全等三角形判定(二)
12.2三角形全等的判定(2)(SAS)(可用)
A
D
C A DE C
证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。 (注意把表示对应顶点的字母写在对 应的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起. 3.证明全等后要有推理的依据.
问题 : 如图有一池塘。要测池塘两端 A 、 B的距离,可 无法直接达到,因此这两点的距离无法直接量出。你能想 出办法来吗?
A A′
∠C=∠C′
BC=B′C′
B
C
C′
B′
∴△ABC≌△A′B′C′(SAS)
练习
1.在下列图中找出全等三角形
30º
Ⅰ
Ⅱ
Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º
Ⅵ
Ⅴ
30º
Ⅶ
Ⅷ
2.在下列推理中填写需要补充 的条件,使结论成立:
如图,在△AOB和△DOC中
A
D
O B
C
AO=DO(已知)
______=________( ∠ DOC 对顶角相等 ) ∠ AOB
A 证明:在△ABC和△DEC中, 分析:已知两边(相等) AC=DC(已知) 找第三边( SSS) ) ∠ACB= ∠DCE(对顶角相等 BC=EC(已知) 找夹角 (SAS) ∴△ABC≌△DEC(SAS)E ∴AB=DE (全等三角形的对应边相等)
C
D
例2.已知:如图,AD=CB,AD∥BC.
A D
B
E
F
C
探索两边和Байду номын сангаас边的对角
C
10cm
8cm
8cm
45° A
B
B′
显然:△ABC与△AB′C不全等 SSA不存在
全等三角形判定(二)
例01.如图,已知:21∠=∠,43∠=∠. 求证:BCD ADC ∆≅∆.分析:ADC ∆与BCD ∆的对应边是DC 与DC ,AD 与BC ,AC 与BD . 对应角是1∠与2∠,ADC ∠与BCD ∠,DAC ∠与CBD ∠. 由条件已有一对应边DC 与DC ,和一对应角1∠和2∠相等,只需证明BCD ADC ∠=∠,就可以证明两三角形全等.证明:21∠=∠,43∠=∠(已知),∴ 4231∠+∠=∠+∠. 即BCD ADC ∠=∠ 在ADC ∆与BCD ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(12)()(已知公共边已证CD DC BCD ADC ∴ )(ASA BCD ADC ∆≅∆例02.已知:如图,21∠=∠,C B ∠=∠. 求证:COD BOE ∆≅∆.分析:欲证COD BOE ∆≅∆,已有两组条件,即C B ∠=∠和COD BOE ∠=∠. 因此,必须再具备一组对应边相等这一条件. BE 和CD 是在BOE ∆和COD ∆中,但直接证明CE BE =比较困难. 若证OE 和OD 相等或OB 和OC 相等,可以分别转化到证明AOD AOE ∆≅∆和AOC AOB ∆≅∆. 由已知条件,不难证出这两对三角形分别全等.证明:∵ 21∠=∠(已知),DOC EOB ∠=∠(对顶角相等), ∴ DOC EOB ∠+∠=∠+∠21. 即 AOC AOB ∠=∠. 在AOB ∆与AOC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(公共边已证已知AO AO AOC AOB C B ∴ )(AAS AOC AOB ∆≅∆. ∴CO BO =在EOB ∆与COD ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知已证对顶角相等C B CO BO COD EOB∴ COD BOE ∆≅∆(ASA )例03.如图,已知:AB 与CD 相交于点O ,且OD OC BD AC =,//,E 、F 为AB 上两点,且BF AE =.求证:DOF COE ∆≅∆.分析:欲证DOF COE ∆≅∆,已具备了两个条件,OD OC =和DOF COE ∠=∠. 所以只需证另一对角相等或证明OF OE =,即可. 证明另一对角相等,比较困难. 所以就证明OF OE =. 因为有BF AE =. 要证OF OE =只需证OB OA =即可. 由已知条件容易证得BOD AOC ∆≅∆,从而证明OB OA =.证明:∵BD AC //(已知)∴B A ∠=∠(两直线平行,内错角相等) 在AOC ∆与BOD ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证OD OC BOD AOC B A ∴)(AAS BOD AOC ∆≅∆∴BO AO =(全等三角形的对应边相等) ∵BF AE =(已知), ∴BF BO AE AO -=-. 即OF OE =在COE ∆与DOF ∆中,⎪⎩⎪⎨⎧=∠=∠=)()()(已证对顶角相等已知OE OE DOE COE DO CO ∴)(SAS DOF COE ∆≅∆例04.如图,已知:CE BD ACE ABD DAE BAC =∠=∠∠=∠,,. 求证:AE AD =.分析:欲证相等的两条线段AD ,AE 分别在ABD ∆和ACE ∆中,由于CE BD =,ACE ABD ∠=∠,所以只需再证CAE BAD ∠=∠即可,这由已知条件DAE BAC ∠=∠容易得到.证明:∵DAE BAC ∠=∠(已知) ∴DAC DAE DAC BAC ∠-∠=∠-∠ 即CAE BAD ∠=∠ 在ABD ∆与ACE ∆中,⎪⎩⎪⎨⎧∠=∠∠=∠=)()()(已证已知已知CAE BAD ACE ABD CE BD ∴)(AAS ACE ABD ∆≅∆∴AE AD =(全等三角形的对应边相等)例05.已知:(如图)21,∠=∠∠=∠D A . 求证:DO AD =分析:要证DO AD =,只要证DOC AOB ∆≅∆即可,在AOB ∆和DOC ∆中,已知D A ∠=∠,DOC AOB ∆=∆,只要再证一边对应相等即可,根据已知可得DCB ABC ∆≅∆,从而可证DC AB =,进而可证DO AO =,思路即为:DO AO =⇐DOC AOB ∆≅∆⇐DC AB =⇐DCB ABC ∆≅∆⇐“AAS ”证明:在ABC ∆和DCB ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(21公共边已知已知CB BC D A ∴)(AAS DCB ABC ∆≅∆∴DC AB =(全等三角形的对应边相等)在AOB ∆和DOC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已证已知对顶角相等DC AB D A DOC AOB ∴ )(AAS DOC AOB ∆≅∆∴ DO AO =(全等三角形的对应边相等)例06.求证:三角形的一边的两端到这边的中线或中线的延长线的距离相等.分析:这是一道了题,必须先根据题意画出图形,再结合题意写出已知,求证,再证明.已知:AD 是ABC ∆的中线. 如图,且AD CF ⊥于F ,AD BE ⊥的延长线于E , 求证:CF BE =证明:∵AD 为ABC ∆的中线(已知) ∴ CD BD =(中线定义)∵ AD BE ⊥ AD CF ⊥(已知)∴ ︒=∠=∠90CFD BED (等于定义) 在BED ∆与CFD ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()(21)(已证对顶角相等已知CD BD CFD BED ∴CFD BED ∆≅∆(AAS )∴CF BE =(全等三角形对应边相等)说明 本题还可利用面积相等来证明,提示,过A 作BC AN ⊥于N ,希同学们自己来证明.例07.已知:如图,BC AD CD AB //,//, 求证:CD AB =.分析:因为四边形,我只学过三角形的有关知识,因此只要连结四边形的对角线从而把四边形的总是转化为三角形的总是来解决.证明:连结AC∵BC AD CD AB //,//(已知)∴43,21∠=∠∠=∠(两直线平行内错角相等)在ABC ∆和CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已知CA AC∴ )(ASA CDA ABC ∆≅∆∴CD AB =(全等三角形的对应边相等)例08.已知:如图,AO CO DO BO ==,求证:OF OE =证明:在BOC ∆和DOA ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知对顶角相等已知OA OC DOA BOC DO BO ∴ )(SAS DOA BOC ∆≅∆∴ D B ∠=∠(全等三角形的对应角相等) 在BOE ∆和DOF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(对顶角相等已知已证DOF BOE DO BO D B ∴)(ASA DOF BOE ∆≅∆∴OF OE =(全等三角形的对应边相等)说明 找到题目中的隐性条件并加以应用是关键.例09.如图,在ABC ∆和DBC ∆中,43,21∠=∠∠=∠,P 是BC 上任意一点, 求证:PD PA =.证明:在ABC ∆和DBC ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已知公共边已知BC BC ∴ )(ASA DBC ABC ∆=∆∴ DB AB =(全等三角形对应边相等) 在ABP ∆和DBP ∆中,⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知已证BP BP DB AB ∴ )(SAS DBP ABP ∆≅∆∴ PD PA =(全等三角形对应边相等)说明:本题也可通过DBC ABC ∆≅∆,得到DC AC =,从而证DCP ACP ∆≅∆,得到PD PA =.选择题(1)已知ABC Rt ∆与C B A Rt '''∆,︒=∠90C ,︒='∠90C ,B A '∠=∠.B A AB ''=.那么下列结论正确的是( )(A )C A AC ''= (B )C B BC ''= (C )C B AC ''= (D )以上答案都不对(2)在ABC ∆和C B A '''∆,甲:B A AB ''=;乙:C B BC ''=;丙:C A AC ''=;丁:A A '∠=∠;戊:B B '∠=∠;己:C C '∠=∠,则不能保证ABC ∆≌C B A '''∆成立的条件为( )(A )丙、丁、己 (B )甲、丙、戊 (C )甲、乙、戊 (D )乙、戊、己 (3)如图,已知ABD ∆和ACE ∆均为等边三角形,那么ADC ∆≌ABE ∆的根据是( )(A )ASA (B )SAS(C )AAS (D )以上都不对(4)如图,C 是BE 上一点,CD AB =,D A ∠=∠,E BCA ∠=∠,那么( )(A )ECD B ∠=∠ (B )C 是BE 的中点 (C )CD AB //(D )以上结论都正确参考答案:(1)C (2)B (3)B (4)D填空题(1)如图,已知:21∠=∠,D C ∠=∠. 求证:AD AC =.证明:在ACB ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) _______()()(21AB D C 已知已知 ∴ACB ∆≌ADB ∆( ) ∴AD AC =(2)如图,已知:BC AB ⊥,DC AD ⊥,垂足分别为B ,D .21∠=∠. 求证:AD AB =.证明:在ABC ∆与ADC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()(21)(AC AC ADC ABC ∴ ABC ∆≌ADC ∆( ) ∴AD AB =( )(3)如图,已知:CE AE =,C A ∠=∠.求证:ADE ∆≌CEB ∆.证明:在AED ∆与CEB ∆中,⎪⎩⎪⎨⎧==∠=∠) _____(______)()(已知CE AE C A ∴ AED ∆≌CEB ∆(ASA )(4)如图,已知:C B ∠=∠,AD AE =.求证:AEC ∆≌ADB ∆.证明:在AEC ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()()(AE AE C B A A 已知 ∴AEC ∆≌ADB ∆( )参考答案:(1)AB ;公共边;AAS ;全等三角形的对应边相等(2)垂直定义;已知;公共边;AAS ;全等三角形的对应边相等. (3)已知:AED ∠;CEB ∠;对顶角相等 (4)公共角;已知;AAS证明题1.如图,已知,21∠=∠,DCB ABC ∠=∠. 求证:DC AB =.2.如图,已知:E D ∠=∠,AM EM CN DN ===. 求证:点B 是线段AC 的中点.3.如图,已知:21∠=∠,AE AD =. 求证:OC OB =.4.如图,已知:在ABC ∆中,AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于C ,求证:AF AE =.5.如图,已知:E 在AC 上,21∠=∠,43∠=∠. 求证:DE BE =.6.如图,已知:BC AD //,21∠=∠,43∠=∠,直线DC 过E 点交AD 于D ,交BC 于C .求证:AB BC AD =+.7.求证:三角形一边的两个端点到这边上的中线的距离相等. 8.如图,已知:DE AB =,直线AE ,BD 相交于点C ,︒=∠+∠180D B ,DE AF //,交BD 于F .求证:CD CF =.9.如图,已知:AB 与CD 相交于点O ,O 是AB ,CD 的中点,过点O 引直线EF 分别与AD ,BC 相交于E 、F 两点.求证:BF AE =.参考答案:1.证:由DCB ABC =∠,21∠=∠,可得ACB DBC ∠=∠.易证ABC ∆≌DCB ∆,∴ DC AB =2.证:易证DNB ∆≌EMB ∆,∴ EB DB =,由此可证:EA DC =.因此,可证DCB ∆≌EAB ∆.∴BC AB =,∴B 是AC 的中点.3.易证ABE ∆≌ACD ∆,∴C B ∠=∠,AC AB =,又∵AE AD =,∴CE BD =.由此可证BOD ∆≌COE ∆,∴OC OB =4.︒=∠=∠90AFD AED ,FAD EAD ∠=∠,AD AD =,∴AFD AED ∆≅∆,∴AF AE =.5.∵ 21∠=∠,AC AC =,43∠=∠,∴ABC ∆≌ADC ∆,∴AD AB =,又∵21∠=∠,AE AE =,∴ADE ABE ∆≅∆,∴DE BE =6.在AB 上取一点F ,使BF BC =,又∵43∠=∠,EB EB =,∴EC B EFB ∆≅∆,∴C EFB ∠=∠,又∵BC AD //,由此可推出D EFA ∠=∠.可证AFE ADE ∆≅∆,∴AF AD =,∴BC AD AB +=.7.已知:如图,AD 为ABC ∆的中线,AD BF ⊥于F ,AD CE ⊥于E . 求证:CE BF =.证:︒=∠=∠90BFD CED ,BDF CDE ∠=∠,BD CD =,∴ BFD CED ∆≅∆,∴ CE BF =8.证:∵ DE AF //, ∴AFC D ∠=∠,又∵︒=∠+∠180AFB AFC ,︒=∠+∠180D B ,∴ AFB B ∠=∠∴ DE AF AB ==,∴ 可证ECD ACF ∆≅∆,∴CD CF =9.证:BO AO =,BOC AOD ∠=∠,CO DO =,∴B O C A O D ∆≅∆,∴B A ∠=∠.而BOF AOE ∠=∠,BO AO =,∴BOF AOE ∆≅∆,∴ BF AE =能力:1、如图1,已知:AD 平分∠BAC ,AB=AC ,连接BD ,CD ,并延长相交AC 、AB 于F 、E 点.则图形中有( )对全等三角形.A 、2B 、3C 、4D 、5答案:C.2、如图2,已知:∠1=∠2,AB=DC ,图中全等三角形的对数是( )A 、0B 、1C 、2D 、3答案:A3、如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对 D2对答案:C.1、如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,DE=DC ,延长BE 交AC 于F ,求证:BF 是△ABC 中边上的高. 图1 A B B 、E F D C AD B O C 1 2 图2 图3 D FE C AF C D B E 图4提示:关键证明△ADC ≌△BFC2、如图5,已知:∠D=∠E ,DN=EM ,AM=CN ,求证:点B 是线段AC 的中点.提示:欲证点B 是线段AC 的中点,只需证AB =BC.选择AB 、BC 所在的两个三角形,然后证这两个三角形△AMB ≌△CNB.由条件可得△EMB ≌△DNB ,所以得到∠EMB =∠DNB ,MB =NB由此易证△AMB ≌△CNB.3、如图6,已知:AB=CD ,∠A=∠D.求证:∠ABC=∠DCB提示:欲证∠ABC=∠DCB ,选择这两个角所在的三角形,只需证△ABC ≌△DBC由条件可知△ADC ≌△DAB ,所以得到∠DAC =∠ADB ,BD =AC ,加之条件利用边角边公理可证△ABC ≌△DBC4、如图7,已知:在△ABC 中,∠ACB=090,AC=BC ,AE 是BC 边上的中线过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于点D.(1)求证:AE=CD.(2)AC=12cm ,求BD 的长.提示:欲证AE=CD ,只需证△ACE ≌△CBD 由条件可知∠CAE =∠BCD (同角的余角相等)加之其它两个条件易证得结论.由E 是BC 的中点,EC =BE又BD =EC ,BC =AC 知BD =6 cm5、如图8,已知:在△ABC 中,AB=AC ,∠A=90,BD 平分∠ABC 交AC 于D ,CE ⊥BD 交BD 的延长线于E ,求证:BD=2CE提示:本题的关键是从结论BD=2CE 出发,想到构造线段CF =2CE ,再证BD =CFA M N E C DB 图5 A D BC 图6 O E ┛ ┓ ┏D A CF 图7 B A E C D 图8 F。
12全等三角形判定二(SSS,AAS)(基础)知识讲解
全等三角形的判定二(SSS ,AAS )【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC≌△ A′B′C′,已知了AB=A′B′,∠A=∠ A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB ,AF=AC ,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS ),∴∠BAD=∠CAD.。
1.2.-3三角形全等的判定(二)角边角定理
例2:如图,已知AB=AC,∠ADB= ∠AEC,
求证:△ABD≌△ACE 证明:∵ AB=AC,
∴ ∠B= ∠C(等边对等角)
∵ ∠ADB= ∠AEC, AB=AC, ∴ △ABD≌△ACE(AAS)
B D
A
E
C
例 3:若△ABC中 , BE⊥ AD于 E, CF⊥ AD于 F,且 BE=CF,那么 BD与 CD相等吗?为什么? 证明:∵ BE⊥ AD, CF⊥ AD(已知) ∴∠ BED=∠ CFD= 900 (垂直的定义) 在△ BDE和△ CDF中
A
B
3、如图,△ABC是等腰三角形,AD、BE分 别是∠BAC、∠ABC的角平分线,△ABD和 △BAE全等吗?试说明理由?
思考:如果两个三角形有两个角和其 中一个角的对边分别对应相等,那么 这两个三角形是否全等?
A A′
B
C B′
C′
动脑筋
△ ABC =BC ,∠A=∠A′,∠B=∠B′. 求证:△ABC和 是全等三角形 在△ABC和 △ ABC 中,
B
A
E
图3-35
C
D
证明:
图3-35
练习
1.如图3-37,观察图中的三角形.小强说:“图 中有两个三角形全等.”你认为小强的判断对吗? 请说明理由.
证明:
图3-37
例2 如图3-39中,已知BE//DF,∠B=∠D,
AE=CF.求证:△ADF≌△CBE.
证明:
图3-39
2.要使下列各对三角形全等,需要增加什 么条件? (1) (2)
4、判定定理:
如果两个三角形有两个角及其夹边分别 对应相等,那么这两个三角形全等。简 记为A.S.A.(或角边角)
14.2全等三角形的判定(2)
复习导入:
1.什么叫全等三角形? 2.三角形全等的判定方法1的内容是什么?
学习目标:
1.理解并掌握三角形全等的判定方法2, 即“ASA”。
2.会运用“ASA”证明两三角形全等。
自学提纲:
1.已知两角和夹边时,三角形的形状、大小
能确定吗?你能通过画图来验证吗?
2.判定两个三角形全等的方法2的内容是什 么?
F
证明:∵ AF∥DE(已知)
∴∠A=∠D(两直线平行,内错角相等)
∵AC=BD(已知)
∴AC-BC=BD-BC(等式的性质)
即AB=DC ∵ BF∥CE(已知)
A
B
C
D
∴∠FBC=∠ECB(两直线平行,内错角相等)
∵∠ABF+∠FBC=180°, ∠DCE+∠ECB=180° (平角定义)
∴ ∠ABF= ∠DCE (等角的补角相等) E
∠ABC+∠4 =180° (平角定义)
D
又∵ ∠3=∠4 (已知)
A 1 B3
2
4
∴ ∠ABD =∠ABC (等角的补角相 在△ABD和△ABC中,
C
∵ 1 2 (已知)
AB
AB (公共边)
ABD ABC(已证)
∴ △ABD≌△ABC (ASA)
∴ DB=CB (全等三角形对应边相等).
例4 已知:如图,要测量河对岸相对的两点A、B之间 的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再 过点D作BF的垂线DE,使点A、C、E在一条直线上,这时 测得DE的长等于AB的长,请说明理由。
3.课本101页例3证明两条线段相等的方法是 什么?
4.例4中测量方法和理由是什么?
2_5_2全等三角形判定(二)
2.5.3 三角形全等的判定(第3课时)教学目标1、使学生理解ASA 的内容,能使用ASA 全等识别法来识别三角形全等进而说明线段或角相等;2、通过画图、实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观点。
使学生体会探索发现问题的过程。
经历自己探索出AAS 的三角形全等识别及其应用。
重点难点:1、难点:三角形全等的识别法ASA 和AAS 及应用;2、重点:利用三角形全等的识别法,间接说明角相等或线段相等。
1.画一画:如图,△ABC 是任意一个三角形,画△A 1B 1C 1 ,使A 1B 1=AB ,∠A 1=∠A ,∠B 1=∠B ,把画的△A 1B 1C 1剪下来放在△ABC 实行比较,它们是否重合?由此你能得出什么结论?得出结论: 对应相等的两个三角形全等(简称“角边角”或“ASA ”)2.如图,已知点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB=AC,∠B=∠C .求证:BE=CD1. 如图,已知∠ABC =∠D ,∠ACB =∠CBD ,判断 图中的两个三角形是否全等,假如全等请说明理由. 假如不全等,能够改变什么条件可使这两个三角形全等。
先独立思考,然后在小组内讨论交流你的思路。
活动二 知识巩固,水平提升1.如图,已知 AB ∥CD ,CE ∥BF . 若AE =DF , 求证:BF =CEF E DCBA ACD B2. 如图,已知△ABC ≌△'''A B C ,CF 、''C F 分别是△ABC 的∠C 和△'''A B C 的∠'C 的角平分线,那么线段CF 和''C F 相等吗?小组交流解题思路,把典型问题展示出来,分析错因。
小结:通过这节课的学习,你学到了哪些新的知识,在解决问题的过程中获得了什么启示?还有什么疑惑? 【检测反馈】1.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法( )A 、选①去,B 、选②C 、选③去2.如图2,O 是AB 的中点, 要使通过角边角(ASA )来判定△OAC ≌△OBD ,需要添加一个条件,以下条件准确的是( )A 、∠A =∠B B 、AC=BDC 、∠C =∠D3.如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.4.如图,要测量河两岸相对的两点A 、B 的距离,能够在AB 的垂线BF 上取两点C 、D ,使BC=CD ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得DE 的长度就是AB 的长度,为什么?5、 如图,ABC DCB ∠=∠,ACB DCB ∠=∠,试说明△ABC ≌△C C A.3421D C B A DCBADCB作业:87页 4题。
12.2 三角形全等判定(2)(SAS)
§12.2 三角形全等判定(2)(SAS )教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.掌握三角形全等的“S AS ”条件,了解三角形的稳定性.4.能运用“S AS ”证明简单的三角形全等问题.重点、难点重点:会用“边角边”证明两个三角形全等 难点:应用结合法的格式表达问题.教学过程一、 导课动手画图:做一做:先任意画出△ABC.再画一个△A ′B ′C ′, 使A ′B ′=AB, A ′C ′=AC,∠A ′=∠A.(即有两边和它们的夹角相等).把画好的△A ′B ′C ′剪下,放到△ABC 上, 它们全等吗?1. 画∠MA ′N=∠A2. 在射线A ′M 上截取A ′B ′=AB3. 在射线A ′N 上截取A ′C ′=AC4. 连接B ′C ′∴△A ′B ′C ′就是所求的三角形.把△ABC 与△A ′B ′C ′剪下来,它们可以重合吗?可以发现,它们是重合的,也就是说△ABC ≌△A ′B ′C ′.于是我们得出另外一个判定两个三角形全等的定理。
二、 新授知识1、三角形全等判定二:两边和它们的夹角对应相等的两个三角形全等.(可以简 写成“边角边”或“SAS ”) 用数学语言表述:在△ABC 和△DEF 中⎪⎩⎪⎨⎧EF =BC E =∠B ∠DE =AB ∴ △ABC ≌△ DEF (SAS )2、利用“边角边”(SAS )判定两个三角形全等应用D E F A B C【例1】已知:如图,AC=AD ,∠CAB=∠DAB求证:△ACB ≌△ADB证明:在△ACB 和△ADB 中 ⎪⎩⎪⎨⎧(公共边)AB =AB (已知)DAB ∠=CAB ∠(已知)AD =AC∴△ACB ≌△ADB (SAS )随堂练习:课本P39练习第1、2题.1.已知:如图,AB =AC ,F 、E 分别是AB 、AC 的中点.求证:△ABE ≌△ACF .2.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .3、已知: AD ∥BC ,AD = CB ,AE=CF(图3).求证:△ADF ≌△CBE4、(楚雄·中考)如图,点A 、E 、B 、D 在同一条直线上,AE=DB ,AC=DF ,AC ∥DF.请探索BC 与EF 有怎样的位置关系?并说明理由.本课小结:通过本课时的学习,需要我们掌握1、根据边角边定理判定两个三角形全等,要找出两边及夹角对应相等的三个条件2、找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理. AB CD _ F _E _ B _ A _ C _ D。
全等三角形(二)
练4-1.如图,在△ABC中,AC = BC,AD = CE,BE⊥CE于点E,AD⊥CE于点D.求证:∠ACB = 90 .
练4-2.已知:如图,BE⊥CD,BE = DE,BC = DA.求证:(1)△BEC≌△DEA; (2)DF⊥BC.
拓展题:
1.如图,点A在DE上,点F在AB上,且AC = CE,AB = 3,∠DAF =∠ACE =∠DCB.求DE的长.
练3-1.如图,AE⊥EC于E,AF⊥FB于F,小明想要利用HL判定△ AEC≌△ AFB,那么他需要添加的条件可以是____________.
练3-2.如图,AD⊥BC,AC = AB.若BD =13,那么BC = __________.
例4.如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF = AC,FD = CD.求证:BE⊥AC.
全等三角形(二)
【知识点一】全等三角形的判定(二)
思考:小明不小心打碎一块三角形模具,他应该带哪块去商店配一个与原来一样的?
全等三角形判定3:
两角和它们的夹边分別相等的两个三角形全等.简写成“角边角”或“ASA” .
例. 中, B= E, C= F,BC=EF,求证: .
三角形全等的书写方法:五行法
思考:判定两个直角三角形全等的方法有哪些呢?
练习:判断下列直角三角形的全等判定方法是否正确,正确请写出原因。
(1)两条直角边对应相等. ( )
(2)斜边和一锐角对应相等. ( )
(3)斜边和一直角边对应相等. ( )
(4)两锐角相等. ( )
例3.如图,AC⊥BC,BD⊥AD,AC=BD.求证:△ABC≌△BAD.
全等三角形判定二
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA ”). 【例】已知:如图点D 在AB 上,点E 在AC 上,AB AC B C =∠=∠,.求证:AD AE =.EDCB A分析:AD 和AE 分别在ADC △和AEB △中,所以要证AD AE =,只需证明ADC AEB ≌△△即可. 证明:在ADC △和AEB △中,A AAC AB C B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ADC AEB ≌△△ ()ASA ∴AD AE =.问题:①在一个三角形中,两角确定,第三个角一定确定,对吗?为什么?②可不可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢?如图,在ABC △和DEF △中,A D B E BC EF ∠=∠∠=∠=,,,ABC △与DEF △全等吗?能利用角边角条件证明你的结论吗?全等三角形判定(二)新知学习FED CBA证明:∵180A B C D E F ∠+∠+∠=∠+∠+∠=︒ A D B E ∠=∠∠=∠,∴A B D E ∠+∠=∠+∠∴C F ∠=∠在ABC △和DEF △中 B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△ ()ASA两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).【例1】在ABC △和A B C '''△中,A A'BC B'C'∠=∠=,,C C'∠=∠,则ABC △与'''A B C △ .【例2】如图,点CF 在BE 上,ACB DFE BC EF ∠=∠=,,请补充一个条件,使ABC DEF ≌△△,补充的条件是 .F EDC B A【例3】如图,已知MB ND =,MBA NDC ∠=∠,下列条件不能判定是ABM CDN ≌△△的是( )A .M N ∠=∠ B. AB CD =C .AM CN = D. AM CN ∥MNDC B A基础演练【例4】如图,90E F ∠=∠=︒,B C AE AF ∠=∠=,,给出下列结论:①CAD BAD ∠=∠ ②BE CF = ③ACN ABM ≌△△ ④CD DN =其中正确的结论是_________ _________NMFEDCB A【例5】如图,在ABC △和DCB △中,AB DC =,要使ABO DCO ≌△△,请你补充条件________________(只填写一个你认为合适的条件).ODC BA【例6】如图,已知A C ∠=∠,AF CE =,DE BF ∥,求证:ABF CDE ≌△△. FEDCBA【例7】如图,CD AB ⊥,BE AC ⊥,垂足分别为D E 、,BE 交CD 于F ,且AD DF = 求证:AC BF =FEDC BA【例8】已知:如图,AD AE =,ACD ABE ∠=∠求证:BD CE =.ED CB A【例9】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E ,求证:DE BD CE =-【例10】已知:如图,C D BAC ABD ∠=∠∠=∠,求证:OC OD =ODCBAN EDCBA【例11】如图,已知:AB CD =,AD BC =,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E F ,.求证:AE CF =.FOEDCBA斜边与一直角边对应相等的两个直角三角形全等.(HL ) 【例】已知:如图,AB BD ⊥,CD BD ⊥,AD BC =,求证:AB CD =.DBCA证明:∵AB BD ⊥,CD BD ⊥ ∴ABD CDB ∠=∠在Rt ABD △与Rt CDB △中 AD CBBD BD=⎧⎨=⎩ ∴Rt ABD Rt CDB ≌△△ ()HL ∴AB CD =【习题1】如图,已知321∠=∠=∠,AB AD =.求证:BC DE =.新知学习课后练习321O EDCBA【习题2】已知:如图,AB CD ∥,AE CF =求证:AB CD =OFEDCBA【习题3】如图,已知:BE CD =,B C ∠=∠,求证:12∠=∠21OED CBA【习题4】如图,ABC △中,D 是BC 上一点,DE AB ⊥,DF AC ⊥,E F 、分别为垂足,且AE AF =,求证:DE DF =,AD 平分BAC ∠.21FEDBA【习题5】如图,在ABC △中,D 是BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是E F 、,且DE DF =, 证明:AB AC =.FEDCBA【习题6】如图,AB CD=,DF AC⊥于F,BE AC⊥于E,DF BE=,求证:AF CE=.F EDCBA至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.判定定理边边边()SSS边角边()SAS角边角()ASA角角边()AAS HL(仅用在t R△中)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.知识总结。
全等三角形性质与判定(二)-教师版
一、全等三角形的性质全等三角形对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,周长相等,面积相等.二、全等的性质和判定(1)全等三角形的判定方法:()tSSS SAS ASA AAS HL R、、、、△(2)全等三角形的图形变换形式:平移、对称、旋转(3)由全等可得到的相关定理:①角平分线定理②等腰、等边三角形性质和判定③垂直平分线定理共顶点等腰三角形旋转模型——“手拉手”模型证明全等的基本思想“SAS”等边三角形共顶点全等三角形性质与判定知识回顾知识讲解共顶点等腰直角三角形共顶点等腰三角形共顶点等腰三角形【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到AE BD =.【例2】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形. 求证:(1)AN BM =;(2)DE AB ∥;(3)CF 平分AFB ∠.同步练习【解析】通过“SAS ”证明MCB ACN ≌△△,得到AN BM =.通过“SAS ”证明MCE ACD ≌△△,得到CE CD =,从而推出DCE △为等边三角形, ︒=∠=∠60NCB DEC DE AB ∥.【变式练习】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到CBD CAE ∠=∠. 再通过“SAS ”证明CAN CBM ≌△△,得到CM CN =.【例3】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.【解析】通过“SAS ”证明MCB ACN ≌△△,得到CMB CAN MB AN ∠=∠=,.再通过“SAS ”证明CAD CME ≌△△,得到MCE ACD CE CD ∠=∠=,,从而推出︒=∠60DCE .【变式练习】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .【解析】通过“SAS ”证明BDE ADC ≌△△,得到1322-====CD AB BE AC ,,.【例4】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 平分.【解析】通过“SAS ”证明,得到ACB AFD △≌△,DF CB CE ==; 再通过“SAS ”证明,得到BCA BED △≌△,DE AC CF ==; 得到四边形ABCD 为平行四边形,对角线互相平分.【例5】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.【解析】连接CH 交AD 于M通过“SAS ”证明FCH FDK △≌△,得到CH DK AD ==,60AMC ∠=︒,推出DAB HCB ∠=∠; 再通过“SAS ”证明,得到ABD CBH △≌△,HB HD BHC BDA =∠=∠,; 进一步推出HBD △也是等边三角形.【例6】 (2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.【解析】通过“SAS ”证明CDG ADE ≌△△,得到DG AE =.【变式练习】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .【解析】通过“SAS ”证明ABG AEC ≌△△,得到ABG AEC BG CE ∠=∠=,, 再通过“8”字图导角得到BG CE ⊥.【例7】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.【解析】通过“ASA ”证明ADE ABF △≌△,得到DE BF =.【变式练习】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD 的面积是16,求DP 的长.【解析】过点D 作DE BC ⊥交BC 延长线于通过“AAS ”证明DPA DEC △≌△,得到DE DP =,从而推出四边形ABCD 是正方形 =164ABCD DPBE S S DP ==,【例8】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .QRPOD CBA【解析】通过“ASA ”证明ADQ DCP △≌△,得到DQ CP =,再通过“SAS ”证明,得到ODQ OCP △≌△,POC QOD ∠=∠从而推出OP OQ ⊥.【变式练习】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.【解析】通过“ASA ”证明AOE BOF △≌△,得到AE BF =,从而推出AE CF AB +=.【例9】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.【解析】连接OB通过“SAS ”证明BOE COF △≌△,得到BE CF =. BE BF BF CF BC a +=+==【变式练习】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.【解析】过点O 作OD OE ⊥交BC 于D通过“SAS ”证明BOE COD △≌△,得到OE OD BE CD ==,. 再通过“SAS ”证明0E F DOF △≌△,得到EF DF =. 可以推出BE BF EF CD DF BF BC AB a ++=++===【例10】 已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AM AF =. 再通过“SAS ”证明AME AFE △≌△,得到AB AH =.【例11】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【解析】(1)通过“SAS ”证明AFC ABH △≌△,得到CF BH =. (2)过F H 、分别作FN MD D HK MD K ⊥⊥于,于,再通过“AAS ”证明BDA ANF HKA ADC △≌△,△≌△,得到FN HK =. 再通过“8”字全等证明FNM HKM △≌△,从而得到MF MH =.【注】这道题有很多重要的结论,条件结论互换依然成立,2,ABC AFH BC AM S S ==△△【例12】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化【解析】见下题 【答案】B【例13】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; ⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.【解析】(1)过点A 作AD 的垂线AF ,使得AD AF =,连接EF CF 、通过“SAS ”证明ABD ACF △≌△,得到45B ACF BD CF ∠=∠==,. 再通过“SAS ”证明ADE AFE △≌△,得到DE EF =.在Rt ECF △中满足勾股定理,,得到222.CE CF EF +=,故222.CE BD DE += (2)同理可证222.CE BD DE +=【例14】 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=_________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示.图③图②图①ABCD MNABCD MNN MD CBA【解析】(1)MN BM CN =+,Q 2=L 3(2)延长AC 至E ,使得CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE BM CN ==+ 2223Q MN AN AM ME AN AC BM NC L x =++=+++==+ (3)在AC 上截取CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE CN BM ==- 2223Q MN AN AM NE AN AC BM NC L x =++=+++==+【变式练习】(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ; (2)如图在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明. (3)如图在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.FED CBAF EDCBA【解析】(1)延长BC 至M ,使得DK BM =,连接AM 通过“SAS ”证明ADF ABM △≌△,得到AF AM =.再通过“SAS ”证明AME AFE △≌△,得到EF EM BE DF ==+ (2)同理可证 (3)同理可证【变式练习】如图所示,在四边形ABCD 中,AB =BC ,∠A =∠C =90°,∠B =135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.【解析】延长BC 至E ,使得CE AK =,连接DE 、BD 通过“HL ”证明ABD CBD △≌,得到AD CD =.通过“SAS ”证明ADK CDE △≌△,得到DK DE ADK CDE =∠=∠,.再通过“SSS ”证明KDN EDN △≌△,得到122.52NDK NDE KDN ADC ∠=∠∠=∠=,【例15】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12212ABCDE ADE S S DF AE==∙∙=△同步课程˙全等三角形性质与判定 【变式练习】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12242ABCDE ADE S S DF AE ==∙∙=△【变式练习】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△,得到ADC ADF ∠=∠.【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.【解析】通过“SAS ”证明ABD ACE △≌△,得到BD CE AC CD ==+.【习题2】已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【解析】通过“ASA ”证明ADE CDF △≌△,得到DE DF =.【习题3】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.课后练习【解析】通过“SAS ”证明ACN MCB △≌△,得到CAN CMB ∠=∠. 再通过“AAS ”证明CAG CMH △≌△,得到CG CH =.【习题4】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.QP DCBA【解析】延长AB 至M ,使得BM DQ =,连接CM 依题可知:PQ DP BP =+通过“ASA ”证明CDQ CBM △≌△,得到,CQ CM DCQ BCM =∠=∠. 再通过“ASA ”证明CQP CMP △≌△,得到45QCP MCP ∠=∠=【习题5】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.【解析】通过“ASA ”证明MBP MCP △≌△,得到BMP CMQ BM CM ∠=∠=,,从而推出 MPQ ∆是等腰直角三角形,点P 从B 出发向C 运动,MP 先变小在变大, 故MPQ ∆的面积先变小再变大.同步课程˙全等三角形性质与判定【习题6】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AFD M DAF BAM ∠=∠∠=∠,. 通过导角推出M EAM ∠=∠,从而推出AE ME =,故BE DF AE +=.【习题7】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.【解析】依题可知,AE DF =,通过“SAS ”证明ABE DBF △≌△,得到ABE DBF BE BF ∠=∠=,. 从而推出BEF △为等边三角形.【习题8】(北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.同步课程˙全等三角形性质与判定【解析】延长AC 至E ,使得BM CE =,通过“SAS ”证明DBM DCE △≌△,得到BDM CDE ∠=∠. DM DE =,再通过“SAS ”证明MDN EDN △≌△,得到MN EN MN BM CN ==+,.。
全等三角形判定方法专题(二)
全等三角形判定方法(2)本讲知识归纳1. 一般三角形全等的判定方法有SSS 、SAS 、ASA 、AAS 四种;2. 直角三角形的全等,除了上述四种判定方法外,还有独有的一种判定方法:斜边和一条直角边对应相等的两个直角三角形全等(简称“斜边、直角边”或“HL ”).基础回顾例1 如图,△ABC 中,D 是BC 上一点,DE ⊥AB 于E ,DF ⊥AC 于F ,且AE =AF ,连接EF . 求证:AD 垂直平分EF .分析:从条件出发,由“HL ”判定方法可证△AED ≌△AFD ,得∠1=∠2. 进而得△AEO ≌△AFO .证明:21E BF AOCD点评:直角三角形的全等判定方法最多,一共有五个,其中的“HL ”方法是直角三角形所独有的,要注意运用多种方法证明两个直角三角形全等.例2 如图,△ABC 的高BD 、CE 相交于O ,且OD =OE . 求证:AB =AC .分析:由条件联想“HL ”判定方法,容易想到连接AO ,便有Rt △ADO ≌Rt △AEO ,得到AD =AE .于是要证明AB =AC ,可转化为证△ABD ≌△ACE ,运用“AAS ”方法易证. 证明:EBAO CD点评:由已知条件能够得到什么,要求证的结论需要什么,两者若能“接通”,就得到了证明思路,这种思维方法就是前面多次提到的分析综合法(“两头凑”).1. 如图,已知,AD ⊥BD ,AE ⊥EC ,AD =AE ,AB =AC ,BD 、CE 交于点O . 求证: (1)BD =CE ;(2)OE =OD ;(3)BE =CD .E BAO CD2. 如图,AD 、BE 是△ABC 的两条高,它们交于点F ,且BF =AC ,CD =DF ,ED 平分∠BEC .求证: ∠ABE =∠ADE .EBFAC D方法运用例3 如图,正方形ABCD 中,E 和F 分别是边BC 和CD 上的点,AG ⊥EF 于G ,若∠EAF =45°. 求证:AG =AD .G H54321EB F ACD分析:要让AG =AD ,可考虑证Rt △AGF ≌Rt △ADF ,但还差一条边相等或锐角相等,得去挖掘条件∠EAF =45°的作用. 结合正方形ABCD 的条件,当∠EAF =45°时,1245∠+∠=︒,应考虑通过构造三角形全等,把∠1与∠2移到一起. 于是,延长CD 至H 使DH =BE ,则△ADH ≌△ABE . 进而易证△AEF ≌△AHF ,得∠4=∠5,得证. 证明:3. 已知:△ACB 为等腰直角三角形,点P 在AC 上,连BP ,过B 点作BE ⊥BP ,BE =PB ,连AE 交BC 于F .(1)如图①,问P A 与CF 有何数量关系,并证明;(2)如图②,若点P 在CA 的延长线上,问上结论是否仍成立,画图证明.PCEBF AC图① 图②问题探究例5 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么,在什么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,试证明它们全等. (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.分析:(1)画出图形,并结合图形将条件具体化. 如图为两个锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1. 注意到角相等,可作高构造直角三角形全等(△BDC ≌△B 1D 1C 1),进而另一对直角三角形也全等(△ABD ≌△A 1B 1D 1),得∠A =∠A 1,问题得证.D 1C 1B 1A 1B AC D(2)(1)的本质是就这一问题进行分类讨论,从讨论的结果来看,满足条件的同类的两个三角形全等.证明:点评:在八年级课本中,我们知道了“SSA ”不能作为两个三角形全等的依据,但没有弄清楚“SSA ”中的全等情形,本例既让我们深入认识了“SSA ”,又让我们学到探究问题的一种思维方法——分类讨论.作业:1.如图,点C .E 分别为∆ABD 的边BD 、AB 上两点,且AE =AD ,CE =CD . ∠D =070,∠ECD =0150,求∠B 的度数.2.如图,∠1=∠2, ∠3=∠4,点B 、D 、C 、F 在一条直线上,EF ⊥AD 于E , (1) 求证:∠ADF =∠DAF ; (2) 求证:AE =DE .3.已知AC =BC ,AC ⊥BC ,CD =CE ,CD ⊥CE ,连AD 、BE ,求证: (1) AD =BE :(2) AD ⊥BE .4.已知△ACB 和△CDE 都为等腰直角三角形,连AE 、BD ,求证: (1) AE =BD ; (2) AE ⊥BD .(一)作垂线构造直角全等三角形 5.已知AC =BC ,AC ⊥BC ,过C 点任意作直线l ,过A 点、B 点分别作l 的垂线AM 、BN ,垂足为M 、N .若AM =2,BN =4,求MN 的长.6.已知AC =BC ,AC ⊥BC ,BD 为∠B 的平分线,AE ⊥BD ,垂足为E 点,求证:BD =2AE7.如图,△ACB 为等腰直角三角形,∠ACB =090,AC =BC ,AE 平分∠BAC ,BD ⊥AE ,垂足为D 点. (1) 求证:CD =BD ; (2) 求∠CDA 的大小、8.如图,△ACB 为等腰直角三角形,∠ACB =090,AC =BC ,AE 平分∠BAC ,∠CDA =045,求证:AD ⊥BD .。
三角形全等的判定(2)
八年级
上册
12.2 三角形全等的判定 (第2课时)
课件说明
• 本节内容是在学生已探明了两个三角形全等至少需 要满足三个条件,及三边分别相等的两个三角形全 等的基础上,探究两边和一角分别相等的情形.
课件说明
• 学习目标: 1.探索并正确理解“SAS”的判定方法. 2.会用“SAS”判定方法证明两个三角形全等. 3.了解“SSA”不能作为两个三角形全等的条件. • 学习重点: 用“SAS”判定方法证明两个三角形全等,并能进 行简单的应用.
课堂练习
下列图形中有没有全等三角形,并说明全等的理 由.
30°
30°
甲
30°
乙
丙
课堂练习
图甲与图丙全等,依据就是“SAS”,而图乙中 30°的角不是已知两边的夹角,所以不与另外两个三角 形全等. 30°
30°
甲
30°
乙
丙
应用“SAS”判定方法,解决简单实际问题
问题2 某同学不小心把一块三角形的玻璃从两个 顶点处打碎成两块(如图),现要到玻璃店去配一块完 全一样的玻璃.请问如果只准带一块碎片,应该带哪一 块去,能试着说明理由吗? 利用今天所学“边角边”知识,带黑色的那块.因 为它完整地保留了两边及其夹角, 一个三角形两条边的长度和夹角的 大小确定了,这个三角形的形状、 大小就确定下来了.
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎么探究出“SAS”判定方法的?用 “SAS”判定三角形全等应注意什么问题? (3)到现在为止,你学到了几种证明两个三角形 全等的方法?
布置作业
教科书习题12.2第2、3、10题.
教学反思
• • • • • • • • • 一、把课堂的主动权还给学生 本节课以提问的形式复习前面的判定方法,再让学生按要求动手画三角形,其次把三 角形剪下来,跟同桌的三角形是否完全重合,最后看这两个三角形具备什么条件,归 纳”SAS"定理。从方法的推导到运用都让学生充分发表自己的意见,老师根据学生的 情况作适时指导,起到指导的作用。 二、突出重点、突破难点 本节课重点是运用“边角边”方法证明两个三角形全等,所设计的例题、练习都是运 用“边角边”方法进行证明,学生会用“边角边”判定方法解决实际问题。 不足之处: 一、时间把握不准。由于给充分时间学生探索、运用“边角边”判定定理,由于高估 学生的能力,各个环节实用时间都比计划的时间多,还有命题“两边及一边的对角对 应相等的两个三角形全等 吗?”没时间探索,运用,只是画图说说而已,学生没真正弄懂,应留下一节再上。 二,没能做到关注每一位学生,教学没能做到分层次教学,有个别学生没有参与课堂 ,课堂反馈的信息不够全面。 三、板书不够合理、美观,要加强这方面的训练。
12.2三角形全等的判定2(SAS)课件
B
C
D
F
练习: 1.在下列推理中填写需要补充的条件,使结论 成立
在△AOB和△DOC中
A
O
D
A0=DO(已知) ∠AOB = ∠DOC (对顶角相等) BO=CO(已知)
B
C
∴ △AOB≌△DOC( SAS ).
A
2.在△AEC和△ADB中 AB
= AC
(已知)
E
D
∠A=∠A(公共角) AD = AE ∴△AEC≌△ADB (
B
C
SAS ).
注意:SAS中的角必须是两边的夹角, “A”必须在中间。
例1
已知:AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
A D
分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
边:
B
角:∠ABD= ∠CBD(已知)
C
?BD=BD(公共边)
现在例1的已知条件不改变,而问题改 变成: 问AD=CD吗?
AD=CB (已知) ∠A=∠C (已证) AF=CE (已证) 摆齐根据
写出结论
∴△AFD≌△CEB(SAS)
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
例2:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证(1)△AFD≌△CEB
A 分析:证三角形全等的三个条件 边 AD = CB (已知) 角 ∠A=∠C 边 AF = CE B 两直线平行, AD // BC 内错角相等 E F C D
全等三角形的判定二(边角边)
第2课时三角形全等的判定(二)(SAS)1.理解和掌握全等三角形判定方法2——“边角边”.理解满足“边边角”的两个三角形不一定全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.阅读教材P37-39页“探究3及例2”,掌握三角形全等的判定条件SAS,进一步掌握证明格式,学生独立完成下列问题:学习流程:1、了解感知合作探究一:同桌之间完成:三角形全等的判定“边角边”的探究定义:两边和他们的夹角分别相等的两个三角形全等.(可以简写成”边角边”或”SAS”)几何语言的书写:在△ABC 和△A’B’C’中∴△ABC≌△A’B’C’( )自学反馈(小组交流完成)(1)已知:如图,AB、CD相交于O点,AO=CO,OD=OB.求证:(1)△AOD≌△COB.(2)∠D=∠B(2)已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.变式:已知:如图,AB=AC,AD平分∠BAC. 求证:∠B=∠C.(3)如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBC(4)有两边和一个角对应相等的两个三角形全等.(填“一定”或“不一定”)1.利用SAS证明全等时,要注意“角”只能是两组相等边的夹角;在书写证明过程时相等的角应写在中间;2.证明过程中注意隐含条件的挖掘,如“对顶角相等”、“公共角、公共边”等.阅读教材P39页“思考”,明白有两边和其中一边的对角对应相等的两个三角形不一定全等,并会通过画图举反例,BA CB’A’C’完成P39页练习题.独立完成后小组内交流思路1.如图,AB=AC,AE=AD,求证:∠B=∠C变式:AB=AC,BE=CD.求证:∠B=∠C.跟踪训练:(活动2)1.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.2.已知:如图,AB∥CD,AB=CD.求证:AD∥BC.可从问题出发,要证线段平行只需证角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.合作探究三:迁移应用例2如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论.1.注意挖掘等腰直角三角形中的隐藏条件;2.线段的关系分数量与位置两种关系.3.分析已知条件,确定证三角形全等所缺少的条件,充分挖掘隐藏条件.活动3 课堂小结1.利用对顶角、公共角、直角用SAS证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.。
全等三角形的判定(二)边角边_课件
证明: ∵ AD平分∠BAC,
∴ ∠BAD=∠CAD. 在△ABD与△ACD中, AB=AC,(已知) ∵ ∠BAD=∠CAD,(已证) AD=AD,(公共边) ∴△ABD≌△ACD(S.A.S.)。
巩 固 一 下
1: 如图,已知AB和CD相交与O,
OA=OB, OC=OD.说明 △ OAD与
△ OBC全等的理由 解:在△OAD 和△OBC中
2.已知:AB=AC、AD=AE、∠1= ∠2.求证:△ABD≌△ACE.
3.如图所示:AB=AC,AD=AE,求证: ∠B=∠C
4.如图:AD平分∠BAC,AE=AC, AB=7,BC=6,AC=4求△BDE的周长。
达标测试:
1.、已知:如图 AB=AC,AD=AE,∠BAC=∠DAE,求证: A △ABD≌△ACE
你画的三角形与同伴画的一定全等吗?
全等
C 3cm A 3cm
实践 检验
F
45°
4cm
B
D
4cm
E
结论:
在两个三角形中,如果有 两条边及它们的夹角对应 相等,那么这两个三角形 全等。(简记为S.A.S)。
温馨提示:
例 1 在△ ABC中, AB= AC, AD平分∠ BAC , 求证: △ABD≌△ACD.
三角形全等的判定 ——边角边
二中 王丽
复习:全等三角形的性质
若△AOC≌△BOD, 对应边: AC= BD , AO= BO , CO= DO , 对应角有: ∠A= ∠B , ∠C= ∠D , ∠AOC= ∠BOD ;
A O B
D
C
今天我们来讨论两个三角形有两条边和一个角分 别对应相等,那么这两个三角形一定全等吗?又有几 种情况呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例01.如图,已知:21∠=∠,43∠=∠. 求证:BCD ADC ∆≅∆.分析:ADC ∆与BCD ∆的对应边是DC 与DC ,AD 与BC ,AC 与BD . 对应角是1∠与2∠,ADC ∠与BCD ∠,DAC ∠与CBD ∠. 由条件已有一对应边DC 与DC ,和一对应角1∠和2∠相等,只需证明BCD ADC ∠=∠,就可以证明两三角形全等.证明:21∠=∠,43∠=∠(已知),∴ 4231∠+∠=∠+∠. 即BCD ADC ∠=∠ 在ADC ∆与BCD ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(12)()(已知公共边已证CD DC BCD ADC ∴ )(ASA BCD ADC ∆≅∆例02.已知:如图,21∠=∠,C B ∠=∠. 求证:COD BOE ∆≅∆.分析:欲证COD BOE ∆≅∆,已有两组条件,即C B ∠=∠和COD BOE ∠=∠. 因此,必须再具备一组对应边相等这一条件. BE 和CD 是在BOE ∆和COD ∆中,但直接证明CE BE =比较困难. 若证OE 和OD 相等或OB 和OC 相等,可以分别转化到证明AOD AOE ∆≅∆和AOC AOB ∆≅∆. 由已知条件,不难证出这两对三角形分别全等.证明:∵ 21∠=∠(已知),DOC EOB ∠=∠(对顶角相等), ∴ DOC EOB ∠+∠=∠+∠21. 即 AOC AOB ∠=∠. 在AOB ∆与AOC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(公共边已证已知AO AO AOC AOB C B ∴ )(AAS AOC AOB ∆≅∆. ∴CO BO =在EOB ∆与COD ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知已证对顶角相等C B CO BO COD EOB∴ COD BOE ∆≅∆(ASA )例03.如图,已知:AB 与CD 相交于点O ,且OD OC BD AC =,//,E 、F 为AB 上两点,且BF AE =.求证:DOF COE ∆≅∆.分析:欲证DOF COE ∆≅∆,已具备了两个条件,OD OC =和DOF COE ∠=∠. 所以只需证另一对角相等或证明OF OE =,即可. 证明另一对角相等,比较困难. 所以就证明OF OE =. 因为有BF AE =. 要证OF OE =只需证OB OA =即可. 由已知条件容易证得BOD AOC ∆≅∆,从而证明OB OA =.证明:∵BD AC //(已知)∴B A ∠=∠(两直线平行,内错角相等) 在AOC ∆与BOD ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证OD OC BOD AOC B A ∴)(AAS BOD AOC ∆≅∆∴BO AO =(全等三角形的对应边相等) ∵BF AE =(已知), ∴BF BO AE AO -=-. 即OF OE =在COE ∆与DOF ∆中,⎪⎩⎪⎨⎧=∠=∠=)()()(已证对顶角相等已知OE OE DOE COE DO CO ∴)(SAS DOF COE ∆≅∆例04.如图,已知:CE BD ACE ABD DAE BAC =∠=∠∠=∠,,. 求证:AE AD =.分析:欲证相等的两条线段AD ,AE 分别在ABD ∆和ACE ∆中,由于CE BD =,ACE ABD ∠=∠,所以只需再证CAE BAD ∠=∠即可,这由已知条件DAE BAC ∠=∠容易得到.证明:∵DAE BAC ∠=∠(已知) ∴DAC DAE DAC BAC ∠-∠=∠-∠ 即CAE BAD ∠=∠ 在ABD ∆与ACE ∆中,⎪⎩⎪⎨⎧∠=∠∠=∠=)()()(已证已知已知CAE BAD ACE ABD CE BD ∴)(AAS ACE ABD ∆≅∆∴AE AD =(全等三角形的对应边相等)例05.已知:(如图)21,∠=∠∠=∠D A . 求证:DO AD =分析:要证DO AD =,只要证DOC AOB ∆≅∆即可,在AOB ∆和DOC ∆中,已知D A ∠=∠,DOC AOB ∆=∆,只要再证一边对应相等即可,根据已知可得DCB ABC ∆≅∆,从而可证DC AB =,进而可证DO AO =,思路即为:DO AO =⇐DOC AOB ∆≅∆⇐DC AB =⇐DCB ABC ∆≅∆⇐“AAS ”证明:在ABC ∆和DCB ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(21公共边已知已知CB BC D A ∴)(AAS DCB ABC ∆≅∆∴DC AB =(全等三角形的对应边相等)在AOB ∆和DOC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已证已知对顶角相等DC AB D A DOC AOB ∴ )(AAS DOC AOB ∆≅∆∴ DO AO =(全等三角形的对应边相等)例06.求证:三角形的一边的两端到这边的中线或中线的延长线的距离相等.分析:这是一道了题,必须先根据题意画出图形,再结合题意写出已知,求证,再证明.已知:AD 是ABC ∆的中线. 如图,且AD CF ⊥于F ,AD BE ⊥的延长线于E , 求证:CF BE =证明:∵AD 为ABC ∆的中线(已知) ∴ CD BD =(中线定义)∵ AD BE ⊥ AD CF ⊥(已知)∴ ︒=∠=∠90CFD BED (等于定义) 在BED ∆与CFD ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()(21)(已证对顶角相等已知CD BD CFD BED ∴CFD BED ∆≅∆(AAS )∴CF BE =(全等三角形对应边相等)说明 本题还可利用面积相等来证明,提示,过A 作BC AN ⊥于N ,希同学们自己来证明.例07.已知:如图,BC AD CD AB //,//, 求证:CD AB =.分析:因为四边形,我只学过三角形的有关知识,因此只要连结四边形的对角线从而把四边形的总是转化为三角形的总是来解决.证明:连结AC∵BC AD CD AB //,//(已知)∴43,21∠=∠∠=∠(两直线平行内错角相等)在ABC ∆和CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已知CA AC∴ )(ASA CDA ABC ∆≅∆∴CD AB =(全等三角形的对应边相等)例08.已知:如图,AO CO DO BO ==,求证:OF OE =证明:在BOC ∆和DOA ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知对顶角相等已知OA OC DOA BOC DO BO ∴ )(SAS DOA BOC ∆≅∆∴ D B ∠=∠(全等三角形的对应角相等) 在BOE ∆和DOF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(对顶角相等已知已证DOF BOE DO BO D B ∴)(ASA DOF BOE ∆≅∆∴OF OE =(全等三角形的对应边相等)说明 找到题目中的隐性条件并加以应用是关键.例09.如图,在ABC ∆和DBC ∆中,43,21∠=∠∠=∠,P 是BC 上任意一点, 求证:PD PA =.证明:在ABC ∆和DBC ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已知公共边已知BC BC ∴ )(ASA DBC ABC ∆=∆∴ DB AB =(全等三角形对应边相等) 在ABP ∆和DBP ∆中,⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知已证BP BP DB AB ∴ )(SAS DBP ABP ∆≅∆∴ PD PA =(全等三角形对应边相等)说明:本题也可通过DBC ABC ∆≅∆,得到DC AC =,从而证DCP ACP ∆≅∆,得到PD PA =.选择题(1)已知ABC Rt ∆与C B A Rt '''∆,︒=∠90C ,︒='∠90C ,B A '∠=∠.B A AB ''=.那么下列结论正确的是( )(A )C A AC ''= (B )C B BC ''= (C )C B AC ''= (D )以上答案都不对(2)在ABC ∆和C B A '''∆,甲:B A AB ''=;乙:C B BC ''=;丙:C A AC ''=;丁:A A '∠=∠;戊:B B '∠=∠;己:C C '∠=∠,则不能保证ABC ∆≌C B A '''∆成立的条件为( )(A )丙、丁、己 (B )甲、丙、戊 (C )甲、乙、戊 (D )乙、戊、己(3)如图,已知ABD ∆和ACE ∆均为等边三角形,那么ADC ∆≌ABE ∆的根据是( )(A )ASA (B )SAS(C )AAS (D )以上都不对(4)如图,C 是BE 上一点,CD AB =,D A ∠=∠,E BCA ∠=∠,那么( )(A )ECD B ∠=∠ (B )C 是BE 的中点 (C )CD AB //(D )以上结论都正确参考答案:(1)C (2)B (3)B (4)D填空题(1)如图,已知:21∠=∠,D C ∠=∠. 求证:AD AC =.证明:在ACB ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) _______()()(21AB D C 已知已知 ∴ACB ∆≌ADB ∆( ) ∴AD AC =(2)如图,已知:BC AB ⊥,DC AD ⊥,垂足分别为B ,D .21∠=∠. 求证:AD AB =.证明:在ABC ∆与ADC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()(21)(AC AC ADC ABC ∴ ABC ∆≌ADC ∆( ) ∴AD AB =( )(3)如图,已知:CE AE =,C A ∠=∠.求证:ADE ∆≌CEB ∆.证明:在AED ∆与CEB ∆中,⎪⎩⎪⎨⎧==∠=∠) _____(______)()(已知CE AE C A ∴ AED ∆≌CEB ∆(ASA )(4)如图,已知:C B ∠=∠,AD AE =.求证:AEC ∆≌ADB ∆.证明:在AEC ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()()(AE AE C B A A 已知 ∴AEC ∆≌ADB ∆( )参考答案:(1)AB ;公共边;AAS ;全等三角形的对应边相等(2)垂直定义;已知;公共边;AAS ;全等三角形的对应边相等. (3)已知:AED ∠;CEB ∠;对顶角相等 (4)公共角;已知;AAS证明题1.如图,已知,21∠=∠,DCB ABC ∠=∠. 求证:DC AB =.2.如图,已知:E D ∠=∠,AM EM CN DN ===. 求证:点B 是线段AC 的中点.3.如图,已知:21∠=∠,AE AD =. 求证:OC OB =.4.如图,已知:在ABC ∆中,AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于C ,求证:AF AE =.5.如图,已知:E 在AC 上,21∠=∠,43∠=∠. 求证:DE BE =.6.如图,已知:BC AD //,21∠=∠,43∠=∠,直线DC 过E 点交AD 于D ,交BC 于C .求证:AB BC AD =+.7.求证:三角形一边的两个端点到这边上的中线的距离相等. 8.如图,已知:DE AB =,直线AE ,BD 相交于点C ,︒=∠+∠180D B ,DE AF //,交BD 于F .求证:CD CF =.9.如图,已知:AB 与CD 相交于点O ,O 是AB ,CD 的中点,过点O 引直线EF 分别与AD ,BC 相交于E 、F 两点.求证:BF AE =.参考答案:1.证:由DCB ABC =∠,21∠=∠,可得ACB DBC ∠=∠.易证ABC ∆≌DCB ∆,∴ DC AB =2.证:易证DNB ∆≌EMB ∆,∴ EB DB =,由此可证:EA DC =.因此,可证DCB ∆≌EAB ∆.∴BC AB =,∴B 是AC 的中点.3.易证ABE ∆≌ACD ∆,∴C B ∠=∠,AC AB =,又∵AE AD =,∴CE BD =.由此可证BOD ∆≌COE ∆,∴OC OB =4.︒=∠=∠90AFD AED ,FAD EAD ∠=∠,AD AD =,∴AFD AED ∆≅∆,∴AF AE =.5.∵ 21∠=∠,AC AC =,43∠=∠,∴ABC ∆≌ADC ∆,∴AD AB =,又∵21∠=∠,AE AE =,∴ADE ABE ∆≅∆,∴DE BE =6.在AB 上取一点F ,使BF BC =,又∵43∠=∠,EB EB =,∴ECB EFB ∆≅∆,∴C EFB ∠=∠,又∵BC AD //,由此可推出D EFA ∠=∠.可证AFE ADE ∆≅∆,∴AF AD =,∴BC AD AB +=.7.已知:如图,AD 为ABC ∆的中线,AD BF ⊥于F ,AD CE ⊥于E . 求证:CE BF =.证:︒=∠=∠90BFD CED ,BDF CDE ∠=∠,BD CD =,∴ BFD CED ∆≅∆,∴ CE BF =8.证:∵ DE AF //, ∴AFC D ∠=∠,又∵︒=∠+∠180AFB AFC ,︒=∠+∠180D B ,∴ AFB B ∠=∠∴ DE AF AB ==,∴ 可证ECD ACF ∆≅∆,∴CD CF =9.证:BO AO =,BOC AOD ∠=∠,CO DO =,∴BOC AOD ∆≅∆,∴B A ∠=∠.而BOF AOE ∠=∠,BO AO =,∴BOF AOE ∆≅∆,∴ BF AE =能力:1、如图1,已知:AD 平分∠BAC ,AB=AC ,连接BD ,CD ,并延长相交AC 、AB 于F 、E 点.则图形中有( )对全等三角形.A 、2B 、3C 、4D 、5答案:C.2、如图2,已知:∠1=∠2,AB=DC ,图中全等三角形的对数是( )A 、0B 、1C 、2D 、3答案:A3、如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对 D2对答案:C.1、如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,DE=DC ,延长BE 交AC 于F ,求证:BF 是△ABC 中边上的高. 图1 A B B 、E F D C A D B O C 1 2 图2 图3 A D F E C A A F C D E 图4提示:关键证明△ADC ≌△BFC2、如图5,已知:∠D=∠E ,DN=EM ,AM=CN ,求证:点B 是线段AC 的中点.提示:欲证点B 是线段AC 的中点,只需证AB =BC.选择AB 、BC 所在的两个三角形,然后证这两个三角形△AMB ≌△CNB.由条件可得△EMB ≌△DNB ,所以得到∠EMB =∠DNB ,MB =NB由此易证△AMB ≌△CNB.3、如图6,已知:AB=CD ,∠A=∠D.求证:∠ABC=∠DCB提示:欲证∠ABC=∠DCB ,选择这两个角所在的三角形,只需证△ABC ≌△DBC由条件可知△ADC ≌△DAB ,所以得到∠DAC =∠ADB ,BD =AC ,加之条件利用边角边公理可证△ABC ≌△DBC4、如图7,已知:在△ABC 中,∠ACB=090,AC=BC ,AE 是BC 边上的中线过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于点D.(1)求证:AE=CD.(2)AC=12cm ,求BD 的长.提示:欲证AE=CD ,只需证△ACE ≌△CBD 由条件可知∠CAE =∠BCD (同角的余角相等)加之其它两个条件易证得结论.由E 是BC 的中点,EC =BE又BD =EC ,BC =AC 知BD =6 cm5、如图8,已知:在△ABC 中,AB=AC ,∠A=90,BD 平分∠ABC 交AC 于D ,CE ⊥BD 交BD 的延长线于E ,求证:BD=2CE提示:本题的关键是从结论BD=2CE 出发,想到构造线段CF =2CE ,再证BD =CFA M N E C DB 图5 A D BC 图6 O E ┛ ┓ ┏D A CF 图7 B A E C D 图8 F。