第13讲 方差分析

合集下载

医学统计学(方差分析)

医学统计学(方差分析)
成部分,其自由度也相应地分为几个部分,以随机误
差为基础,按F分布的规律作统计推断。
精品课件
一、方差分析的意义
前一章介绍了两个样本均数比较的假 设检验方法,但对于3个、4个、5个均数或更多 个的比较,t检验或u检验就无能为力了,或许有 人会想起将几个均数两两比较分别得到结论,再 将结论综合,其实这种做法是错误的。试想假设 检验时通常检验水平α取0.05,亦即弃真概率控 制在0.05以内,但将3个均数作两两比较,要作 三次比较,可信度成为
(1-
0.05)3=0.857
精品课件
四均数比较作6次 (1-0.05)6=0.735 五均数比较作10次 (1-0.05)10=0.599 六均数比较作15次 (1-0.05)15=0.463 鉴于以上的原因,对多组均数的比较问题
我们采用方差分析
精品课件
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康 人的血磷值(mmol/L)如下,问该地急性克山 病患者与健康人的血磷值是否不同?
否为小概率事件。
精品课件
各种符号的意义
xij第i 个组的第j 个观察值
i=1,2,…k
j=1,2,…ni ∑ni=N xi = x=
ni第i 个处理组的例数
精品课件
(Σx)2
精品课件
(1)建立假设和确定检验水准 H0: 三 种 人 载 脂 蛋 白 的 总 体 均 数 相 等 ,
μ1=μ2=μ3 H1: 三组总体均数不相等或不全等 α=0.05 (2)计算
计算统计量F: F=MS组间/MS组内 根据资料的性质选择不同的统计方法。注意都是
在H0成立的条件下进行计算。 计算概率值P:P的含义。
做出推论:统计学结论和专业结论。

心理统计学

心理统计学

注意:由于公式都是以图片形式保存的,所以这里显示不出来,Word和PDF版本是带全部公式的《心理统计学》前言这门课占35分,结构一般是(9个单选+1个多选+1个简答或综合),不过每年可能不一样,分值权重感觉比测量要大一些,特别是大题,不过大致差不多。

心理统计学在心理学中的重要性不言而喻,如果说实验心理学的建立让心理学成为一门独立的科学,那么心理统计学可谓是最大的功臣。

没有心理统计学提供强有力的科学数据。

心理学的理论就仅仅是个理论,上不了台面。

世界上只有一个东西不会撒谎,那就是数据,一个理论如果没有强大的数据支持,那么这个理论的可信度也就大打折扣了。

所以心理统计学就承担了这么一个工作,为你的理论在数学上提供可靠的科学依据。

总所周知,高等数学是心理学本科的必修课之一,很多人认为心理统计学难学和数学不好有关,虽说心理统计和数学都是和数字打交道。

不过,他们确真没多大联系。

打个比方,学心理统计学就好比是学电脑,会使用就行(office的使用)。

学数学就好比学编程,掌握程序的来龙去脉(编写office的程序)。

心理统计学对于心理学是一种工具。

学好这个是为了将来运用SPSS这些统计软件做准备的。

(当然,如果你追求更高层次的数理统计,硬要搞清楚这些公式怎么来的,也好,不过最好等考上了,再慢慢研究也不迟)本宝典也好比是心理统计学这个工具的使用手册,不过还需两件神器:智力正常的人脑+按键正常的计算器(带统计功能)这部分参考书目如下:《心理学专业基础综合考试大纲》(2011年版)教育部考试中心《心理学专业基础综合考试大纲解析》(2011年版)高教《现代心理与教育统计学》张厚粲徐建平北师大出版社(2004年版)《心理与教育统计学》邵志芳上海科学普及出版社(2004年版)《心理学统考重难点手册》2011第三版《MJ心理大纲详解》(小白修订版)白云子《心理统计常用公式总结》开始一、描述统计所谓描述描述统计,就是描述一组数据的全貌。

方差分析的原理

方差分析的原理

方差分析的原理方差分析(ANOVA)是一种统计方法,用于比较三个或三个以上组的均值是否相等。

它是一种用于检验组间差异是否显著的方法,通常用于实验设计和数据分析中。

方差分析的原理基于对组间差异和组内差异的分解,通过比较组间变异和组内变异的大小来判断组间均值是否有显著差异。

方差分析的原理可以通过以下步骤来解释,首先,假设我们有多个组,每个组都有一定的样本量和均值。

我们想要知道这些组的均值是否有显著差异。

方差分析的原理就是通过计算组间变异和组内变异来判断这一点。

具体来说,方差分析的原理包括以下几个步骤:1. 计算组内变异,首先,我们计算每个组内观察值与该组均值的偏差平方和。

这个偏差平方和反映了每个组内观察值与该组均值之间的差异程度。

2. 计算组间变异,然后,我们计算每个组均值与总体均值的偏差平方和。

这个偏差平方和反映了每个组均值与总体均值之间的差异程度。

3. 比较组间变异和组内变异,接下来,我们比较组间变异和组内变异的大小。

如果组间变异显著大于组内变异,说明组间均值存在显著差异;反之,如果组间变异远小于组内变异,说明组间均值之间没有显著差异。

4. 判断显著性,最后,我们通过F检验或t检验来判断组间均值是否有显著差异。

如果F值或t值大于一定的临界值,我们就可以拒绝原假设,认为组间均值存在显著差异;反之,如果F值或t值小于临界值,我们就不能拒绝原假设,认为组间均值之间没有显著差异。

方差分析的原理是基于对组间差异和组内差异的分解,通过比较组间变异和组内变异的大小来判断组间均值是否有显著差异。

它是一种常用的统计方法,可以帮助研究者判断不同组之间的差异是否显著,对于实验设计和数据分析具有重要意义。

通过深入理解方差分析的原理,我们可以更好地应用这一方法,从而更准确地进行数据分析和实验设计。

方差分析(ANOVA)与协方差分析(ANCOVA)

方差分析(ANOVA)与协方差分析(ANCOVA)

方差分析(ANOVA)与协方差分析(ANCOVA) 第5章方差分析(ANOVA)与协方差分析(ANCOVA)——野外竞争试验Deborah E.GoldbergSamuel M.Scheiner5.1 引言自从达尔文时期,竞争就占据了生态理论的中心,关于竞争的实验在许多来自许多不同环境的多生物种之间开展过(Jackson,1981综述; Connell,1984; Schoener,1984; Hairston,1989; Gurevitch,1992)。

有各种各样的竞争实验,而本章的重点则放在怎样为具体的竞争问题选择适当的实验设计和统计分析。

这类选择取决于所研究问题及系统的许多方面。

对于大多数我们所给出的设计、基本的统计方法、方差分析(ANOVA)和协方差分析(ANCOVA)在实验设计与分析的教科书中也有详尽描述,我们在这里就不像本书其他章节那样提供详细的统计细节。

对于ANOVA的基本介绍见第四章。

虽然我们着重于竞争,但许多观点对其他类型的种间关系实验同样有效,如捕食者—猎物关系或者互惠共生关系。

5.2 关于竞争的生态问题我们可以提出关于竞争的最简单问题莫过于竞争是否在野外存在,要回答这个问题,就必须利用实验处理,使潜在竞争者们的绝对多度可被控制,同时检验处理中存在低多度潜在竞争者时物种是否可能生长的更好。

这类多度处理之间生长的差异即是竞争的量纲(或促进facilitation的量纲如果在较高多度下生长较佳)。

在任何野外竞争调查中,发现是否存在竞争是重要的第一步,但是,就其本身而言,并没有什么意义。

多数关于竞争的重要问题包括竞争强度的比较以及随之而来的实验设计及分析,这比在两种或更多种多度处理间的简单比较更为复杂 (Goldburg 和Barton,1992)。

有一组问题需要比较在不同环境条件下(生境或时间)竞争强度大小。

例如,野外观测结果可能推测出一个物种的分布是由同营养级所有其它物种竞争的总和所决定的假设,检验此假设的野外实验就必须比较中心种(focal sp.)在其多度高的生境和在其多度低或稀少的生境中竞争影响的强度(如 Hairston 1980; Gureritch 1986; Mcgreno 和Chapin 1989)。

方差分析(共66张PPT)

方差分析(共66张PPT)

18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组, 分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得 各个体的NO数据见数据文件,试问各组的NO平均水平是否相同?
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由两 列数据构成,其中一列是观察指标的变量值,另一列是用以表 示分组变量。实际上,几乎所有的统计分析软件,包括SAS, STATA等,都要求方差分析采用这种数据输入形式,这一点也暗 示了方差分析与线性模型间千丝万缕的联系。
H1:三个总体均数不等或不全相等
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
45
8.09
47
(3)确定p值,作出统计推断
,本次F值处于F界值之外,说明组间均方组内 均方比值属于小概率事件,因此拒绝H0,接受 H1,三个总体均数不等或不全相等
分凝血活酶时间有无不同?
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=

方差分析 (共72张PPT)

 方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。

方差分析

方差分析
在一个统计问题中,我们把研究对象的全 体称为总体,构成总体的每个成员称为个 体。统计学的主要任务就是:
研究总体是什么分布?
这个总体分布的均值、 方差 2/标准差 是多少?
从总体中抽出的部分个体组成的集合称为 样本,样本中的个体数称为样本量,常用 n表示。 在实际中,总体是得不到的/研究费时,往往 是从总体中抽取样本,研究样本,用样本推 断总体。 容量为n的样本可以记为X1 , X2 , …, Xn , 为相互独立、同分布的随机变量。
两者的比记为: F VA / Ve 当 F F1 ( f A , f e ) 时认为在显著性水平 上因子 A是显著的。
设在一个试验中只考察一个因子A,它 有r个水平,在每一水平下进行m次重复 试验,其结果用 yi1 , yi 2 ,, yim 表示, i=1,2, …, r。 常常把数据列成如下表格 形式: 表 单因子试验数据表 水平 试验数据 和 均值 y1 y11, y12 ,, y1m A1 T1 y , y , , y y2 A2 T2 … … … … y , y , , y yr Ar Tr y T
当 H 不真时,表示不同水平下的指标的均值 有显著差异,此时称因子A是显著的,否则 称因子A不显著。检验这一假设的统计方法 便是方差分析。
0
设在一个试验中只考察一个因子A,它 有r个水平,在每一水平下进行m次重复 试验,其结果用 yi1 , yi 2 ,, yim 表示, i=1,2, …, r。 常常把数据列成如下表格 形式: 表 单因子试验数据表 水平 试验数据 和 均值 y1 y11, y12 ,, y1m A1 T1 y , y , , y y2 A2 T2 … … … … y , y , , y yr Ar Tr y T

第13讲-方差分析-单因素模板资料讲解

第13讲-方差分析-单因素模板资料讲解
响,取一片土壤肥沃程度和水利灌溉条件差
不多的土地分成16块,肥料品种A1、A2、 A3 、A4,每种肥料施在四块土地上,得亩产:
因素:肥料
指标:亩产
肥料品种
水平:
A1 A2
品种
A3
A4
四种肥料的亩产量
亩产量(观察值) 981 964 917 669 607 693 506 358 791 642 810 705 901 703 792 883
实例1. 对某种型号的电池进行抽查,随机抽取了来自
A,B,C三个工厂的产品,测得其寿命(h )见下表,设各
工厂所生产的电池的寿命服从有相同方差的正态分布,
问这三个工厂所生产的电池的平均寿命有无显著差异?
电池的寿命(h)
A1
A2
A3
37 60 95
69
47 86 98
100
40 67
98
60 92
在此实例中, 指标:电池的寿命; 因素: 生产电池的工厂; 水平: 工厂A1、A2、A3
2)、什么是方差分析 检验多个母体平均数是否相等
*手段:分析数据的误差判断各母体均值是否相等
3.方差分析的基本原理
【例】为了对几个行业的服务质量进行评价 ,消费者协会在四个行业分别抽取了不同的 企业作为样本。最近一年中消费者对总共23 家企业投诉的次数如下表
观测值
1 2 3 4 5 6 7
消费者对四个行业的投诉次数
第13讲-方差分析-单因素模板
1.起源
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher,
以F命名,故方差分析 又称 F 检验 (F
test)。
2.什么是方差分析(ANOVA)

方差分析PPT课件

方差分析PPT课件

方差分析的用途
1. 用于多个样本平均数的比较 2. 分析多个因素间的交互作用 3. 回归方程的假设检验 4. 方差的同质性检验
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
第一节 方差分析的基本问题
▪ 一、方差分析问题的提出 问题:为了探索简便易行的发展大学生心 血管系统机能水平的方法,在某年级各项 身体发育水平基本相同,同年龄女生中抽 取36人随机分为三组,用三种不同的方法 进行训练,三个月后,测得哈佛台阶指数 如表 1 ,试分析三种不同的训练方法对女 大学生心血管系统的影响有无显著性差异。
结果的好坏和处理效应的高低,实际中具体测 定的性状或观测的项目称为试验指标。常用的 试验指标例如有:身高、体重、日增重、酶活 性、DNA含量等等。
影响因素( experimental factor): 观测中所
研究的影响观测指标的定性变量称之为因素。 当考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上因素的影响时,则 称为两因素或多因素试验。
N (3, 2)
A3
61.31 60.00
┆ 67.26 69.05
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析
根据研究目的,这里有三个正态总体 N (1, 2),N (2, 2 ), N (3 , a2 ) 。三组数据分别为来自三个总体的样本,问题是 推断 1 ,2 和 3 之间有无显著差异。 由 x1, x2, x3不相等,不能直接得出1, 2, 3不尽相等的结论, 原因是:造成 x1, x2, x3不相等可能有两个方面因素:一是 1, 2, 3 不等,二是1 2 3,但由于抽样误差,造成 x1, x2, x3 之间有差异。现在的任务是通过样本推断1, 2, 3之间有无 显著性差异。

第十七章方差分析(F检验)课件

第十七章方差分析(F检验)课件
详细描述
正态性假设是方差分析的重要前提,只有当数据分布符合正态分布时,方差分析 的结论才是可靠的。如果数据分布偏离正态分布,分析结果可能会出现偏差。
齐性
总结词
齐性假设要求各组数据的方差一致。
详细描述
方差分析要求各组数据的方差必须相等,即各组数据的离散程度一致。如果各组数据的方差不一致, 将会影响方差分析的准确性。因此,在进行方差分析之前,需要进行方差齐性检验,以确保各组数据 的方差一致。
02
方差分析的是方差分析的基本假设之一,要求各组数据之间相互独立,不存在 相互影响的关系。
详细描述
在进行方差分析时,必须确保各组数据之间是独立的,即一个数据点的出现不 受其他数据点的影响。如果数据不独立,将会导致分析结果出现偏差。
正态性
总结词
正态性假设要求各组数据的分布符合正态分布。
第十七章方差分析(f检验)课 件
contents
目录
• 方差分析概述 • 方差分析的假设条件 • 方差分析的基本步骤 • 方差分析的应用实例 • 方差分析的局限性 • 方差分析与其他统计方法的比较
01
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方法,用于比较两个或多个 独立样本的均值是否存在显著差异。它通过对总体方差的分 解,推断各组之间的差异是否由随机误差引起,从而判断各 组均值是否存在显著差异。
交互作用的识别
交互作用可能难以识别和量化,这可能导致 方差分析的结果解释困难。
异常值问题
异常值的影响
方差分析对异常值敏感,一个或几个异常值可能会显著 影响分析结果。
异常值的处理
在方差分析前,需要对数据进行异常值处理,如使用 Winsorization、Box-Cox转换等方法,以减少异常值对 结果的影响。

方差分析ppt课件

方差分析ppt课件
推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2

x1
x 2 >t0.05
s x1
x2

x1
ห้องสมุดไป่ตู้
x2

t0.01
s x1 x2

方差分析的基础知识讲解(ppt 20页)

方差分析的基础知识讲解(ppt 20页)
四组不同摄入方式病人的血浆游离吗啡水平
静脉点滴 肌肉注射 皮下注射
12
12
9
10
16
7
7
15
6
8
9
11
97Leabharlann 14均数10
13
8
请大家用学过的统计学方法进行解决
口服
12 8 8
10
9.5
方差分析
3
主要内容
第一节 方差分析的基本概念 第二节 完全随机设计的单因素方差分析 第三节 随机区组设计的两因素方差分析 第四节 多个样本均数间的多重比较
方差分析
15
计算统计量F
F=MS组间/MS组内
公式是在H0成立的条件下进行的,即MS组间与MS组内差 别应该很小, F值应该接近于1。那么要接近到什么程 度呢?(Fisher计算出了F的分布规律,即标准的F値) 通过这个公式计算出统计量F,查表求出对应的P值,与 进行比较,以确定是否为小概率事件。
应用条件
各样本是相互独立的随机样本 各样本来自正态分布 各样本方差相等,即方差齐。
方差分析
20
第一节 方差分析的基本概念
一、方差分析的几个名词
什么是方差? 离均差 离均差平方和SS 方差(2 S2 )均方(MS) 标准差:S 自由度: 关系: MS= SS/
方差分析
5
二、方差分析的含义
方差是描述变异的一种指标,方差分析是一种假 设检验的方法。方差分析也就是对变异的分析。
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
SS组间 组间 MS组间
计算:
变异来源 SS

MS

统计学方差分析ppt课件

统计学方差分析ppt课件

水平
水平指因素的具体表现,如销售的 四种方式就是因素的不同取值等级。有 时水平是人为划分的,比如质量被评定 为好、中、差。
单元
单元指因素水平之间的组合。如销 售方式一下有五种不同的销售业绩,就 是五个单元。方差分析要求的方差齐就 是指的各个单元间的方差齐性。
元素
元素指用于测量因变量的最小单 位。一个单元里可以只有一个元素, 也可以有多个元素。
均衡
如果一个试验设计中任一因素各水 平在所有单元格中出现的次数相同,且 每个单元格内的元素数相同,则称该试 验是为均衡,否则,就被称为不均衡。 不均衡试验中获得的数据在分析时较为 复杂。
交互作用
如果一个因素的效应大小在另一 个因素不同水平下明显不同,则称为 两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是 没有意义的,必须分另一个因素的不 同水平研究该因素的作用大小。如果 所有单元格内都至多只有一个元素, 则交互作用无法测出。
地点一 地点二 地点三 地点四 地点五
方式一
77
86
81
88
83
方式二
95
92
78
96
89
方式三
71
76
68
81
74
方式四
80
84
79
70
82
【解】设这四种方式的销售量的均值分别用 1•, 2•, 3•, 4• 表示,四 个销售地点的平均销售量用 •1, •2, •3, •4 表示;则要检验的假设为
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
因素和水平
单元和元素
均衡
交互作用

方差分析课程设计

方差分析课程设计

方差分析课程设计一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:通过本节课的学习,学生需要掌握方差分析的基本概念、原理和计算方法,理解方差分析在实际问题中的应用。

2.技能目标:学生能够运用方差分析解决实际问题,具备运用统计学方法分析和处理数据的能力。

3.情感态度价值观目标:培养学生对统计学的兴趣和好奇心,提高学生分析问题和解决问题的能力,使学生认识到统计学在科学研究和生活中的重要性。

二、教学内容本节课的教学内容主要包括以下几个部分:1.方差分析的基本概念:方差、均值、标准差等。

2.方差分析的原理:均值差别的检验、协方差的概念等。

3.方差分析的计算方法:最小二乘法、最大似然法等。

4.方差分析在实际问题中的应用:回归分析、分类问题等。

5.案例分析:通过具体案例使学生更好地理解和掌握方差分析的方法和应用。

三、教学方法为了提高教学效果,本节课将采用以下几种教学方法:1.讲授法:教师讲解方差分析的基本概念、原理和计算方法。

2.案例分析法:通过分析实际案例,使学生更好地理解和掌握方差分析的方法和应用。

3.讨论法:引导学生分组讨论,培养学生的合作意识和解决问题的能力。

4.实验法:安排课内外实验,让学生亲自动手操作,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《统计学原理》等。

2.参考书:《方差分析与应用》等。

3.多媒体资料:PPT课件、案例视频等。

4.实验设备:计算机、统计软件等。

通过以上教学资源的支持,为学生提供丰富的学习体验,提高教学效果。

五、教学评估本节课的评估方式主要包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和积极性。

2.作业:布置与本节课内容相关的作业,评估学生对方差分析知识的理解和运用能力。

3.考试:安排一次考试,全面测试学生对方差分析的概念、原理和方法的掌握程度。

方差分析课件-PPT

方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。

《第八章方差分析》PPT课件

《第八章方差分析》PPT课件

si2
Ⅰ 122 2500 20.33 3.88
Ⅱ 106 1902 17.67 5.86
k 5 n6
C 6072 6 5 12281.63
Ⅲ 150 3770 25.00 4.00
Ⅳ 137 3165 22.83 7.34
Ⅴ 92 1426 15.33 3.06 T 607 xi2j 12763
第五页,共47页。
因此此时再用t-test法进行检验就不恰当了
如何对 k 3个样本进行假设检验? 这就是本章所要讨论的方差分析
什么叫方差?
方差是对数据(或称资料)变异的度量
方差的公式:
总一般体总:体 2方 差称xN方2差样,本样:本s方2 差n称x1均x 2 方
x2
n
x
n 1
2
能使变量发生变异的原因很多,这些原因我们都将其称为变
如果这许多样本都只和对照组相比,我们仍然可以使用t-
test或u-test进行,但如果需要样本之间两两相比较的
话,就不能使用t-test或u-test进行了 其理由有以下几个:
第三页,共47页。
1、当有k个样本所属总体的平均值相互两两比较,就需

1 k次k比1较 ,即作
2
次1 k假k 设1 检验
2
验结束后每一组内的数据资料相等,这就是组内样 本容量相等的情况
(一)数据结构和数学模型
方差分析是建立在一定的线性数学模型基础上的,所谓线性 模型就是指每一个观测值都可以分割成若干个线性部分, 这是方差分析中平方和、自由度剖分的理论依据
第十三页,共47页。
设从一个 N , 2 中随机抽取一个样本,容量为 ,n这
能充分使用试验中所有的信息量,这是十分可惜的

计算机数据库(经济会计类)方差分析随堂讲解

计算机数据库(经济会计类)方差分析随堂讲解

73
62
2019/12/5
15
最小显著差异法(LSD)
解:首先运用Excel进行方差分析,得到如下结果:
。得因到此检拒验绝统原计假量设的,值F得到9这三个总,体临F的0界.05均值(2值,15不) 相3等.6的8结论。
下面根据本题使用LSD法对三个班级的平均英语成绩做多重比较。
第1步 提出假设检 :验1:H0 :1 2,H1:1 2;
三、方差分析的基本思想和原理
1 方差的分解:误差平方和的分解是我们进行方差分析的 “切入点”
2 方差分析:系统误差与随机误差。
3 检验统计量:比较的基础是方差比(F 分布),需要对 组
间方差组与间组均内方 方差 差的结果进行比较。
F 组内均方差
不拒绝H0
拒绝H0 a
2019/12/5
0
F
Fa(k-1,n-k)
2.组间误差平方和SSA:表示的是组间方差总 和,是由各组均值差异引起的。
3.组内误差平方和SSES S :T 表S S 示E 的S S 是A组内方差部 分,由随机误差产生总误。差平方和
SST
三者之间满足关系:
2019/12/5
组间误差平方和 SSA
组内误差平方和 SSE
图8-2 数据误差平方和分解图
B2
385
368
370
370
B3
370
380
375
380
2019/12/5
21
一、无交互作用的方差分析
解:运用Excel【方差分析:无重复双因 素分析】得到输出结果:
2019/12/5
22
二、有交互作用的方差分析
和无交互作用的方差分析类似,有以下的误
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考与练习题
教材中第 页的 题
返回
为了对一个样本中的两组平均值进行 统计比较,选择STATISTICSCOMPARE MEANSINDEPENDENT SAMPLES t TEST 的命令序列
如何利用SPSS来进行一对 样本均值差异的显著性检验
例题——对Q3 和 X3 的配对 进行样本均值的显著性检验
用命令STATISTICS-COMPARE MEANPAIRED SAMPLES T TEST
第十三讲: 方差分析
方差分析在营销调研中的作用 统计分布及类型 利用统计软件SPSS和EXCLE进行 方差分析
教学指南
学习目标 ——比较两个样本,观察其均值或百分 率调查结果是否有显著差异 ——知晓方差分析基础 ——能够运用SPSS进行方差分析 ——能够运用EXCLE进行方差分析
方差分析在营销调研中的作用
Std. Error Mean ,934
t ,459
df 34
Sig. (2-tailed) ,649
Paired Sa mples Statistics Mean 4,97 4,54 N 35 35 Std. Devi ation 5,300 3,090 Std. Error Mean ,896 ,522
Байду номын сангаас
计算组内差异VW
VW

j1 i 1
k
nj
x x ij j
2
400 2002 400 2002 400 2002 400 2002 980000
计算F值和F分布
F值的统计意义——
F分布的涵义——
怎样在视窗SPSS中进行方差分析
差异显著性检验
如何利用SPSS来进行两个独立 样本均值差异的显著性检验 如何利用SPSS来进行一对样 本均值差异的显著性检验 如何利用SPSS来进行超过两 个以上的组的均值差异的显著 性检验——方差分析
如何利用SPSS来进行两个独 立样本均值差异的显著性检验
如何利用SPSS来进行两个独立 样本均值差异的显著性检验
三种类型的方差
总方差(TV)——是所有被观 察的个体值相对于总平均差的平 方和,它是所有个体的总平均值。
组间方差(VB)——是每组样本 平均值和总均值之差的平方之和。 组内方差(VW)——是每个个体 值和其所在组的均值差的平方和。
用方差确定统计显著性
方差计算举例说明
计算总差异TV
TV
j1 i 1 400 4002 400 4002 400 4002
举例说明
N个自变量的方差
视窗SPSS的N 个自变量方差分析
使用命令序列STATISTICS GENERAL
LINEAR MODEL-SIMPLE FACTORIAL
举例说明
本章提要
营销调研的只有100多年的历史
营销调研的行业里有独特的操作者 如何对营销调研待业的评价 三论营销调研行业中的道德问题
Pair 1
Q3= 招 聘数 量 x3= 招 聘数 量
如何利用SPSS来进行超过两个以上的组 的均值差异的显著性检验——方差分析
方差分析的基本逻辑 方差中三种类型的方差
用方差确定统计显著性
方差分析的基本逻辑
方差分析——的最终结果是给
营销调研者一个启示:在至少 两组均值之间, 在选定的某一 统计显著性水平上,是否存在 明显差异。
400 4002 1780000

k
nj
2
x ij x
计算组间差异VB
VB

j1
k
n x j x j
2
10 200 4002 10 400 4002 10 400 4002 10 400 4002 10 600 4002 800000
方差的概念——方差(ANOVA) 是一种对组与组之间均值差异的 调查,以此来评估是不是存在抽 样误差,或者真实的总体差异, 并解释不相等的原因 营销中使用方差分析的意义—— 市场调查中的关于不同均的估计 可信度及其之间的关系需要研究
案例讨论
检验两组数据的差别
有两组相互独立的被调查者,需 要比较他们对同一个问题的回答 有两个独立的问题,而需要知道 同一组对不同问题的回答结果。
Paired Samples Test Paired Differences 95% Confidence Interval of the Difference Lower Upper -1,47 2,33
Mean Pair 1 Q3=招 聘数 量 x3=招 聘数 量 ,43
Std. Deviation 5,527
相关文档
最新文档