不了浮充电阶段。
外接12V电压检查充电器电压,电流检测及控制电路好坏。
不接220V和蓄电池,先用一支高亮度LED跨接在C7,C8的两个正端上,用外接12V直流电压加在C6两端,如果控制电路IC1,U3,U4及磁芯变压器T1工作正常,可以看见此时LED发出明亮的光;然后先检查IC1内AMP1电压误差放大器的好坏,用镊子端接IC1的(1)和(14)脚,人为使IC1(1)脚电压高于(2)脚,这时AMP1输出高电平,使输出脉宽减小直至为0,此时可以看见LED熄灭,说明IC1内的电压误差放大器AMP1正常;再来检查IC1内AMP2电流误差放大器的好坏,因IC1(16)脚接地,要使AMP2输出高电平,必须在IC1(5)脚上加上负电压,怎么办呢,用一个很简单的方法,即用机械表的100欧姆挡,黑表笔接地,或数字表的二极管测试挡,红表笔接地,再用机械表的红表笔或数字表的黑表笔去碰IC1的(15)脚,因接上表笔时(15)脚为负电压,AMP2输出高电平,使输出脉宽减小直至为0,此时可以看见LED由亮变灭,说明IC1内电流误差放大器AMP2正常。