材料成型原理-1.2 液态金属的性质
材料成形理论基础ppt文档
衍射结构为一条条带
第一个峰与固态极为相近
液态金属中原子的排列几个 原子间距的范围内与固态的排 列方式基本一致
700oC时液态Al中原子分布曲线
稍高于熔点时液态碱金属的径向分布函数
第二章 液态金属基本性质与凝固 热力学、动力学
液态金属结构的理论模型
(一)无规密堆硬球模型(Random Close Packing)
W-因原子不规则而产生的势能
第二章 液态金属基本性质与凝固 热力学、动力学
熔点附近
➢晶粒之间的结合极大破坏 ➢晶粒之间更容易产生相对运动 ➢晶粒内部频繁跳跃、转移 ➢晶粒逐渐失去固定的形状和尺寸
具有流动的液体
提供能量进一步破坏 晶粒转变为小的原子集团
金属熔化过程及金属的液态结构研究方法
固态向液态转变时能 量的变化
活化原子
原子能量的统计分部
第二章 液态金属基本性质与凝固 热力学、动力学
2.1.2 液态金属的熔化
金属的熔化
热震动加剧, 振幅增大,原子间平均距离增大,尺寸膨胀 能量达到及大于Q的活化原子增多,空位数增加、晶界产生移动
熔化时不要求所有或 绝大部分原子能量都 达到或大于Q值
熔化从晶界开始
熔化从晶界开始 ➢ 晶界上原子的排列方式不规则 ➢ 原子偏离平衡位置 ➢ 原子势能高 E>Q-W
EM
3 kT 2
第二章 液态金属基本性质与凝固热 力学、动力学
§2.1 液态金属的基本性质
2.1.1 液态金属的结构 一、液态金属的热运动
n 能量等于或大于能量Q的原子数 nNeQ/kT
能量等于或大于能量 nQ E 的原子数 Q E
nQEnQeE/k T
液态金属的结构和性质
1.液态成形:是液态金属充满型腔并凝固后获得符合要求的毛坯或零件的工艺技术。
2.晶界粘滞流动:把金属加热到熔点附近时,离位原子数大为增加。在外力的作用下,这些原子作定向运动,造成晶粒间的相对流动。(金属的熔化变为同温度的液态金属时,金属要吸收大量的热量(金属由固态变为液态,体积膨胀约为3~5%)。
8.粘度在材料成形过程中的影响。
A.对液态金属净化的影响-粘度↑杂质和气泡上升的速度↓
B.对液态合金流动阻力的影响-粘度↑流动阻力↑
C.对液态过程中液态合金对流的影响-粘度↑对流强度↓
9.表面张力:液态金属表面有一个平行于表面且各向大小相等的张力。
10.影响表面张力的因素:
A.熔点。熔点↑原子间结合力↑表面张力↑
B.温度。温度↑表面张力↓(但对铁碳合金、铜合金,温度↑表面张力↑)
C.溶质原子 表面活性元素,使表面张力↓非表面活性元素,使表面张力↑
11.充型能力mold-filling capacity:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力(充型能力是外因(铸型)和内因(流动性)的共同结果)
12.液态金属的流动性:液态金属本身的流动能力。
4.在熔点和过热度不大时,液态金属的结构是接近固态金属而远离气态金属的。
5.液态金属:是由各种成分的原子集团、游离原子、空穴、裂纹、杂质及气泡所组成的“混浊”液体。
6.粘度(粘滞性):在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动的性质。
7.粘滞性的本质:原子间结合力的大小。
液态金属性质ppt课件
图1-2 液态金属结构示意图
1.1.2 粘度理论
液态金属是有粘性的流体。 流体在层流流动状态下,流体中的所有液层按平行方
向运动。 在层界面上的质点相对另一层界面上的质点作相对运
动时,会产生摩擦阻力。 当相距1cm的两个平行液层间产生1cm/s的相对速度时,
在界面1cm2面积上产生的摩擦力,称为粘滞系数或粘 度。 粘度的单位是Pa·s。
►►液相成型
固态金属
按原子聚集形态分为 晶体与非晶体。 晶体
凡是原子在空间呈规则的周期性重复排列 的物质称为晶体。
单晶体
在晶体中所有原子排列位向相同者称为单晶体
多晶体
大多数金属通常是由位向不同的小单晶 (晶粒)组成,属于多晶体。
在固体中原子被束缚在晶格结点上,其振动频 率约为1013 次/s。
液态金属?
由相关热力学公式可得:
W dF
dA dA
此式表明,表面张力就是单位面积上的自由能。 式中负号表示由于产生了新的单位面积的表面,而使系 统的自由能增加,增加值等于外力对单位表面所作的功。
图1-1 700℃液 态铝中原子密
度分布线
可见液态原子分布曲线是介于 4r 2 0 曲线与固态时的 分布曲线(竖直线)之间作波浪形的变化。
其第一峰值与固态时的衍射线(第一条垂线)极为接 近,其配位数与固态时相当。
第二峰值虽仍较明显,但与固态时的峰值偏离增大, 而且随着r的增大,峰值与固态时的偏离也越来越大。
金属由液态转变为固态的凝团过程,实质上就是原子 由近程有序状态过渡为长程有序状态的过程,
从这个意义上理解,金属从一种原子排列状态(晶态 或非晶态)过渡为另一种原子规则排列状态(晶态) 的转变均属于结晶过程。
新型材料研究中液态金属的物理化学性质及特性
新型材料研究中液态金属的物理化学性质及特性随着科技的不断发展,新型材料的研究也日益受到人们的关注。
其中,液态金属备受关注,成为新型材料研究的热点之一。
液态金属是一种特殊的材料,具有许多独特的物理化学性质及特性,它有着广泛的应用前景。
本文将从物理化学性质、材料特性、制备方法和应用领域等方面进行探讨。
1. 液态金属的物理化学性质液态金属是一种高密度、高导电、高波速、高表面能和高可压缩性的材料。
其中最重要的特性是其高导电性和高表面张力。
液态金属的导电性远远高于普通液体,它的导电性能大致相当于金属的电导率。
而液态金属的表面张力非常大,因此可以在空中保持球形,也可以被用来制作液态金属电极。
此外,液态金属还具有良好的热传导性能和高反应活性。
在高温下,液态金属可以与氟化物、氧化物等反应产生新的化合物,这为其在电池、传感器、化学反应催化剂等领域的应用提供了基础。
2. 液态金属的材料特性液态金属不同于普通固体金属,它具有较强的形变能力和流动性,可以被塑性变形,并保持其金属性质。
因此,液态金属具有优异的形变加工性能和高可塑性,可以制成各种可曲折的形状。
同时,在液态金属的形变属性中还有一项独特的特性是超塑性。
液态金属可以在低压下得到显著的变形,在材料加工与制造中具有广泛的应用前景。
此外,由于液态金属在成形过程中的表面能力极强,可以大幅减少材料的耗能,提高材料加工效率。
3. 液态金属的制备方法液态金属是通过“快速淬火”原理制备得到的,常见的制备方法包括真空吸铸和高压气相扩散等。
液态金属通常以针状、球状和片状等形态存在,在制备出的初期,需要通过调控温度和成分等方式进行表面氧化处理,以获得其优异的物理特性。
4. 液态金属的应用领域液态金属被广泛应用于电子、机械、建筑、冶金和生物医药等领域。
其中,在电池、储能、电器等领域应用较为广泛。
液态金属还可以用于制作光学薄膜、传感器等。
此外,液态金属还可以应用于材料加工和制造中,如航空航天、汽车制造、船舶制造、食品加工等行业。
材料成型原理
材料成型原理第1章液态金属的结构与性质物相由界面包围的具有一定成分和结构的均匀体组织物相的机械混合物润湿性是指存在两种互不相溶液体,液体首先润湿固相表面的能力,即一种液体在一种固体表面铺展的能力或倾向性压力差物体两侧所受压力的差值现代晶体学表明,晶体的原子一定方式周期排列在三维空间的晶格结点上,表现出平移对称性特征,同时原子以某种模式在平衡位置上作热振动,相对于晶体这种原子有序排列,气体的分子原子,不停的做无规律运动。
液体表现出长程无序特征,液体结构表现出局域范围内的近程有序。
偶分布函数的物理意义:距某一参考粒子r处找到另一个粒子的概率。
晶态固体因原子以特定方式周期排列,其偶分布函数以相应的规律呈分立的若干尖锐峰,液体的g(r)出现若干衰减的钝化峰,直至几个原子间距后趋于直线g(r)等于1。
由于能量起伏,液体中大量不停游动着的局域有序原子团簇,时聚时散,此起彼伏,而存在结构起伏,实际金属的现象,还要复杂的多,除了能量起伏及结构起伏,还同时存在着浓度起伏。
长程有序:液体的原子相对于周期有序的晶体固态是不规则的,液体结构宏观上不具有平移、对称性。
黏度是液体内摩擦阻力大小的标志,黏度的物理意义可以视为:作用于液体表面的应力与垂直于该平面方向上的速度梯度的比例系数。
表面活性元素使液体黏度降低,非表面活性杂质的存在使黏度提高。
黏度的意义:黏度影响金属液的流动性进而影响铸件轮廓的清晰程度。
影响钢铁材料的脱硫,脱磷,扩散脱氧。
熔渣及金属液粘度降低对合金元素的过渡是有利的。
影响铸件内部缩孔或缩松、热裂的形成倾向。
影响精炼效果,夹杂、气孔的形成。
表面张力是表面上平行于表面切线方向且各方向大小相等的张力。
表面张力是由于物体在表面上的质点受力不均所致。
表面是产生新的单位面积表面时系统自由能的增量。
表面与界面的差别在于后者泛指两相之间的交界面,前者指液体或固体与气体之间的交界面。
原子间结合力越大,表面内能越大,因此表面自由能越大,表面张力也就越大。
材料成形工艺原理第二章液态金属的结构和性质
在碰撞时,有的原子将一部分能量传给别 的原子,而本身的能量降低了。
结果是每时每刻都有一些原子的能量超过 原子的平均能量,有些原子的能量则远小于 平均能量。这种能量的不均匀性称为“能量 起伏”。
由于能量起伏,一些原子则可能越过势垒跑到原 子之间的间隙中或金属表面,而失去大量能量,在 新的位置上作微小振动(图1-3)。一旦有机会获得 能量,又可以跑到新的位置上。
接近熔点时,晶界上的原子则可能脱离原晶粒表 面,向邻近晶粒跳跃,晶粒逐渐失去固定形状。
特征:
将金属加热至熔点时,金属体积突然膨胀3~5%, 等于固态金属从热力学温度零度加热到熔点前的总 膨胀量。
金属的其它性质如电阻、粘性等发生突变,吸收 大量热能——熔化潜热,而金属的温度不升高。
这些突变现象是不能仅仅用离位原子和空穴数目 的增加加以解释的。因为空穴数目的增加不可能是 突变的。
(5) 如前所述,由于势能曲线是极不对称的,向左振动 时,动能很快就全部转化为势能,原子所能达到的最大 偏离位置较小。
向右振动,则需较大的偏离,动能才全部转化为势 能,振幅的中心位置则由Ro→R1 …。但是,这种膨胀 只改变原子的间距,并不改变原子排列的相对位置。
(6) 晶体中每个原子的振动能量不是均等的, 振动方向杂乱无章。
或
当R=R0 时,F (R0)=0,即
对应于能量的极小值,状态 稳定。原子之间倾向于保持一定 的间距,这就是在一定条件下, 金属中的原子具有一定排列的原 因。
当R=R1时,吸引力最大,即
对应能量曲线的拐点。 当R>R1时,吸引力开始减小, 势能向最大值转折。
二、金属的加热膨胀
晶体中原子并不是固定不动的,只要温度高于热力学 温度0K,每个原子皆在平衡位置附近振动,即所谓热振 动。温度升高时振动能量增加,振动频率和振幅加大。
材料成型基本原理完整版
第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
第1章液态金属的结构和性质
什么是液态金属
液态中原子分 布随机。原子 间的交互作用 能决定了原子/ 团的排列无序。 固体中原子分 布规律,长程 有序。
1.1金属的加热膨胀和熔化
1.1.1 膨胀的原因: (1)原子振动加剧振幅增大 (2)“空穴”的产生
1.1.2 膨胀的结果 (1)原子振幅增大; (2)活化原子数增多; (3)缺陷增多
3. 溶质 使表面张力降低 — 表面活性物质,即 dσ/dc<0,具有正吸附作用; 使表面张力升高 —非活性物质;即 PA=2σ/r dσ/dc>0,具有负吸附作用; PA=P-P0 什么是正负吸附? σ↓ ----PA↓ ,即外界压力↓,液体内部溶质 趋于向表面迁移,造成Cface>Cinner,此为正 吸附。
工艺过程比较复杂,一些工艺 过程还难以控制 液态成形零件内部组织的均匀 性、致密性一般较差
液态成型 缺 点
液态成形零件易出现缩孔、缩 松、气孔、砂眼、夹渣、夹砂、 裂纹等缺陷,产品 质量不够稳 定 由于铸件内部晶粒粗大,组织 不均匀,且常伴 有缺陷,其力 学性能比同类材料的塑性成形 低
二、液态金属的结构判定 2.1 间接法 --通过比较固液态和固气态转变的物理 性质的变化判断。
(1)体积和熵值的变化 (2)熔化潜热和汽化潜热
2.2 直接法 — X射线或中子线分析研究液态金属 的原子排列。
液态金属中原子的排列在几个原子的间距范围内, 与 其固态的排列方式基本一致,即近程有序。但由于 原子间距的增大和空穴的增多,原子的配位数略有变化, 热运动增强。
Fe-C合金中,C%增大,黏度降低(亚共晶); 难熔化合物的粘度高;Al2O3,MnS,SiO2 共晶成分合金粘度低于非共晶合金。
金属材料成形原理知识考点
∙液态成型基础∙液态金属的结构和性质晶体的结构和性能主要决定于:组成晶体的原子结构和他们之间的相互作用力与热运动。
液态金属的主要特征:进程有序,远程无序。
原子排列的几个原子间距的小范围内,与其固态原子的排列方式基本一致,呈现出一定的有规律排列;而距离远的原子排列就不同于固态了,表现为无序状态。
理论模型:钢球模型,晶体缺陷模型(能量起伏和结构起伏)。
能量起伏:处于热运动的原子能量有高有低,同一原子的能量也随时间不停变化,时高时低。
表现为各个原子间能量的不同和各个原子集团间尺寸的不同。
结构起伏:液态金属中存在由大量不停游动着得原子集团组成,集团内为某种有序结构,处于集团外的原子则处于散乱的无序状态,并且这些原子集团不断的分化组合,时而长大时而减小,时而产生,时而消失,此起彼伏。
浓度起伏:游动集团之间存在着成分不均匀性。
表现为各个原子集团之间成分的不同。
实际金属和合金的液体在微观上是由成分和结构不同的游动原子集团、空穴和许多固态、气态或液态杂质或化合物组成,而且还表现出能量起伏、结构起伏及浓度起伏等三种起伏特征。
粘滞性(黏度)的本质:质点间结合力的大小。
影响黏度的因素:温度,熔点,杂质。
黏度对液态形成过程的影响:a对液态金属留态的影响b对液态金属净化的影响表面张力是表面上存在的一个平行于表面且各向大小相等的张力。
本质:表面张力是由于物质在表面上的质点受力不均匀而产生的。
影响界面张力的因素:熔点↑,温度↓,溶质(降低的称为表面活性物质,增加的称为非表面活性物质)。
表面张力引起的附加压力:液面凸起(不润湿)为正,液面下凹为负。
∙液态金属的充型能力及其影响因素充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
液态金属的充型能力首先取决于金属本身的流动能力(流动性)同时又受外界条件,如铸型性质,浇注条件,铸件结构等的影响。
流动性:铸造性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
影响充型能力的因素及提高的措施a金属性质方面因素∙合金的化学成分(2)结晶潜热(3)金属的热物理性能(4)黏度(5)表面张力措施:(1)正确选择合金成分(2)合理的熔炼工艺b铸型性质方面的因素∙铸型的蓄热系数(2)铸型的温度(3)铸型中的气体(少)c浇注条件方面的因素∙浇注温度(高)(2)充型压头(增加金属液静压头)(3)浇浇注系统的结构(复杂越差)d铸件结构方面因素折算厚度(大)和复杂程度(简单)∙金属凝固过程中的传热研究铸件温度场得方法:实测法,数学解析法,数值模拟法。
材料成形原理-第一章(1)液态金属的结构和性质 PPT课件
1.1固态金属的加热、膨胀及熔化
1.1.2 金属的加热膨胀
当温度升高时,原子振动能量
图1-2 加热时原子间距和 原子势垒的变化
增加,振动频率和振幅增大。以双
原子模型为例,假设左边的原子被
固定不动而右边的原子是自由的。
则随着温度的升高,原子间距将由 R0→R1→R2→R3→R4;原子的能 量也不断升高,由 W0→W1→W2→W3→W4。原子间 距随温度升高而增加,即产生膨胀, 如图1-2所示。膨胀只改变原子的
5、缺点 (1 )铸件尺寸均一性差; (2) 与压力加工和粉末冶金相比金属的利用率低; (3 )内在质量比锻件差; (4 )工作环境粉尘多、温度高、劳动强度大、生产效率低等
2、我国铸造技术的发展
我国铸造技术已有5000年的悠久历史 铸造技术的成就推动了农业、兵器制造、 天文、医药、音乐、艺术等方面的进步
1.2 液态金属的结构
液态金属的结构分析(表观特征)
㊣ 具有流动性 (液体最显著的性质);
㊣ 可完全占据容器的空间并取得容器内腔的形
表
状 (类似于气体,不同于固体);
观 ㊣ 不能够象固体那样承受剪切应力,表明液体
特
的原子或分子之间的结合力没有固体中强
征
(类似于气体,不同于固体);
㊣ 具有自由表面 (类似于固体,不同于气
沧州铁狮的历史照片
湖北当阳铁塔,铸造 于北宋嘉佑六年(公 元1061年),八面十 三层 ,高16.945米, 据铭文记载的铁塔重 七万六千六百斤,当时 是就地设炉分层铸造, 采用堆土法而建起来, 各层之间重叠摆放,没 有焊接 ,整个塔身玲 珑隽秀,从上到下,自 里而外全生铁浇铸,仅 塔刹在 清代以青铜重 铸.
中国和美国1996~2001年铸件产量(万吨)
材料成型原理思考题及解答改
材料成型原理思考题及解答改本课程的教学要求为1。
掌握液态金属和合金的凝固和结晶的基本规律,冶金处理及其对材料和零件性能的影响。
2。
注重掌握塑性成形的基础和塑性成形理论的应用3。
重点掌握材料成型过程中的化学冶金及现象、缺陷形成机理、影响因素和预防措施第二章液态金属的主要内容1,液态金属的基本特性2,液态金属的粘度,表面张力,G吸附方程3,流动方程,相似律4,流变行为和流变铸造问题1。
当固相表面存在液相和气相,且三者处于界面平衡时,在什么条件下固液相互润湿当达到平衡时,气、液、固三相交界处的气液界面和固液界面之间的夹角称为接触角,由θ表示它实际上是液体表面张力和液-固界面张力之间的角度接触角由气相、液相和固相界面上三种界面张力的相对大小决定。
从接触角的值可以看出液体对固体的润湿程度。
当和达到平衡时,得到以下关系:γSG-γSL=γLG cosθ上述方程称为杨氏方程从杨的方程中,我们可以得出以下结论: (1)如果(γSG-γSL)=γLG,cosθ=1,θ = 0,这是完全润湿的情况。
如果(γSG-γSL)>γLG,则直到θ=0时才达到平衡,因此杨方程不适用,但液体仍能在固体表面扩散(2)如果00,θeC产生裂纹3)冷裂纹分为延迟裂纹、硬化脆化裂纹(淬火裂纹)和低塑性脆化裂纹。
宏观断裂具有闪亮金属光泽的脆性断裂特征。
显微观察:沿晶断裂,也有穿晶(粒内)断裂,或沿晶和穿晶混合断裂。
原因:钢级的硬化倾向;焊接接头的氢含量和分布,焊接接头的约束应力4)分层撕裂特征:具有梯形外观的外观基本上由平行于滚动方向的平台和基本上垂直于平台的剪力墙组成断口是典型的木纹原因:由于轧制母材中的层状夹杂物和焊接过程中垂直轧制方向的应力5)应力腐蚀裂纹特征:无明显均匀腐蚀痕迹,断续裂纹形式从横截面上看:裘德就像一棵干枯的树的根须,由表及里,深宽比大,典型特征是长而细的分叉。
从断口来看,它是一个典型的脆性断口,仍保持金属光泽。
第1章 液态金属的结构和性质
材料成型原理——液态成形
水凝结成雪花晶体
Principle of Materials Forming材料成型原理——液态成形
液体金属 (钢水) 浇注后凝 固成固体 金属
Principle of Materials Forming
材料成型原理——液态成形
主要研究(学习)内容
(1)液体金属的性质
(2)晶体的生核和长大——凝固热力学及动力学 (3)凝固过程中的“三传” (4)具体合金的结晶斱式——单相结晶、共晶 (5)零件的组织控制、缺陷防止 (气孔、夹杂、缩孔、缩松)
材料成型原理——液态成形
(2)对液态合金流动阻力的影响
Re
根据流体力学,Re>2300为湍流(紊流),Re<2300为 层流。Re的数学式为 Dv 设f为流体流动时的阻力系数,则有: 64 64
当液体以层流斱式流动时,阻力系数大,流动阻力大。金 属液体的流动成形,以紊流斱式流动最好,由于流动阻力小, 液态金属能顺利地充填型腔,故金属液在浇注系统和型腔中的 流动一般为紊流。总之,液态合金的粘度大其流动阻力大。
Principle of Materials Forming
材料成型原理——液态成形
(4)粘度对成形质量的影响
a. 影响铸件轮廓的清晰程度 在薄壁铸件的铸造过程 中,流动管道直径较小,雷 诺数值小,流动性质属于层 流。此时,为降低液体的粘 度应适当提高过热度或者加 入表面活性物质等。
Principle of Materials Forming
材料成型原理——液态成形
液态金属的热物理性质
1.体积变化 金属熔化,由固体变成液体时,比容仅增加 3%~5%。即原子间距平均只增大1%~1.5%,这说 明原子间仍有较大的结合能。液态原子的结构仍有 一定的觃律性。 2.潜热 熔化潜热一般只有升华热的3%~7%,即熔化时 原子间的结合能仅减小了百分之几。见表1-1
液态金属的结构和性质
新型液态金属材料的 研究
通过合理设计晶体结构,可以实 现液态金属的形状记忆作用,这 对于制造细小弹簧等的微系统件 具有重要意义。
液态金属技术在逐渐 增长的产业中的应用
例如液态金属的能量变形和动力 学表征,液态金属的应用在未来 的产业发展中具有广泛的前景和 意义。
液态金属的发展历程
液态金属的最早实验可以追溯到18世纪,但真正形成规模化研究还是在20世 纪60年代,随着液态金属的广泛应用,液态金属的领域将会得到更多的拓展。
2 长时间电解时的热效应
液态金属电解很容易因长时间操作而产生过量的热量影响工业生产。
3 难于处理的反应性个体
液态金属中有许多化学反应难以控制,因为它们处于非常活跃的电子状态。
未来液态金属的研究方向
性能改善
在液态安全使用液态金属的过程 中,新的活性液态金属材料也总 是受到人们的期待。
结论与展望
总结本次液态金属的结构和性质的讲座中,可以看出在我们日常生活和大规模的工业生产中液态金属都扮演着不可 或缺的角色。同时,液态金属在新材料、新技术方面也一直处于人们的瞩目之下。
制备新型催化剂
以细金属液滴为基础的催化剂 可以提高催化活性,促进各种 有机卤化物和芳香烃化合物的 亲电取代反应。
高速传输液态金属技术 的应用
液态金属电控阀和液态金属离 子引擎等技术可用于表面动力 学研究和科学远洋。
液态金属的挑战
1 液态金属化学的不稳定性
液态金属化学中发现了一些稳定性不高的元素,在长时间电化学反应下会转化为其他物 质。
合金化对液态金属性质的影响
生成
通过将不同金属原子的化合物混合形成合金,可以改善 液态金属的某些物理特性,例如延展性和软化。
调节
在不同的合金化组合中,可以通过调节原子间距和比例 来调节液态金属的性质。
材料成型原理思考题及解答
材料成型原理思考题及解答材料成型原理思考题本课程教学要求:1.掌握液态金属和合金凝固结晶的基本规律、冶金处理及其对材料和零件性能的影响。
2.重点掌握塑性成型的基础及塑性成型理论的应用。
3.重点掌握材料成型过程中化学冶金现象和缺陷的形成机理、影响因素及预防措施。
第二章液态金属重点内容1.液态金属的基本性质2、液态金属的粘度、表面张力、g吸附方程3、流动方程、相似定律4、流变行为和流变铸造思考题1.当固相表面存在液相和气相且处于界面平衡时,在什么条件下固液相相互润湿。
当达到平衡时,在气、液、固的交界处,气液界面与固液界面之间的夹角称为接触角θ表达式。
它实际上是液体表面张力和液固界面张力之间的夹角。
接触角的大小由气、液、固三种界面张力的相对大小决定。
从接触角的大小可以看出液体对固体的润湿性。
当、和达平衡时以下关系:γsg-γsl=γlgcosθ上述方程称为杨氏方程。
从杨的方程式中,我们可以得出以下结论:(1)如果(γsg-γsl)=γlg,则cosθ=1,θ=0°,这是完全润湿的情况.如果(γsg-γsl)>γlg,则直到θ=0尚未达到平衡,因此杨氏方程不适用,但液体仍然可以在固体表面上扩散。
(2)如果0cosθ>0θ<90o,固体可以被液体润湿(3)如果(γsg-γSL)<0,那么cosθ<0θ>90o,固体不被液体润湿2.分析物质表面张力产生的原因以及与物质原子间结合力的关系。
表面张力是由于物体在表面上的质点受力不均所造成。
由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。
因此,物体倾向于减小其表面积而产生表面张力。
原子间的结合力越大,表面内能越大,表面张力越大。
然而,表面张力的影响因素不仅是原子间的结合力,还有大量与上述论点相反的例子。
研究发现,某些高熔点物质的表面张力低于低熔点物质的表面张力。
金属材料液态成型原理(1-液态金属的结构和性质)
1.3.1 金属遗传性
广义上说,金属的遗传性理解为在结构上(或在物性 方面),由原始炉料通过熔体阶段向铸造合金的信息 传递。
具体体现在原始炉料通过熔体阶段对合金零件凝固组 织、力学性能以及凝固缺陷的影响。
1.3.1 金属遗传性
1 力学性能的遗传性
金属及合金遗传性在力学性能方面可利用合金“遗传系数” 的概念进行衡量
1.1.1 液态金属结构的研究方法
gr
1
1
2 2n r 00
0
Q
I Nf
2
1sinQrdQ
Q 4 sin
1.1.1 液态金属结构的研究方法
径向分布函数 定义:
物理含义:
1.1.1 液态金属结构的研究方法
偶势
配位数
rm
Z
2
4r
1.3.3 遗传性的影响因素
1.4 半固态金属的流变性
在液态成型过程中,熔体有较大的过热度时,在浇注前或 浇注时可近似为牛顿流体。但当合金处于凝固过程,开始 析出一定体积分数的固相后,合金即开始具有固相特征, 无流动性。但随着半固态铸造工艺的出现,通过压铸或挤 压装置对半固态浆料施加较大的作用力,使其具有良好的 充型能力,此时流动的半固态金属已不再遵循牛顿流体的 运动规律,而呈现相应的流变特性。
对成型过程的影响 -毛细现象
假设液体中有一
半径为r的球形气泡
1.2.2 表面张力
1.3 遗传性
20世纪20年代,法国的学者Levi通过对Fe-C系合金的 研究发现片状石墨组织与炉料中石墨的尺寸有关,首 次提出了金属遗传性的概念。随后的研究工作表明, 在相同的生产条件下,合金的组织和性能取决于微观 组织和质量,其原始状态对合金熔体及最终产品微观 结构的特殊影响,即称之为“遗传性”。
材料成形原理考点
• 液态成型基础 • 液态金属的结构和性质 晶体的结构和性能主要决定于:组成晶体的原子结构和他们之间的相互作用力与热运动。
液态金属的主要特征:进程有序,远程无序。
原子排列的几个原子间距的小范围内,与其固态原子的排列方式基本一致,呈现出一定的有规律排列;而距离远的原子排列就不同于固态了,表现为无序状态。
理论模型:钢球模型,晶体缺陷模型(能量起伏和结构起伏)。
能量起伏:处于热运动的原子能量有高有低,同一原子的能量也随时间不停变化,时高时低。
表现为各个原子间能量的不同和各个原子集团间尺寸的不同。
结构起伏:液态金属中存在由大量不停游动着得原子集团组成,集团内为某种有序结构,处于集团外的原子则处于散乱的无序状态,并且这些原子集团不断的分化组合,时而长大时而减小,时而产生,时而消失,此起彼伏。
浓度起伏:游动集团之间存在着成分不均匀性。
表现为各个原子集团之间成分的不同。
实际金属和合金的液体在微观上是由成分和结构不同的游动原子集团、空穴和许多固态、气态或液态杂质或化合物组成,而且还表现出能量起伏、结构起伏及浓度起伏等三种起伏特征。
粘滞性(黏度)的本质:质点间结合力的大小。
影响黏度的因素:温度,熔点,杂质。
黏度对液态形成过程的影响:a 对液态金属留态的影响b 对液态金属净化的影响 表面张力是表面上存在的一个平行于表面且各向大小相等的张力。
本质:表面张力是由于物质在表面上的质点受力不均匀而产生的。
影响界面张力的因素:熔点↑,温度↓,溶质(降低的称为表面活性物质,增加的称为非表面活性物质)。
表面张力引起的附加压力:液面凸起(不润湿)为正,液面下凹为负。
• 液态金属的充型能力及其影响因素 充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
液态金属的充型能力首先取决于金属本身的流动能力(流动性)同时又受外界条件,如铸型性质,浇注条件,铸件结构等的影响。
流动性:铸造性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第一章液态金属的结构与性质
1.1 液态金属的结构1.2 液态金属的性质
2
第一章液态金属的结构与性质
1.2 液态金属的性质
—着重介绍影响凝固过程的性质
3
液态金属的结构与性质
A. 熔点和结晶区间
纯金属和共晶合金在一定温度下熔化和凝固。
间进行的,该温度区间为结晶区间。
1.2.1 基本物理性质(1)C 0
金属Fe Cu Al Zn Sn K
熔点,℃
1535108366042023264
4
第一章液态金属的结构与性质
1.2.1 基本物理性质(2)B. 热膨胀和凝固收缩
一般地,密度ρ<ρ这是产生缩孔和缩松缺陷的直接原因。
5
第一章液态金属的结构与性质
C.扩散能力
在液体中约为固体中在液体中约为固体中10
102∼105倍过程溶质再分配时,各元素在固体中的扩散常被忽略。
D=6×10cm /s ;
cm /s ;
1.2.1 基本物理性质(3)
6
第一章液态金属的结构与性质
1.2.1 基本物理性质(4)D.导电及导热能力
液态金属电阻加大,因原子热振动振幅增大,结构无序性加大低。
7
液态金属的结构与性质
A. 粘滞性(viscosity ):流体的粘滞性是流体抵从微观的角度看,其本质是反映质点间作用力大小。
擦。
度量:粘度η
F
h
A u
1.2.2 粘滞性(viscosity)
8
第一章液态金属的结构与性质
所以,根据牛顿粘性定律,
dz
du ησ=dz
du
A
F η=dz
du A F =
η动力粘度物理意义:生单位速度梯度的力。
运动粘度:
ρ
ην=x
F
u
9
第一章
液态金属的结构与性质
液态金属η数量级:10-3N ·s/m 2
因为ρ大,所以与水比较,ν反而小。
H 2O AL Cu Fe 温度 ℃ 20 700800 1145 1600 动力粘度η
N.s/m 2*10-3
1 3.0 1.4 3.41 6.
2 运动粘度ν m 2/s*10-6 1 1.3
0.6
0.43 0.79 密度ρ g/cm 3
1
2.35
(700-900℃)7.93
(1080℃)7.87
(20℃)
液体金属的粘度值
10
第一章
液态金属的结构与性质
C.
粘度的影响因素
温度
流动性好。
化学成分
杂质
固态杂质使液态金属η↑。
因为固态杂质增加流体内摩擦。
钢中的MnS 、Al 2O 3、SiO 2。
11
液态金属的结构与性质D. 粘度对凝固过程的影响
液态中杂质沉浮速度
——斯托克斯方程Stokes Equation 公式推导为杂质的浮力与重力之差:
)(3
4)(3r V F γγπγγ−⋅=−=
12第一章液态金属的结构与性质r ≤0.1mm η
πrV f 6=当f
F =η
γγ)(922s L r V −=V 为+,上浮;V 为-,下沉。
r ≤0.1mm
——Stokes Equation
13
第一章液态金属的结构与性质例1 钢液中的MnO 的去除
质,其上浮速度?
ηγγ)(9
22
s L r V −=0049.081.9)54007000()0001.0(922⋅−⋅=V )
/1.7(/0071.0s mm s m V =
14第一章液态金属的结构与性质例2 铝液中Al 2O 3
形Al 2O 3,其下沉速度?
ηγγ)(922
s L r V −=00106
.081.9)24004000()10(922
6⋅−⋅=−V )
/0033.0(/100033.03s mm s m V −×=
15第一章液态金属的结构与性质1.2
节内容回顾
在L 中远大于S
中。
粘滞性Stokes Equation。