机械原理与设计第九章 机械的摩擦与自锁
机械原理期末题库(附答案)
机械原理期末题库(本科类)一、填空题:1.机构具有确定运动的条件是机构的自由度数等于。
2.同一构件上各点的速度多边形必于对应点位置组成的多边形。
3.在转子平衡问题中,偏心质量产生的惯性力可以用相对地表示。
4.机械系统的等效力学模型是具有,其上作用有的等效构件。
5.无急回运动的曲柄摇杆机构,极位夹角等于,行程速比系数等于。
6.平面连杆机构中,同一位置的传动角与压力角之和等于。
7.一个曲柄摇杆机构,极位夹角等于36º,则行程速比系数等于。
8.为减小凸轮机构的压力角,应该凸轮的基圆半径。
9.凸轮推杆按等加速等减速规律运动时,在运动阶段的前半程作运动,后半程作运动。
10.增大模数,齿轮传动的重合度;增多齿数,齿轮传动的重合度。
11.平行轴齿轮传动中,外啮合的两齿轮转向相,内啮合的两齿轮转向相。
12.轮系运转时,如果各齿轮轴线的位置相对于机架都不改变,这种轮系是轮系。
13.三个彼此作平面运动的构件共有个速度瞬心,且位于。
14.铰链四杆机构中传动角γ为,传动效率最大。
15.连杆是不直接和相联的构件;平面连杆机构中的运动副均为。
16.偏心轮机构是通过由铰链四杆机构演化而来的。
17.机械发生自锁时,其机械效率。
18.刚性转子的动平衡的条件是。
19.曲柄摇杆机构中的最小传动角出现在与两次共线的位置时。
20.具有急回特性的曲杆摇杆机构行程速比系数k 1。
21.四杆机构的压力角和传动角互为,压力角越大,其传力性能越。
22.一个齿数为Z,分度圆螺旋角为β的斜齿圆柱齿轮,其当量齿数为。
23.设计蜗杆传动时蜗杆的分度圆直径必须取值,且与其相匹配。
24.差动轮系是机构自由度等于的周转轮系。
25.平面低副具有个约束,个自由度。
26.两构件组成移动副,则它们的瞬心位置在。
27.机械的效率公式为,当机械发生自锁时其效率为。
28.标准直齿轮经过正变位后模数,齿厚。
29.曲柄摇杆机构出现死点,是以作主动件,此时机构的角等于零。
03.摩擦自锁
作业练习
1.练习: 思考题:3.1 ~ 3.7 习 题:3.1 ~ 3.14
2.书面作业: 必作题(上交批改): 3.2 3.12 选作题: 3.7
第3章 de 要点小结
1. 会计算全约束力:
R N 2 F 2 R
N
正压力与摩擦力之合力R.
F
2. 理解摩擦角: (0FF ma x fm N)
m Fmax
N
R
tgm
Fmax N
fm
N m
R
1. 全约束力: 正压力与摩擦力之合力 R.
全约束力与其它力一起,共同使物体平衡。
2. 摩擦角: 静摩擦力达到最大值时,全约束力R与正压力
N的夹角 —— 摩擦角 m
(fmtanm)
3. 推压力分析
不计物块重, 如图:
P Py
静摩擦力:
FfNfP co s
静摩擦力达到最大值时,全约束力
R与正压力N的夹角 — 摩擦角: m
3. 掌握自锁现象:若压力与法线的夹角
P
m
m Fmax
小于摩擦角 (m) 即:压力P位于
摩擦角内时,物体就不可能滑动。
N m
R
4.20自21/1锁0/10实例:螺旋千斤顶。 防自锁实例:自卸车。18
1)先画出A、B端所受约束力R A , R B 与静摩擦力F.
2)再计算约束力及全约束力R的大小.
RA A
解:1)A,B端所受约束力如图.
2)计算约束力的大小.
F xFR A0
RC
RB
G
F yR BG 0
BF
l M B R A lsi6n 0 G 2lco 6 s 00
解得: F R A 13 0 (N ),R B 6(N 0 )
机械原理第9章凸轮机构及其设计
第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。
机械传动系统与控制系统设计简介
二、肥皂压花机的传动路线及传动比的分配
肥皂压花机是在肥皂块上利用模具压制花纹和字样的自动机, 其机械传动系统的机构简图如图3.3.7所示。
27
精选ppt
(1)传动路线分析 具体传动路线如图3.3.8。
28
(2)传动比分配
若该机的工作条件为:电动机转速1450r/min,每分钟压制50 块肥皂,要求传动比误差为2。以下对上述方案进行传动比分配 并确定相关参数。
i 总 i 1 i 2 i 3 2 .5 3 .7 3 9 3 .0 9 5 2 8 .9 3 29
相对误差i为
ii总 i总2928.930.24%
i总
29
按传动比误差小于2%的要求,且各传动比均在常用范围之内, 故该传动链传动比分配方案可用。
精选ppt
2)辅助传动链
皂块送进和成品移位运动的工作频率应与模具往复运动频率相
14
精选ppt
(5)啮合器变速 啮合器分普通啮合器和同步啮合器两种,广泛应用于汽车、
叉车、挖掘机等行走机械的变速箱中。 啮合器一般都采用渐开线齿形,齿形参数可根据渐开线花键
国家标准选定。由于啮合套使用频繁,齿轮经常受冲击,齿端和 齿的工作面易磨损,因此,齿厚不宜太薄。为减小轴向尺寸,啮 合器的工作宽度均较小。
15
精选ppt
三、无级变速器
无级变速传动能根据工作需要连续平稳地改变传动速度。图 3.3.5为双变径轮带式无级变速传动的工作原理图 。
无级变速器有多种型式,许多型式已有标准产品,可参考产 品样本或有关设计手册选用。
16
精选ppt
第三节 机械传动系统方案设计
一、机械传动系统方案设计的过程和基本要求
21
精选ppt
机械中的摩擦机械效率和自锁.pptx
因为:
则:
摩擦力矩: 当量摩擦系数:
由前面的知识知:
力偶臂为:
摩擦园:以力偶臂为半径 的圆。 摩擦园半径:力偶臂ρ 在对机构进行受力分析时,需要确定转动副中的总反力, 总反力的方位可根据如下三点确定:
① 在不考虑摩擦力的情况下,根据力的平衡条件,确定不计摩擦力时的 总反力的方向; ② 考虑摩擦时,总反力应与摩擦圆相切; ③ 轴承B对轴颈A的总反力对轴颈中心之矩的方向必与轴颈A相对于轴承B 的相对角速度的方向相反。
轴端中心处的压强非常大,极易压溃,故对于载荷较大 的通常作成空心的
▪ 移动副中总反力的方向确定: ① 总反力与法向反力偏斜一摩擦角或当量摩擦角;
② 总反力与法向反力偏斜的方向与构件1相对于构 件2的相对速度方向相反。
注意:
1 移动副中的总反力与法向反力偏斜的角度始终为 摩擦角或当量摩擦角吗?
2 槽面接触的摩擦力大于平面接触的摩擦力,是因 为槽面接触的摩擦系数大吗?
3 影响当量摩擦系数的因素有哪些?
5.2考虑摩擦时机构的受力分析
例5-1 如图所示的铰链四杆机构,曲柄1为主动件,
在力矩 M1的作用下沿1 方向回转,试求转动副B、
C中总反力的方位。图中虚线小圆为摩擦圆,解 题时不考虑构件的自重及惯性力。
例5-2 如图所示的四杆机构,曲柄1为主动件,在力
矩 M1的作用下沿1 方向回转,试求各运动副中的
M Fr0 Qr0 tan( v )
防松力矩:
M F r0 Qr0 tan( v )
5.1.3 转动副中的摩擦
转动副按载荷作用情况不同分为两种。 1)轴颈摩擦:当载荷垂直于轴的径向的转动副摩擦 2)轴端摩擦:当载荷平行于轴的几何轴线的转动副摩擦
自锁现象与摩擦角
v0 2m / s 的初速度,在于斜面成某一夹角的拉力 F 作用下,沿斜面向上做匀加 速运动,经 t 2s 的时间物块由 A 点运动到 B 点, A 、 B 之间的距离 L 10m 。
已知斜面倾角 30 ,物块与斜面之间的动摩擦因数 3 。重力加速度 g 取
3
10m / s (1)求物块加速度的大小及到达 B 点时速度的大小。 (2)拉力 F 与斜面的夹角多大时,拉力 F 最小?拉力 F 最小值是多少?
FRmax
N
φm
fsm
F
φm:摩擦角
摩擦角和摩擦因数表示材料摩 擦性质的物理量;
tan m
f sm N
ቤተ መጻሕፍቲ ባይዱ
在其他因素变化时,只要接触 面的摩擦因数不变,全反力的 方向就不会变,这不仅减少了 物体的受力个数,且使问题大 大简化,这是物理学研究中处 理力学问题的重要思想方法;
02 摩擦角
【2017年高考全国卷II第16题】
如图1,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。若保持F
的大小不变,而方向与水平面成60°,物块也恰好做匀速直线运动。物块
与桌面间的动摩擦因数为( )
FR φm
fm
摩擦角
tanm
f N
两次摩擦角不变:
F mg
F cos 60 mg F sin 60
解得, 3
3
02 摩擦角---拉密定理
F'sin ' f '
F sin (mg F cos)
滑动
F mg
自锁
F sin F cos
tan
02 摩擦角
定义:当物体与接触面间存在弹力和摩擦力时,把接触面对物体的弹力N和摩擦 力f的合力称做支撑面的全反力FR。当摩擦力为滑动摩擦力时,全反力与支持力 间的夹角最大,称为摩擦角。
机械原理 第九章 力分析
N F惯 F摩 G Pr
Md
G′
有害阻力:机械运动过程中的无用阻力。克服此阻力所做 的功称为损耗功。
二、任务与目的 1. 确定运动副中的反力 特点:对整个机械来说是内力; 对构件来说则是外力。 目的:计算构件的强度、运动 副中的摩擦、磨损;确定机械 的效率;研究机械的动力性能。
F摩 G
N
F惯
Pr Md
Q M N Q
ω12
r
1 2
0
R 21
N
2
+ Ff
2
N
2
+ ( fN )
2
1+ f
2
N
M
N
R 21 1+ f
2
Q
ρ
ω12
r 1
0
R21
摩擦力矩:
M
f
N
Ff
F f r fNr
f 1+ f
2
2
rR
21
由平衡条件:R21= -Q 和 Mf= R21 ρ 得:
f 1+ f
Md
G′
或成锐角——作正功——驱动功、输入功。 包括:原动力、重力(重心下降)、惯性力(减速)等。
◆ 阻力:阻碍机构产生运动的力 特点:与作用点的速度方向相反、 或成钝角——作负功——阻抗功。 包括:生产阻力、摩擦力、重力(重 心上升)、惯性力(加速)等。可分为 两种: 有效阻力(生产阻力):执行构件面 对的、机械的目的实现。克服此阻 力所做的功称为有效功或输出功。
3) 当 h < ρ时, Q’与摩擦圆相割,Mf > M ,若A原来就在运动,则作减
这就是自锁现象。
速运动直至静止不动;如A原来就不动,则无论Q’大小如何,A都不能转动。
机械原理课后答案第9章
第9章作业9-1 何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全图示各段s 一δ、 v 一δ、α一δ曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击?答 凸轮机构传动中的刚性冲击是指理论上无穷大的惯性力瞬问作用到构件上,使构件产生强烈的冲击;而柔性冲击是指理论上有限大的惯性力瞬间作用到构件上,使构件产生的冲击。
s-δ, v-δ, a-δ曲线见图。
在图9-1中B ,C 处有刚性冲击,在0,A ,D ,E 处有柔性冲击。
9—2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免?答 在用包络的方法确定凸轮的工作廓线时,凸轮的工作廓线出现尖点的现象称为变尖现象:凸轮的工作廓线使推杆不能实现预期的运动规律的现象件为失真现象。
变尖的工作廓线极易磨损,使推杆运动失真.使推杆运动规律达不到设计要求,因此应设法避免。
变尖和失真现象可通过增大凸轮的基圆半径.减小滚子半径以及修改推杆的运动规律等方法来避免。
9—3力封闭与几何封闭凸轮机构的许用压力角的确定是否一样?为什么?答 力封闭与几何封闭凸轮机沟的许用压力角的确定是不一样的。
因为在回程阶段-对于力封闭的凸轮饥构,由于这时使推杆运动的不是凸轮对推杆的作用力F ,而是推杆所受的封闭力.其不存在自锁的同题,故允许采用较大的压力角。
但为使推秆与凸轮之间的作用力不致过大。
也需限定较大的许用压力角。
而对于几何形状封闭的凸轮机构,则需要考虑自锁的问题。
许用压力角相对就小一些。
9—4一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲改用较大的滚子?问是否可行?为什么?答 不可行。
因为滚子半径增大后。
凸轮的理论廓线改变了.推杆的运动规律也势必发生变化。
avsδδδ3/π3/2ππ3/4π3/5ππ2题9-1图9—5一对心直动推杆盘形凸轮机构,在使用中发现推程压力角稍偏大,拟采用推杆偏置的办法来改善,问是否可行?为什么?答 不可行。
【精选】机械原理自锁[1]
定义有些机械,就其机构情况分析是可以运动的,但由于摩擦的存在,却会出现无论驱动力如何增大,也无法使其运动的现象,这种现象称为机械的自锁。
机械的自锁的实质是作用力在构件上的驱动力的有效分力总是小于由其所引起的同方向上的最大摩擦力。
如图所示构件1在构件2上,作用于构件1上的外力为F,其与接触面法线之间夹角为β。
若两构件之间的摩擦系数为f,则有f=tgφ.由外力F而产生的摩擦阻力为F f21=fFcosβ=FcosβtgφF在水平方向上的分力为:Fsinβ当 Fsinβ≤<F f21时,无论F如何增大,也不会是构件2运动,这种现象就叫做自锁.这时有,β≤φ.判断机械自锁的方法根据具体情况,可选择以下方法判断机械自锁:1)根据机构中运动副的自锁条件来确定。
对于单自由度的机构,当机构中某一运动副发生自锁,那么该机构也必发生自锁。
运动副的自锁条件为:(a)移动副的自锁条件为驱动力作用于摩擦角之内,即β≤φ,其中β为传动角;(b)转动副的自锁条件为驱动力作用于摩擦圆之内,即a≤ρ,其中a为驱动力臂长;(c)螺旋副的自锁条件为螺旋升角α小于或等于螺旋副的摩擦角或当量摩擦角,即α≤φ。
2) 根据机械效率小于或等于零来确定,即η≤0,但此时η已没有一般效率的意义,而只表明机械自锁的程度。
3) 根据生产阻力Q小于或等于零来确定,Q≤0意味着只有当生产阻力反向变为驱动力后,才可使机械运动,实际上此时机械已发生自锁。
4) 根据自锁的实质来确定,即根据作用在构件上的驱动力的有效分力总是小于或等于由其所引起的同方向上的最大摩擦力来确定。
例题图示为一焊接用楔形夹具,利用这个夹具把要焊接的工件1和1'预先夹妥,以便焊接。
图中2为夹具,3为楔块,若已知各接触面间的摩擦系数均为f,试确定此夹具的自锁条件。
此题是判定机构的自锁条件,下面选用多种方法求解。
反行程时(楔块3退出)取楔块3为分离体,其受工件1(及1')和夹具2作用的反作用力R13和R23以及支持力P,各力方向如图a所示,根据楔块3的平衡条件,作封闭三角形如图c所示。
机械原理本科机械效率和自锁
Wd =
Wr + Wf
损耗功 (摩擦等)
驱动功 有效功 (动力) (克服生产阻力)
机械效率: = Wr / Wd = 1 - Wf / Wd
损失不可避免, Wf> 0: < 1
2、机械效率的几种表达方式 1)用功表示的机械效率 : = Wr / Wd = 1 - Wf / Wd 2)用功率表示的机械效率: = Pr /Pd = 1 - Pf / Pd 3)用力(或力矩)表示的机械效率: 右图中G为生产阻力, F为驱动力, G 和 F 分别为对应力的作用 点处沿力作用线方向 上的速度
作者:潘存云教授
P”r P’r
串联计算
Pd
P2 P’d2 P’d3 Pk 1作者:潘存云教授 2 “ “” 3 4 P P”d2 P”d3 r P”r P1 P2 Pr P’r P P1 3‘
‘’ 4P r
并联计算
Pd
1
2
k 作者:潘存云教授
P”r
串联计算
§5 -2 机械的自锁
一、自锁的概念
对于有些机构,由于摩擦的存在,致使无 论驱动力如何增大均不能使静止的机构产生运 动。这种现象称之为自锁。
η越小自锁越可靠。
2) 从生产阻抗力方面来判断
由于当自锁时,机械已不能运动,所以 这时它所能克服的生产阻抗力G将小于或等 于零,即: 自锁条件:G ≤0
例1、斜面压榨机:在回弹力G 作用下(F为阻抗力时)的 自锁条件(设:摩擦角均为 )
1
G
90º (2)
FR13 FR23
90º
4 4 FR13 1 v FR2 31
G0 = F cot
机械原理考研讲义四(机械的效率和自锁)
第五章机械的效率和自锁效率是衡量机械性能优劣的重要指标,而一部机械效率的高低在很大程度上取决于机械中摩擦所引起的功率损耗。
研究机械中摩擦的主要目的在于寻找提高机械效率的途径。
机械的自锁问题及移动副自锁条件的求解是本章的难点之一。
本章知识点串讲【知识点1】机械效率及其计算定义:机械的输出功与输入功之比称为机械效率,η= W r / W d。
性质:η<1(η= 1——理想机器——永动机)表示方法:a. 功表示η= W r / W d = 1- W f/ W db. 功率表示η= p r / p d = 1- p f/ p dc. 力(矩)表示η= F0/ F= M0/ M1)串联机器(组)的总效率等于组成该机器(组)各机械部分效率的连乘积η=η1η2……ηK2)对于并联机构的总效率计算就相对麻烦一点。
N rη= (Nd1η1 + Nd2η2 + …+ NdK ηK) / (Nd1 + Nd 2 + …+ NdK) = (Nd1η1 + Nd2η2 + …+ NdK ηK) / Nd并联机组的效率,不仅与各个机构的效率有关,而且与效率的分配有关3)混联 兼有串联和并联的机构称为混联机构。
为了计算其总效率,可先将输入功至输出功的路线弄清,然后分别计算出总的输入功率和总的输出功率,最后计算其总的机械效率。
【知识点2】机械自锁条件的确定定义:由于摩擦的存在,沿某个方向的驱动力如何增大,也无法使受力对象产生运动的现象——称为机械的自锁。
同学们要注意的是,机械的自锁只是在一定的受力条件和受力方向下发生的,而在另外的情况下却是可动的,也就是说自锁具有方向性。
1)平面自锁条件:(1)当α>φ时,驱动力P 的作用线在摩擦角φ之外。
Px > F ,即滑块加速; (2)当α=φ时,P 与R 共线。
Px = F : a. 滑块等速运动——原本运动; b.静止不动——原不动,具有运动趋势。
(3)当α<φ时,驱动力P 的作用线在摩擦角φ之内。
机械原理机械的效率和自锁演示文稿
用力矩表示,则有:
M 0 (d)
M
目前六页\总数四十一页\编于一点
综合(c)、 (d),可得到:
理想驱动力 理想驱动力矩
实际驱动力 = 实际驱动力矩
F0 M 0
FM
效率也可用阻力或阻力矩表示为:
实际工作阻力 理想工作阻力
1
P1 Pd
2
P2 P1
3
P3 P2
Pd
K
PK PK 1
P1 Pd
P2 P1
P3 P2
PK PK1
123 K
P P
K d
▲总效率为各机器效率的连乘积。即:
123K
▲串联机器中任一机器的效率很低,都会使整部机器的效率很低;
▲串联的机器数目越多,效率越低。
目前十一页\总数四十一页\编于一点
(2)并联组合机器的效率计算
将 F 分解为两个分力
FnFcos Ft Fsin —驱动力的作用角,也称传动角
接触面给滑块的法向反力: Fn Fn
接触面给滑块的最大摩擦阻力:
FfmaxFn f
总反力FR与法线n-n的夹角为φ,且有:
FfmaxFntan
FR F
F n
Ft
F f max
Fn F
n
目前二十页\总数四十一页\编于一点
Pd
…
Pr Pri P1P2PK
P1
P2
PK
Pd Pdi P1P2PK
1
2
K
P11P22PKK
P1
P2
PK
P1P2PK
▲并联机器的总效率η主要取决于传递功率最大的机器的效率。要提高并联机器
4-摩擦与自锁PPT模板
4 滚动摩擦简介
我们都知道利用滚动代替滑动可以省力的道理。例如搬运重物
时,若在重物底下垫上滚轴,则要比将重物直接放在地面上推动要省
力得多。在工程实际中,车辆采用车轮,机车采用滚动凸轮,机器采
用滚动轴承,也都是为了减小摩擦,提高传动效率。
如图4-7a所示,水平地面上有一重为G,半径为r的轮子。当轮
子中心O受一水平推力F作用,若推力F较小时,轮子仍保持静止。此
一个阻碍物块滑动的力,这个力阻碍了两物体间的相对滑动趋势,则
此力就称为静滑动摩擦力,简称静摩擦力,用 Ff表示,其方向与滑动 趋势的方向相反,如图4-1b所示。
图4-1
静摩擦力的大小可由平衡方程求得,即
若FT=0 ,则 Ff=0,即物体没有滑动趋势时,也就没有摩擦力;
当 FT增大时,静摩擦力 Ff也随着增大。当 FT增大到某一数值时,物
综上可知,静摩擦力的方向与相对滑动趋势的方向相反,大小随
主动力的变化而变化,变化范围在零与最大值之间,即
当力 FT增大到大于最大静摩擦力 Ffmax时,物块开始向右滑动。
此时的滑动摩擦力阻碍了两物体间的相对滑动,称为动滑动摩擦力,
简称动摩擦力,用 Ff′表示。
大量实验证明,动摩擦力Ff′ 的方向与两物体间相对滑动速度的
中,摩擦对研究对象的工作情况影响很小,属于次要因素,可以忽略
不计。
根据两物体接触面处相对运动的情况,摩擦可以分为滑动摩擦与
滚动摩擦两类。滑动摩擦又可分为静滑动摩擦和动滑动摩擦。当两物
体有相对滚动或相对滚动趋势时,物体间产生的相对滚动的阻碍称为
滚动摩擦。本节着重研究滑动摩擦情况。
1. 滑动摩擦定律
当两个物体相互直接接触,并有一定的相对滑动或相对滑动趋
机械原理各章问答答案
机械原理问答题1。
什么是机构、机器和机械?答:机构:在运动链中,其中一个件为固定件(机架),一个或几个构件为原动件,其余构件具有确定的相对运动的运动链称为机构。
机器:能代替或减轻人类的体力劳动或转化机械能的机构。
机械:机器和机构的总称。
2.机器有什么特征?答:⑴经过人们精心设计的实物组合体。
⑵各部分之间具有确定的相对运动。
⑶能代替或减轻人的体力劳动,转换机械能.3.机构有什么特征?答:⑴经过人们精心设计的实物组合体。
⑵各部分之间具有确定的相对运动。
4.什么是构件和零件?答:构件:是运动的单元,它可以是一个零件也可以是几个零件的刚性组合。
零件:是制造的单元,加工制造不可再分的个体。
1.什么是平面机构?答:组成机构的所有构件都在同一平面或相互平行的平面上运动。
2。
什么是运动副?平面运动副分几类,各类都有哪些运动副?其约束等于几个?答:运动副:两个构件直接接触而又能产生一定相对运动的联接叫运动副.平面运动副分两类:(1)平面低副(面接触)包括:转动副、移动副,其约束为 2.(2)平面高副(点、线接触)包括:滚子、凸轮、齿轮副等,约束为 1.3。
什么是运动链,分几种?答:若干个构件用运动副联接组成的系统。
分开式链和闭式链。
4。
什么是机架、原动件和从动件?答:机架:支承活动构件运动的固定构件。
原动件:运动规律给定的构件.从动件:随原动件运动,并且具有确定运动的构件。
5.机构确定运动的条件是什么?什么是机构自由度?答:条件:原动件的数目等于机构的自由度数。
机构自由度:机构具有确定运动所需要的独立运动参数。
6 。
平面机构自由度的计算式是怎样表达的?其中符号代表什么?答:F =3n— 2P L—P H其中:n--—-活动构件的数目,P L-—-—低副的数目,p H—-——高副的数目.7.在应用平面机构自由度计算公式时应注意些什么?答:应注意复合铰链、局部自由度、虚约束。
8.什么是复合铰链、局部自由度和虚约束,在计算机构自由度时应如何处理?答:复合铰链:多个构件在同一轴线上组成转动副,计算时,转动副数目为m —1个局部自由度:与整个机构运动无关的自由度,计算时将滚子与其组成转动副的构件假想的焊在一起,预先排除局都自由度。
【毕业论文】摩擦自锁及其应用
摩擦自锁及其应用李智机械15班,010636摘要:摩擦在我们的现实生活中可谓无所不在,在某些方面确实有很大危害,但其的积极作用却是不容忽视的。
摩擦自锁就是一个典型的例子。
当主动力合力的作用线位于摩擦锥以内时,无论主动力合力多大,约束力都可与之平衡,此现象称为摩擦自锁现象。
摩擦自锁在现实生活中大量存在,并且起着相当大的作用。
本文试从自锁的原理及具体的应用例子出发,揭开其神秘面纱。
关键词:摩擦自锁、摩擦锥、劈一、摩擦的基本知识1.库仑定律摩擦是在物体相互接触且有作用力时产生的,摩擦力大小与主动力有关。
在一般条件下,摩擦满足古典的库仑三定律:(1)静摩擦力与作用于摩擦面的垂直力成正比倒,与外表的接触面积之大小无关;(2)摩擦力(动摩擦的场合)与滑动速度的大小无关;(3)静摩擦力大于动摩擦力。
其中静摩擦力与垂直力的比例系数为μ,静摩擦力max ,()F N F N μμ≤= 。
①2.摩擦角与摩擦锥当摩擦力达到最大静摩擦力时,全约束反力R和约束面法向的夹角称为摩擦θ。
②角mθ为顶以约束面法向为中心轴,以2m角的正圆锥叫做摩擦锥。
③3.摩擦自锁当主动力合力的作用线位于摩擦锥以内时,无论主动力合力多大,约束力都可与之平衡,此现象称为摩擦自锁现象。
二、摩擦自锁的应用1.劈具有构成尖锐角度的两个平面形状的坚硬物体。
又称楔或尖劈。
属于斜面类简单机械。
两成尖锐角度的平面称为劈面,劈的尖端称为劈刃,宽端称为劈背。
④我国周口店北京猿人遗址处发现的两面石器是尖劈的原始形式,距今约有40~50万年,新石器时代的石斧、石矛,商周时代的青铜器和兵器等,都说明尖劈是人类最早发明并广泛使用的一种简单工具。
尖劈可以用来卡紧物件。
如果尖劈的锐角足够小,它可以嵌入木头缝或墙缝里,这是由于摩擦力的作用使尖劈静止在木头缝中或墙缝里,称为摩擦自锁。
像木器家具中常在横接处打入木楔就是应用尖劈摩擦自锁的原理。
例一、图示为一焊接用楔形夹具,利用这个夹具把要焊接的工件1和1'预先夹妥,以便焊接。
机械原理-机械的自锁
Pt F ma x
转动副的自锁条件:
驱动力作用线与摩擦圆相割
结论:机械是否发生自锁,与驱动力作用线的位 置和方向有关。
1
2
ρ (R2 1 )
la
PP
R2 1
R21
——机械自锁的第一判定条件
机械自锁的第二判定条件: η < 0
机械自锁时,驱动力不超过它产生的摩擦阻力,即此时驱动力所做的功总小于 或等于由它产生的摩擦阻力所产生的功,即
P0 tan P tan( j )
自锁条件:
②
90 j
P 0
3. 判定条件三: 阻抗力 < 0
Q
tan( j )
自锁条件:
90 j
例2:求楔联结受力后不松脱的条件
F/2 F/2
R21 的方向:
①
v12
②
与相对运动 自锁条件:
③
v12
成 90 j 角。
第 12 章 机械中的摩擦和机械效率
移动副中的摩擦
转动副中的摩擦 机械效率 机械的自锁
机械的自锁
机械的自锁:由于摩擦的存在以及驱动力作用方
向的问题,有时会出现无论驱动力有多大,机械 都无法运动的现象。
机械的自锁 移动副的自锁条件:
驱Pn
判定条件二: η <0 判定条件三: 阻抗力<0
1
Wf Wd
1 0
机械自锁的第三判定条件: 阻抗力<0
即只有该阻抗力变为驱动力时,才能使机械运动。
例1: 求滑块沿斜面等速运动时的自锁条件 •等速上升时
j
1. P为驱动力,判定条件一:β < φ
90
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主编 马履中 谢俊 尹小琴 制作 杨德勇
机械工业出版社
ቤተ መጻሕፍቲ ባይዱ
(上册)
第九章 机械的摩擦与自锁
第一节 机械中的摩擦 第二节 机械中的自锁
第一节 机械中的摩擦
一、运动副中的摩擦
(一)平面摩擦
总反力R21 摩擦角φ
tan F21 f N 21 f
N 21
N 21
arctan f
M f F21r feQr
摩擦圆: fer
,r 为轴颈的半径
(二)止推轴颈的摩擦
轴用以承受轴向载荷的部分称为轴端。当轴在承受轴向 外载运转时,也要产生摩擦磨损。具体的分析过程请参考相 关资料。
第二节 机械中的自锁
在实际机械中,由于摩擦的存在以及驱动力作用方向的问题, 有时会出现无论驱动力如何增大,机械都无法运转的现象,这种现 象称为自锁。
总反力R21与V12间的夹角为90o+φ,总是一个钝角 。
(二)斜面摩擦
(1)滑块等速上升
F Q tan( )
(2)滑块等速下降
F ' Q tan( )
斜面摩擦正行程受力分析
斜面摩擦反行程受力分析
二、转动副中的摩擦 (一)径向轴颈的摩擦
摩擦力F21对轴颈形成的摩擦力矩Mf为:
驱动力有效分力: Ft F sin Fn tan
阻力为摩擦力: F21 Fn tan
当 时有 Ft F21
此时无论F 多大,均无法使滑块运动,出现自锁现象。
综上所述,机械是否发生自锁与其驱动作用线的位置及方 向有关。在移动副中,当驱动力的作用线在摩擦角(摩擦锥) 内时,发生自锁现象。在转动副中,当驱动力作用线在摩擦圆 内时,也将产生自锁。可以发现,机械的自锁与机构相关摩擦 特性有关,可通过分析以上的环节来予以判断。机械的自锁在 大多数机械中都存在,自锁的危害很大,但一些特殊机械仍利 用这一特性进行工作,比如螺旋千斤顶、各种机械夹具、螺栓 联结、压榨机等。