直接还原炼铁技术的最新发展doc
直接还原铁技术现状
![直接还原铁技术现状](https://img.taocdn.com/s3/m/a305893987c24028915fc381.png)
冶金管理2006年第8期直接还原铁是铁矿在固态条件下直接还原为铁,可以用来作为冶炼优质钢、特殊钢的纯净原料,也可作为铸造、铁合金、粉末冶金等工艺的含铁原料。
这种工艺不用焦炭炼铁,原料也是使用冷压球团不用烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全世界钢铁冶金的前沿技术之一。
直接还原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反应罐法、罐式炉法和流化床法等。
目前,世界上90%以上的直接还原铁是用气基法生产出来的。
但是天然气资源有限、价高,使生产量增长不快。
用煤作还原剂在技术上也已过关,可以用块矿、球团矿或粉矿作铁原料(如竖炉、流化床、转底炉和回转窑等)。
但是,因为要求原燃料条件高(矿石含铁品位要大于66%,含SiO2+Al2O3杂质要小于3%,煤中灰分要低等),规模小,设备寿命低,生产成本高和某些技术问题等原因,致使直接还原铁生产在全世界没有得到迅速发展。
因此,高炉炼铁生产工艺在较长时间内仍将占有主导地位。
一、直接还原铁的质量要求直接还原铁是电炉冶炼优质钢种的好原料,所以要求的质量高(包括化学成分和物理性能),且希望其产品质量均匀、稳定。
1.化学成分。
直接还原铁的含铁量应>90%,金属化率要>90%。
含SiO2每升高1%,要多加2%的石灰,渣量增加30kg/t,电炉多耗电18.5kWh。
所以,要求直接还原铁所用原料含铁品位要高:赤铁矿应>66.5%,磁铁矿>67.5%,脉石(SiO2+Al2O3)量<3%~5%。
直接还原铁的金属化率每提高1%,可以节约能耗8~10度电/t。
直接还原铁含C<0.3%,P<0.03%,S<0.03%,Pb、Sn、As、Sb、Bi等有害元素是微量。
2.物理性能。
回转窑、竖炉、旋转床等工艺生产的直接还原铁是以球团矿为原料,要求粒度在5~30mm。
隧道窑工艺生产的还原铁大多数是瓦片状或棒状,长度为250~380mm,堆密度在1.7~2.0t/m3。
炼钢工艺发展的趋势
![炼钢工艺发展的趋势](https://img.taocdn.com/s3/m/8b04b8878ad63186bceb19e8b8f67c1cfbd6ee55.png)
炼钢工艺发展的趋势炼钢工艺是钢铁制造过程中最重要的环节之一,它直接关系到钢铁产品的质量和性能。
随着科学技术的不断进步和工业生产的发展,炼钢工艺也在不断创新和改进。
下面将从以下几个方面探讨炼钢工艺的发展趋势。
1. 高炉冶炼技术:高炉是目前主要的炼钢设备,其冶炼技术的发展对整个钢铁行业具有重要影响。
未来的高炉将继续向大容量、高效率和低能耗的方向发展。
一方面,炉容量将逐渐增大,以提高生产效率和降低单位产品能耗。
另一方面,高炉配套设备的自动化程度将进一步提高,以实现全程智能化控制和运行优化。
2. 直接还原炼铁技术:传统的高炉炼铁过程消耗大量的焦炭和煤炭资源,同时产生大量的二氧化碳排放,对环境造成了严重影响。
因此,直接还原炼铁技术成为了发展的方向之一。
直接还原炼铁技术通过利用天然气等清洁能源直接还原铁矿石,减少了对焦炭和煤炭的依赖,大幅降低了能耗和环境污染。
3. 电弧炉炼钢技术:电弧炉炼钢技术是一种能够高温直接融化废钢、废铁和铁合金的炼钢方法。
相比传统的高炉炼钢工艺,电弧炉炼钢具有资源利用率高、环境污染小、生产周期短等优点。
随着废钢资源的日益丰富和回收利用的重视程度不断提高,电弧炉炼钢技术将得到更广泛的应用。
4. 超声波技术在炼钢中的应用:超声波技术在炼钢过程中有着很大的潜力。
超声波可以在金属液体中引起超声波振动,进一步改善炼钢过程中的传质和传热效果,提高钢的纯净度和均匀性。
此外,超声波还可以用于检测和监测钢铁产品中的缺陷和杂质,提高质量控制的准确性和效率。
5. 粉煤气化技术:粉煤气化技术是一种利用煤炭资源进行炼钢的新技术。
通过对煤炭进行气化,产生合成气,再利用合成气进行炼钢,既能够提高煤炭资源的利用率,又能够减少对传统能源的依赖和环境污染。
粉煤气化技术属于绿色环保型炼钢工艺,对于改善钢铁行业的能源结构和减少碳排放具有重要意义。
总体来说,炼钢工艺的发展趋势是朝着高效、环保、智能化和资源综合利用的方向发展。
气基竖炉直接还原低碳炼铁方案(一)
![气基竖炉直接还原低碳炼铁方案(一)](https://img.taocdn.com/s3/m/b9491deab04e852458fb770bf78a6529647d3588.png)
气基竖炉直接还原低碳炼铁方案一、实施背景随着全球对环境保护的重视和钢铁行业碳排放量的关注,低碳炼铁技术的研发和推广成为了钢铁产业发展的重要趋势。
气基竖炉直接还原是一种以煤气为能源,通过竖炉直接还原铁矿石的炼铁方法,具有较高的能源利用效率和环保性能。
本方案旨在通过气基竖炉直接还原工艺的研发与应用,推动我国钢铁产业的低碳发展。
二、工作原理气基竖炉直接还原低碳炼铁工艺采用天然气或煤制气等富含氢气的煤气作为能源和还原剂,将铁矿石在竖炉内进行直接还原。
具体过程如下:1. 预热阶段:将铁矿石在炉内预热到约700℃,以促进煤气的燃烧和还原反应。
2. 煤气燃烧和还原阶段:煤气在竖炉上部燃烧室燃烧,产生高温煤气(约1100℃)通过炉顶喷嘴进入炉内,与铁矿石发生还原反应,生成金属化球团。
3. 冷却和排出阶段:金属化球团在炉内继续冷却并从炉底排出。
4. 成品处理阶段:对金属化球团进行破碎、筛分、磁选等处理,得到最终产品。
三、实施计划步骤1. 研发与设计:开展气基竖炉直接还原工艺的基础研究和应用研究,设计适合我国钢铁产业的气基竖炉直接还原工艺流程和设备。
2. 设备制造与安装:根据设计要求,制造设备并在现场安装调试。
3. 工业试验:在制造和安装完成后,进行工业试验,验证工艺流程和设备的可行性和稳定性。
4. 生产调试:根据工业试验结果,对工艺流程和设备进行优化调整,逐步达到设计产能。
5. 技术服务与培训:提供相关技术服务和培训,确保企业能够自主运行和维护气基竖炉直接还原生产线。
四、适用范围本方案适用于大型钢铁企业和中小型民营钢铁企业。
特别是对于具有丰富铁矿资源和煤气资源的钢铁企业,气基竖炉直接还原低碳炼铁工艺具有较高的适用性和优势。
此外,对于地处环保要求较高地区或面临转型升级压力的钢铁企业,该工艺也具有较大的应用潜力。
五、创新要点1. 竖炉结构优化设计:通过对竖炉内部结构的优化设计,提高煤气与铁矿石的接触面积和热交换效率,降低能源消耗。
炼铁工艺的发展与创新从传统到现代
![炼铁工艺的发展与创新从传统到现代](https://img.taocdn.com/s3/m/b28a157311661ed9ad51f01dc281e53a580251b8.png)
炼铁工艺的发展与创新从传统到现代炼铁工艺是铁矿石经过一系列工艺流程,将其转化为钢铁的过程。
随着科学技术的不断进步与发展,炼铁工艺也在不断创新和改进。
本文将从传统到现代的角度,探讨炼铁工艺的发展与创新。
一、传统炼铁工艺的演进传统炼铁工艺主要包括高炉法和直接还原法两种。
高炉法是将铁矿石、焦炭和石灰石等原料放入高炉中,在高温下进行还原反应,产生炼铁渣和铁水。
而直接还原法则是将铁矿石与还原剂(如氢气、甲烷等)直接反应,得到铁水。
然而,传统炼铁工艺存在一些问题。
首先,高炉法需要大量使用焦炭作为还原剂,导致能源消耗和环境污染问题。
其次,直接还原法虽然能够节约部分能源,但其还原效率较低,产出的铁水品质也不稳定。
二、基于传统的工艺改进为了解决传统炼铁工艺存在的问题,研究人员开始进行基于传统的工艺改进。
其中一个重要的改进是炼铁炉的结构优化。
通过改变炉膛形状、燃烧方式等,提高炼铁的效率和品质。
此外,还通过添加助熔剂、改变添加时间等方式,进一步优化炼铁工艺。
除了结构改进,工艺改进还包括了炼铁原料的优化选择。
研究人员通过对不同铁矿石的分析和试验,选择更优质的原料,以提高炼铁产品的品质。
同时,也研究了不同焦炭种类和添加量对炼铁过程的影响,为提高炼铁效率和环保性做出了贡献。
三、现代炼铁工艺的创新随着新材料和新技术的不断涌现,现代炼铁工艺得到了进一步的创新。
其中一个重要的创新是氧化还原反应的电磁过程控制技术。
通过在炼铁炉中加入电磁线圈,对炼铁过程中的温度、浓度等参数进行准确控制,提高炼铁效率和产品品质。
另外,为了降低能源消耗和环境污染,现代炼铁工艺还采用了先进的喷射燃烧技术。
该技术通过将高温燃烧产生的废气进行再循环利用,提高炼铁过程中的能量利用率。
同时,还采用了新型炉衬材料和高效能耗炉墙结构,减少了炼铁过程中的热损失。
除了这些技术创新,现代炼铁工艺还注重炼铁过程的数据采集与分析。
通过对炼铁过程中各个参数进行监测和分析,研究人员能够更好地控制和优化炼铁工艺。
直接还原铁生产工艺及发展方向
![直接还原铁生产工艺及发展方向](https://img.taocdn.com/s3/m/b1ba5c7230126edb6f1aff00bed5b9f3f90f72a3.png)
直接还原铁生产工艺及发展方向铁生产工艺的发展可以追溯到公元前2000年左右的古代。
在古代,人们首先发现了在高温条件下加热矿石可以从中提取金属。
这一过程被称为矿石冶炼,其中铜、铁和其他金属被广泛使用。
最早期的铁器使用原始的冶炼工艺,如陶瓷炉和炭火加热。
在这个时期,人们从矿石中提取铁质,并通过锻造和淬火方法制作器物。
然而,到了公元前8世纪左右,人们开始使用更高级的铁冶炼工艺。
最著名的是“低凤炉”、“高凤炉”和“方式炉”。
这些工艺的进步使得铁的生产成本大大降低,而且使得铁制品在农业、建筑和武器制造方面得到了广泛应用。
随着时间的推移,人们在铁生产工艺方面取得了更多的进步。
在18世纪,工业革命的到来带来了新的技术和设备,如高炉、转炉和开平法。
这些新技术大大提高了铁的生产效率,推动了工业化进程。
到了20世纪,铁生产工艺又迎来了一次革命。
高炉和转炉被更先进的炼铁技术所取代,如电炉和氧气顶吹转炉。
这些新技术不仅提高了生产效率,而且减少了对燃料和资源的需求。
此外,新的炼铁技术还使得对矿石种类的选择更加灵活,使得更多类型的矿石可以用于铁的生产。
在铁生产工艺的发展方向上,环保和可持续发展成为了主要的关注点。
随着环境污染和资源短缺的日益严重,铁生产已经朝着更环保和经济可行的方向发展。
一种主要的发展趋势是采用更加清洁的能源和生产方法。
例如,利用可再生能源和低碳技术来为铁生产提供能源。
此外,研究人员还在努力开发新的生产方法,如电解和高温合成气体反应,以减少对燃料的依赖和减少二氧化碳排放。
此外,优化生产效率也是一个重要的发展方向。
通过改进工艺流程、优化能源利用和降低废物产生,可以进一步提高生产效率并减少资源消耗。
金属回收和再利用也是铁生产工艺的另一个发展方向。
回收和再利用废旧金属可以减少对原始矿石的需求,降低对环境的影响。
综上所述,铁生产工艺经历了漫长的发展历程,并不断向更加环保、经济可行和高效率方向发展。
随着技术的不断更新和创新,铁生产工艺有望进一步完善,为社会的可持续发展做出更大的贡献。
直接还原炼铁的现状及发展趋势
![直接还原炼铁的现状及发展趋势](https://img.taocdn.com/s3/m/1911ed282f60ddccda38a049.png)
气基还原 , 产 厂主要集 中在南 美、 东 、 生 中 东 南 亚 等地 区 , 委 内瑞 拉 、 如 墨西 哥 、 非 、 南 印度
维普资讯
攀 钢 技 术 似烧 结 的环冷 机 , 近 年才 开 发 的还 原设 备 。 是
2 12 燃 料 . .
・5 ・
Arx是 M irx 的 一 种 改 进 形 式 , 取 e de 它
目前 使 用 最 广 泛 的 是 天 然 气 , 用 天 然 使
消 了天 然 气 的 重 整 炉 , 天 然 气 部 分 氧 化 后 将 入炉 , 炉 内 热 海 绵 铁 催 化 裂 解 【 。HYL一 靠 3 J Ⅲ也 在 尝试 采 取 这 种 工 艺 , 消 重 整 炉 【J 取 4。
之一 。
生产 工 艺 主 要 集 中 在 竖 炉 气 基 还 原 的
Mirx HYLⅢ 、 de 、 HYLI三 种 工 艺 , 原 块 状 还
矿 石 , 图 2所 示 ; 如 回转 窑 S / R 工 艺 占有 L N
一
1 世 界 直 接 还 原 铁 生 产 简 况
定 比例 ; 外 , oe 另 C rx工 艺 近 年发 展 迅 速 。
世 界 直接 还 原 铁 产 量 增 长 迅 速 , 2 0 到 05 年 , 接 还 原 铁 产 量 将 达 到 70 0万 t1 】如 直 0 _l , 2
图 1所 示 。
。
年 份
’
0 o
o 0
图 2 直 接 还 原 炼 铁 工 艺 的种 类
一 。
图 1 世 界 直 接 还 原 铁 年 产 量
典 型 的 竖炉 还 原 工 艺 有 米 德 雷 克 斯 直 接 还 原公 司 ( 户 钢铁 公 司 子公 司 ) Mir ( 神—I ( 4 、 e l 图 ) Arx l
直接还原铁生产技术及现状
![直接还原铁生产技术及现状](https://img.taocdn.com/s3/m/6d5fc67a86c24028915f804d2b160b4e777f814b.png)
直接还原铁生产技术及现状铁生产技术的发展历史可以追溯到公元前2000年左右,最初的铁制品是通过在炭火中烧烤铁矿石来获得的。
这种烧烤技术被称为古老的冶金学,也被认为是人类历史上最早的冶金技术之一古代的铁生产技术在公元前1000年左右经历了重大的革新,这是由于铁矿石的高温还原反应被发现。
这种高温反应是通过将铁矿石与木炭或石炭混合,并在高温环境下加热来进行的。
这项技术的发现使得铁成为了当时最重要的金属之一,但其生产量仍然相对较小。
在一些古代文明中,如中国、印度等,铁的制造和使用逐渐扩大,为社会的农业、战争和工艺生产做出了重要贡献。
到了公元前300年左右,铁生产技术再次得到了改进。
在罗马时代,一种称为“减氧法”的技术被发明,这个技术将铁矿石与木炭放入特殊的炉子中,并且通过控制加热和供氧来获取较高纯度的铁。
这项技术极大地提高了铁的生产效率,使得罗马帝国在铁材料的生产和使用方面取得了巨大的进展。
这种技术的使用也标志着对铁生产的进一步工业化,奠定了现代铁产业的基础。
到了中世纪,铁生产技术进一步发展,很大程度上得益于对炼铁炉的改进。
这些改进包括提高炉子的结构、使用更多供氧装置以及改进燃烧气体的预热系统等。
这些改进使得炼铁过程更为高效,并且提高了产量和纯度。
到了18世纪,随着燃烧技术和冶金科学的进展,铁生产技术又迈上了一个新的台阶。
在这个时候,由于煤炭的大量使用,炼铁工艺发生了革命性的变化。
在这种现代炼铁法中,矿石和煤炭被放入高炉中,在高温环境下进行化学反应。
通过这个工艺,大量的铁矿石可以得到还原,得到高质量的生铁。
这种先进的炼铁法被广泛应用于欧洲的工业革命中,推动了工业化的进程。
随着时间的推移,各种现代技术和创新被应用于铁的生产过程中,这些技术包括用电解法提纯铁、高炉法等。
现代大规模铁生产以高炉和电炉为主,这些炉子能够生成高品质的铁,用于制造各种铁制品。
此外,利用再生铁和废钢再生技术也成为现代铁产业的重要组成部分,以提高资源利用效率和减少环境影响。
-=-周渝生 中国直接还原铁技术发展及市场供需分析 (终稿)
![-=-周渝生 中国直接还原铁技术发展及市场供需分析 (终稿)](https://img.taocdn.com/s3/m/5158b521bd64783e08122b07.png)
天然气
非焦煤 煤/天然气 天然气 煤/天然气 焦炭/煤粉 块煤/焦炭 煤 煤
竖炉
竖炉 转底炉 流化床 转底炉 高炉 预还原炉-熔 化气化炉 回转窑 隧道窑
10
12 12 13 15 16 16.5 20 25-30
190
190 14-40 150 14-30 400 120 15 1-4
TFe≥90% DRI
2012年北方废旧金属回收利用资源供需论坛
中国直接还原铁技术发展及 市场供需分析
周渝生 齐渊洪 严定鎏 洪益成 钢铁研究总院
2012年6月26日
内 容 提 要
1.中国近几年铁产量及直接还原铁的产量和比例 2.废钢比提高将推动我国直接还原的发展 中国目前DRI发展及 市场需求 3.低品质难选含铁原料用转底炉炼粒铁是煤基DRI的创新方向 4.气基竖炉直接还原工艺技术是我国直接还原的主要发展方向 5.加压煤制气工艺是我国发展直接还原新工艺的基础和条件
2.废钢比提高将推动我国直接还原的发展 中国目前DRI发展
及市场需求
煤基隧道窑本来是利用高品位铁精矿粉生产粉末冶 金原料的初级还原工序,尽管国家三令五申严禁建设, 但它迎合了资金少的短线投资者赌一把的心理,近几 年建成约400万吨产能,产量仅20-30万吨低品质的炼 钢用DRI。隧道窑单机产能小(最大仅2万吨/年),煤 耗高达1t/t DRI以上,生产周期长达48-70h,废弃的 还原罐、煤灰、烟尘造成的环境污染严重,隧道窑不 是我国直接还原技术的发展方向。
炉法的显著优点是单套设备产量大、能耗、排放最低
(见表1),是直接还原无焦炼铁技术的主流。表1的
数据表明,竖炉法直接还原炼铁生产技术是大型化、低
能耗、低CO2排放、产品质量优良的先进炼铁技术,应
煤基直接还原铁生产技术的发展
![煤基直接还原铁生产技术的发展](https://img.taocdn.com/s3/m/7b43e6ec81c758f5f61f6798.png)
一、工艺流程
Fastmelt 工艺是 Fastmet 工艺和炼铁电炉的综合。来自回 转窑的直接还原铁在炼铁电炉中熔化生产铁水。
ITmk3 工艺是在回转窑中生产粒状铁。团块在回转炉中 加热到 1450℃, 在还原和熔化之后, 炉渣在回转窑中分离。铁 水和炉渣被冷却并从回转窑中排出。
0.00 GJ
2.47 GJ
4.10 GJ
燃气
( 0 kg- CO2 ) ( 141 kg- CO2 ) ( 234 kg- CO2 )
1.54 GJ
2.95 GJ
0.00 GJ
电能
( 103 kg- CO2 ) ( 198 kg- CO2 ) ( 0 kg- CO2 )
0.00 GJ
0.07 GJ
表 8 研究 A 研究结果概括
高炉( 50 万吨 / Fastmelt 工艺( 50 ITmk3 工艺( 50
年铁水) 万吨 / 年铁水) 万吨 / 年粒状铁)
消耗
31.47GJ
14.26 GJ
14.09 GJ
煤
( 2936kg- CO2 ) ( 1330kg- CO2) ( 1314kg- CO2)
技术与装备纵横
煤基直接还原铁生产
技术的发展
□袁 文
目前, 世界炼铁生产的主流是高炉工艺, 但该工艺需要 一些原料准备设备, 如焦炉、烧结设备等, 而其会给环境带来 很大影响。气基直接还原铁如 MIDREX 工艺是高炉炼铁工艺 的替代方法之一, 然而, 该工艺受到以经济方式获得天然气 的限制。在这一背景下, 对可以使用更广泛的原料和燃料, 且 对环境更加友好的新炼铁工艺的需求日益增加。为了满足这 种 需 求 , 人 们 开 发 出 3 种 煤 基 直 接 还 原 铁 生 产 工 艺— —— Fastmet 工艺、Fastmelt 工艺和 ITmk3 工艺。采用这些工艺可以 通过粉矿和煤生产出高质量的铁, 如直接还 原 铁 、铁 水 和 粒 状铁。而且, 这 3 种工艺在能耗和环保方面可以与高炉竞争。
我国煤基直接还原炼铁工艺发展
![我国煤基直接还原炼铁工艺发展](https://img.taocdn.com/s3/m/e575473f87c24028915fc3f3.png)
我国煤基直接还原炼铁工艺发展摘要:对我国目前主要应用的直接还原工艺—回转窑、隧道窑、转底炉以及新发展的直接还原技术做了简要的介绍,分析了各种工艺的优缺点;针对钒钛磁铁矿冶炼,攀钢采取了转底炉—电炉联合使用的直接还原工艺,并新建一条年处理能力10万t钒钛矿的生产试验线.关键词:直接还原;转底炉;回转窑;隧道窑0 引言直接还原法是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法.其产品呈多孔低密度海绵状结构,被称为直接还原铁(DRI)或海绵铁.直接还原实现了无焦炼铁,比高炉炼铁碳耗低、CO2排放少,有利于节省能源、保护环境.海绵铁杂质成分低,是冶炼优质钢的原料,也可作为高炉炼铁、转炉炼钢、铸铁、铁合金、粉末冶金的原料,有色冶金的置换剂、水处理的脱氧剂等,应用范围广、需求量大[1].2008年我国直接还原铁消费量为260 万t,但产量仅为60多万吨,远不能满足国内需求.随着我国电炉炼钢规模的不断扩大,废钢价格不断攀升,直接还原铁供不应求,市场潜力巨大,因此,在我国因地制宜发展直接还原工艺势在必行.直接还原按照还原剂的不同分为气基还原和煤基还原两大类,气基还原主要包括Midrex法和HYL—Ⅲ法,具有生产规模大、成本低、环境影响小等优点[2].煤基直接还原包括回转窑法、转底炉法等,与气基还原相比,生产规模较小、产量较低.虽然气基直接还原工艺占据了大部分的直接还原生产能力,但其需用天然气做燃料.在我国,由于天然气相对缺乏,使气基发展受到限制,而我国的煤炭储量却较为丰富,这一资源条件决定了现阶段我国以煤基直接还原法为主,因此,深入研讨煤基直接还原的生产工艺对我国的直接还原工业发展具有深远的意义.1 直接还原工艺简介1.1 回转窑回转窑直接还原主要有三种工艺方案,一步法:精矿配加粘结剂制成生球铺布在移动的链篦机上,利用回转窑高温废气进行干燥预热后直接进入回转窑生产DRI,所有工序在一条流水线上连续完成;二步法:先用精矿烧制成氧化球团再将其送入回转窑生产DRI,造球和还原分别独立进行,故称"二步法";冷固球团法:与一步法相似,先将精矿配加特殊粘结剂造球,在较低温度下(200 ℃)干燥固结,然后送入回转窑还原,省略了高温焙烧氧化固结的过程[3].回转窑工艺具有代表性的SL/RN法流程如图1所示.铁矿石、煤粒、熔剂等原料从窑尾加入回转窑中,窑体缓慢旋转使炉料在升温和反应的同时向出料端移动.窑头外设有烧嘴燃烧燃料,形成的废气则由窑尾排除.炉料与炉气逆向运动,炉料在预热段被加热,使水分蒸发和石灰石分解,达到800 ℃后,煤中的固体碳开始还原铁矿石中的氧化铁,直到获得海绵铁或铁料,而碳则转变成CO气体,CO在氧化区被燃烧成CO2,放出热量以满足还原反应的要求.回转窑内反应温度控制在1 100 ℃以下,经8~10 h完成还原反应后出窑.产品排出窑后进入回转冷却筒冷却得到海绵铁或粒铁,也可以送电炉直接炼钢.与高炉工艺相比较,回转窑工艺设备简单,投资少,适用于地方钢铁工业,弥补了高炉—转炉工艺的不足,此外,回转窑还适用于复合矿冶炼,冶金灰尘及各种工业废渣的回收利用,减少环境污染,降低了钢铁生产能耗.同时,回转窑工艺也存在一些缺点,包括窑内结圈、还原温度低(1 100 ℃以下)、流程长、对块矿或球团矿冷强度要求高、要求使用低硫煤等[4].我国山东鲁中矿山公司通过采取提高冷固烧结球团的冷热态强度、加强还原煤的选择和管理、优化回转窑的送风、抛煤、控温温度等措施,预防并降低回转窑结圈,取得了较好的收效.图1 SL/RN法工艺流程1.2 隧道窑隧道窑工艺即将精矿粉、煤粉、石灰石粉,按照一定的比例和装料方法,分别装入还原罐中,然后把罐放在罐车上,推入条形隧道窑中或把罐直接放到环形轮窑中,料罐经预热到1 150 ℃加热焙烧和冷却之后,得到直接还原铁.目前江苏永钢集团拥有两条260 m长煤气隧道窑,为亚洲最长隧道窑.隧道窑生产海绵铁工艺流程如图2所示.图2 隧道窑生产海绵铁工艺流程煤基隧道窑直接还原工艺具有技术成熟、作简单的特点,可因地制宜采用此工艺,利用当地小型分散的铁矿及煤矿资源优势,发展直接还原铁生产,为电炉提供优质原料.但是,总体上讲,我国隧道窑直接还原中存在生产规模较小、能耗高、污染严重、缺乏稳定的原料供应渠道等问题[5],所以,提高机械化程度、改变原料入炉方式、改进燃料及其燃烧、增设余热回收等成为各厂家不断努力改进工艺的方向.我国已建成或正在建设的隧道窑有100多座,约70多个单位规划建设产能5~30 万t/a的隧道窑直接还原铁厂,在不断总结实践经验的基础上,改进现行工艺,开发出诸如大型隧道窑直接还原、AMR—CBI隧道窑直接还原工艺、宽体球状海绵铁隧道窑、L-S快速还原工艺等多种新技术,掀开了隧道窑工艺规模扩大、产能提高、机械及自动化提升的序幕.1.3 转底炉转底炉煤基直接还原是最近几十年间发展起来的炼铁新技术,代表工艺为Fastmet,它由美国Midrex公司与日本神户制钢于20世纪60年发,是采用环形转底炉生产直接还原铁的一种方法.经过多年的半工业性试验和深入的可行性研究,现已完成工艺作参数和装置设计的优化.Fastmelt和ITmk3工艺是在此基础上增加对直接还原铁的处理.图3显示了这三种以转底炉为主体的直接还原工艺流程.图3 转底炉直接还原工艺流程煤粉与铁精粉按比例混匀制成球团,干燥后以1~3层球铺放在转底炉床面,随着炉底的旋转,炉料依次经过预热区、还原区和冷却区.还原区内球团被加热到1 250~1 350 ℃,由于煤粉与铁氧化物紧密接触,铁氧化铁被碳迅速还原成DRI,成品在800~1 000 ℃左右连续从转底炉卸出.球团矿在炉底停留8~30 min,这取决于原料特性、料层厚度及其他因素,成品可作电炉热装炉料或者转炉炉料,也可冷却或生产热压块(HBI).Fastmet工艺技术特点:①在高温敞焰下加热实现快速还原,反应时间只需10~20 min,生产效率高;②原料来源广泛,铁原料方面,除使用高品位粉矿、精矿外,还可用氧化铁皮、代油铁泥、炼钢粉尘、含En、Pb、As等有害杂质的铁矿等;还原剂方面,除煤以外焦末、沥青均可利用,不必担心出现结圈问题;③炉料相对炉底静止,对炉料强度要求不高;④废气中含有大量显热,可用作预热空气、干燥原料等[6]. Fastmelt工艺流程基本与Fastmet一致,只是在后续添加一个熔炉来生产高质量的液态铁水.Itmk3工艺是使金属化球团在转底炉中还原时熔化,生成铁块(Nuggets),同时脉石也熔化,形成渣铁分离.当然转底炉也存在着设备复杂、炉内气氛难控制、传热效率低以及对还原剂硫含量要求严格的缺点.就目前转底炉工艺开发的水平和规模而论,与高炉还有较大差距,但仍存在发展的广阔空间,天津荣程联合钢铁集团已兴建一条100万t级Fastmet生产线,建成目前世界最大的转底炉.另外,用转底炉可处理一些特殊铁矿,如含锌、铅、砷等有害杂质,或含镍、钒、钛等有用元素,均可利用转底炉的工艺优势,或高温挥发,或选择性还原,配合后续工艺,实现资源综合利用.马钢尘泥脱锌转底炉工程项目于2008年5月开工建设,2009年7月6日正式竣工投产,建成了整套转底炉(RHF)脱锌工艺技术装置,不仅解决了含锌尘泥循环利用的后顾之忧,而且将综合利用技术上升到高品质资源化水平.1.4 其他新工艺1.4.1 PF法煤基竖炉直接还原工艺中冶集团北京冶金设备研究设计总院,结合国内情况创新发明了PF法竖炉直接还原工艺.PF法是在吸收K-M法外热式竖炉煤基直接还原工艺的经验基础上,设计的以一种中国特色的罐式还原炉为主反应器的直接还原法.这种工艺技术可靠,技术经济指标在各种煤基直接还原工艺中属先进水平.PF法直接还原工艺流程如图4所示.图4 PF法直接还原工艺流程PF法直接还原工艺主要特点[1]:1)主体设备选用外热式竖炉,预热、还原、冷却三段根据不同的作用和温度选用不同材质和结构,便于传热和化学反应进行,提高热效率和设备寿命.2)原燃料适用性强,对精矿、还原剂和燃料没有特殊要求.3)采用外配碳工艺,还原剂适当过量,扩大了煤的选用范围,造球工艺也因不定量配入煤粉而简化,球团强度较高,DRI质量较好.4)多个反应罐可并列组成任意规模的还原设备,设计和组织生产灵活.1.4.2 低温快速还原新工艺2004年钢铁研究总院提出了低温快速冶金新工艺.新工艺利用纳米晶冶金技术的特点将铁矿的还原温度降低到700 ℃以下.新流程分为气基和煤基两种方法,工艺流程如图5、图6所示.图5 煤基低温快速还原新工艺图6 气基低温快速还原新工艺煤基法使用煤粉为还原剂,在700℃左右快速还原铁精矿粉;气基法使用还原性气体还原铁精矿粉,还原温度可低于600℃.新工艺具有能耗低、环境友好等特点,省去了烧结或造球工艺,缓解了钢铁行业对焦煤的依赖,符合我国国情[7].2 攀钢现状钒钛磁铁矿是攀西地区的特色资源,与普通矿相比,钒钛矿直接还原温度较高、还原时间较长,还原过程产生特有的膨胀粉化现象,因此,存在竖炉结瘤、流化床失流和黏结、回转窑结圈等技术难题.高炉流程冶炼钒钛矿,只回收了铁和钒,钛进入高炉渣没有回收,造成钛资源的大量流失.2005年以来,攀钢科研人员在充分吸收、借鉴新流程及相关研究成果的基础上,通过大量的试验研究,针对钒钛磁铁矿特点,提出并验证了钒钛磁铁矿"转底炉直接还原—电炉深还原—含钒铁水提钒—含钛炉渣提钛"工艺路线,彻底打通了钒钛矿资源综合利用新工艺流程,稳定获得了质量满足要求的低碳生铁、达到GB3283-87要求的片状V2O5和PTA121质量要求的钛白产品.依托该研究成果,攀钢集团攀枝花钢铁研究院于2008年5月4日正式启动了攀钢10 万t/a钒钛矿资源综合利用新工艺中试线工程项目,新建一条转底炉—熔分电炉联合使用,年处理能力10万t钒钛矿的试验生产线,为更深入地研究实践,实现转底炉处理钒钛矿的规模化生产提供了广阔的平台.中试线工艺流程如图7所示.本流程采用硫含量较低的白马铁精矿,还原剂采用无烟煤煤粉,粘结剂为有机粘结剂,原料混合后经高压压球机压球,生球烘干后进入转底炉系统.球团在转底炉内停留10~30 min后出料,金属化球团直接热装进入熔分电炉,在一定温度下还原后,产出含钒铁水及含钛炉渣.继续对铁水进行脱硫、提钒后,得到半钢、脱硫渣及钒渣,半钢进入铸铁机铸铁,生产出铸铁块.钛渣制取钛白,实验室条件下钛回收率达到80%以上;钒渣制取钒氧化物(V2O5),实验室条件下,钒回收率达到65%以上.与高炉流程相比,转底炉流程采用100%钒钛矿冶炼,克服了高炉流程必须配加普通矿的不足,在当前铁资源紧张的形势下,有助于充分发挥攀西地区资源优势,拉动区域经济发展.此外,转底炉流程的铁精矿不需烧结处理,不使用焦炭,从根本上避免了烧结烟气脱硫、焦煤资源采购困难以及环保压力大等问题.3 结语图7 资源综合利用中试线工艺流程煤炭资源总量丰富、焦煤短缺,铁矿资源储量大、富矿少、贫矿和共生矿多是中国钢铁工业面临的现实状况.这种能源、资源结构给煤基直接还原法生产海绵铁的发展提供了机遇.转底炉直接还原技术由于在生产率、规模化、投资费用、单位成本等方面都占有明显的优势,可作为发展直接还原技术的首选工艺.鉴于转底炉处理钒钛磁铁矿技术尚属世界首创,并无较多的经验借鉴,因此要大力开展针对钒钛磁铁矿直接还原的基础研究工作,在实践中借鉴各种直接还原方法已取得的成果,开拓创新,开创钒钛矿直接还原新纪元.参考文献[1] 陈守明,黄超,张金良.煤基竖炉直接还原工艺//2008年非高炉炼铁年会文集.中国金属学会,2008:132-135.[2] 杨婷,孙继青.世界直接还原铁发展现状及分析.世界金属导报,2006.[3] 刘国根,邱冠周,王淀佐.直接还原炼铁中的粘结剂.矿产综合利用,2001(4):27-30.[4] 韩跃新,高鹏,李艳军.白云鄂博氧化矿直接还原综合利用前景.金属矿山,2009 (5):1-6.[5] 魏国,赵庆杰,沈峰满,等.非高炉生产技术进步//2004年全国炼铁生产技术暨炼铁年会文集.2004:878-882.[6] 陶晋. 环形转底炉直接还原工艺现状及发展趋势. 冶金信息工作, 1997.6.[7] 郭培民,赵沛,张殿伟.低温快速还原炼铁新技术特点及理论研究.炼铁,2007,26(1): 57-60.来源:攀枝花钢铁研究院网站。
氢基直接还原铁
![氢基直接还原铁](https://img.taocdn.com/s3/m/2b736b660166f5335a8102d276a20029bd6463a5.png)
氢基直接还原铁技术随着全球钢铁工业的飞速发展,高炉炼铁等传统工艺在满足日益增长的铁需求时,也面临着环境污染和能源消耗的双重压力。
因此,寻找一种环保、高效的炼铁新技术成为了行业内的迫切需求。
氢基直接还原铁技术作为一种具有巨大潜力的新型炼铁方法,近年来受到了广泛关注。
本文将对氢基直接还原铁技术的原理、应用及发展前景进行深入探讨。
一、氢基直接还原铁技术原理氢基直接还原铁技术是一种利用氢气作为还原剂,将铁矿石中的氧化铁还原成金属铁的方法。
其基本原理是在高温条件下,氢气与铁矿石中的氧化铁发生还原反应,生成金属铁和水蒸气。
这一过程中,氢气起到了还原剂的作用,将氧化铁中的氧夺取,使其还原成金属铁。
与传统的碳还原法相比,氢基直接还原铁技术具有以下优势:1. 环保:氢气的燃烧产物仅为水蒸气,不会产生二氧化碳等温室气体,有利于减少钢铁行业的碳排放。
2. 能源效率高:氢气还原氧化铁的反应热效应较高,可以有效利用反应热,提高能源利用效率。
3. 原料适应性广:氢基直接还原铁技术可以处理各种品位的铁矿石,包括低品位矿石和矿渣等,有利于资源的综合利用。
二、氢基直接还原铁技术应用目前,氢基直接还原铁技术已经在全球范围内得到了广泛应用。
主要应用于以下几个方面:1. 钢铁生产:氢基直接还原铁技术可以作为一种独立的炼铁方法,用于生产金属铁。
其生产的金属铁具有纯度高、杂质少等优点,可以作为优质原料供应给钢铁企业。
2. 铁矿资源综合利用:对于一些低品位、难选冶的铁矿石,传统的选矿和冶炼方法往往难以有效利用。
而氢基直接还原铁技术可以处理这些矿石,将其还原成金属铁,从而实现资源的综合利用。
3. 废旧金属回收:氢基直接还原铁技术还可以用于废旧金属的回收。
通过将该技术与废旧金属处理工艺相结合,可以实现废旧金属的高效回收和再利用,有利于节约资源和保护环境。
三、氢基直接还原铁技术发展前景随着全球环保意识的日益增强和能源结构的转型,氢基直接还原铁技术的发展前景十分广阔。
直接还原技术的发展及前景
![直接还原技术的发展及前景](https://img.taocdn.com/s3/m/637fe8fdf61fb7360b4c65c4.png)
我 国天然气 资源 非常 有 限 , 煤 炭 资源 ( 其 但 尤 是非 焦煤 )的首选 工艺 。 目前 在 国 内实 施 的工艺 主
铁 ) 03年我 国从 国外进 口直接还原铁 ( 绵铁 ) 。20 海 20万 t而 我 国 直 接 还 原 铁 生 产 能 力 仅 为 6 5 , 0 万 t年 ,03年产量为 4 / 20 , 0万 t远远不 能满足需求 。 ,
收 稿 日期 :0 1— 9—1 21 0 6 ・
Mirx 炉法 是气 基 直接 还 原铁 生 产 技 术 的 de 竖
主导工艺 , 该工艺 由 Md n os iadR s 公司开发, l 目前
作者简介 : 汪
远 , 齐哈尔市北满特钢机 电公 司 , 齐 助理工程师 。
5 9
黑
p it o t eeomet f i c rd c o frn( R )tcn l hn ,t eesyadte ons u vlp n r t e ut n o i d od e i o D I eh oo i C ia h n cs t n y g n e i h
第 3 1卷
第 4 期
黑 龙 江 冶 金
Vo . 1 13
N . o4
2 1 1 0 年 1 2月
He o g a g Me l ry i nj n l i t l g au
D c mb r 2 e e e 01 1
直 接 还 原 技 术 的发 展 及 前 景
汪 远
Ad a c nd Pr s e t r c du to Te hn lg v n e a o p cs Die tRe c in c o o y
国内外高炉炼铁技术的发展现状和趋势
![国内外高炉炼铁技术的发展现状和趋势](https://img.taocdn.com/s3/m/612aed2353ea551810a6f524ccbff121dd36c533.png)
国内外高炉炼铁技术的发展现状和趋势
国内外高炉炼铁技术的发展现状和趋势
一、发展现状
1、国内
(1)钢铁厂炼铁技术的改造力度加大,已实现超低碳、超低强度、超低消耗的可持续发展。
(2)新型储能灶的兴起,使煤的消耗大大减少,同时也提高了炼铁设备的智能度。
(3)智能化技术的广泛应用,大大提升了传统炼铁技术的能源利用率。
2、国外
(1)德国、日本、西班牙等国在炼铁方面都有着非常成熟的技术,通过智能化技术的大量应用,以及不断提升设备抗磨损能力,使炼铁设备的性能得到持续提升。
(2)美国的炼铁技术也在不断发展,尤其是节能技术的提升,使温室气体排放量大幅减少,符合可持续发展的要求。
二、发展趋势
1、储能灶的广泛应用:储能灶的智能化技术可以大大减少给炉内喷射的煤,从而提高炼铁效率。
2、球化技术的提升:通过提高炉内样品的球化度,大大提升炼铁炉设备的耐板材性和智能度。
3、炼铁技术创新:不断创新和应用抗磨损、节能、轻量化、小型化等技术,提高设备的使用效率和产量。
4、炉前技术的完善:通过构建智能、优化的炉前技术,可以有效将煤、矿石等进料质量提高。
5、可持续发展:国内外高炉炼铁技术都趋向于节能、低碳、环境友好的可持续发展方向。
我国直接还原铁技术
![我国直接还原铁技术](https://img.taocdn.com/s3/m/7936659fdaef5ef7ba0d3cd4.png)
直接还原铁非高炉法炼铁主要包括直接还原铁和熔融还原铁两种冶炼法。
所谓熔融还原法是指不用高炉而在高温熔融状态下还原铁矿石的方法,其产品是成分与高炉铁水相近的液态铁水。
开发熔融还原法的目的是取代或补充高炉法炼铁。
与高炉法炼铁流程相比,熔融法炼铁有以下特点:(1)燃料用煤而不用焦炭,可不建焦炉,减少污染。
(2)可用与高炉一样的块状含铁原料或直接用矿粉作原料。
如用矿粉作原料,可不建烧结厂或球团厂。
(3)全用氧气而不用空气,氧气消耗量大。
(4)可生产出与高炉铁水成分、温度基本相同的铁水,供转炉炼钢。
(5)除生产铁水外,还产生大量的高热值煤气。
从以上特点可以看出,熔融还原炼铁法作为一种用煤和矿生产热铁水的新工艺,其最大优点是不使用焦煤,能避免因焦煤资源日趋稀缺造成的高炉炼铁成本的大幅上升,可不建焦炉,直接使用非炼焦煤及含铁原料就可生产出基本合格的炼钢铁水;在环保方面也具有明显优势,由于没有焦化带来的污染,故对环境污染减少,属清洁生产工艺。
资料表明,熔融还原炼铁法排放的污染物量仅为焦炉一高炉工艺的1%一10%,并能进行能源的综合循环利用。
此外,熔融还原炼铁工艺流程短、占地少,操作容易且操作人员少,生产和投资成本也较低,相当于传统高炉法的80%;而且在生产能力及生产的开、停方面具有高度的灵活性。
在众多熔融还原工艺中,只有奥钢联所开发的Corex工艺真正实现了以煤代焦生产出铁水,并实现了商业化生产。
它是在奥地利和德国政府的财政支持下,于20世纪70年代开始研发,1989年实现商业生产。
第一代实现商业化生产的无高炉炼铁COREX-1000工厂年产能40万吨。
1995年至1999年间,世界上又先后建成四座年产能60万~80万吨的第二代COREX-2000生产厂,分别位于韩国的浦项、南非的撒丹那和印度的两个城市。
Corex工艺的生产流程由上下两部分组成。
上部是还原竖炉,下部是熔化气化炉。
上部装入的炉料(块矿、球团或烧结矿等块状物)还原成金属化率为90%~95%的海绵铁,然后分别由多台水冷螺旋输送机连续供给下方的熔化气化炉并在此进行熔化和终还原。
我国直接还原铁工艺的发展现状及趋势实践探究
![我国直接还原铁工艺的发展现状及趋势实践探究](https://img.taocdn.com/s3/m/a6b595d4185f312b3169a45177232f60ddcce7fd.png)
9I ndustry development行业发展我国直接还原铁工艺的发展现状及趋势实践探究汪翔宇,刘荣幸,肖香普(唐山奥特斯科技有限公司,河北 唐山 063020)摘 要:对我国直接还原铁工艺的发展历史与发展现状进行深入探讨,可以掌握直接还原铁工艺在发展中存在的问题。
与此同时,需要从直接还原铁工艺与我国冶炼技术出发,对直接还原铁工艺的发展趋势进行探索。
关键词:直接还原铁工艺;发展现状;发展趋势中图分类号:TF55 文献标识码:A 文章编号:11-5004(2021)16-0009-2收稿日期:2021-08作者简介:汪翔宇,男,生于1983年,汉族,湖北人,本科,中级工程师,研究方向:冶金还原铁。
现阶段,在现代化钢铁行业发展过程中,直接还原铁生产工艺的应用越来越普遍。
直接还原铁生产工艺在比熔化温度更低的情况下,能够将铁矿石还原为海绵铁。
与传统高炉炼铁相比,能够节省焦炉以及烧结等流程,整体炼铁流程比较短,产生的污染也相对较小。
并且在炼铁过程中的能源消耗量比较低,能够解决在传统炼铁过程中受炼焦煤短缺影响的问题。
再加上海绵铁内的硫、磷、硅等有害杂质的含量相对较低,可以提升电炉冶炼钢产品的整体质量。
因此,对直接还原铁工艺进行深入研究,对促进我国钢铁行业节能减排工作的有序开展,调整钢铁产品结构,提高钢铁产品的整体质量有积极意义。
1 我国直接还原铁工艺发展现状我国的煤炭资源储量比较丰富,尤其是焦煤储量丰富。
因此,在我国传统钢铁冶炼过程中,使用的炼铁工艺主要是以高炉炼铁技术为主。
这一技术的稳定性比较强,并且经过长时间应用,该技术比较成熟和稳定。
但是随着钢铁行业的不断发展,这一技术逐渐不能满足钢铁冶炼的实际需求,特别是对优质钢种的生产需求。
在一定程度上影响了我国钢铁行业的长远持续发展。
此外,我国优质铁矿石的储量较低,对国外矿石依赖性较强。
在2013年我国的铁矿石进口为8.19亿吨,对进口矿石的依赖度超过50%,在很大程度上制约了我国钢铁企业的长远发展。
氢基竖炉直接还原炼铁工艺
![氢基竖炉直接还原炼铁工艺](https://img.taocdn.com/s3/m/f9c886d8ed3a87c24028915f804d2b160a4e8672.png)
氢基竖炉直接还原炼铁工艺1. 什么是氢基竖炉直接还原炼铁?嘿,朋友们!今天咱们来聊聊一个听上去有点复杂但其实蛮有趣的东西——氢基竖炉直接还原炼铁工艺。
别被这个名字吓着了,它其实就是用氢气来“解放”铁矿石里藏着的铁。
想象一下,铁矿石就像个被锁住的宝藏,而氢气就是那把万能钥匙,把铁“放出来”!这一工艺的优势可多了,比如节能减排、环保等,简直就是现代炼铁的“环保卫士”啊!2. 炼铁的基本流程2.1 准备工作那么,咱们先看看炼铁的基本流程。
第一步,当然是要准备原材料。
你想,没米哪能煮出饭来?所以,铁矿石、氢气、煤等等,统统得准备好。
就像是做一道大菜,调料可不能少!铁矿石是“主角”,而氢气则是“配角”,这两者的搭配简直就是天作之合。
2.2 竖炉的运作接下来,就是将这些原材料送进那高高的竖炉里。
竖炉看上去就像个大烟囱,里面可是藏着大学问的。
铁矿石在这里跟氢气见面,化学反应就开始了。
你知道的,反应就像是铁矿石和氢气之间的一场恋爱,经过一番折腾,铁就从矿石中“跑”了出来。
这一过程可真是热闹非凡,就像一场盛大的聚会,热气腾腾、激情四射!3. 氢基还原的优势3.1 节能环保你可能会问,为什么偏偏要用氢气呢?这可不是偶然,而是有深意的!传统的炼铁工艺往往需要用煤,结果可想而知,排放的二氧化碳那是相当惊人。
但氢气可不一样,它燃烧后只产生水,简直是“环保小能手”!这就好比用电动车代替汽油车,省油又环保,谁不喜欢呢?3.2 经济效益而且,氢基炼铁的经济效益也是一大亮点。
虽然初期投资可能有点高,但长远看,操作成本会降低,尤其是随着氢气生产技术的不断进步,氢气的价格有望大幅下降。
想想吧,等到那时候,我们可能就能以更低的成本,生产出更多、更优质的铁制品,真是乐事一桩!4. 未来展望总之,氢基竖炉直接还原炼铁工艺不仅是一种新技术,更是一种趋势。
随着全球对环保的重视,这项工艺的未来可谓一片光明。
各国的钢铁企业纷纷开始投入研究,想要在这场“绿色革命”中抢占先机。
直接还原铁生产工艺及发展方向
![直接还原铁生产工艺及发展方向](https://img.taocdn.com/s3/m/fd555d651ed9ad51f01df262.png)
直接还原铁(海绵铁)生产工艺及发展方向习惯上,我们把铁矿石在高炉中先还原冶炼成含碳高的生铁,而后在炼钢炉内氧化,降低含碳量并精炼成钢,这项传统工艺,称作间接炼钢方法;在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺,称作直接炼铁(钢)法或者直接还原法,用这种方法生产出的铁也就称作直接还原铁(即DRI)。
由于这种铁保留了失氧时形成的大量微气孔,在显微镜下观察形似海绵,所以直接还原铁也称之为海绵铁。
一、直接还原铁(海绵铁)的用途直接还原铁是精铁粉在炉内经低温还原形式的低碳多孔状物质,其化学成分稳定,杂质含量少(碳、硅含量低),主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。
一次还原铁粉(海绵铁)的主要用途有:①作为粉末冶金制品的原料,耗用量约占铁粉总耗用量的60~80%;②作为电焊条的原料,在药皮中加入10~70%铁粉可改进焊条的焊接工艺并显著提高熔敷效率;③作为火焰切割的喷射剂,在切割钢制品时,向氧-乙炔焰中喷射铁粉,可改善切割性能,扩大切割钢种的范围,提高可切割厚度;④还可作为有机化学合成中的还原剂、复印机油墨载体等。
近年来由于钢铁产品朝小型轻量化、功能高级化、复合化方向发展,故钢材中非金属材料和有色金属使用比例增加,致使废钢质量不断下降。
废钢作为电炉钢原料,由于其来源不同,化学成分波动很大,而且很难掌握、控制,这给电炉炼钢作业带来了极大的困难。
如果用一定比例的直接还原铁(30~50%)作为稀释剂与废钢搭配不仅可增加钢材的均匀性,还可以改善和提高钢的物理性质,从而达到生产优质钢的目的。
因此,直接还原铁(海绵铁)不仅仅是优质废钢的替代物,还是生产优质钢材必不可少的高级原料(天津无缝钢管公司国外设计中就明确要求必须配50%的直接还原铁(海绵铁))。
根据国外报导,高功率电炉冶炼时,炉料搭配30~50%直接还原铁,生产率提高10~25%,作业率提高25~30%。
电炉炼钢原料及直接还原铁生产技术
![电炉炼钢原料及直接还原铁生产技术](https://img.taocdn.com/s3/m/9115cd13b5daa58da0116c175f0e7cd184251823.png)
电炉炼钢原料及直接还原铁生产技术摘要:本文介绍了我国电炉炼钢原料及直接还原铁生产技术的应用现状。
电炉炼钢主要依赖废钢和铁合金作为原料,通过石灰石和脱硫剂等辅助原料的配比和处理。
然而,废钢质量不稳定、供应有限,以及直接还原铁材料紧张等问题仍需解决。
气基竖炉技术和回转窑法技术等直接还原铁生产技术在电炉炼钢中得到广泛应用。
随着技术不断进步,这些技术将为钢铁工业的未来发展提供更多可能性。
关键词:电炉炼钢;直接还原铁技术;废钢铁材料;生产质量引言钢铁作为现代工业的基础材料之一,广泛应用于建筑、交通、机械制造等各个领域,对社会经济的发展起着至关重要的支撑作用。
而电炉炼钢和直接还原铁生产技术作为钢铁制造领域的两大关键工艺,自问世以来,不仅实现了对钢铁生产过程的深刻革新,更对传统高炉冶炼方式进行了有效的补充与完善。
1我国电炉炼钢的主要原料我国电炉炼钢的主要原料包括废钢和铁合金。
废钢是指回收的废旧钢材,例如废旧建筑结构、废旧汽车、废旧家电等,这些废旧钢材通过回收和处理后,成为电炉炼钢的重要原料。
废钢的使用不仅有助于资源的再利用和节约,还能有效降低炼钢过程中的能源消耗和环境污染。
铁合金是指含有一定铁元素并且与铁相容的合金,常见的有硅铁合金、锰铁合金、铬铁合金等。
这些铁合金可以调整炼钢过程中的钢水成分,提高钢的性能和品质[1]。
除了废钢和铁合金,电炉炼钢过程中还需要添加一定量的石灰石、脱硫剂等辅助原料,以确保钢水的质量和合金成分的准确控制。
通过合理配比和处理这些原料,我国的电炉炼钢技术不断优化和创新,为钢铁行业的可持续发展做出了重要贡献。
2电炉炼钢原料应用现状电炉炼钢技术是一种利用电力作为能源、直接还原铁生产钢水的先进冶炼工艺。
相较于传统高炉冶炼方式,电炉炼钢具有能耗低、环境友好、低碳排放等优势,因此在近年来得到了广泛应用和不断发展。
2.1废钢铁料量较少、质量较差尽管废钢在电炉炼钢中是重要的原料,但目前我国面临废钢铁料量较少和质量参差不齐的问题。
炼钢中的直接还原技术及其应用
![炼钢中的直接还原技术及其应用](https://img.taocdn.com/s3/m/b1f08680185f312b3169a45177232f60dccce712.png)
炼钢中的直接还原技术及其应用随着钢铁行业的发展,炼钢技术也在不断的变革与创新。
直接还原技术作为一种新型炼钢技术,已经开始得到广泛的应用。
本文将从直接还原技术的基础和应用方面进行阐述,以期为读者提供更深入的了解。
一、直接还原技术的基础直接还原技术是使用还原剂将炉料中的氧化铁还原为金属铁的炼钢技术。
与传统的高炉技术相比,在直接还原技术中,直接使用还原剂还原炉料中的氧化铁,不需要通过高温和高压使其发生氧化还原反应。
这种技术具有明显的优点,主要表现在以下几个方面:1.制造成本低:由于直接还原技术不需要高压和高温,所需能源也更少,因此生产成本低于传统的高炉技术。
2.环保节能:使用直接还原技术炼钢可以减少CO2和NOx等大气污染物的排放,一定程度地保护了环境。
另外,由于直接还原技术对能源的需求更小,也有利于节能减排。
3.操作简便:在直接还原技术中,制造过程更加简单直接,操作也更加方便,更容易实现自动化和智能化。
以上3个方面是直接还原技术的主要优点。
相比于传统的高炉技术,直接还原技术在生产成本、环保和操作方便等方面都有更多的优势。
二、直接还原技术的应用1.直接还原工艺的应用直接还原技术的应用范围很广,从小型加工厂到大型钢铁制造企业都在使用该技术。
其中,直接还原工艺是一种常见的应用方式。
直接还原工艺主要包括三部分:还原反应、冶金物理化学过程和钢水净化过程。
还原反应过程是指在以还原剂为主体的还原反应中,将冶金炉中的氧化铁还原为冶金铁的化学反应过程。
冶金物理化学过程是指冶金炉内金属铁的脱硫、脱锰、脱孔及相应物理化学反应。
钢水净化过程是指将冶金炉内钢水经过捞渣、渣加剂、精炼等工艺处理后实现除杂,使钢水纯净。
直接还原工艺是炼钢企业中最常用的炼钢技术之一,它主要的应用优势在于高效、短周期、节能、环保等方面。
2.直接冶炼的应用直接冶炼是指将原料中的氧化铁直接还原至金属铁进行炼制的技术。
在直接冶炼过程中,仅使用还原剂,不需要其它辅助材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接还原炼铁技术的最新发展作者: 胡俊鸽,吴美庆,毛艳丽, 钢铁研究摘要撰写人TsingHua出版日期:2006年4月30日直接还原铁可以作为电炉、高炉和转炉的炉料。
DRI代替优质废钢更适合于生产对氮和有害元素有严格要求的钢种,如用于石油套管、钢丝绳、电缆线等的钢种。
近年,由于钢铁市场升温,废钢资源呈现世界性紧缺。
2003年,我国钢铁企业生产回收的废钢铁和非生产回收废钢铁合计为1502万t;而全年炼钢消耗废钢与辅助炼钢消耗废钢之和为4 750万t。
显然,国内的废钢缺口很大。
未来几年,随着国际市场废钢资源的短缺,世界对废钢的需求量将不断增长。
当今,在废钢资源全球性紧缺、国际市场价格频频上扬的情况下,对于我国来说,寻找废钢替代品已迫在眉捷。
直接还原铁和热压块铁是最好的废钢替代品。
1直接还原炼铁技术发展状况2003年世界直接还原铁总量为4900万t。
比2002年增加了10%,不同工艺所生产直接还原铁所占份额如下:Midrex 为64.6%,HyLⅢ为18.4%,HyLⅠ为1.3%,Finmet为5.2%,其他气基为0.4%,煤基为10.2%。
直接还原工艺根据还原剂不同可分为气基和煤基。
气基直接还原工艺中,竖炉Midrex、Arex(Midrex改进型)和HyLⅢ工艺、反应罐法Hy LⅠ、流化床法Fior和Finmet工艺,都已获得了工业应用,流化床法Fior、Cir cored和碳化铁法在工业上应用不久就停产了。
煤基直接还原法中,获得工业应用的有回转窑法和转底炉法(Inmet-co、Fastmet、Sidcomet、DRylron),新开发的多层转底炉Primus工艺已于2003年2月投产。
1.1气基直接还原工艺气基还原工艺可分为使用球团矿或者块矿的工艺和使用铁矿粉的工艺。
各种气基直接还原铁工艺发展状况如表1所示。
表1各种气基直接还原铁工艺发展状况工艺装备工艺特点所用原料目前状况研究发展F ior(委内瑞拉)4个流化床反应器生产能耗高于竖炉Midrex和HyLⅢ铁矿粉Side tur厂于1976年投产,1985年开始,年产量达到35万t~41万t。
由于市场原因于2000年停产。
由委内瑞拉和奥钢联进一步发展成FinmetFinmet(奥钢联和委内瑞拉)4个流化床反应器铁矿靠重力从较高反应器流向较低反应器直接使用矿粉,是Fior 的进一步改进,比Fior能耗低、人员需求少。
与Fior相比,其还原气体中H2含量少,CO没被氧化去。
在Finmet工艺中,矿粉在流化床第一段被还原过程产生的热气体预热,其较高的CO含量可以提高热平衡,并使HBI的w(C)达3%。
铁矿粉:<12mm现已有两个厂投产澳大利亚的BoodarieIron和委内瑞拉的Orinoco Iron 目前已生产了650万tHBI目前,V AI正在开发新一代Finmet工艺:Finm etmegatrain,能力为110万t,是当前反应装置的2倍。
Midrex(美国米德兰公司)竖炉、天然气重整炉、热压块机竖炉炉顶气与天然气混合,共同进入重整炉制取还原气, 还原竖炉和制气设备是相互联系、相互影响的。
对铁矿含硫量有一定限制,否则含硫炉顶气进入重整炉将造成裂解催化剂失效。
含碳球团、块矿在世界各地获得非常广泛应用,直接还原铁产量在各种工艺中占第1位,2003年比例为66.6%。
已获得工业广泛应用,在墨西哥、印度尼西亚、委内瑞拉、巴西、印度有多家生产厂,2003年在各种直接还原法产量中,占第二位,产量比例为18.4%。
HyLⅢ(墨西哥希尔萨公司)竖炉、天然气重整炉、热压块机可分为两部分, 制气部分和还原部分,这两部分可以相互独立。
这点与Midrex不同。
另,温度和压力比Mi drex高。
可以处理含硫量较高的铁矿。
这也与Midrex不同。
含碳球团或者块矿HyL- ZR是HyL Ⅲ的进一步改进,没有重整装置。
该工艺目前只在墨西哥Monterrey得以实施。
Arex(委内瑞拉奥里诺科黑色冶金公司开发)竖炉是Midrex的改进型,无重整装置,竖炉集气体重整与矿石还原于一体球团矿或者块矿Megamod-Midrex直径为7.5 m的竖炉、较大的重整炉年产量超过200万t的Midrex工艺1.1.1使用球团矿或块矿的气基直接还原工艺使用球团矿或者块矿的有竖炉法Midrex、HyLⅢ、Arex和罐式炉HyLⅠ。
目前,Midrex和HyLⅢ是成熟的工艺,在委内瑞拉、印度、加拿大、美国、伊朗、沙特阿拉伯等已获得了广泛应用。
Midrex主要生产厂有33座。
1994年以来投产的生产厂逐步大型化,每套年产能大都在100万t左右。
如表2所示。
HyLⅢ是希尔萨公司在H yLⅠ基础上开发出的高压逆流式移动床工艺,20世纪80年代开始在工业上应用。
世界上主要生产厂有12座。
近年新投产的设备年产能都约为100万t。
如表3所示。
表21994年以来投产的Midrex生产厂生产厂年生产能力/万t产品投产年印度Ispat工业公司100DRI1994埃及ANSDKⅡ80DRI1997墨西哥IMEXSA120DRI1997美国AmericanIronReduction120DRI1997委内瑞拉COMSIGV A100HBI1998rinidad&Tobago,Ispat DR3136DRI1999南非撒旦哈(Saldanha)80.4DRI1999埃及ANSDKⅢ80DRI2000 HyL-ZR是新开发的无重整装置的直接还原工艺,目前为止该工艺只在墨西哥蒙特雷(Mont errey)得以实施。
其天然气在竖炉内发生部分燃烧,通过控制而产生合乎要求的还原气体,从而对铁矿石进行还原;而传统HyLⅢ工艺一般在添加蒸汽条件下使天然气在催化重整器中裂表31999年以来投产的HyLⅢ生产厂生产厂年生产能力/万t产品投产年墨西哥蒙特雷Hylsa 4M67.5DRI1998沙特阿拉伯HadeedⅢ110DRI1999俄罗斯LebedinskyGOK90HBI1999委内瑞拉DOSVEN150(两套设备)HBI2000解。
为了获得w(H2)达80%的还原气体,通过洗涤去除CO2。
Megamod厂的Midrex设备是大型的Midrex设备,如今直接还原铁年产量超过170万t,生产率超过220t/h。
直径为8m的竖炉年产直接还原铁能力270万t。
1.1.2气基粉矿直接还原工艺在直接还原生产中,采用细矿粉的直接入炉与块矿和球团矿相比其原料成本具有明显优势。
气基粉矿直接还原一般都采用化床工艺。
很长时间以来,获得商业应用的粉矿直接还原铁工艺只有Fior工艺(如表1所示)。
Finmet工艺是Fior工艺的进一步发展<1>,是基于粒度小于12mm的粉矿的气体直接还原工艺。
已经有两个工业厂投产,年设计产能都超过200万t热压块铁。
两个厂2003年共产163万tHBI。
1.1.3气基直接还原工艺工业生产结果表4中汇总了气基直接还原的一些工业生产数据<2>。
Midrext和HyLⅢ工艺的天然气消耗为9.7~10.7GJ/t,而Finm et为13.3GJ/t。
对这些工艺来说重要的是天然气的价格。
而Finmet工艺使用更便宜的粉矿,补偿了较高的天然气消耗。
表4气基直接还原工艺的操作结果矿石或球团矿/(kg·t-1)块矿/(kg·t-1)粉矿/(kg·t-1)天然气/(GJ·t-1)电功率/(kW·t-1)氧/(m3·t-1)产品Midrex1200 300-9.7 93.0 30DRI/HBIHyLⅢ1 181 295-10.7 98 34DRI/HBIFinmet--1 500 13.3 165-HBI1.2煤基直接还原在煤基直接还原工艺中,已获得工业应用的有回转窑和转底炉工艺。
表5表示主要煤基直接还原工艺的发展现状<3~6>。
转底炉由于反应速度快、原料适应性强等特点,近年来得到了快速发展。
转底炉工艺有许多种,包括Inmeto、Fastmet、Comet、Sidcomet、IDI(IronDynamics Inc)I、TMK3、DRyIron等。
表5主要煤基直接还原工艺的发展现状工艺装备工艺特点所用原料目前状况研究发展Primus(卢森堡PaulWurth)多层转底炉、熔融炉两段式工艺,除了转底炉外,还有熔融炉,能直接生产出铁水煤粉与矿粉在炉内混合,该工艺能把Z n、Pb、碱金属等与铁分开铁矿粉、煤粉铁屑、钢铁厂粉尘已完成工业试验目前卢森堡Diff erdange已投产8.2万t/a的装置,处理含铁废料。
直径8.3m,8层RedSme lt(德国和意大利)造球装置、转底炉装置和埋弧炉熔融还原装置这是三段工艺的直接还原,造球和转底炉装置相当于转底炉技术,埋弧炉可把热态DRI熔融成铁水和渣,产能大于30万t铁精矿粉,或者含铁废料制成的球团,专门为处理金属废料开发Ellwood厂于1978年投产年处理废料2.5万t的工厂。
SMSDemag目前正在开发RedSmeltNST工艺,即用氧/煤基熔融装置代替埋弧炉,降低成本。
DRyIron转底炉、干压块机、DRI冷却机无粘结剂的矿煤干压块、转底炉单层装料和温度控制在1288℃的高温辐射加热。
常规铁矿粉或者含铁废料、焦粉第一个DRyIron设备是新日铁在光厂建设以处理残渣的Fastmet(美国和神户合作开发)转底炉、球团装置使用冷固结球团, 取消了高温氧化球团环节。
反应速度快,生产效率高。
产品质量差,全铁含量低,脉石含量高,脱硫能力较差,所以产品硫含量过高。
粒度为8~12mm的自还原球团2000年新日铁在广畑厂投产了一条年产能达19万t的Fastmet工艺来处理残渣。
2000年以来,又在君津厂投产了两座转底炉,一座处理低锌灰尘,另一座处理高炉瓦斯灰和转炉尘。
其年处理循环料的能力均为18万t。
2001年又在神户的和歌山厂投产一年产能14万t的转底炉设备来处理富锌冶金炉尘。
Inmetco(美国开发)转底炉、造HYL工艺注重钢铁生产的环保(3-13)上世纪50年代中期兴建的第一个工业规模直接还原铁厂为电炉提供优质的纯铁原料,并导致全世界直接还原铁工业迅速发展。
目前,由于此项技术减少了钢铁生产的排放量,从而获得“绿色”证书。
在希尔萨直接还原厂投入运行时,对环境问题并未给予过多的考虑。
经过长期的不断改进,HYL工艺已可以称作绿色的、现代化的工艺。
不仅该工艺本身最符合环境友好要求,而且其新的附带工艺,如HYLHytemp系统也使炼钢生产更高效。
该工艺通过全封闭气动系统给现代化电炉热装直接还原铁。
这些工艺可使钢铁生产的效率和成本效率得到空前的提高。
1、还原气体还原气体的生产有两种方法:一是外部蒸汽重整器;二是通过“原地重整”反应直接在竖炉反应器内进行。