实验报告动态规划背包问题
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题实验报告

背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。
在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。
1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。
在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。
2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。
下面将对每种算法的具体步骤进行介绍。
2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。
在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。
2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。
在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。
2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。
在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。
3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。
下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。
【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
背包问题实验报告

背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。
背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。
本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。
2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。
该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。
具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。
2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。
–若背包总价值超过max_value,则更新max_value和combo。
3.输出最优解combo和最大价值max_value。
该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。
3.2 动态规划法动态规划法是解决背包问题的一种高效策略。
该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。
具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。
2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。
–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。
实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
背包问题实验报告

背包问题实验报告《背包问题实验报告》背包问题是一个经典的组合优化问题,它在计算机科学和运筹学领域被广泛应用。
在这个问题中,我们需要从一组物品中选择一些放入背包,使得它们的总重量不超过背包的承载能力,同时价值最大化。
在本实验中,我们将探讨不同算法在解决背包问题时的表现,并分析它们的优缺点。
首先,我们使用了贪心算法来解决背包问题。
贪心算法的基本思想是每次选择当前最有利的物品放入背包,直到背包装满或者没有物品可选。
虽然贪心算法在一些情况下能够得到较好的解,但它并不保证能够得到最优解,因为它只考虑了局部最优解而没有综合考虑所有可能的选择。
接着,我们使用了动态规划算法来解决背包问题。
动态规划算法通过将问题分解成子问题,并保存子问题的解来避免重复计算,从而得到最优解。
动态规划算法在解决背包问题时能够得到最优解,但它需要额外的空间来保存子问题的解,因此在处理大规模问题时可能会消耗较多的内存。
最后,我们使用了回溯算法来解决背包问题。
回溯算法通过不断尝试所有可能的选择,并在满足条件时继续向下搜索,直到找到解或者搜索完所有可能的选择。
回溯算法能够得到最优解,但它的时间复杂度较高,因为它需要尝试所有可能的选择。
通过实验我们发现,不同算法在解决背包问题时有各自的优缺点。
贪心算法简单快速,但不能保证得到最优解;动态规划算法能够得到最优解,但需要额外的空间;回溯算法能够得到最优解,但时间复杂度较高。
因此,在实际应用中需要根据具体情况选择合适的算法来解决背包问题。
综上所述,通过本实验我们对背包问题的解决算法有了更深入的了解,并且能够根据具体情况选择合适的算法来解决实际问题。
希望本实验能够对相关领域的研究和应用有所帮助。
动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
0-1背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
5.5动态规划求解01背包问题

xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
0-1背包问题动态规划和贪心法实现

算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。
二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。
三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。
算法设计与分析实验报告-背包问题

算法设计与分析实验报告一、实验内容:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、算法思想与设计描述:(一)基本算法:1、使用动态规划算法计算最优值,递归式如下,m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值具体代码:for(i=1; i<=num; i++)for(j=1; j<=C; j++){int temp = value[i -1][j -goods[i].weight]+goods[i].value;if(j>=goods[i].weight && temp > value[i -1][j])value[i][j] = temp;elsevalue[i][j] = value[i -1][j];}2、逆推得出装入背包的物品:j = C;for(i=num; i>=1; i --){if(value[i][j] > value[i -1][j]){judge[i] = 1;j -= goods[i].weight;}}(二)改进算法:1、求最大价值:i i i i w j w j j i m v w j i m j i m j i m <≤≥⎩⎨⎧+-=0),1-(}),1-(),,1-(max{),(具体代码:for(i=0; i<MAXNUM; i++){for(j=0; j<MAXNUM; j++){p[i][j].weight = 0;p[i][j].value = 0;q[i][j].weight = 0;q[i][j].value = 0;}}for(i=0; i<=num-1; i++){j = 0;//计算q集合的值while(j == 0 || (j>0 && p[i][j].weight!=0)){q[i][j].weight = p[i][j].weight + goods[i+1].weight;q[i][j].value = p[i][j].value + goods[i+1].value;j++;}m = 1; k = 0; j = 1;//复制i层的p、q到i+1层的p中并按重量由小到大排序while(p[i][j].weight!=0 && q[i][k].weight!=0){if(p[i][j].weight <= q[i][k].weight){p[i+1][m] = p[i][j];j++;}else{p[i+1][m] = q[i][k];k++;}m++;}while(p[i][j].weight != 0)//i层的p还没有复制结束{p[i+1][m] = p[i][j];j++;m++;}while(q[i][k].weight != 0)//i层的p还没有复制结束{p[i+1][m] = q[i][k];k++;m++;}k = 1;while(p[i+1][k].weight)//删除集合A、集合B中的元素{if((p[i+1][k].value<p[i+1][k-1].value) || (p[i+1][k].weight > C)){j = k;while(p[i+1][j].weight){p[i+1][j] = p[i+1][j+1];j++;}}elsek++;}}max_value=p[i][k-1].value;2、逆推得出最优装法:•初设i=n•比较p[i](j1,v1)与p[i-1](j2,v2)的最后一个元素,如果不同,则第i个一定被选了,且下一次i为(j1-wi,v1-vi)第一次出现的位置;如果相同则i——;•循环执行上述步骤直到i=0为止//逆推得到最优装法i = num;while(i){j = 1; k = 1;while(p[i][j].weight)j++;while(p[i-1][k].weight)k++;j--; k--;if(p[i][j].value != p[i-1][k].value){judge[i] = 1;//第i个被选中了if(i == 1)i--;int last_weight = p[i][j].weight-goods[i].weight;int last_value = p[i][j].value - goods[i].value;m = 1;while(i>1 && m<=num)//找到下一个i{j = 1;while(p[m][j].weight){if(p[m][j].weight == last_weight && p[m][j].value == last_value){i = m;break;}else{j++;}}if(i == m)break;m++;}}elsei--;}三、测试说明:1、基本算法算法复杂度:O(nC)2、改进算法:算法复杂度:O(min{nC, 2^n})四、实验总结:动态规划算法可以避免普通递归算法在某些问题上的重复计算,是一种聪明的递归。
01背包问题实验心得体会

01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。
在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。
在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。
最后,对两种算法进行了对比和分析。
首先,我对01背包问题进行了建模。
根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。
表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。
根据这个定义,我可以通过填充表格中的元素来逐步求解问题。
然后,我使用了两种算法来求解01背包问题。
首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。
因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。
这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。
然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。
对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。
具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。
这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。
实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。
这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。
而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。
背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题实验报告

一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。
背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。
背包问题分为0-1背包问题、完全背包问题、多重背包问题等。
本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。
二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。
五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为198。
(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据回溯法,得到最优解价值为198。
2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为300。
实验报告动态规划背包问题

实验报告动态规划背包问题
XXXX⼤学计算机学院实验报告
计算机学院 2017 级软件⼯程专业 5 班指导教师学号姓名 2019年 10 ⽉ 21 ⽇成绩
上机调试程序、程
序运⾏结果
实
int n = ;包问题的算法思想:将前i个物品放⼊容量为w的背包中的最⼤价值。
有如下两种情况:
①若当前物品的重量⼩于当前可放⼊的重量,便可考虑是否要将本件物品放⼊背包中或者将背包中的某些物品拿出来再将当前物品放进去;放进去前需要⽐较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最⾼价值),如果超过之前的价值,可以直接放进去,反之不放。
②若当前物品的重量⼤于当前可放⼊的重量,则不放⼊
背包问题利⽤动态规划的思路可以这样理解:阶段是“物品的件数”,状态就是“背包剩下的容量”,f[i,v]表⽰设从前i件物品中选择放⼊容量为V的背包的最⼤价值。
那么状态转移的⽅法为:
f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}
这个⽅程可以理解为:只考虑⼦问题“将前i个物品放⼊容量为v的背包中的最⼤价值”那么可以考虑不放⼊i,最⼤价值就和i⽆关,就是f[i-1][v],如果放⼊第i个物品,价值就是
f[i-1][v-w[i]]+value[i],只取最⼤值即可。
动态背包问题实验报告

一、实验背景动态背包问题(Dynamic Knapsack Problem)是组合优化领域中的一个经典问题。
该问题源于现实生活中的背包问题,即在一个有限容量的背包中,如何选择物品以使背包的总价值最大化。
动态背包问题通常分为0-1背包问题、完全背包问题、多重背包问题等不同类型。
本实验主要针对0-1背包问题进行探讨。
二、实验目的1. 理解动态背包问题的基本原理和解决方法。
2. 掌握动态规划算法在解决背包问题中的应用。
3. 分析0-1背包问题的特点,提高解决实际问题的能力。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm四、实验内容1. 0-1背包问题介绍0-1背包问题:给定N件物品和一个容量为V的背包,每件物品只能使用一次。
物品的体积和质量分别是c[i]和w[i]。
目标是找出哪些物品可以使背包内物品的总体积不超过V,且总价值最大。
2. 动态规划算法实现(1)状态定义定义dp[i][j]为前i件物品放入容量为j的背包中所能获得的最大价值。
(2)状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i]),其中1 ≤ i ≤ N,0 ≤ j ≤ V。
(3)初始化dp[0][j] = 0,其中0 ≤ j ≤ V。
(4)结果输出输出dp[N][V]即为所求的最大价值。
3. 代码实现```pythondef knapsack(c, w, V):N = len(c)dp = [[0] (V + 1) for _ in range(N + 1)]for i in range(1, N + 1):for j in range(1, V + 1):if j >= c[i - 1]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])else:dp[i][j] = dp[i - 1][j]return dp[N][V]c = [2, 3, 4, 5] # 物品重量数组w = [3, 4, 5, 8] # 物品价值数组V = 8 # 背包容量max_value = knapsack(c, w, V)print("最大价值为:", max_value)```五、实验结果与分析1. 通过实验,我们成功实现了0-1背包问题的动态规划算法,并得到了最大价值为15。
01背包实验报告

01背包实验报告01背包实验报告引言:01背包问题是一种经典的动态规划问题,它的解决方案可以应用于许多实际场景中。
本实验旨在通过实际操作和数据分析,深入理解01背包问题的解决思路和算法效率。
实验目的:1. 理解01背包问题的定义和解决思路;2. 掌握动态规划算法的基本原理;3. 分析不同算法对于不同规模问题的效率差异。
实验过程:1. 实验环境准备:在实验开始之前,我们需要准备一台配置合适的计算机,安装好编程环境和所需的编程语言。
本实验选择使用Python作为编程语言。
2. 实验步骤:a. 定义问题:我们首先需要明确01背包问题的定义。
假设有一个背包,它的容量为C。
有n个物品,每个物品有两个属性:重量w和价值v。
我们的目标是在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。
b. 动态规划算法实现:为了解决01背包问题,我们可以使用动态规划算法。
具体实现步骤如下: - 创建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值;- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时,最大总价值为0;- 对于每个物品i,遍历背包容量j,根据以下递推关系更新dp数组的值:- 如果物品i的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择物品i;- 如果物品i的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),即选择物品i或不选择物品i中的最大值;- 最终,dp[n][C]即为所求的最大总价值。
c. 实验数据生成:为了验证算法的正确性和效率,我们需要生成一些测试数据。
我们可以使用随机数生成器生成一定规模的测试数据,包括背包容量、物品重量和价值等。
d. 算法效率分析:在实验中,我们可以通过分析不同规模问题的求解时间来评估算法的效率。
我们可以使用计时器来记录算法执行的时间,并绘制出不同规模问题的求解时间与问题规模的关系图。
案例4:背包问题

案例:背包问题有一个徒步旅行者,已知他能承受的旅行背包的重量不超过a (kg )。
设有n 种物品可供他选择装入背包,这n 种物品分别编号为1,2,…,n 。
其中第i 种物品每件的重量为a i (kg ),其使用价值(指一件第i 种物品对旅行者来说所带来的好处的一种数量指标)为c i (i =1,2,…,n )。
问这位旅行者应如何选择携带这n 种物品的件数,使得总价值最大?⏹ 分析:这是一个组合最优化问题,易将此问题归结为一个线性整数规划问题。
⏹ 建立线性规划模型【建立线性规划模型】设旅行者选择携带第i 种物品的件数为i x ,不难看出,背包问题可以归结为如下的线性规划问题:11 max s.t. 01,2,ni ii n i i i i z c x a x ax i n===≤≥=∑∑且整,,⏹ 建立动态规划模型 【建立动态规划模型】设把可装入背包的物品种类分为n 个阶段。
在第i 阶段先装入前i 种物品(i =1,2,…,n )。
在第i 阶段开始时,把旅行者背包中允许装入前i 种物品的总重量作为状态变量,设为y 。
装入每种物品的件数x i (i =1,2,…,n )为各阶段的决策变量。
变量说明:设()k f y 等于当背包中允许装入物品的总重量不超过y 和只允许装入前k 种物品采用最优策略时的最大使用价值。
(k =1,2,…,n )。
则11()max (1,2,,)k i i i k k i i i a x y f y c x k n ==≤==∑∑并且当k =n ,y =a 时,有11()max n i i i nn i i i a x a f a c x ==≤=∑∑ 显然()n f a 也就是上述线性规划模型的最优解。
把上式转化为递归方程: (属于前向算法){}1111010()max ()max () i k k y x a k k k k k k y x a f y c x f y c x f y a x ⎢⎥≤≤⎢⎥⎣⎦-⎢⎥≤≤⎢⎥⎣⎦=⎧⎪⎪⎨=+-⎪⎪⎩其中k x 为非负整数。
算法背包问题(课堂参考)

实验题目:背包问题实验目的:掌握动态规划、贪心算法的原理,并能够按其原理编程实现解决背包问题,以加深对上述方法的理解。
实验内容:一个旅行者准备随身携带一个背包. 可以放入背包的物品有n 种, 每种物品的重量和价值分别为 wj , vj . 如果背包的最大重量限制是 b, 怎样选择放入背包的物品以使得背包 的价值最大?目标函数:约束条件:线性规划问题 由线性条件约束的线性函数取最大或最小的问题整数规划问题 线性规划问题的变量 xj 都是非负整数Fk(y):装前 k 种物品, 总重不超过 y, 背包的最大价值i(k,y):装前 k 种物品, 总重不超过 y, 背包达最大价值时装入物品的最大标号递推方程、边界条件、标记函数实例计算:v1 = 1, v2 = 3, v3 = 5, v4 = 9, w1 = 2, w2 = 3, w3 = 4, w4 = 7,b = 10Fk(y) 的计算表如下:K/y 1 2 3 4 5 6 7 8 9 101 0 1 12 23 34 4 52 0 13 34 6 6 7 9 93 0 1 3 5 5 6 8 10 10 114 0 1 35 56 9 10 10 12实验步骤: 1、分析题目;N ,max 11∈≤∑∑==j n j j j n j j j x b x wx v 0)()(0,0)0(,0,0)(})(),(max{)(11101<-∞=⎥⎦⎥⎢⎣⎢=≤≤=≤≤=+-=-y y F v w y y F n k F b y y F v w y F y F y F k k k k k k k2、打开NetBeans软件,新建一个名叫 Knapsackdxj的项目,并对其进行保存;3在新建的项目下对我们所分析的题目进行编写;4、调试所编写的程序;5、运行文件,并对其进行测试,看是否正确。
实验结果:实验小结:在做本次实验之前,自己对动态规划、贪心算法的原理不是非常的理解,花了很多时间看了课本上的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学计算机学院实验报告
计算机学院 2017 级软件工程专业 5 班指导教师学号姓名 2019年 10 月 21 日成绩
上机调试程序、程
序运行结果
实
int n = ;包问题的算法思想:将前i个物品放入容量为w的背包中的最大价值。
有如下两种情况:
①若当前物品的重量小于当前可放入的重量,便可考虑是否要将本件物品放入背包中或者将背包中的某些物品拿出来再将当前物品放进去;放进去前需要比较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最高价值),如果超过之前的价值,可以直接放进去,反之不放。
②若当前物品的重量大于当前可放入的重量,则不放入
背包问题利用动态规划的思路可以这样理解:阶段是“物品的件数”,状态就是“背包剩下的容量”,f[i,v]表示设从前i件物品中选择放入容量为V的背包的最大价值。
那么状态转移的方法为:
f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}
这个方程可以理解为:只考虑子问题“将前i个物品放入容量为v的背包中的最大价值”那么可以考虑不放入i,最大价值就和i无关,就是f[i-1][v],如果放入第i个物品,价值就是
f[i-1][v-w[i]]+value[i],只取最大值即可。