2011高中数学竞赛培训教材

合集下载

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

2011年全国高中数学联赛几何专题(平面几何解析几何)

2011年全国高中数学联赛几何专题(平面几何解析几何)

数学竞赛中的平面几何一、引言1.国际数学竞赛中出现的几何问题,包括平面几何与立体几何,但以平面几何为主体.国际数学竞赛中的平面几何题数量较多、难度适中、方法多样(综合几何法、代数计算法、几何变换法等),从内容上看可以分成三个层次:第一层次,中学几何问题.这是与中学教材结合比较紧密的常规几何题,虽然也有轨迹与作图,但主要是以全等法、相似法为基础的证明题,重点是与圆有关的命题,因为圆的命题知识容量大、变化余地大、综合性也强,是编拟竞赛试题的优质素材.第二层次,中学几何的拓展.这是比中学教材要求稍高的内容,如共点性、共线性、几何不等式、几何极值等.这些问题结构优美,解法灵活,常与几何名题相联系.有时还可用几何变换来巧妙求解.第三层次,组合几何——几何与组合的交叉 .这是用组合数学的成果来解决几何学中的问题,主要研究几何图形的拓扑性质和有限制条件的欧几里得性质.所涉及的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题在第六届IMO (1964)就出现了,但近30年,无论内容、形式和难度都上了新的台阶,成为一类极有竞赛味、也极具挑战性的新颖题目.组合几何的异军突起是数学竞赛的三大热点之一.2.在中国的数学竞赛大纲中,对平面几何内容除了教材内容外有如下的补充.初中竞赛大纲:四种命题及其关系;三角形的不等关系;同一个三角形中的边角不等关系,不同三角形中的边角不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质.高中竞赛大纲: 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形中的几个特殊点:旁心、费马点,欧拉线;几何不等式;几何极值问题;几何中的变换:对称、平移、旋转;圆的幂和根轴;面积方法,复数方法,向量方法,解析几何方法.二、基本内容全等三角形的判别与性质,相似三角形的判别与性质,等腰三角形的判别与性质,“三线八角”基本图形,中位线定理,平行线截割定理,圆中角(圆心角、圆周角、弦切角)定理等大家都已经非常熟悉,此外,竞赛中还经常用到以下基本内容.定义1 点集的直径是指两个端点都属于这个集合且长度达到最大值的线段(一个点集可能有多条直径,也可能没有直径).定义2 如果对点集A 中的任意两点,以这两点为端点的线段包含在A 里,则集合A 称为是凸的.定义3 设n M M M ,,,21 是多边形,如果12n M M M M = 并且当j i ≠时,i M 与j M 没有公共的内点,则称多边形M 剖分为多边形12,,,n M M M .定义4 如果凸边形N 的所有顶点都在凸多边形M 的边上,则称多边形N 内接于多边性M . 定理1 两点之间直线距离最短.推论 三角形的两边之和大于第三边,两边之差小于第三边.定理2 三角形的内角之等于180.凸n 边形(3≥n )的n 个内角和等于(2)180n - ;外角和为180(每一个顶点处只计算一个外角).证明 如图1,过C 作//CE AB ,则有 ECA A ∠=∠,(两直线平行,内错角相等) 得 ()A B C A C B ∠+∠+∠=∠+∠+∠ (结合律)ECB B =∠+∠(等量代换)180= .(两直线平行,同旁内角互补 图1推论 三角形的一个外角等于两个不相邻内角之和.定理3 三角形中大边对大角、小边对小角.证明 (1)如图2,在ABC 中,已知AB AC >,可在AB 上截取AD AC =,则在等腰ACD 中有 12∠=∠.(等腰三角形的性质定理)又在BCD 中,2B ∠>∠,(外角定理)更有 12C B ∠>∠=∠>∠.(传递性)说明 由上面的证明知,,,AB AC B C AB AC B C AB AC B C >⇒∠<∠⎧⎪=⇒∠=∠⎨⎪<⇒∠>∠⎩这样的分断式命题,其逆命题必定成立.证明如下: 图2(2)反之,在ABC 中,若C B ∠>∠,这时,AB AC 有且只有三种关系AB AC <,AB AC =,AB AC >.若AB AC <,由上证得C B ∠<∠,与已知C B ∠>∠矛盾.若AB AC =,由等腰三角形性质定理得C B ∠=∠,与已知C B ∠>∠矛盾. 所以AB AC >.定理4 在ABC 与111A B C 中,若1111,AB A B AC AC ==,则111A A BC B C ∠>∠⇔>. 定理5 凸四边形ABCD 内接于圆的充分必要条件是:180ABC CDA ∠+∠= (或180BAD DCB ∠+∠= ).证明 当四边形ABCD 内接于圆时,由圆周角定理有1122ABC CDA ADC ABC ∠+∠=+ 1118022ADC ABC ⎛⎫=+= ⎪⎝⎭. 同理可证180BAD DCB ∠+∠=.反之,当180ABC CDA ∠+∠=时,首先过不共线的三点,,A B C 作O ,若点D 不在O 上,则有两种可能:(1)D 在O 的外部(如图3(1)).记AD 与O 相交于S ,连CS ,在CDS 中有ASC CDA ∠>∠.又由上证,有180ABC ASC ∠+∠=,得180180ABC CDA ABC ASC =+∠<∠+∠=,矛盾.图3(2)D 在O 的内部(如图3(2)).记AD 的延长线与O 相交于S ,连CS ,在CDS 中有 ASC CDA ∠<∠.又由上证,有180ABC ASC ∠+∠= , 得 180180ABC CDA ABC ASC =+∠>∠+∠= ,矛盾. 定理6 凸四边形ABCD 外切于圆的充分必要条件是AD BC CD AB +=+.证明 当凸四边形ABCD 外切于圆时,设各边的切点分别为,,,P Q R S (如图4),根据圆外一点到圆的两切线长相等,有,,,.AP AS PB BQ CR QC DR DS ====相加 AP PB CR DR AS BQ QC DS +++=+++, 得 AD BC CD AB +=+. 图4反之,若AD BC CD AB +=+,我们引,B C ∠∠的平分线,因为360B C ∠+∠<,所以,两条角平分线必定相交于四边形内部一点,记为N ,则N 到三边,,AB BC CD 的距离相等,可以以N 为圆心作N 与,,AB BC CD 同时相切,这时AD 与N 的关系有且只有三种可能:相离、相切、相交.(1)若AD 与N 相离(如图5(1)).过A 作切线与CD 相交于/D ,在/ADD 中,有 //DD AD AD >-. ①但由上证,有//AB CD BC AD +=+, 又由已知,有AD BC CD AB +=+ 相减得 //CD CD AD AD -=- ,//DD AD AD =-,与①矛盾.图5(2)若AD 与N 相交(如图5(2)).过A 作切线与CD 的延长线相交于/D ,在/ADD 中,有①//DD AD AD >-. 但由上证,有//AB CD BC AD +=+,又由已知,有AD BC CD AB +=+相减得 //CD CD AD AD -=- , 即 //DD AD AD =-,与①矛盾.综上得AD 与N 的相切,即凸四边形ABCD 外切于圆.定理7 (相交弦定理)圆内的两条相交弦,被交点分成的两条线段长的积相等.定理8 (切割线定理)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.定义 5 从一点A 作O 的割线交O 于,B C ,则点A 到两交点,B C 的线段长度之积AB AC 称为点A 对O 的羃.对于两个已知圆有等羃的点的轨迹,称为两圆的根轴(或等羃轴).定理9 若两圆相交,其根轴在两圆公共弦所在的直线上;若两圆相切,其根轴在过两圆切点的公切线上;若两圆相离,则两圆的四条公切线的中点在根轴上.定理10 (三角形面积公式)在ABC ∆中,记c b a ,,为三边长,1()2p a b c =++为半周长,R 是外接圆半径,r 为内切圆半径,a h 是边BC 上的高,a r 是与边BC 及,AB AC 的延长线相切的旁切圆的半径,则ABC ∆的面积S 为:111(1)222a b c S ah bh ch ===; 111(2)sin sin sin 222S ab C ac B bc A ===;))()(()3(c p b p a p p S ---=;2(4)2sin sin sin 4abcS R A B C R==; rp S =)5(;)(21)6(a c b r S a -+=; )2sin 2sin 2(sin 21)7(2C B A R S ++=.定理11 在ABC Rt ∆中,有 (1)222a b c +=,(勾股定理的逆定理也成立) (2)1(),22cr a b c R =+-=.定理12 (角平分线定理)设AD 是ABC ∆中A ∠的平分线,则.AB BDAC DC=. 此定理有10多种证法,下面是有辅助线与无辅助线的两种代表性证法. 证明1 (相似法)如图6,延长BA 到E ,使AE AC =,连CE ,则 12B A D A ∠=∠(已知) ()12A E C A C E=∠+∠(外角定理) AEC =∠,(等腰三角形的两个底角相等) 有 //AD CE ,得 B D A B A BD C AE A C==.(平行线截割定理) 图6 证明2 (面积法)11sin 2211sin 22ABD ACD AB AD AS BC AB DC S ACAC AD A ∠===∠ . 定理13 (正弦定理、余弦定理)在ABC ∆中,有 (1)cos cos a b B c C =+,cos cos b a A c C =+, cos cos c a A b B =+. (2)2sin sin sin a b CR A B C===; (3)2222cos a b c bc A =+-,2222cos b a c ac B =+-, C ab b a c cos 2222-+=.(4)222sin sin sin 2sin sin cos A B C B C A =+-.(2)2sin sin sin a b CR A B C===; 证明1 (1)当ABC ∆为直角三角形时,命题显然成立. (2)当ABC ∆为锐角三角形时,如图7(1),作ABC ∆外接圆O ,则圆心O 在ABC ∆的内部,连BO 交O 于D ,连结DC .因为BD 是O 的直径,所以90BCD ∠=,在直角BCD 中有2sin a R D =,但A D ∠=∠,故得2sin a R A =.同理可证2,2sin sin b cR R B C==. 得2sin sin sin a b CR A B C===. (1) (2) 图7(3)当ABC ∆为钝角三角形时,记A ∠为钝角,则圆心O 在ABC ∆的外部,过A作直径,仿上证可得2,2sin sin b cR R B C==. 又在优弧 BC 上取一点D ,连,BD DC ,如图7(2),由于圆心O 在BCD 的内部,所以BCD 为锐角三角形,且()sin sin 180sin D A A =-= ,有22sin sin a aR R D A=⇒=. 综上得2sin sin sin a b CR A B C===. 证明2 由余弦定理,有222222sin 1cos 12b c a A A bc ⎛⎫+-=-=- ⎪⎝⎭()()()22222222bc b c abc -+-=()()()()()22a b c a b c c a b c a b bc +++-+--+=, 记t b =因为 0A π<<,开方得sin 2tA bc=. 同理可得sin ,sin 22t t B C ca ab ==. 所以 2s i n s i n s i n a b c a b cA B C t===. 证明3 如图8,在A B C ∆中,,,a b c 分别是三个内角,,A B C 所对的边,以三角形外接圆的圆心O 为原点,半径OA 所在的直线为x 轴建立直角坐标系,设外接圆的半径长为R , 于是A 点坐标为(),0R .由三角函数的定义得B 点坐标为()co s 2,s i n 2R C R C ,C 点坐标为()()()cos 22,sin 22R B R B ππ--,即()cos2,s i n 2R B R B -. 由 ()c o s 2,s i n 2A B R C R R C =-,有AB=2sin R C ==,得 2s i n c R C =.同理可得2sin ,2sin a R A b R B ==, 图8所以2s i n s i n s i na bcR A B C ===. (2)2222cos a b c bc A =+-,2222cos b a c ac B =+-,C ab b a c cos 2222-+=. 证明1 如图9(1),设CB CA AB ===a,b,c ,有=-a c b ,得()()22222cos ,c b cb A =--=+-+- a c b c b c c b b c b=即 2222cos a b c bc A +-=.同理可得 2222cos b a c ac B =+-,C ab b a c cos 2222-+=.(1) (2) 图9证明2 如图9(2),以A 为原点、以直线AB 为x 轴,建立直角坐标系,则()()()0,0,,,c o s ,s i nA B c o C b A b A , 由两点距离公式,有BC ==得 2222cos a b c bc A +-=.(3)222sin sin sin 2sin sin cos A B C B C A =+-.定理14 (梅内劳斯定理)一直线截ABC ∆的边,,BC AC AB 或其延长线于,,D E F ,(位于延长线上的点有奇数个)则1BD CE AFDCEA FB= .图10证明1 (将三个比值转化为三个值的循环比)如图10,过C 作//CG DF 交AB 于G ,有,BD BF CE GFDC GF EA AF==, 得 1BD CE AF BF GF AFDC EA FB GF AF FB== .也可以过C 作//CH AB 交DF 于H ,或过B 作//BN CA 交DF 于N 等途径来证明.证明2 (三角法)如图10,由正弦定理, 在FBD 中,有sin sin BD FB αβ=, 在CDE 中,有sin sin CE DC βγ=, 在AEF 中,有sin sin AF EA γα=, 三式相乘sin sin sin 1sin sin sin BD CE AF BD CE AF DC EA FB FB DC EA αβγβγα=== . 证明3 (面积法)如图11,联结联结,AD BE ,有面积关系DAF EAFDBF EBF S S AF FB S S ==, 得D A FE A FE A DD B FE BF E B DS S S AF FB S S S -==-.又EBDECD S BD DC S =, 图11E C DEADS CE EA S = , 三式相乘即得.证明4 (坐标法)设ABC ∆的三顶点坐标为()()()112233,,,,,A x y B x y C x y ,直线DF 的方程为 0a x b y c ++=. 又记123,,BD CE AFDC EA FBλλλ===(i λ可正可负),有21312131,1:,1x x x D y y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩代入直线方程,得 21321311011x x y y a b c λλλλ⎛⎫⎛⎫++++=⎪ ⎪++⎝⎭⎝⎭,22133ax by cax by c λ++=-++.同理33211ax by cax by c λ++=-++,11122ax by cax by cλ++=-++,相乘1BD CE AFDC EA FB=- , 即 1BD CE AFDC EA FB= .逆定理: 若,,D E F 分别为ABC ∆三边,,BC AC AB 上的点(位于延长线上的点有奇数个),且1BD CE AFDC EA FB= . 则,,D E F 三点共线.证明 如图9,设EF 与BC 相交于/D ,由上证有//1BD CE AFD C EA FB=, 又由已知有1BD CE AFDC EA FB= , 两相比较,有//BD BD D C DC =, 合比 /BD BDBC BC=,得 /BD BD =,有/D 与D 重合,即,,DEF 三点共线.梅内劳斯定理逆定理是证明三点共线的有力工具.定理15 (塞瓦定理)设O 是ABC ∆内任意一点,,,AO BO CO 分别交对边于,,D E F ,则1BD CE AFDC EA FB= . 证明1 (将三个比值转化为三个值的循环比)如图12,由面积关系OBDABD ADC ODC S S BD DC S S ==, 有A B D O B DA O BA D C O D C A O CS S S BD DC S S S -==-.同理BOCAOBS CE EA S =, 图12 AOCBOCS AF FB S =,三式相乘即得. 证明2 (转化为物质重心)在,,A B C 处各放一个重物,使其重心正好在O 处,记三处的质量分别为,,A B C m m m ,则,,D E F 分别为,,BC AC AB 的重心,有C B m BD DC m =. ACm CE EA m =,B A m AF FB m =,三式相乘即得. 证明3 (用梅内劳斯定理)如图11,由梅内劳斯定理,ABD 被直线BOE 所截,有1BC DO AFCD OA FB = , ADC 被直线BOE 所截,有 1CB DO AEBD OA EC= ,相除得1B D C E A FD CE AF B= . 证明4 如图13,过点A 作//MN BC 交,BE CF 的延长线于,M N ,由,B O D M O A C O D N O A,有 BD DO CD BD AMAM OA AN CD AN==⇒=, 又由,BEC MEA NFA BFCCE BC EA AM =, 图13 AF ANFB BC=, 三式相乘即得.逆定理 在ABC ∆三边(所在直线),,AB CA BC 各取一点,,D E F ,若有1BD CE AFDC EA FB= ,则,,AD BE CF 平行或共点.(1) (2)图14证明 AD 与BE 有两种关系:或是平形或是相交. (1)若AD //BE (如图14(1)),则BC ECBD EA=代入已知得AF DCFB BC= 有AD //CF ,从而////AD BE CF .(2)若AD 与BE 相交(如图14(2)),记交点为O ,连CO 交AB 于/F ,由塞瓦定理,有//1BD CE AF DC EA F B= 与已知条件相比较,得//AF AF FB F B =,合比 /AF AF AB AB=,有 /AF AF =, 有/F 与F 重合,即,,AD BE CF 三线共点. 塞瓦定理的逆定理是证明三线共点的有力工具. 定理16(三角形的特殊点)(1)三角形的三条中线相交于一点(三角形的重心) 证明 当,,D E F 为ABC ∆各边的中点时,有1BD CE AFDC EA FB ===, 得1BD CE AFDC EA FB= . 又因 180EBC FCB ABC ACB ∠+∠<∠+∠<, 故BE 与CF 相交,得,,AD BE CF 三线共点.(2)三角形的三条角平分线相交于一点(三角形的内心)证明 当,,AD BE CF 为ABC ∆各内角平分线时,由角平分线定理,有,,BD AB CE BC AF ACDC AC EA AB FB BC ===, 相乘 1BD CE AF AB BC ACDC EA FB AC AB BC== .又因 180EBC FCB ABC ACB ∠+∠<∠+∠< , 故BE 与CF 相交,得,,AD BE CF 三线共点. (3)三角形的三条高线相交于一点(三角形的垂心)证明 先证锐角三角形成立.如图15,当,,AD BE CF 为ABC ∆各边的高线时,有BD ABRt ABD Rt CBF BF BC ⇒=, CE BCRt BCE Rt ACD DC AC ⇒= ,AF ACRt CAF Rt BAE AE AB ⇒= ,相乘得sin sin sin 1sin sin sin BD CE AF DC EA FB βαγαγβ== . 图15 又因 180EBC FCB ABC ACB ∠+∠<∠+∠<, 故BE 与CF 相交,得,,AD BE CF 三线共点.再证钝角三角形成立. 如图16,ABC ∆中,A ∠为钝角,设高线,B E C F延长相交于G ,则GBC 为锐角三角形,由上证,它的三条高线相交于一点,因为,BE CF 已相交于A ,所以,过G 而垂直于BC 的高线经过A ,也就是A B C ∆的三条高线,,AD BE CF相交于点G . 图16最后,直角三角形显然成立.因而对任意三角形都有三条高线共点.(4)三角形的三条垂直平分线相交于一点(三角形的外心)证明 对ABC ∆,作其中位线DEF ,由上证,DEF 的三条高线共点,得ABC ∆的三条垂直平分线相交于一点.定理17 (斯特沃尔特定理)在ABC ∆中,D 是BC 上一点,则222BD AC DC AB AD BD DC BC⋅+⋅=-⋅.证明 如图17,在ABD 与ABC 中,用余弦定理,有2222cos AD AB BD AB BD B =+- , ① 图17222cos 2AB BC AC B AB BC+-= , ②代入消去cos B ,得222222AB BC AC AD AB BD BD BC+-=+-()()22BD AC BC BD AB BD BC BD BC+-=--22BD AC DC AB BD DC BC+=- .也可以将余弦定理①、②2222cos AD AB BD AB BD B =+- ,2222cos AC AB BC AB BC B =+- , 看成齐次线性方程组()()2222220,0,AB BD AD x BDy AB BC AC x BCy ⎧+-+=⎪⎨+-+=⎪⎩,有非零解1,2cos x y AB B ==-,得系数行列式为0222222AB BD AD BD AB BC AC BC +-=+-,化简即得.推论1三角形中线长a m =. 证明 在斯特沃尔特定理中取BD DC =,有 222224AC AB BC AD +=-,即a m == 推论2 三角形角平分线长a t =()12p a b c =++.证明 在斯特沃尔特定理中取BD ABDC AC=,即 ,AB ACBD BC DC BC AB AC AB AC==++ ,有 ()222AB AC BC AD AB AC AB AC =-+ ()()222AB ACAB AC BC AB AC ⎡⎤=+-⎣⎦+ ()()()2AB ACAB AC BC AB AC BC AB AC =+++-+ .令()12p a b c =++,得a t =推论3 三角形高线长a h =,其中()12p a b c =++.证明 当D 为垂足时,如图17,有22222,,BD DC a AD b CD c BD +==-=-由 2222,,BD DC a BD CD c b +=⎧⎨-=-⎩可解得 222222,2,2a b c BD aa b c CD a ⎧-+=⎪⎪⎨+-⎪=⎪⎩从而 222222222a b c AD b CD b a ⎛⎫+-=-=- ⎪⎝⎭()()22222221224ab a b c ab a b c a⎡⎤⎡⎤=++--+-⎣⎦⎣⎦ ()()()()()()()()()22222221414,4a b c c a b aa b c a b c c a b c a b p p c p b p a a a ⎡⎤⎡⎤=+---⎣⎦⎣⎦=+++-+--+=---得a h =.定理18 (西姆松定理)过三角形外接圆上任意一点作三边的垂线,则三垂足共线(西姆松线).反之,若一点到三角形三边所在直线的垂足共线,则该点在三角形的外接圆上.证明 如图18,ABC 外接圆上任意一点P 到三边所在直线的垂足为,,D E F ,连,DE DF 及,,PA PB PC ,由,,PD BC PE AC PF AB ⊥⊥⊥知,点,,,P B F C 与点,,,P D C E 分别共圆,有180PDF PBF ∠+∠=, ①PDE PCE ∠=∠. ②又由,,,P A B C 共圆,有PCE PBF ∠=∠. ③ 图18由①、②、③得180PDF PDE ∠+∠=. ④从而,,,D E F 三点共线.反之,若,,D E F 三点共线,由①、②、④可得③成立,于是,,,P A B C 共圆,即点P 在ABC 的外接圆上.定理19 (托勒密定理)圆内接四边形中,两对边的乘积之和等于它的对角线的乘积.反之,若四边形的两对边的乘积之和等于它的对角线的乘积,则该四边形内接于一圆.证明 如图19,在圆内接四边形ABCD 的对角线AC 上取一点E ,使ADE BDC ∠=∠,又由ADE BDC ∠=∠,得A D EB DC = ,有 AE BCAD BC AE BD AD BD=⇒= . ①再由,ADB EDC ABD ECD ∠=∠∠=∠,得ABD ECD = ,有 A B C EA B C D C E B D B D C D=⇒= . ②②+①得()AB CD AD BC AE EC BD AC BD +=+= .反之,若四边形ABCD 中,有AB CD AD BC AC BD += . 图19如图20设点D 到ABC 三边所在直线的垂足为111,,A B C ,连111111,,A B AC B C ,因为11,,,A C B D 四点共圆,且AD 是直径,所以,在11ABC 中用正弦定理有1111sin sin 2BCB C AD B DC AD BAC AD R=∠=∠= . 其中,R 为ABC 的外接圆半径.同理, 1111,22AB AC A B CD A C BD R R==, 这时,若D 不在ABC 的外接圆上,则由西姆松定理知111,,A B C 图20不共线,得 111111A B BC AC +>,即 222A B B C A C C DA DB D R R R+> , 得 AB CD AD BC AC BD +>. 与已知AB CD AD BC AC BD += 矛盾,故D 在ABC 的外接圆上,即四边形为ABCD 圆内接四边形.托勒密定理的推广:四边形ABCD 中,有AB CD AD BC AC BD +≥. 证明 视,,,A B C D 为复平面上的复数,由恒等式()()()()()()A B C D A D B C A C B D --+--=--,A B CDE求模得不等式()()()()()()()()()()A B C D A D B C A B C D A D B C A C B D --+--≥--+--=--即 A B C D A D B C A C B D --+--≥--,得AB CD AD BC AC BD +≥定理20(费马点)在锐角三角形所在平面上求一点,使它到三角形三顶点的距离之和为最小. 证明 设P 为锐角ABC 内一点,现将APB 绕点A 向外旋转60 ,得A Q D ,由于,60A P A Q P A Q =∠=,所以,APQ 是等边三角形,有 PQ PA =,得 PA PB PC BP PO QD BD ++=++≥.由于,60A D ABC AD =∠=,所以,D 为定点,当,,,B P Q D共线时PA PB PC ++取最小值BD ,此时 图21 180120APB APQ ∠=-∠= .同样讨论可知,当120APB APC BPC ∠=∠=∠=时,PA PB PC ++取最小值.定理21 (欧拉线)在任一三角形中,外心,重心和垂心共线,且垂心到重心两倍于外心到重心的距离. 证明 在ABC 中,设O 为外心,G 为的重心,M 为AB 的中点,连结CM ,则G 在CM 上,且有 2CG GM =.连结OM ,则OM AB ⊥.连结OG 并延长到H ,使 2HG OG =,连CH ,有CGH MGO ,得GCH GMO ∠∠ ,推出 //CH OM ,但OM AB ⊥,所以CH AB ⊥.同理,AH BC ⊥. 图22 所以,H 为三角形垂心. 三、基本方法数学竞赛中的几何题几乎涉及所有的平面几何方法,主要有三大类:综合几何法、代数法和几何变换法.1.综合几何方法:如全等法、相似法、面积法等,证逆命题时常用到同一法,反证法.2.代数方法:如代数计算法、复数法、坐标法、三角法、向量法等.另有些几何不等式经过变换(图23) ⎪⎩⎪⎨⎧+=+=+=x z c z y b y x a ,,C图23之后,就成为正数的代数不等式了,反之,也可以把代数问题转化为几何问题.3.几何变换方法:如平移、旋转、反射、位似、反演等. 解几何题举例.例1 (2005、全国高中数学联赛) 如图24,设AB AC >,过A 作ABC 的外接圆的切线l ,又以A 为圆心,AC 为半径作圆分别交线段AB 于D ,交直线l 于E ,F .证明:DE ,DF 通过ABC 内心和一个旁心.分析:只考虑内心.第1.题目的条件是什么,一共有几个,其数学含义如何.(1),CAE ABC DAF ACB ∠=∠∠=∠, (2)DEF 中,1122DEF DAF ACB ∠=∠=∠, ()1122DFE DAE ABC BAC ∠=∠=∠+∠, 图2490EDF ∠= .(3)等腰ADE 中,()()111180180222ADE DAE ABC BAC ACB ∠=-∠=-∠-∠=∠(4)等腰ADF 中,()11802ADF AFD DAF ∠=∠=-∠ 1902ACB =-∠ .第2.弄清题目的结论是什么,一共有几个,其数学含义如何.结论成立需要什么?(1)结论有两个:,DE DF 一个通过ABC 的内心,一个通过ABC 的旁心.什么是通过,数学实质是证三线共点.①应是DE 通过ABC 的内心 ②应是DF 通过ABC 的旁心(2)放下旁心,立即想“内心”的定义,这导致我们作ABC 的内角平分线.由于B 点的信息量最少,因而优先考虑,A C ∠∠的平分线,这就出现了A ∠的平分线IA ,联结IC ,问题转化为证IC 是C ∠的平分线. 即12A C I A CB ∠=∠. 第3.弄清题目的条件与结论有哪些数学联系,是一种什么样的结构.题目的条件和结论是两个信息源.从条件发出的信息,预示可知并启发解题手段,从结论出发的信息预告需知并诱导解题方向,抓住条件和结论“从何处下手、向何方前进”就有一个方向(1)由结论12ACI ACB ∠=∠的需要,联想何处能提供12ACB ∠?想到 1122ADE AED DAF ACB ∠=∠=∠=∠问题转化为证12ACI ADE ACI AED ACI DAF ∠=∠∠=∠∠=∠ 其中之一(2)由于,AC AD AI =公共,CAI DAI ∠=∠,故ACI ADI = ,所以ACI ADI ∠=∠是可以实现的.证明 如图25,作BAC ∠的平分线交DE 于I ,联结IC ,由,AC AD AI =公共,CAI DAI ∠=∠,得 ACI ADI = ,有 A C I A D I ∠=∠.但是 A D I A E D ∠=∠(等腰三角形的两个底角相等) 12D A F =∠(圆周角等于同弧圆心角的一半) 12A CB =∠(弦切角定理)得 12A C I A CB ∠=∠, 图25 两条角平分线的交点I 必为ABC 的内心,所以DE 通过ABC 的内心.例2 证明:对任意三角形,一定存在两条边,它们的长,u v满足1u v ≤<. (“《数学周刊》杯”2007全国初中数学竞赛试题)讲解 有两种思维水平的处理.水平1 (参考答案)设任意ABC 的三边长为,,a b c ,不妨设a b c ≥≥.若结论不成立,则必有a b ≥, ①b c ≥ 5分 ② 记,b c s a b t c s t =+=+=++,显然0,0s t >>,代入①得c s t c s ++≥+,11s tc c s c++≥+ 令,s tx y c c==,则1112x y x ++≥+ ③由a b c <+,得c s t c s c ++<++,即t c <,于是1ty c=<.由②得112b c s x c c ++==+≥④ 由③,④得()5111y x ⎫≥+≥=⎪⎪⎝⎭, ⑤ 此式与1y <矛盾,从而命题得证. 15分评析 这个证明写得很曲折,其实③式就是①式、④式就是②式,解题的实质性进展在两个知识的应用上.(1)三角形基本定理:三角形两边之和大于第三边.使用“增量法”,引进四个参数,,,s t x y 推出1tc<是基本定理的变形(1a b c -<),构成矛盾也是与基本定理的变形1a by c-=<矛盾.(2)特征数据12的性质.这表现在⑤式用到的两个运算+=1 1=. 抓住这两点,立即可得问题的改进解法:若结论不成立,则存在ABC ,满足a b c ≥≥,且使12a b ≥,12b c ≥ 同时成立,得5111.a b c c b b b +≤<=+≤==矛盾.故对任意三角形,一定存在两条边,它们的长,u v 满足1u v ≤< 这还只是局部上的修修补补,更关键的是抓住实质性的知识可以构造不等式0()a b c >-+ (提供不等式)a b c =-+⎝⎭⎝⎭ )=a b ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭⑥ 据此可以成批得出本题的证明.另证 记任意ABC 的三边长为,,a b c ,不妨设a b c ≥≥,又设,a b x min b c ⎧⎫=⎨⎬⎩⎭,则1,1,,a b bx x a b x c b c x≤≤≤≤⇒≥≤,代入基本定理,有 210,b a b c bx a b c b x x x <+⇒<<+<+⇒--<解得1x ≤<. 说明 对比这两种思维水平,所用到的知识是相同的,结论也都正确.但水平一仍然停留在浅层结构的认识上,有在外围兜圈子之嫌,而水平二则更接近问题的深层结构,思路清晰而简明.例3 (斯坦纳定理)两条角平分线相等的三角形为等腰三角形. 证明 如图,在ABC 中,,BD CE 为角平分线,且BD CE =. 不妨设B C ∠≥∠,在EO 上取一点M ,使O B M O C D ∠=∠,记BM 的延长线交AC 于N ,则NBD NCM ,有1NB BD BDNC CM CE =≥=, 有 N B N C >. 图26 在NBC 中,由大边对大角,得NBC NCB ∠≤∠OBC OCB ⇒∠≤∠即 1122B C B C ∠≤∠⇒∠≤∠,得 B C B C B C ∠≥∠⎫⇒∠=∠⎬∠≤∠⎭.例4 (蝴蝶定理)设AB 是圆的一根弦,过AB 的中点M 作两弦,,CD EF 设,ED CF 分别交AB 于,P Q .求证PM MQ =.证明1 如图27,设,PM x QM y ==,AM BM a ==,有有显然的面积等式1QEM QDMCMP PFM CMP QEM PFM QDMS S S S S S S S = , 即s i n s i ns i ns i n1s i n s i ns i n s i nC P C M Q M E M F P F M Q MD M P M C ME Q E M P MF M D Q D M αγβδδαγβ=,得 22CP FP QM EQ DQ PM = .由相交弦订立又有()()22CP FP AP PB a x a x a x ==-+=-()()22EQ DQ AQ QB a y a y a y ==+-=-图27得 ()()222222a x y a y x -=-可得x y =即PM QM =.证明2 以AB 所在的直线为x 轴,以M 为原点建立直角坐标系,则圆的方程可以表示为()222x y b R +-=,(R b > ①而,CD EF 的方程为11220,0a y b x a y b x -=-=,相乘()()11220a y b x a y b x --= ②则过,,,C D E F 四点的曲线系方程为()()()22211220x y b R a y b x a y b x λ⎡⎤+--+--=⎣⎦.这也包括退化为直线,DE CF 的情况,令0y =,可得曲线系与x 轴的交点横坐标所满足的方程 图28()2221210bb x b R λ-+-=. ③因为,CF ED 分别交AB 于,P Q ,所以二次方程③必有两个实根12,x x ,且由方程的常数项为0知, 恒有 120x x +=,(中点不变性) 即 PM QM =.例6 (垂足三角形)锐角三角形的所有内接三角形中,周长最小的一个是其垂足三角形. 证明 设Z 是AB 边上的任意定点,作Z 关于AC 的对称点K ,再作Z 关于BC 的对称点H ,连KH 交,CA CB 于,Y X ,则X Y Z 是以Z 为定点的内接三角形中周长最短的一个.现固定,X Y ,由于CZ 与CK 关AC 对称,CZ 与CH 关于BC 对称,所以图29,,ZCA KCA ZCB HCB ∠=∠∠=∠得 2K C H A C B ∠=∠.所以,KCH 是顶角为定值、腰长等于CZ 的等腰三角形,当腰长最短时,KH 也最短,易知,当CZ AB ⊥(即Z 是AB 边上的垂足)时CZ 取最小值,此时XYZ 的周长最短.同样的讨论知,X 是BC 边上的垂足、Y 是AC 边上的垂足时,内接XYZ 的周长最短.所以,锐角三角形的所有内接三角形中,周长最小的一个是其垂足三角形.例8 (厄尔多斯—摩德尔定理)设P 是ABC ∆内一点,其到三边的距离分别为,,x y z ,则)(2PF PE PD PC PB PA ++≥++.等号成立当且仅当ABC ∆为正三角形,且P 是ABC ∆的重心.证明 如图21,过作直线 MN 交AB 于M ,交AC 于N ,使 AMN ACB ∠=∠,得AMN ACB = ,有,AM AC b AN AB cMN BC a MN BC a ====. 又 12AMN MN AP S ≥1122AMP ANP S S AM z AN y =+=+ , 图30得 A M A N b cP A z y z y M N M N a a ≥+=+ . ①同理 c aPB x z b b ≥+ , ②a bPC y x c c≥+ , ③相加 PA PB PC ++c b a c b a x y z b c c a a b ⎛⎫⎛⎫⎛⎫≥+++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2x y z ≥++ ④其中④式取等号a b c ⇔==,①式取等号AP MN ⇔⊥,这时ABC ∆为正三角形,且P 是ABC∆的重心.例9 (1995 536-IMO )设ABCDEF 是凸六边形,满足CD ,BC AB ==FA ,EF DE == 060BCD EFA ∠=∠=.设G 是H 是这六边形内部的两点,使得0120=∠=∠DHE AGB .证明 如图,将六边形以BE 为轴作一对称图形,11E BDF AC 有 图31.11CF F C =由于,1200=∠=∠DHE AGB 所以11,,,,,,F D H E G B C A 及切四点共圆,连1C .H F ,G C 11则,GB AG G C 1+= ① .HE DH HF 1+= ②从而 HE DH GH GB AG ++++1111C G GH HF C F CF =++≥=评析 此例通过对称,将需比较大小的6条线段集中在一起,当中的①、②两式也可以用旋转变换来证明.例10 (1986 227-IMO )在平面上给定点0P 和321A A A ∆,且约定当4≥S 时,3-=S S A A .构造点列,,,,210 P P P 使得1+k P 为点k P 绕中心1+k A 顺时针旋转120所到达的位置,,,2,1,0 =k 求证,如果01986P P =,则321A A A ∆为等边三角形.证明 引进复平面,以各点的字母表示各点上的复,并设())120sin(120cos -+-=i ωi 2321--=则01,123=++=ωωω依题意,有(如图32)().111ω+++-=-k k k k A P A P有 ()11-+-=n n n p A P ωω ()()]1[121--+-+-=n n n P A A ωωωω()()2211--++-=n n n P A A ωωω=……()o n n n n n P A A A A ωωωωω+++++-=---][111221当n =1986时,由于,,1,1,1986233o S S P P A A =--===-ωωω有 ()()o P A A A P +++-=122319861662ωωω ()()().][166219861213P A A A A +-+--=ωω 得 ()()()60sin 60cos 122113i A A A A A A +-=-=-ω这说明,A 1A 3可由A 1A 2绕A 1逆时针旋转60°得到,故321A A A ∆为正三角形.例11 在凸四边形ABCD 中,若AB 大于其余三边,BC 小于其余三边,则,BAD BCD ∠∠的关系为( )P k+1 P 1图32(A )BAD BCD ∠<∠ (B ) BAD BCD ∠=∠ (C )BAD BCD ∠>∠ (D )不能确定解 如图5,取一个平行四边形ABCD ,使CBD 为等腰直角三角形,作CBD 的外接圆O ,以D 为圆心、以DC 为半径,画弧交AB 延长线于E ,连DE 交O 于1C ,交BC 于2C ;又在线段1C E 内取点3C ,连13,BC BC ,则在四边形()1,2,3i ABC D i =中,AB 大于其余三边,i BC 小于其余三边,有2BAD BC D ∠<∠,1BAD BC D ∠=∠,3BAD BC D ∠>∠,选(D ). 图5 错在哪里?四、组合几何组合几何诞生于20世纪五六十年代,是组合数学的成果来解决几何学中的问题,所牵涉的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题离不开几何知识的运用、几何结构的分析,但关键是精巧的构思.不仅在组合设计中需要,在组合计数中也少不了构思.竞赛中的组合几何主要有四类问题:计数问题,结构问题,覆盖问题,染色问题. 求解竞赛中的组合几何问题既需要一般性的常规方法、又需要特殊性的奥林匹克技巧(1)常规方法(一般性),如探索法、构造法、反证法、数学归纳法、待定系数法、换元法、消元法、配方法等.(2)奥林匹克技巧(特殊性),如构造、对应、递推、区分、染色、配对、极端原理、对称性分析、包含与排出、特殊化、一般化、数字化、有序化、不变量、整体处理、变换还原、逐步调整、奇偶分析、优化假设、计算两次、辅助图表等.1.计数问题(数数问题. sh u ∨`shu )⑴ 基本含义:计算具有某种几何结构的几何对象有多少个,如满足某种性质的点、边、角、三角形、圆有多少个.有时,也会求方法数.⑵ 基本方法.求解几何中的计数问题,通常要经历两步:①进行几何结构的分析.包括所给定的图形结构分析与所计数的几何性质的结构分析, 明确所给定图形的几何结构,明确所求解图形的几何结构.②根据几何结构的分析采用计数方法求出结果,可以直接计算、分类计算(加法原理)、例1 分正方形的每条边为4等分,取分点(不包括正方形的顶点)为顶点可以画出多少个三角形? 解法1 (1)几何结构的分析:图形是怎样组成?三角形的顶点与正方形的关系? ①三点在四条边上(×)②三点在三条边上:四边取三边,每边中三点取一点4×3×3×3=108③三点在两条边上:四边取一边,这边中三点取两点,另九点取一点4×3×9=108。

高中数学竞赛标准教材(共18讲)

高中数学竞赛标准教材(共18讲)
6.竞赛常用方法与例问题。
定理 4 容斥原理;用 A 表示集合 A 的元素个数,则 A Υ B = A + B − A Ι B ,
A Υ B Υ C = A + B + C − A Ι B − A Ι C − B Ι C + A Ι B Ι C ,需要 xy 此结论可以
∑ 推广到 n 个集合的情况,即
定义 3 交集, A Ι B = {x x ∈ A且x ∈ B}.
定义 4 并集, A Υ B = {x x ∈ A或x ∈ B}.
定义 5 补集,若 A ⊆ I ,则C1 A = {x x ∈ I ,且x ∉ A}称为 A 在 I 中的补集。 定义 6 差集, A \ B = {x x ∈ A,且x ∉ B} 。
(3) C1 A Υ C1 B = C1 ( A Ι B ); (4) C1 A Ι C1 B = C1 ( A Υ B).
【证明】这里仅证(1)、( 3),其余由读者自己完成。
(1)若 x ∈ A Ι (B Υ C) ,则 x ∈ A ,且 x ∈ B 或 x ∈ C ,所以 x ∈(A Ι B) 或 x ∈ ( A Ι C) ,即 x ∈ ( A Ι B) Υ ( A Ι C) ;反之, x ∈ ( A Ι B) Υ ( A Ι C) ,则 x ∈ ( A Ι B ) 或 x ∈ ( A Ι C) ,即 x ∈ A 且 x ∈ B 或 x ∈ C ,即 x ∈ A 且 x ∈ ( B Υ C) ,即 x ∈ A Ι (B Υ C).
然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用 ∅ 来表示。集合分有限集和无限集两种。 集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集 合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

攻略高中数学联赛赛程、时间安排、25本数竞书单

攻略高中数学联赛赛程、时间安排、25本数竞书单

攻略⾼中数学联赛赛程、时间安排、25本数竞书单挤进清北等优质名校是众多⾼中⽣的梦想,有梦想是好的,但现实很残酷,这些⾼校招⽣名额有限!尤其在招⽣⽅式改⾰后,⾼考裸分被录取的可能性更⼩。

因此,通过学科竞赛拿奖牌获得降分优惠或直接被保送,成为许多考⽣的必然选择。

但你知道,学科竞赛应该如何备考才能拿到⾼含⾦量的奖牌吗?学科竞赛⽹(jingsai985)根据多年经验,总结出⼀份⾼含⾦量的数学竞赛备考秘籍。

我们从不轻易告诉外⼈,但今天很⾼兴与你分享,因为我们是⾃家⼈!(⼀)先看赛程数学预选赛(初赛)在各地市学校举⾏,评选出的奖项分为市⼀、市⼆、市三,考核优秀的学⽣晋级参加数学联赛。

数学联赛(⼀试、⼆试)全省在指定的⼀个或⼏个地⽅进⾏选拔考试,评选出的奖项分为省⼀(含省队)、省⼆、省三,考核优秀的学⽣晋级参加全国数学决赛,即冬令营(CMO)。

冬令营全国统⼀指定⼀个地⽅进⾏选拔考核,评选出的奖项分为国⼀(含集训队)、国⼆、国三,考核优秀的学⽣晋级参加国家集训队。

最终选出6名优秀选⼿代表中国参加IMO。

IMO全世界在指定的⼀个地⽅进⾏选拔考核,评选出国际⾦牌,国际银牌,国际铜牌。

(⼆)重点看时间安排和阶段备考内容⾼中学业较之前本来就繁重,还要挤出时间备战数竞,因此,进⾏科学规划显得尤为重要。

从初赛到国决⼤略可分为以下五个阶段:1、第⼀阶段:初三暑假到⾼⼀上学期⼤部分学⽣的竞赛之路是从初三毕业那个暑假开始的,虽然某些省份呈低龄化趋势,但并⾮主流。

这个阶段多数竞赛⽣学习必备知识,由于预选赛(初赛)和⼀试的内容均是⾼中知识,且初赛难度较⼩,所以,⽆需单独备考初赛,准备⼀试即可。

此阶段,你需要配合⽼师的课堂教学,以最短时间尽可能⾃学完成⾼考要求掌握的数学知识,同时要注意做题训练。

可以从数学53(五年⾼考三年模拟)【⽂末附详细书单】开始练习,若做起来⽐较顺⼿,就跳过直接刷浙⼤版《⾼中数学竞赛培优教程:⼀试》(第四版),偶尔选53重要题型练⼿感;若做起来有难度,还是要坚持先把53弄懂吃透,奠定⾼考基础。

数学竞赛书目

数学竞赛书目
高中各学科竞赛同步辅导培训教材
s004 高中数学竞赛培训教材高一分册 浙江大学 22
s005 高中数学竞赛培训教材高二分册 浙江大学 23
s006 高中数学竞赛培训教材高三分册 浙江大学 26
高中各科竞赛实战演练丛书
s015 国内高中数学竞赛真题库 浙江大学 14
s016 国外数学竞赛真题库 浙江大学 25
s017 高中数学竞赛2000题 浙江大学 40
特级教师解密
s064 奥赛小丛书.高中卷14 组合几何 华东师大 7
s065 奥赛小丛书.高中卷15 图论 华东师大 9
s066 奥赛小丛书.高中卷16 组合极值.论证与构造 华东师大 10
s052 奥数小丛书.高中卷2 函数与函数方程 华东师大 12
s053 奥数小丛书.高中卷3 三角函数 华东师大 13
s054 奥数小丛书.高中卷4 平均值不等式与柯西不等式 华东师大 11
s055 奥数小丛书.高中卷5 不等式的解题方法与技巧 华东师大 12
《赛前集训》系列
s049 高中数学联赛专题辅导 华东师大 15
s050 高中数学联赛考前集训 华东师大 7
《数学奥林匹克小丛书》
s051 奥数小丛书.高中卷1 集合 华东师大 12
高中各学科竞赛丛书国家数学奥林匹克竞赛学会审定
s001 高中数学竞赛培优教程(一试) 浙江大学 26
s002 高中数学竞赛培优教程(专题讲座) 浙江大学 26
s003 高中数学竞赛题典 浙江大学 14
《高中奥赛试题评析》丛书
s029 高中数学奥赛试题评析 南京师大 18
启东中学奥赛训练教程
s030 启东中学奥赛训练教程.高中数学 南京师大 24

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

第二章 二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab2,下同.2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增).当a <0时,情况相反.3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac ).1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点. 3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点.当a <0时,请读者自己分析.4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m ,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m , n ]时,f (x )在[m , n ]上的最小值为f (x 0); 当x 0<m 时.f (x )在[m , n ]上的最小值为f (m);当x 0>n 时,f (x )在[m , n ]上的最小值为f (n )(以上结论由二次函数图象即可得出). 定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题.不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题.注1 “p 或q ”复合命题只有当p ,q 同为假命题时为假,否则为真命题;“p 且q ”复合命题只有当p ,q 同时为真命题时为真,否则为假命题;p 与“非p ”即“p ”恰好一真一假. 定义2 原命题:若p 则q (p 为条件,q 为结论);逆命题:若q 则p ;否命题:若非p 则q ;逆否命题:若非q 则非p .注2 原命题与其逆否命题同真假.一个命题的逆命题和否命题同真假.注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题.定义3 如果命题“若p 则q ”为真,则记为p ⇒q 否则记作p ≠q .在命题“若p 则q ”中,如果已知p ⇒q ,则p 是q 的充分条件;如果q ⇒p ,则称p 是q 的必要条件;如果p ⇒q 但q 不⇒p ,则称p 是q 的充分非必要条件;如果p 不⇒q 但p ⇒q ,则p 称为q 的必要非充分条件;若p ⇒q 且q ⇒p ,则p 是q 的充要条件.二、方法与例题1.待定系数法.例1 设方程x 2-x +1=0的两根是α,β,求满足f (α)=β,f (β)=α,f (1)=1的二次函数f (x ). 【解】 设f (x )=ax 2+bx +c (a ≠0),则由已知f (α)=β,f (β)=α相减并整理得(α-β)[(α+β)a +b +1]=0, 因为方程x 2-x +1=0中△≠0,所以α≠β,所以(α+β)a +b +1=0. 又α+β=1,所以a +b +1=0.又因为f (1)=a +b +c =1,所以c -1=1,所以c =2.又b =-(a +1),所以f (x )=ax 2-(a +1)x +2. 再由f (α)=β得a α2-(a +1)α+2=β,所以a α2-a α+2=α+β=1,所以a α2-a α+1=0. 即a (α2-α+1)+1-a =0,即1-a =0, 所以a =1,所以f (x )=x 2-2x +2. 2.方程的思想.例2 已知f (x )=ax 2-c 满足-4≤f (1)≤-1, -1≤f (2)≤5,求f (3)的取值范围. 【解】 因为-4≤f (1)=a -c ≤-1, 所以1≤-f (1)=c -a ≤4.又-1≤f (2)=4a -c ≤5, f (3)=38f (2)-35f (1), 所以38×(-1)+35≤f (3)≤38×5+35×4,所以-1≤f (3)≤20.3.利用二次函数的性质.例3 已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0),若方程f (x )=x 无实根,求证:方程f (f (x ))=x 也无实根.【证明】若a >0,因为f (x )=x 无实根,所以二次函数g (x )=f (x )-x 图象与x 轴无公共点且开口向上,所以对任意的x ∈R ,f (x )-x >0即f (x )>x ,从而f (f (x ))>f (x ). 所以f (f (x ))>x ,所以方程f (f (x ))=x 无实根. 注:请读者思考例3的逆命题是否正确. 4.利用二次函数表达式解题.例4 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )=x 的两根x 1, x 2满足0<x 1<x 2<a1, (Ⅰ)当x ∈(0, x 1)时,求证:x <f (x )<x 1; (Ⅱ)设函数f (x )的图象关于x =x 0对称,求证:x 0<.21x 【证明】 因为x 1, x 2是方程f (x )-x =0的两根,所以f (x )-x =a (x -x 1)(x -x 2), 即f (x )=a (x -x 1)(x -x 2)+x . (Ⅰ)当x ∈(0, x 1)时,x -x 1<0, x -x 2<0, a >0,所以f (x )>x . 其次f (x )-x 1=(x -x 1)[a (x -x 2)+1]=a (x -x 1)[x -x 2+a1]<0,所以f (x )<x 1. 综上,x <f (x )<x 1.(Ⅱ)f (x )=a (x -x 1)(x -x 2)+x =ax 2+[1-a (x 1+x 2)]x +ax 1x 2,所以x 0=a x x a x x a 21221)(2121-+=-+,所以012121222210<⎪⎭⎫⎝⎛-=-=-a x a x x x ,所以.210xx <5.构造二次函数解题.例5 已知关于x 的方程(ax +1)2=a 2(a -x 2), a >1,求证:方程的正根比1小,负根比-1大. 【证明】 方程化为2a 2x 2+2ax +1-a 2=0. 构造f (x )=2a 2x 2+2ax +1-a 2,f (1)=(a +1)2>0, f (-1)=(a -1)2>0, f (0)=1-a 2<0, 即△>0,所以f (x )在区间(-1,0)和(0,1)上各有一根. 即方程的正根比1小,负根比-1大. 6.定义在区间上的二次函数的最值.例6 当x 取何值时,函数y =2224)1(5+++x x x 取最小值?求出这个最小值.【解】 y =1-222)1(511+++x x ,令=+112x u ,则0<u ≤1. y =5u 2-u+1=5201920191012≥+⎪⎭⎫ ⎝⎛-u , 且当101=u 即x =±3时,y m in =2019.例7 设变量x 满足x 2+bx ≤-x (b <-1),并且x 2+bx 的最小值是21-,求b 的值. 【解】 由x 2+bx ≤-x (b <-1),得0≤x ≤-(b +1).ⅰ)-2b ≤-(b +1),即b ≤-2时,x 2+bx 的最小值为-214,422-=-b b ,所以b 2=2,所以2±=b (舍去).ⅱ) -2b>-(b +1),即b >-2时,x 2+bx 在[0,-(b +1)]上是减函数, 所以x 2+bx 的最小值为b +1,b +1=-21,b =-23.综上,b =-23.7.一元二次不等式问题的解法.例8 已知不等式组⎩⎨⎧>+<-+-12022a x a a x x ①②的整数解恰好有两个,求a 的取值范围.【解】 因为方程x 2-x +a -a 2=0的两根为x 1=a , x 2=1-a , 若a ≤0,则x 1<x 2.①的解集为a <x <1-a ,由②得x >1-2a . 因为1-2a ≥1-a ,所以a ≤0,所以不等式组无解. 若a >0,ⅰ)当0<a <21时,x 1<x 2,①的解集为a <x <1-a . 因为0<a <x <1-a <1,所以不等式组无整数解.ⅱ)当a =21时,a =1-a ,①无解. ⅲ)当a >21时,a >1-a ,由②得x >1-2a ,所以不等式组的解集为1-a <x <a . 又不等式组的整数解恰有2个, 所以a -(1-a )>1且a -(1-a )≤3,所以1<a ≤2,并且当1<a ≤2时,不等式组恰有两个整数解0,1. 综上,a 的取值范围是1<a ≤2. 8.充分性与必要性.例9 设定数A ,B ,C 使得不等式A (x -y )(x -z )+B (y -z )(y -x )+C (z -x )(z -y )≥0 ①对一切实数x ,y ,z 都成立,问A ,B ,C 应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A ,B ,C 的等式或不等式表示条件)【解】 充要条件为A ,B ,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ). 先证必要性,①可改写为A (x -y )2-(B -A -C )(y -z )(x -y )+C (y -z )2≥0 ② 若A =0,则由②对一切x ,y ,z ∈R 成立,则只有B =C ,再由①知B =C =0,若A ≠0,则因为②恒成立,所以A >0,△=(B -A -C )2(y -z )2-4AC (y -z )2≤0恒成立,所以(B -A -C )2-4AC ≤0,即A 2+B 2+C 2≤2(AB +BC +CA )同理有B ≥0,C ≥0,所以必要性成立.再证充分性,若A ≥0,B ≥0,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ),1)若A =0,则由B 2+C 2≤2BC 得(B -C )2≤0,所以B =C ,所以△=0,所以②成立,①成立. 2)若A >0,则由③知△≤0,所以②成立,所以①成立. 综上,充分性得证. 9.常用结论. 定理1 若a , b ∈R , |a |-|b |≤|a +b |≤|a |+|b |.【证明】 因为-|a |≤a ≤|a |,-|b |≤b ≤|b |,所以-(|a |+|b |)≤a +b ≤|a |+|b |, 所以|a +b |≤|a |+|b |(注:若m>0,则-m ≤x ≤m 等价于|x |≤m ). 又|a |=|a +b -b |≤|a +b |+|-b |,即|a |-|b |≤|a +b |.综上定理1得证.定理2 若a ,b ∈R , 则a 2+b 2≥2ab ;若x ,y ∈R +,则x +y ≥.2xy (证略)注 定理2可以推广到n 个正数的情况,在不等式证明一章中详细论证.三、基础训练题1.下列四个命题中属于真命题的是________,①“若x +y =0,则x 、y 互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题. 2.由上列各组命题构成“p 或q ”,“p 且q ”,“非p ”形式的复合命题中,p 或q 为真,p 且q 为假,非p 为真的是_________.①p ;3是偶数,q :4是奇数;②p :3+2=6,q :③p :a ∈(a ,b ),q :{a }⊄{a ,b }; ④ p : Q ⊄R , q : N =Z .3. 当|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围是________.4. 不等式ax 2+(ab +1)x +b >0的解是1<x <2,则a , b 的值是____________.5. x ≠1且x ≠2是x -11-≠x 的__________条件,而-2<m<0且0<n <1是关于x 的方程x 2+m x +n =0有两个小于1的正根的__________条件.6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.7.若S={x |m x 2+5x +2=0}的子集至多有2个,则m 的取值范围是_________.8. R 为全集,A ={x |3-x ≥4}, B =⎭⎬⎫⎩⎨⎧≥+125x x, 则(C R A )∩B =_________.9. 设a , b 是整数,集合A ={(x ,y )|(x -a )2+3b ≤6y },点(2,1)∈A ,但点(1,0)∉A ,(3,2)∉A 则a ,b 的值是_________.10.设集合A ={x ||x |<4}, B ={x |x 2-4x +3>0},则集合{x |x ∈A 且x ∉A ∩B }=_________. 11. 求使不等式ax 2+4x -1≥-2x 2-a 对任意实数x 恒成立的a 的取值范围.12.对任意x ∈[0,1],有⎪⎩⎪⎨⎧>+--<-+-0304222k kx x k kx x ①②成立,求k 的取值范围.四、高考水平训练题1.若不等式|x -a |<x 的解集不空,则实数a 的取值范围是_________.2.使不等式x 2+(x -6)x +9>0当|a |≤1时恒成立的x 的取值范围是_________. 3.若不等式-x 2+kx -4<0的解集为R ,则实数k 的取值范围是_________.4.若集合A ={x ||x +7|>10}, B ={x ||x -5|<k },且A ∩B =B ,则k 的取值范围是_________.5.设a 1、a 2, b 1、b 2, c 1、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0解集分别为M 和N ,那么“212121c c b b a a ==”是“M=N ”的_________条件. 6.若下列三个方程x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是_________. 7.已知p , q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则r 是q 的_________条件. 8.已知p : |1-31-x |≤2, q : x 2-2x +1-m 2≤0(m>0),若非p 是非q 的必要不充分条件,则实数m 的取值范围是_________.9.已知a >0,f (x )=ax 2+bx +c ,对任意x ∈R 有f (x +2)=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),求x 的取值范围.10.已知a , b , c ∈R , f (x )=ax 2+bx +c , g (x )=ax +b , 当|x |≤1时,|f (x )|≤1, (1)求证:|c |≤1;(2)求证:当|x |≤1时,|g (x )|≤2;(3)当a >0且|x |≤1时,g (x )最大值为2,求f (x ). 11.设实数a ,b ,c ,m 满足条件:mcm b m a ++++12=0,且a ≥0,m>0,求证:方程ax 2+bx +c =0有一根x 0满足0<x 0<1.五、联赛一试水平训练题1.不等式|x |3-2x 2-4|x |+3<0的解集是_________.2.如果实数x , y 满足:⎪⎩⎪⎨⎧=->->+44020222y x y x y x ,那么|x |-|y |的最小值是_________.3.已知二次函数f (x )=ax 2+bx +c 的图象经过点(1,1),(3,5),f (0)>0,当函数的最小值取最大值时,a +b 2+c 3=_________.4. 已知f (x )=|1-2x |, x ∈[0,1],方程f (f (f )(x )))=21x 有_________个实根. 5.若关于x 的方程4x 2-4x +m=0在[-1,1]上至少有一个实根,则m 取值范围是_________. 6.若f (x )=x 4+px 3+qx 2+x 对一切x ∈R 都有f (x )≥x 且f (1)=1,则p +q 2=_________. 7. 对一切x ∈R ,f (x )=ax 2+bx +c (a <b )的值恒为非负实数,则ab cb a -++的最小值为_________.8.函数f (x )=ax 2+bx +c 的图象如图,且ac b 42-=b -2ac . 那么b 2-4ac _________4. (填>、=、<)9.若a <b <c <d ,求证:对任意实数t ≠-1, 关于x 的方程(x -a )(x -c )+t (x -b )(x -d)=0都有两个不等的实根.10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x 的系数等于较小的根,二次项系数都是1.证明:这种练习不可能无限次继续下去,并求最多能延续的次数. 11.已知f (x )=ax 2+bx +c 在[0,1]上满足|f (x )|≤1,试求|a |+|b |+|c |的最大值.六、联赛二试水平训练题1.设f (x )=ax 2+bx +c ,a ,b ,c ∈R , a >100,试问满足|f (x )|≤50的整数x 最多有几个?2.设函数f (x )=ax 2+8x +3(a <0),对于给定的负数a ,有一个最大的正数l (a ),使得在整个区间[0,l (a )]上,不等式|f (x )|≤5都成立.求l (a )的最大值及相应a 的值.3.设x 1,x 2,…,x n ∈[a , a +1],且设x =∑=ni i x n 11, y =∑=n j j x n 121, 求f =y -x 2的最大值.4.F (x )=ax 2+bx +c ,a ,b ,c ∈R , 且|F (0)|≤1,|F (1)|≤1,|F (-1)|≤1,则对于|x |≤1,求|F (x )|的最大值.5.已知f (x )=x 2+ax +b ,若存在实数m ,使得|f (m)|≤41,|f (m+1)|≤41,求△=a 2-4b 的最大值和最小值.6.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0)满足下列条件: 1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;2)当x ∈(0, 2)时,f (x )≤221⎪⎭⎫ ⎝⎛+x ;3)f (x )在R 上最小值为0. 求最大的m(m>1),使得存在t ∈R ,只要x ∈[1, m]就有f (x +t )≤x . 7.求证:方程3ax 2+2bx -(a +b )=0(b ≠0)在(0,1)内至少有一个实根. 8.设a ,b ,A ,B ∈R +, a <A , b <B ,若n 个正数a 1, a 2,…,a n 位于a 与A 之间,n 个正数b 1, b 2,…,b n 位于b 与B 之间,求证:.2)())((2222112222122221⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+≤+++++++++AB ab abABb a b a b a b b b a a a n n n n 9.设a ,b ,c 为实数,g (x )=ax 2+bx +c , |x |≤1,求使下列条件同时满足的a , b , c 的值:(ⅰ)⎪⎭⎫⎝⎛21g =381; (ⅱ)g (x )m ax =444; (ⅲ)g (x )m in =364.。

高中数学竞赛书籍排行

高中数学竞赛书籍排行

高中数学竞赛书籍排行
以下是一些高中数学竞赛的经典书籍,排名不分先后:
1. 《高中数学竞赛专题讲座》(共10本):这套书是数学竞赛的经典教材之一,包括了许多经典的数学竞赛题目和解题方法。

2. 《高中数学竞赛全解》:这本书是数学竞赛的必备参考书之一,包含了高中数学竞赛的所有知识点和经典题目,非常适合学生自学或复习。

3. 《高中数学竞赛真题解析》:这本书收录了大量的数学竞赛真题,并进行了详细的解析,是提高学生解题能力的很好参考书。

4. 《高中数学竞赛不等式选讲》:这本书主要介绍了高中数学竞赛中的不等式问题,包括了许多经典的不等式题目和解题方法。

5. 《高中数学竞赛数论与组合分册》:这本书是数学竞赛数论和组合部分的经典教材之一,包含了大量的经典题目和解题方法。

以上书籍都是高中数学竞赛的经典教材和参考书,对于提高学生的数学竞赛水平有很大帮助。

当然,每个人的学习情况不同,需要根据自己的实际情况选择适合自己的书籍。

3、数学竞赛:从入门到国家队参考书籍推荐

3、数学竞赛:从入门到国家队参考书籍推荐

数学竞赛:从入门到国家队参考书籍推荐数学竞赛的学习过程是一个非常艰苦的过程,从刚开始的入门到最后的集中训练,不仅占取考生大量时间还有精力,最重要的还影响高考的进度复习。

一份好的参考资料可以给考生学习数学竞赛的考生减少众多的弯路。

一、入门首先如果要涉猎竞赛,最基本的高中课程是一切的基础。

接下来的书就是建立在此基础上的。

我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。

1)《新编中学数学解题方法全书》,即基础衔接书。

2)《奥数教程》经典奥数蓝皮书。

优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。

(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。

)二、提高1)《奥赛小丛书》专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。

如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。

这套书中代数只有两本不等式,而且很不实用,不推荐。

至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。

对于这套书要尽快看完,里面题要自己做,可能比较辛苦。

总的来说这套书值得一看,要尽早开始看。

2)《奥赛经典》内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。

几何还可以,但定理可以只记最基本的,拓展的可以不记。

组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。

3)《命题人讲座》适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。

如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。

其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。

高中数学竞赛校本教材[全套共30讲].pdf

高中数学竞赛校本教材[全套共30讲].pdf

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

高中数学竞赛讲义+完美数学高考指导(二)

高中数学竞赛讲义+完美数学高考指导(二)

高中数学竞赛讲义+完美数学高考指导(二) 高中数学竞赛讲义(十)──直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x22=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:0;(2)点斜式:0(0);(3)斜截式:;(4)截距式:;(5)两点式:;(6)法线式方程:θθ(其中θ为法线倾斜角,为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。

5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则θα=.6.平行与垂直:若直线l1与l2的斜率分别为k1, k2。

且两者不重合,则l12的充要条件是k12;l1l2的充要条件是k1k21。

7.两点P1(x1, y1)与P2(x2, y2)间的距离公式:1P2。

8.点P(x0, y0)到直线l: 0的距离公式:。

高中数学竞赛培训讲义

高中数学竞赛培训讲义

2011高中数学竞赛培训教材编者:全国特级教师(一)集合与容斥原理集合是一种根本数学语言、一种根本数学工具。

它不仅是高中数学的第一课,而且是整个数学的根底。

对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。

如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进展组合计数等。

一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。

分析:A中的元素是自然数,即由两个整数a、b的平和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(一样或不一样)数加起来得到的一个和数,此题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.那么X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac·bd+b2d2+b2c2-2bc·ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。

2.设M={a|a= x2-y2,x,y∈Z}.求证:〔1〕一切奇数属于M;〔2〕4k-2(k∈Z)不属于M;〔3〕M中任意两个数的积仍属于M。

3.函数f〔x〕=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)假设A={-1,3}时,求集合B.二、集合中待定元素确实定例2.集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,那么(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。

高中数学竞赛教材讲义 第十三章 排列组合与概率讲义

高中数学竞赛教材讲义 第十三章 排列组合与概率讲义

第十三章 排列组合与概率 一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为nA nn =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)knk n C C kn =--11;(4)n nk kn n nn n C C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐
自学数学竞赛书籍推荐:
1、《高中数学竞赛全书》(第三版):由安徽教育出版社出版,作者刘子健、贾开明主编,以中学生数学竞赛考试的形式,将历届真题进行系统总结,同时对比分析不同数学竞赛的知识点、解题思路及解题技巧,有助于考生全面掌握数学竞赛知识,并掌握试题解题技巧。

2、《高中数学竞赛必备课程》:由清华大学出版社出版,著名数学竞赛专家、中国教育学会理事长杜祖军编写,是一本集中考试、省考、模拟考、赛场知识点、技巧及解题方法于一体的竞赛教材。

3、《高中数学竞赛宝典》:由中国青年出版社出版,作者李晓峰、王荣荣编写,以中学生参加省市级数学竞赛为主要内容,重点突出知识点、解题思路、套路技巧等,逐步引导考生树立正确的数学思维,提高数学竞赛水平。

4、《高中数学竞赛完全指南》:由上海科技出版社出版,著名数学竞赛专家、中国教育学会理事长郑贵新编写,全面梳理中学生数学竞赛考试的知识点、题型特点、解题思路、技巧及应用。

(完整版)高一数学竞赛培训教材(有讲解和答案)

(完整版)高一数学竞赛培训教材(有讲解和答案)

高中思维训练班《高一数学》第 1 讲 集合与函数 (上)『本讲要点』 : 复杂的集合关系与运算、函数定义的深化 『重点掌握』 : 函数的迭代1. 定义 M 与 P 的差集为 M-P={x | x ∈M 且 x 不∈P} , 若 A={y | y=x2}B={x | -3≤x ≤3} , 再定义 M △N =( M-N)∪(N-M ),求 A △ B2. 集合 A={1,2,3} 中, 任意取出一个非空子集 , 计算它的各元素之和 .则所有非空子集 的元素之和是 . 若 A={1,2,3, ,n} , 则所有子集的元素之和数.若A B {a 1,a 4} , a 1a410. 且An 1000,*4函数 f (n)f(f(n 5))n 10005. 练 习 : 定 义 : f(x) f(f(f(x)n 个+ y)=f(x) +f(y) +xy 。

求 f(x) ( 本求 f (7)( 本讲重点迭代3. 已知集合 A{a 1,a 2,a 3,a 4f 10(x) 1024x 1023 .求 f (x) 的解析式. (本讲重点迭代法9. 求集合 A = {1,2,3, ,10} 所有非空子集的元素之和10. 已知不等式 ax 2+bx+c >0, 的解集是 {x|m < x < n},m >0, 求不等式 cx 2+bx+a <0的解集作业答案 :7.8,8. 1/ n 2+3n+1,9. 略,10. x<1/n 或 x>1/m答案:B-A={x|- 3≤x < 0} A △B={x|- 3≤x < 0 或 x > 3}2. 【解】〖分析〗已知 {1,2, ,n}的所有的子集共有 2n个. 而对于 i{1,2, ,n} , 显 然{1,2, ,n}中包含 i 的子集与集合 {1,2, ,i 1,i 1, , n}的子集个数相等 . 这就说明 if 2(x)=f[f(x)]=a(ax +b) +b=a 2x +b(a +1)f 3(x)=f{f[f(x)]}=a[a 2x +b(a +1)] +b=a 3x + b(a 2+a +1)10 依次类推有: f 10(x)=a 10x + b(a 9+a 8+⋯+ a +1)=a 10x +b(1 a )1a 由题设知:10a 10=1024 且b(1 a )=1023 1a∴a=2,b=1 或 a= - 2, b=-3∴f(x)=2x +1 或 f(x)= -2x -32 例 f(x) 对任意实数 x 与 y 都有 f(x) + f(y) = f(x+y) + 2,1. 【 解 】 A{x|x ≥0}B={x|- 3≤x ≤3}A-B={x|x > 3}在 集 合 {1,2, ,n}的所有子集中一共出现2 1次, 即 对 所 有的 i 求 和, 可 得n n1S n 2n 1(集 合 {1,2, ,n} 的 所 有子集的元素之和为2n 1(1 2n)1n(n 1)2=n (n 1) 2n 1.3. 【解】 a 1a2a 3 a 4, 且 AB {a 1,a 4}a1a 12, 又a 1 N,所以 a 1 1.又a1 a4210, 可得 a 4 9, 并且 a2a 4 或a3 a4.6(舍)8. 解:令 y=1,得 f(x +1)=f(x) + x +1再依次令 x=1,2,⋯, n -1,有 f(2)=f(1) +2 f(3)=f(2) +3f(n -1)=f(n -2) +(n -1) f(n)=f(n -1) +n 依次代入,得 f(n)=f(1) +2+3+⋯+ (n -1) +n= x( x 1)∴f(x)= 2方法 3. 抽象函数的周期问题*1 例 f(x) 在 x>0 上为增函数 ,且 f(x) f (x) f(y).求: y(1) f (1)的值 .(2) 若 f (6) 1, 解不等式 f (x 3) f (1) 2 x (1) 求证 :f(x) 在 R 上是增函数 (2) 若 f(1)=5/2, 解不等式 f(2a-3) < 33 练 f(x) 是定义在 x>0 的函数 , 且 f(xy) = f(x) + f(y); 当 x>1 时有 f(x)<0;f(3) = -1.(1) 求 f(1) 和 f(1/9) 的值 (2) 证明 f(x) 在 x>1 上是增函数(3) 在 x > 1 上, 若不等式 f(x) + f(2-x) < 2 成立 , 求 x 的取值范围 4 例 几个关于周期的常见的规律 :n(n 1)2(x ∈ N +)高中思维训练高一数学 》第2讲函数(下)本讲要点』 :1. 单调函数不等式的解法 2. 根据抽象的函数条件拼凑出特定值的当 x>0 时 ,f(x)>25练习:f(x) 是定义在R 上的奇函数, 且f(x-2) = -f(x), 以下结论正确的是( 多选): ___________A.f(2) = 0B.f(x) = f(x+4)C.f(x) 的图象关于直线x=0 对称D.f(x+2) = f(-x)『课后作业』:6定义在x>0 上, 当x>1 时,f(x)>0; 对任意的正实数x 和y 都有f(xy) = f(x) + f(y).(1) 证明f(x) 在x>0 上为增函数(2) 若f(5) = 1, 解不等式f(x+1) –f(2x) > 2*7 已知函数f(x) 对任意实数x, 都有f(x +m)=- 1 f(x), 求证f(x) 是周期函数1 f(x)7. 当n≥10 时,f(n)=n-3; 当n<10 时,f(n)=f[f(n+5)] . 求 f (7)( 本讲重点迭代法)1 1 1*8. 已知f(1)= 且当n>1 时有=2(n +1) 。

2011全国高中数学竞赛讲义-数列、组合

2011全国高中数学竞赛讲义-数列、组合

§16排列,组合1.排列组合题的求解策略(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略.(2)分类与分步有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.(3)对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数.(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间.(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列.(6)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型.如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为311C ,这也就是方程12=+++d c b a 的正整数解的个数.2.圆排列(1)由},,,,{321n a a a a A =的n 个元素中,每次取出r 个元素排在一个圆环上,叫做一个圆排列(或叫环状排列).(2)圆排列有三个特点:(i )无头无尾;(ii )按照同一方向转换后仍是同一排列;(iii )两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列.(3)定理:在},,,,{321n a a a a A =的n 个元素中,每次取出r 个不同的元素进行圆排列,圆排列数为rP r n . 3.可重排列允许元素重复出现的排列,叫做有重复的排列.在m 个不同的元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序那么第一、第二、…、第n 位是的选取元素的方法都是m 种,所以从m 个不同的元素中,每次取出n 个元素的可重复的排列数为n m .4.不尽相异元素的全排列如果n 个元素中,有1p 个元素相同,又有2p 个元素相同,…,又有s p 个元素相同(n p p p s ≤+++ 21),这n 个元素全部取的排列叫做不尽相异的n 个元素的全排列,它的排列数是!!!!21s p p p n ⋅⋅⋅ 5.可重组合(1)从n 个元素,每次取出p 个元素,允许所取的元素重复出现p ,,2,1 次的组合叫从n 个元素取出p 个有重复的组合.(2)定理:从n 个元素每次取出p 个元素有重复的组合数为:r p n p n C H )1(-+=.例题讲解1.数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?2.有多少个能被3整除而又含有数字6的五位数?3.有n 2个人参加收发电报培训,每两人结为一对互发互收,有多少种不同的结对方式?4.将1+n 个不同的小球放入n 个不同的盒子中,要使每个盒子都不空,共有多少种放法?5.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?6.用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有多少个?7.用E D C B A ,,,,五种颜色给正方体的各个面涂色,并使相邻面必须涂不同的颜色,共有多少种不同的涂色方式?8.某种产品有4只次品和6只正品(每只产品可区分),每次取一只测试,直到4只次品全部测出为止.求最后一只次品在第五次测试时被发现的不同情形有多少种?9.在平面上给出5个点,连结这些点的直线互不平行,互不重合,也互不垂直,过每点向其余四点的连线作垂线,求这此垂线的交点最多能有多少个?10.位政治家举行圆桌会议,两位互为政敌的政治家不愿相邻,其入坐方法有多少种?11.某城市有6条南北走向的街道,5条东西走向的街道.如果有人从城南北角(图A 点)走到东南角中B 点最短的走法有多少种?12.用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有多少种可能的号码?13.将r 个相同的小球,放入n 个不同的盒子(n r ).(1)有多少种不同的放法?(2)如果不允许空盒应有多少种不同的放法?14.8个女孩和25个男孩围成一圈,任意两个女孩之间至少站着两个男孩.(只要把圆旋转一下就重合的排列认为是相同的)课后练习1.8次射击,命中3次,其中愉有2次连续命中的情形共有( )种(A )15 (B )30 (C )48 (D )602.在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。

高中数学竞赛教材讲义 第十八章 组合讲义

高中数学竞赛教材讲义 第十八章 组合讲义

第十八章 组合一、方法与例题1.抽屉原理。

例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。

[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。

由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。

ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。

ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。

2.极端原理。

例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。

高中数学竞赛辅导书一

高中数学竞赛辅导书一

一、《金版奥塞教程》浙江大学出版社分为高一分册,高二分册,高中综合分册主编前两本刘康宁,后一本左宗明。

二、《冲刺全国高中数学联赛》主编王卫华吴伟朝浙江大学出版社
三、《高中数学奥林匹克竞赛解题方法大全》山西教育出版社主编周沛耕王中峰
请问这三本书分别怎么样?还有什么好书?(适合刚刚接触数学竞赛的学生)分享到:
2010-02-08 15:38
天天爱答题,抽奖送惊喜~
提问者采纳
一、《金版奥塞教程》浙江大学出版社分为高一分册,高二分册,高中综合分册主编前两本刘康宁,后一本左宗明。

这个比较适合刚刚开始学习奥赛的同学,而且是才学完高中知识的,可以循序渐进从高一的开始,到高中综合;
二、《冲刺全国高中数学联赛》主编王卫华吴伟朝浙江大学出版社;适合最后在考试前1-2个月用;
三、《高中数学奥林匹克竞赛解题方法大全》山西教育出版社主编周沛耕王中峰;这个是给有一定基础的同学用的,即是学了一段时间的学生试用的;
如果我说的话,一边可以用第一种书,并且选择高考题中难度较大的熟悉高中题的解题手法,熟练基本技巧,可能效果较好(这个仅是我的方法)。

【免费下载】高中数理化竞赛参考书推荐

【免费下载】高中数理化竞赛参考书推荐

高中化学竞赛参考书特别推荐常规/高考类:《高中化学重难点手册》(华中师范大学出版社,王后雄老师主编);历年高考试题汇编(任何一种,最好有详细解析的);《高中化学读本》(很老的化学教材);《高中化学研究性学习》(龙门书局,施华、盛焕华主编)初赛类:《化学高考到竞赛》(陕西师范大学出版社,李安主编);《高中化学奥林匹克初级本》(江苏教育出版社,段康宁主编);《新编高中化学奥林匹克竞赛指导》(南京师范大学出版社,吴新民主编,不过题目很陈旧);《高中化学竞赛初赛辅导》(陕西师范大学出版社,李安、苏建祥主编);《高中化学竞赛热点专题》(湖南师范大学出版社,肖鹏飞、苏建祥、周泽宇主编);《最新奥林匹克竞赛试题评析·高中化学》(南京师范大学出版社,马宏佳主编);《奥赛兵法-高中化学》(龙门书局,施华主编);《最新竞赛试题选编及解析高中化学卷》(首都师范大学出版社);《化学竞赛教程》(华东师范大学出版社,三本,王祖浩、邓立新、施华等人编写)还有一本西南师范大学出版社的书名忘记了(严先生、吴先生、曹先生等参加编写,绝对经典),还有浙江大学出版社《高中化学培优教程》AB教程、《金牌教程·高二化学》(邓立新主编,南京大学出版社)决赛类:《高中化学奥林匹克高级本》(江苏教育出版社,段康宁主编,完全按照大学的思路);《金牌之路高中化学竞赛辅导》以及配套解题指导书(陕西师范大学出版社,李安主编);《高中化学竞赛决赛辅导》(陕西师范大学出版社,李安、苏建祥主编);《历届国际化学奥林匹克竞赛试题分析》(学苑出版社);《最新国际国内化学奥林匹克竞赛优化解题题典》(吉林教育出版社),还有浙江大学出版社的浙江大学出版社《高中化学培优教程》“专题讲座”,《高中化学奥赛一本通》和《高中化学奥赛实用题典》(南京大学丁漪主编,南京大学多位教授参加编写,南京师范大学出版社05年最新出版),《华罗庚学校化学读本,高1~高3》(春雨组织编写的,南京大学化学院教授编写,吉林教育出版社)《金牌教程·高三化学》(施华主编,南京大学出版社)补充:综合科普类:《化学实验的启示与科学思维的训练》(严宣申主编,北京大学出版社)、《奥林匹克化学》(吴国庆、李克安、严宣申、段连运、程铁明编写,北京大学出版社)、《中学化学竞赛导引——从高考到奥林匹克竞赛》(钮泽富、因尧、因红编著,上海教育出版社)(以上三本主编都是国家化学奥赛命题组负责人、著名大学教授,书中对竞赛训练的科学思维讲述很好,体现他们命题思想),《物质结构和性质的关系——中学化学疑难浅析》(周志华著,科学普及出版社,周老师是我大老板,以前在南师大主讲结构化学,研究功能材料,同时也是课程与教学论博士生导师,他的这本书结合化学键、分子间作用力、氢键和物质聚集状态对宏观性质的影响,深入浅出阐明结构和性质的关系,非常适合竞赛辅导)、《和中学生谈化学》(金松寿编著,陕西科学技术出版社,金老师好象以前负责浙江省竞赛的,这本小册子的亮点也在于结构这条主线在化学学习中的应用)期刊杂志类:南师大创办的《化学教与学》一般每年第11期是高中竞赛专集,收集前一年的江苏省预赛、夏令营选拔、全国初赛和当年的决赛题;《化学教育》、《化学教学》、《中学化学教学参考》、《中学化学》一般每期都有专门栏目刊登点评奥赛试题或者竞赛培训经验的文章,《中学理科月刊》的主编是王后雄老师,所以化学栏目里面经常有竞赛评析文章。

高中数学奥赛辅导教材(共十讲)

高中数学奥赛辅导教材(共十讲)

第一讲 集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数. 【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴A=}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为.【思路分析】可作图,以数形结合法来解之.【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=l a 综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A 【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A , C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A ,图Ⅰ-1-1-1【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n 【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集 合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ).【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“|x |<3”时,会出现什么样的结果,读者试解之.例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则A=B.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f )],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数 .,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ① 必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422m a x ≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解. 例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+=若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确?【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合.容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有 ).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A 有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++= )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++---).()1(311n n A A A card ⋂⋂⋂⋅-+--应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设A={数学总评优秀的学生},B={物理总评优秀的学生},C={化学总评优秀的学生}. 则.8)(,7)(,9)(,20)(,19)(,21)(=⋂=⋂=⋂===A C card C B card B A card C card B card A card ∵)()()()()()()(A C card C B card B A card C card B card A card C B A card ⋂-⋂-⋂-++=⋃⋃ ),(C B A card ⋂⋂+∴.3689201921)()(=--++=⋂⋂-⋃⋃C B A card C B A card 这里,)(C B A card ⋃⋃是数、理、化中至少一门是优秀的人数,)(C B A card ⋂⋂是这三科全优的人数.可见,估计)(C B A card ⋃⋃的范围的问题与估计)(C B A card ⋂⋂的范围有关.注意到7)}(),(),(min{)(=⋂⋂⋂≤⋂⋂A C card C B card B A card C B A card ,可知 7)(0≤⋂⋂≤C B A card . 因而可得.43)(36≤⋃⋃≤C B A card 又∵.5)(),()()(=⋃⋃=⋃⋃+⋃⋃C B A card U card C B A card C B A card 其中 ∴.48)(41≤≤U card 这表明全班人数在41~48人之间. 仅数学优秀的人数是).(C B A card ⋃⋂ ∴)()()()()(B card C B A card C B card C B A card C B A card -⋃⋃=⋃-⋃⋃=⋃⋂ .32)()()(-⋃⋃=⋂+-C B A card C B card C card 可见,11)(4≤⋃⋂≤C B A card 同理可知 ,10)(3≤⋃⋂≤C A B card.12)(5≤⋃⋂≤A B C card 故仅数学单科优秀的学生在4~11之间,仅物理单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :图Ⅰ-1-2-1},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B 令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C 例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→…①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())((②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()(③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(( [由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011高中数学竞赛培训教材编者:全国特级教师(一)集合与容斥原理集合是一种基本数学语言、一种基本数学工具。

它不仅是高中数学的第一课,而且是整个数学的基础。

对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。

如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。

一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。

分析:A中的元素是自然数,即由两个整数a、b的平方和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(相同或不相同)数加起来得到的一个和数,本题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平方和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z 证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.则X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac²bd+b2d2+b2c2-2bc²ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。

2.设M={a|a= x2-y2,x,y∈Z}.求证:(1)一切奇数属于M;(2)4k-2(k∈Z)不属于M;(3)M中任意两个数的积仍属于M。

3.已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)若A={-1,3}时,求集合B.二、集合中待定元素的确定例2.已知集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,则(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。

这一类根据集合的关系反过来确定集合元素的问题,要求我们要对集合元素的基本性质即确定性、异性、无序性及集合之间的基本关系(子、全、补、交、异、空、等)有本质的理解,对于两个相等的有限集合(数集),还会用到它们的简单性质:(a)相等两集合的元素个数相等;(b)相等两集合的元素之和相等;(c)相等两集合的元素之积相等.解:由M =S 知,两集合元素完全相同。

这样,M 中必有一个元素为0,又由对数的性质知,0和负数没有对数,所以XY ≠0,故X ,Y 均不为零,所以只能有lg(XY)=0,从而XY =1.∴M ={X ,1,0},S ={0,∣X ∣,1/X}.再由两集合相等知当X =1时,M ={1,1,0},S ={0,1,1},这与同一个集合中元素的互异性矛盾,故X =1不满足题目要求;当X =-1时,M ={-1,1,0},S ={0,1,-1},M =S ,从而X =-1满足题目要求,此时Y =-1,于是X2K +1+1/Y2K +1=-2(K =0,1,2,……),X2K +1/Y2K =2(K =1,2,……),故所求代数式的值为0.练习:4.已知集合{}54321,,,,a a a a a A =,{}2524232221,,,,a a a a a B =,其中54321,,,,a a a a a 是正整数,且54321a a a a a <<<<,并满足{}41,a a B A =⋂,B A a a ⋃=+若,1041中的所有元素之和为234,求集合A 。

三.容斥原理基本公式:(1)card(A ∪B)=card(A)+card(B)-card(A ∩B); (2)card(A ∪B ∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)问题:开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田径比赛和球类比赛的有多少人?只参加游泳一项比赛的有多少人?设A={参加游泳比赛的同学},B={参加田径比赛的同学},C={参加球类比赛的同学},则card(A)=15,card(B)=8,card(C)=14,card(A∪B∪C)=28,且card(A∩B)=3,card(A∩C)=3,card(A∩B∩C)=0,由公式②得28=15+8+14-3-3-card(B∩C)+0,即card(B∩C)=3,所以同时参加田径和球类比赛的共有3人,而只参加游泳比赛的人有15-3-3=9(人)四、有限集合子集的个数例3.一个集合含有10个互不相同的两位数。

试证,这个集合必有2个无公共元素的子集合,此两子集的各数之和相等。

分析:两位数共有10,11,......,99,计99-9=90个,最大的10个两位数依次是90,91, (99)其和为945,因此,由10个两位数组成的任意一个集合中,其任一个子集中各元素之和都不会超过945,而它的非空子集却有210-1=1023个,这是解决问题的突破口。

解:已知集合含有10个不同的两位数,因它含有10个元素,故必有210=1024个子集,其中非空子集有1023个,每一个子集内各数之和都不超过90+91+…98+99=945<1023,根据抽屉原理,一定存在2个不同的子集,其元素之和相等。

如此2个子集无公共元素,即交集为空集,则已符合题目要求;如果这2个子集有公共元素,则划去它们的公共元素即共有的数字,可得两个无公共元素的非空子集,其所含各数之和相等。

说明:此题构造了一个抽屉原理模型,分两步完成,计算子集中数字之和最多有945个“抽屉”,计算非空子集得1023个“苹果”,由此得出必有两个子集数字之和相等。

第二步考察它们有无公共元素,如无公共元素,则已符合要求;如有公共元素,则去掉相同的数字,得出无公共元素并且非空的两个子集,满足条件。

例4.设A={1,2,3,…,n},对X A,设X中各元素之和为Nx,求Nx的总和.解:A中共有n个元素,其子集共有2n个。

A中每一个元素在其非空子集中都出现了2n-1次,(为什么?因为A的所有子集对其中任一个元素i都可分为两类,一类是不含i的,它们也都是{1,2,…,i-1,i+1,…n}的子集,共2n-1个;另一类是含i的,只要把i加入到刚才的2n-1个子集中的每一个中去)。

因而求A的所有子集中所有元素之和Nx的总和时,A中每一个元素都加了2n-1次,即出现了2n-1次,故得=1³2n-1+2³2n-1+…+n……2n-1=(1+2+…+n)²2n-1=n(n+1)/2³2n-1=n(n+1)³2n-2说明:这里运用了整体处理的思想及公式1+2+…+n=(1/2)n(n+1),其理论依据是加法的交换律、结合律、乘法的意义等,集合中每一个元素都在总和中出现了2n-1次,是打开解题思路之门的钥匙。

练习:5.设集合A{1,2,3,……,100},且对任意x,y∈A,必有2x≠y,求集合A中所含元素个数的最大值.6.某地区网球俱乐部都有20名成员,举行14场单打比赛,每人至少上场1次.求证:必有6场比赛,其12名参赛者各不相同.(二) 二次函数一、二次函数的解析式:①定义式:f(x)=ax2+bx+c.②顶点式:f(x)=a(x-h)2+k.③零点式:f(x)=a(x-x1)(x-x2).(a≠0)二、二次函数的最值:当自变量的取值范围为闭区间[p,q]时,其最值在f(p)、f(q)、f(-b/2a)三者中取得,最值情况如下表: -b/2a例1. 当x 为何值时,函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2取最小值。

解:∵f(x)=(x2-2a1x+a12)+(x2-2a2x+a22)+…+(x2-2anx+an2)=nx2-2(a1+a2…+an)x+(a12+a22+…+an2) ∴当x=(a1+a2+…+an)/n 时,f(x)有最小值.例2.已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0的两个实数根,x12+x22的最大值是____.解:由韦达定理得:x1+x2=k-2,x1x2=k2+3k+5.∴x12+x22=(x1+x2)2-2x1x2=(k-2)2-2(k2+3k+5 =-k2-10k-6=-(k+5)2+19 .已知x1,x2是方程的两个实根,即方程有实数根,此时方程的判别式Δ≥0,即Δ=(k-2)2-4(k2+3k+5) =-3k2-16k-16≥0 解得:-4≤k ≤-4/3.∵k=-5[-4,-4/3],设f(k)=-(k+5)2+19则f(-4)=18,f(-4/3)=50/9<18.∴当k=-4时,(x12+x22)max=18.例3.已知f(x)=x2-2x+2,在x ∈[t,t+1]上的最小值为g(t),求g(t)的表达式。

解:f(x)=(x-1)2+1 (1)当t+1<1即t<0时,g(t)=f(t+1)=t2+1(2)当t ≤1≤t+1,即0≤t ≤1时,g(t)=f(1)=1 (3)当t>1时,g(t)=f(t)=t2-2t+2 综合(1)、(2)、(3)得:例4.(1)当x2+2y2=1时,求2x+3y2的最值;(2)当3x2+2y2=6x 时,求x2+y2的最值。

解:(1)由x2+2y2=1得y2=1/2(1-x2),2x+3y2=2x+(3/2)(1-x2)=(-(3/2))(x-(2/3))2+(13/6)又1-x2=2y2≥0,∴x2≤1,-1≤x≤1 .∴当x=2/3时,y=(√10)/6,(2x+3y2)max=16/3;当x=-1时,y=0,(2x+3y2)min=-2(2)由3x2+2y2=6x,得y2=(3/2)x(2-x),代入x2+y2=x2+(3/2)x(2-x)=-1/2 (x-3)2+9/2又y2=(3/2)x (2-x)≥0,得0≤x≤2.当x=2,y=0时,(x2+y2)max=4;当x=0,y=0时,(x2+y2)min=0三、二次函数与二次方程设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。

相关文档
最新文档