2013年湖南省益阳市中考数学试卷及答案解析

合集下载

湖南省益阳市中考数学真题试题(含解析)

湖南省益阳市中考数学真题试题(含解析)

2015年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•益阳)下列实数中,是无理数的为()A.B.C.0D.﹣3考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(5分)(2015•益阳)下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(xy2)3=x3y6D.x6÷x3=x2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据积的乘方,可判断C;根据同底数幂的除法,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C正确;D、通敌数幂的除法底数不变指数相减,故D错误;故选:C.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.(5分)(2015•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8考点:中位数;加权平均数;众数.分析:根据众数和中位数的概念求解.解答:解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.点评:本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.4.(5分)(2015•益阳)一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体考点:由三视图判断几何体.分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.解答:解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.5.(5分)(2015•益阳)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.A C=BD C.O A=OB D.O A=AD考点:矩形的性质.分析:矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.解答:解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.点评:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.6.(5分)(2015•益阳)下列等式成立的是()A.+=B.=C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.(5分)(2015•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.解答:解:设增长率为x,根据题意得20(1+x)2=80,故选D.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(5分)(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2015•益阳)计算:= 4 .考点:二次根式的乘除法.专题:计算题.分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.解答:解:原式===4.故答案为:4点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.10.(5分)(2015•益阳)已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式y=(x>0),答案不唯一.考点:反比例函数的性质.专题:开放型.分析:反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k<0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.解答:解:只要使反比例系数大于0即可.如y=(x>0),答案不唯一.故答案为:y=(x>0),答案不唯一.点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.11.(5分)(2015•益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与树状图法.分析:列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.点评:本题考查用列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.12.(5分)(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.考点:弧长的计算;正多边形和圆.分析:求出圆心角∠AOB的度数,再利用弧长公式解答即可.解答:解:∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=.故答案为:.点评:此题将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质.13.(5分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成 1 的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1 根小棒.考点:规律型:图形的变化类.分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.解答:解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.三、解答题(本大题共2小题,每小题8分,共16分)14.(8分)(2015•益阳)化简:(x+1)2﹣x(x+1).考点:整式的混合运算.分析:利用完全平方公式和整式的乘法计算,进一步合并得出答案即可.解答:解:原式=x2+2x+1﹣x2﹣x=x+1.点评:此题考查整式的混合运算,掌握计算方法与计算公式是解决问题的关键.15.(8分)(2015•益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.考点:平行线的性质.分析:由平行线的性质得到∠A BC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解答:解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.点评:本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.四、解答题(本大题共3小题,每小题10分,共30分)16.(10分)(2015•益阳)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.考点:一次函数图象与几何变换;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.分析:(1)根据“左加右减、上加下减”的规律来求点P2的坐标;(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.解答:解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴,解得.∴直线l所表示的一次函数的表达式为y=2x﹣3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵2×6﹣3=9,∴点P3在直线l上.点评:本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(10分)(2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.考点:条形统计图;扇形统计图.分析:(1)用第一产业增加值除以它所占的百分比,即可解答;(2)算出第二产业的增加值即可补全条形图;(3)算出第二产业的百分比再乘以360°,即可解答.解答:解:(1)2375÷19%=1250(亿元);(2)第二产业的增加值为1250﹣237.5﹣462.5=550(亿元),画图如下:(3)扇形统计图中第二产业部分的圆心角为.点评:本题主要考查了条形统计图和扇形统计图,解题的关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.(10分)(2015•益阳)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.考点:菱形的判定与性质;平行四边形的性质;解直角三角形.分析:(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.解答:解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.点评:本题考查了解直角三角形及菱形的判定与性质、平行四边变形的判定与性质的知识,解题的关键是读懂题意,选择合适的边角关系,难度不大.五、解答题(本大题共2小题,每小题12分,共24分)19.(12分)(2015•益阳)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据“当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.”列出方程组解决问题;(2)最多再生产x天后必须补充原材料,根据若剩余原材料数量小于或等于3吨列出不等式解决问题.解答:解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据题意得:.解得.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨.(2)设再生产x天后必须补充原材料,依题意得:45﹣16×15﹣15(1+20%)x≤3,解得:x≥10.答:最多再生产10天后必须补充原材料.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.20.(12分)(2015•益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.考点:几何变换综合题.分析:(1)利用旋转的性质以及等腰直角三角形得出∠APP1=∠BPP2=45°,进而得出答案;(2)根据题意得出△PAP1和△PBP2均为顶角为α的等腰三角形,进而得出∠P1PP2=∠PAP2=α,求出△P2P1P∽△P2PA;(3)首先连结QB,得出Rt△QBE≌Rt△QBF,利用∠P1PQ=180°﹣∠APP1﹣∠QPB求出即可.解答:(1)解:由旋转的性质得:AP=AP1,BP=BP2.∵α=90°,∴△PAP1和△PBP2均为等腰直角三角形,∴∠APP1=∠BPP2=45°,∴∠P1PP2=180°﹣∠APP1﹣∠BPP2=90°;(2)证明:由旋转的性质可知△PAP1和△PBP2均为顶角为α的等腰三角形,∴∠APP1=∠BPP2=90°﹣,∴∠P1PP2=180°﹣(∠APP1+∠BPP2)=180°﹣2(90°)=α,在△PP2P1和△P2PA中,∠P1PP2=∠PAP2=α,又∵∠PP2P1=∠AP2P,∴△P2P1P∽△P2PA.(3)证明:如图,连接QB.∵l1,l2分别为PB,P2B的中垂线,∴EB=BP,FB=BP2.又BP=BP2,∴EB=FB.在Rt△QBE和Rt△QBF中,,∴Rt△QBE≌Rt△QBF,∴∠QBE=∠QBF=∠PBP2=,由中垂线性质得:QP=QB,∴∠QPB=∠QBE=,由(2)知∠APP1=90°﹣,∴∠P1PQ=180°﹣∠APP1﹣∠QPB=180°﹣(90°﹣)=90°,即 P1P⊥PQ.点评:此题主要考查了几何变换综合以及相似三角形的判定和全等三角形的判定与性质等知识,得出Rt△QBE≌Rt△QBF是解题关键.六、解答题(本题满分15分)21.(15分)(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.考点:二次函数综合题.分析:(1)直接将(2,2)代入函数解析式进而求出a的值;(2)由题意可得,在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q,分别利用当点B为直角顶点时以及当点Q为直角顶点时求出Q点坐标即可;(3)首先设P(c,c2)、P′(d,),进而得出c与d的关系,再表示出△PAA′与△P′BB′的面积进而得出答案.解答:解:(1)∵抛物线E1经过点A(1,m),∴m=12=1.∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0),又∵点B(2,2)在抛物线E2上,∴2=a×22,解得:a=,∴抛物线E2所对应的二次函数表达式为y=x2.(2)如图1,假设在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q.①当点B为直角顶点时,过B作QB⊥BB′交抛物线E1于Q,则点Q与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q的坐标为(2,4).②当点Q为直角顶点时,则有QB′2+QB2=B′B2,过点Q作GQ⊥BB′于G,设点Q的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综合①②,存在符合条件的点Q坐标为(2,4)与(,3);(3)如图2,过点P作PC⊥x轴,垂足为点C,PC交直线AA′于点E,过点P′作P′D⊥x轴,垂足为点D,P′D交直线BB′于点F,依题意可设P(c,c2)、P′(d,)(c>0,c≠q),∵tan∠POC=tan∠P′OD,∴=,∴d=2c.∵AA′=2,BB′=4,∴====.点评:此题主要考查了二次函数综合以及直角三角形的性质和三角形面积求法,根据题意利用分类讨论得出是解题关键.。

2013年湖南省益阳市中考数学试卷(含解析版)

2013年湖南省益阳市中考数学试卷(含解析版)

2013年湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×10112.(4分)(2013•益阳)下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,955.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy2﹣4x= .10.(4分)(2013•益阳)化简:= .11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.12.(4分)(2013•益阳)如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= cm.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a= ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.2013年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将102 000 000 000用科学记数法表示为:1.02×1011.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2013•益阳)下列运算正确的是()D.(a+b)2=a2+b2 A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2考点:平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.分析:根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.解答:解:A、2a3÷a=2a2,故选项错误;B、(ab2)2=a2b4,故选项错误;C、正确;D、(a+b)2=a2+2ab+b2,故选项错误.故选C.点评:本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x= D.x=考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,95考点:众数;中位数.分析:根据众数和中位数的定义,结合表格和选项选出正确答案即可.解答:解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95,故中位数为:90,众数为:90.故选B.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个考点:由三视图判断几何体.分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数.解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体,从俯视图可以验证这一点,从而确定小正方体总个数为5个.故选;C.点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)考点:二次函数的性质.分析:根据顶点式解析式写出顶点坐标即可.解答:解:抛物线y=2(x﹣3)2+1的顶点坐标是(3,1).故选A.点评:本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy 2﹣4x= x (y+2)(y ﹣2) .考点: 提公因式法与公式法的综合运用. 分析: 先提取公因式x ,再对余下的多项式利用平方差公式继续分解. 解答: 解:xy 2﹣4x ,=x (y 2﹣4),=x (y+2)(y ﹣2). 点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.10.(4分)(2013•益阳)化简:= 1 .考点: 分式的加减法. 专题: 计算题. 分析: 由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可. 解答:解:原式= =1.故答案为:1. 点评: 本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是32.考点: 概率公式;轴对称图形;中心对称图形. 分析:由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概率公式即可求得答案. 解答:解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆, ∴既是中心对称图形又是轴对称图形的概率是:32. 故答案为:. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.12.(4分)(2013•益阳)如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= 5 cm .考点:圆周角定理;含30度角的直角三角形.分析:根据圆周角定理可得出△ABC是直角三角形,再由含30°角的直角三角形的性质即可得出BC的长度.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AB=10cm,∠CAB=30°,∴BC=AB=5cm.故答案为:5.点评:本题考查了圆周角定理及含30°角的直角三角形的性质,解答本题的关键是根据圆周角定理判断出∠ACB=90°.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是21.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.考点:代数式求值.专题:计算题.分析:将a,b及c的值代入计算即可求出值.解答:解:当a=,b=|﹣2|=2,c=时,a2+b﹣4c=3+2﹣2=3.点评:此题考查了代数式求值,涉及的知识有:二次根式的化简,绝对值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.解答:证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.点评:本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?考点:反比例函数的应用;一次函数的应用.分析:(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.解答:解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时.(2)∵点B(12,18)在双曲线上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.点评:此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?考点:条形统计图;统计表;概率公式.分析:(1)根据条形统计图可知a=4;(2)根据表格数据可知6次的人数是2,然后补全统计图即可;(3)根据概率公式解得即可.解答:解:(1)由条形统计图可知次数为8的有4人,所以,a=4;(2)由表可知,6次的有2人,补全统计图如图;(3)∵小组成员共10人,参加了10次活动的成员有3人,∴P=,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)考点:解直角三角形的应用. 专题:应用题. 分析:设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置.解答:解:设PD=x 米, ∵PD ⊥AB ,∴∠ADP=∠BDP=90°,在Rt △PAD 中,tan ∠PAD=, ∴AD=≈=45x , 在Rt △PBD 中,tan ∠PBD=,∴DB=≈=2x , 又∵AB=80.0米, ∴45x+2x=80.0, 解得:x ≈24.6,即PD ≈24.6米,∴DB=2x=49.2.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用. 分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆, 根据题意得:,解之得:. ∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <25 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.考点:二次函数综合题.分析:(1)根据y=2x+2与抛物线y=2x2交于A、B两点,直接联立求出交点坐标,进而得出C点坐标即可;(2)利用两点间距离公式得出AB的长,进而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;(3)点C作CG⊥AB于G,过点A作AH⊥PC于H,利用A,C点坐标得出H点坐标,进而得出CG=AH,求出即可.解答:解:(1)由,解得:。

2013年湖南省益阳市中考数学试卷及答案解析版

2013年湖南省益阳市中考数学试卷及答案解析版

湖南省益阳市2013年中考数学试卷
一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千1020亿元,将
练掌握并灵活运用.
3.(4分)(2013•益阳)分式方程的解是()
4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:
5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()
6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()
据平行四边形的性质,。

湖南省益阳市中考数学试题及解析

湖南省益阳市中考数学试题及解析

2015 年湖南省益阳市中考数学试卷一、选择题(本大题共 8 小题,每题 5 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.( 5 分)( 2015?益阳)以下实数中,是无理数的为()A .B.C. 0 D.﹣ 32.( 5 分)( 2015?益阳)以下运算正确的选项是()2 3 6 3 2 5 2 3 3 6 6 3 2A . x ?x =x B.( x ) =x C.( xy ) =x y D. x ÷x =x3.( 5 分)(2015?益阳)某小组5 名同学在一周内参加家务劳动的时间以下表所示,对于“劳动时间”的这组数据,以下说法正确的选项是()劳动时间(小时) 3 4人数 1 1 2 1A .中位数是4,均匀数是B.众数是 4,均匀数是C.中位数是4,均匀数是D.众数是 2,均匀数是4.( 5 分)( 2015?益阳)一个几何体的三视图以下图,则这个几何体是()A .三棱锥B.三棱柱C.圆柱D.长方体5.( 5 分)( 2015?益阳)如图,在矩形 ABCD 中,对角线AC 、 BD 交于点 O,以下说法错误的是()A .∠ABC=90 °B. AC=BD C. OA=OB D. OA=AD6.( 5 分)( 2015?益阳)以下等式建立的是()A .B.+ ==C.D.=﹣=7.( 5 分)( 2015?益阳)沅江市最近几年来鼎力展芦笋,某芦笋生企在两年内的售从 20 万元增添到80 万元.两年的售的年均匀增率x,依据意可列方程()2 2A . 20( 1+2x )=80 B. 2×20( 1+x )=80 C. 20( 1+x ) =80 D. 20( 1+x) =8028.( 5 分)( 2015?益阳)若抛物 y= (x m) +( m+1)的点在第一象限,m 的取范()A . m> 1 B. m> 0 C. m> 1 D. 1< m< 0二、填空(本大共 5 小,每小 5 分,共 25 分.把答案填在答卡中号后的横上)9.( 5 分)( 2015?益阳)算:=.10.( 5 分)( 2015?益阳)已知y 是 x 的反比率函数,当x> 0 , y 随 x 的增大而减小.写出一个足以上条件的函数表达式.11.(5 分)( 2015?益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中的概率.12.( 5 分)( 2015?益阳)如,正六形ABCDEF 内接于⊙ O,⊙ O 的半径1,的.13.( 5 分)( 2015?益阳)如是用度相等的小棒按必定律成的一案,第 1 个案中有 6 根小棒,第 2 个案中有11 根小棒,⋯,第 n 个案中有根小棒.三、解答(本大共 2 小,每小8 分,共 16 分)215.( 8 分)( 2015?益阳)如,直AB ∥ CD ,BC 均分∠ ABD ,∠ 1=65°,求∠ 2 的度数.四、解答题(本大题共 3 小题,每题10 分,共 30 分)16.( 10 分)( 2015?益阳)如图,直线l 上有一点 P1( 2,1),将点 P1先向右平移 1 个单位,再向上平移 2 个单位获得像点 P2,点 P2恰幸亏直线 l 上.(1)写出点 P2的坐标;(2)求直线 l 所表示的一次函数的表达式;(3)若将点 P2先向右平移 3 个单位,再向上平移 6 个单位获得像点 P3.请判断点 P3能否在直线 l 上,并说明原因.17.( 10 分)( 2015?益阳) 2014 年益阳市的地域生产总值(第一、二、三家产的增添值之和)已进入千亿元俱乐部,如图表示2014 年益阳市第一、二、三家产增添值的部分状况,请根据图中供给的信息解答以下问题(1) 2014 年益阳市的地域生产总值为多少亿元?(2)请将条形统计图中第二家产部分增补完好;(3)求扇形统计图中第二家产对应的扇形的圆心角度数.18.( 10 分)( 2015?益阳)如图,在 ?ABCD 中,对角线 AC 与 BD 订交于点 O,∠ CAB=∠ACB ,过点 B 作 BE ⊥ AB 交 AC 于点 E.(1)求证: AC ⊥ BD ;(2)若 AB=14 , cos∠ CAB= ,求线段 OE 的长.五、解答题(本大题共 2 小题,每题12 分,共 24 分)19.(12 分)( 2015?益阳)大学生小刘回乡创立小微公司,早期购得原资料若干吨,每日生产同样件数的某种产品,单件产品所耗资的原资料同样.当生产 6 天后节余原资料36 吨,当生产 10 天后节余原资料30 吨.若节余原资料数目小于或等于 3 吨,则需增补原资料以保证正常生产.(1)求早期购得的原资料吨数与每日所耗资的原资料吨数;(2)若生产16 天后,依据市场需求每日产量提升20%,则最多重生产多少天后一定增补原资料?20.( 12 分)( 2015?益阳)已知点 P 是线段 AB 上与点 A 不重合的一点,且 AP < PB. AP 绕点 A 逆时针旋转角α( 0°<α≤90°)获得 AP 1,BP 绕点 B 顺时针也旋转角α获得 BP2,连接PP1、PP2.(1)如图 1,当α=90°时,求∠ P1 2 的度数;PP(2)如图 2,当点 P2在 AP1的延伸线上时,求证:△P2P1P∽△ P2PA;(3)如图 3,过 BP 的中点 E 作 l 1⊥ BP,过 BP 2的中点 F 作 l2⊥ BP2, l 1与 l2交于点 Q,连结 PQ,求证: P1P⊥ PQ.六、解答题(本题满分15 分)1:y=x 221.(15 分)( 2015?益阳)已知抛物线经过点 A( 1,m),以原点为极点的抛物线EE2经过点 B ( 2,2),点 A 、 B 对于 y 轴的对称点分别为点 A ′, B′.(1)求 m 的值及抛物线 E2所表示的二次函数的表达式;(2)如图 1,在第一象限内,抛物线 E1上能否存在点 Q,使得以点 Q、 B、 B ′为极点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明原因;(3)如图 2, P 为第一象限内的抛物线 E1上与点 A 不重合的一点,连结 OP 并延伸与抛物线 E2订交于点 P′,求△PAA ′与△P′BB ′的面积之比.2015 年湖南省益阳市中考数学试卷参照答案与试题分析一、(本大共 8 小,每小 5 分,共 40 分.在每小出的四个中,只有一是切合目要求的)1.( 5 分)( 2015?益阳)以下数中,是无理数的()A .B.C. 0 D. 3考点:无理数.剖析:无理数就是无穷不循小数.理解无理数的观点,必定要同理解有理数的观点,有理数是整数与分数的称.即有限小数和无穷循小数是有理数,而无穷不循小数是无理数.由此即可判断.解答:解: A 、是无理数,正确;B 、是分数,是有理数,;C、是整数,是有理数,;D 、是整数,是有理数,.故 A .点:此主要考了无理数的定,此中初中范内学的无理数有:π, 2π等;开方开不尽的数;以及像0.1010010001 ⋯,等有律的数.2.( 5 分)( 2015?益阳)以下运算正确的选项是()2 3 6 3 2 5C.2 3 3 6 6 3 2A . x ?x =x B.( x ) =x ( xy ) =x y D. x ÷x =x考点:同底数的除法;同底数的乘法;的乘方与的乘方.剖析:依据同底数的乘法,可判断A;依据的乘方,可判断B;依据的乘方,可判断C;依据同底数的除法,可判断D.解答:解: A 、同底数的乘法底数不指数相加,故 A ;B 、的乘方底数不指数相乘,故 B ;C、的乘方等于乘方的,故 C 正确;D 、通数的除法底数不指数相减,故 D ;故: C.点:本考了同底数的除法,熟法并依据法算是解关.3.( 5 分)(2015?益阳)某小 5 名同学在一周内参加家的以下表所示,对于“ ”的数据,以下法正确的选项是()(小) 3 4人数 1 1 2 1A .中位数是 4,均匀数是B.众数是 4,均匀数是C.中位数是 4,均匀数是D.众数是 2,均匀数是考点:中位数;加权均匀数;众数.剖析:依据众数和中位数的观点求解.解答:解:这组数据中 4 出现的次数最多,众数为4,∵共有 5 个人,∴第 3 个人的劳动时间为中位数,故中位数为: 4,均匀数为:.应选 C.评论:本题考察了中位数、均匀数、众数的知识,解答本题的重点是掌握各知识点的观点.4.( 5 分)( 2015?益阳)一个几何体的三视图以下图,则这个几何体是()A .三棱锥B.三棱柱C.圆柱D.长方体考点:由三视图判断几何体.剖析:依据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱解答:解:依据图中三视图的形状,切合条件的只有直三棱柱,所以这个几何体的名称是直三棱柱.应选: B.评论:本题考察由三视图确立几何体的形状,主要考察学生空间想象能力及对峙体图形的认识.5.( 5 分)( 2015?益阳)如图,在矩形 ABCD 中,对角线AC 、 BD 交于点 O,以下说法错误的是()A .∠ABC=90 °B. AC=BD C. OA=OB D. OA=AD考点:矩形的性质.剖析:矩形的性质:四个角都是直角,对角线相互均分且相等;由矩形的性质简单得出结论.解答:解:∵四边形 ABCD 是矩形,∴∠ ABC= ∠ BCD= ∠ CDA= ∠ BAD=90 °, AC=BD ,OA= AC , OB=BD ,∴OA=OB ,∴A、 B、C 正确, D 错误,评论:本题考察了矩形的性质;娴熟掌握矩形的性质是解决问题的重点.6.( 5 分)( 2015?益阳)以下等式建立的是( ) A . B .= + = C .D .=﹣=考点 :分式的混淆运算. 专题 :计算题.剖析:原式各项计算获得结果,即可做出判断.解答:解: A 、原式 = ,错误;B 、原式不可以约分,错误;C 、原式 = = ,正确;D 、原式 = =﹣,错误,应选 C评论:本题考察了分式的混淆运算,娴熟掌握运算法例是解本题的重点.7.( 5 分)( 2015?益阳)沅江市最近几年来鼎力发展芦笋家产,某芦笋生产公司在两年内的销售额从 20 万元增添到 80 万元.设这两年的销售额的年均匀增添率为 x ,依据题意可列方程为()22A . 20( 1+2x )=80B . 2×20( 1+x )=80C . 20( 1+x ) =80D . 20( 1+x ) =80考点 :由实质问题抽象出一元二次方程.专题 :增添率问题.2剖析:依据第一年的销售额 ×( 1+均匀年增添率) =第三年的销售额,列出方程即可.2解答:解:设增添率为 x ,依据题意得 20(1+x ) =80,应选D .评论:本题考察一元二次方程的应用﹣﹣求均匀变化率的方法.若设变化前的量为a ,变化后的量为 b ,均匀变化率为 x ,则经过两次变化后的数目关系为2a (1±x ) =b .(当增 长时中间的 “±”号选 “+”,当降落时中间的 “±”号选 “﹣ ”).8.( 5 分)( 2015?益阳)若抛物线 2m 的取值y= (x ﹣ m ) +( m+1)的极点在第一象限,则范围为( )A . m > 1B . m > 0C . m >﹣ 1D .﹣ 1< m < 0考点 :二次函数的性质.剖析:利用 y=ax 2+bx+c 的极点坐标公式表示出其极点坐标,依据极点在第一象限,所以极点的横坐标和纵坐标都大于 0 列出不等式组.第 8 页(共 18 页)依据题意,,解不等式( 1),得 m>0,解不等式( 2),得 m>﹣ 1;所以不等式组的解集为m> 0.应选 B.评论:本题考察极点坐标的公式和点所在象限的取值范围,同时考察了不等式组的解法,难度较大.二、填空题(本大题共 5 小题,每题 5 分,共 25 分.把答案填在答题卡中对应题号后的横线上)9.( 5 分)( 2015?益阳)计算:= 4.考点:二次根式的乘除法.专题:计算题.剖析:原式利用二次根式的乘法法例计算,将结果化为最简二次根式即可.解答:解:原式 ===4.故答案为: 4评论:本题考察了二次根式的乘除法,娴熟掌握运算法例是解本题的重点.10.( 5 分)( 2015?益阳)已知y 是 x 的反比率函数,当x> 0 时, y 随 x 的增大而减小.请写出一个知足以上条件的函数表达式y=(x>0),答案不独一.考点:反比率函数的性质.专题:开放型.剖析:反比率函数的图象在每个象限内,函数值y 随自变量 x 的增大而增大,则反比率函数的反比率系数 k< 0;反之,只需 k<0,则反比率函数在每个象限内,函数值y 随自变量 x 的增大而增大.解答:解:只需使反比率系数大于0 即可.如 y= ( x> 0),答案不独一.故答案为: y=(x>0),答案不独一.评论:本题主要考察了反比率函数y= ( k≠0)的性质:① k> 0 时,函数图象在第一,三象限.在每个象限内y 随 x 的增大而减小;② k< 0 时,函数图象在第二,四象限.在每个象限内y 随 x 的增大而增大.11.(5 分)( 2015?益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与状法.剖析:列出所有状况,看甲没排在中的状况占所有状况的多少即所求的概率.解答:解:甲、乙、丙三个同学排成一排摄影有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,所有 6 种状况,有4 种甲没在中,所以甲没排在中的概率是= .故答案.点:本考用列法求概率,用到的知点:概率等于所讨状况数与状况数之比.12.( 5 分)( 2015?益阳)如,正六形ABCDEF 内接于⊙ O,⊙ O 的半径1,的.考点:弧的算;正多形和.剖析:求出心角∠ AOB 的度数,再利用弧公式解答即可.解答:解:∵ ABCDEF 正六形,∴∠ AOB=360 °× =60 °,的=.故答案:.点:此将扇形的弧公式与多形的性相合,构想奇妙,利用了正六形的性.13.( 5 分)( 2015?益阳)如是用度相等的小棒按必定律成的一案,第 1 个案中有 6 根小棒,第 2 个案中有11 根小棒,⋯,第 n 个案中有5n+1根小棒.考点:律型:形的化.剖析:由可知:第 1 个案中有5+1=6 根小棒,第 2 个案中有2×5+2 1=11 根小棒,第3 个案中有 3×5+3 2=16 根小棒,⋯由此得出第 n 个案中有 5n+n( n 1)=5n+1根小棒.解答:解:∵第 1 个案中有5+1=6 根小棒,第2 个案中有 2×5+2 1=11 根小棒,第3 个案中有 3×5+3 2=16 根小棒,⋯∴第 n 个案中有5n+n( n 1) =5n+1 根小棒.故答案: 5n+1 .点:此考形的化律,找出形之的系,得出数字之的运算律,利用律解决.三、解答(本大共 2 小,每小8 分,共 16 分)2考点:整式的混淆运算.剖析:利用完好平方公式和整式的乘法算,一步归并得出答案即可.2 2=x+1 .点:此考整式的混淆运算,掌握算方法与算公式是解决的关.15.( 8 分)( 2015?益阳)如,直AB ∥ CD ,BC 均分∠ ABD ,∠ 1=65°,求∠ 2 的度数.考点:平行的性.剖析:由平行的性获得∠ABC= ∠ 1=65°,∠ ABD+ ∠ BDC=180 °,由 BC 均分∠ ABD ,得到∠ ABD=2 ∠ ABC=130 °,于是获得.解答:解:∵ AB ∥CD,∴∠ ABC= ∠ 1=65°,∠ ABD+ ∠ BDC=180 °,∵BC 均分∠ ABD ,∴∠ ABD=2 ∠ ABC=130 °,∴∠ BDC=180 ° ∠ ABD=50 °,∴∠ 2=∠BDC=50 °.点:本考了平行的性和角均分定等知点,解此的关是求出∠ABD 的度数,目好,度不大.四、解答(本大共 3 小,每小10 分,共 30 分)16.( 10 分)( 2015?益阳)如,直l 上有一点 P1( 2,1),将点 P1先向右平移 1 个位,再向上平移 2 个位获得像点 P2,点 P2恰幸亏直 l 上.(1)写出点 P2的坐;(2)求直 l 所表示的一次函数的表达式;(3)若将点 P2先向右平移 3 个单位,再向上平移 6 个单位获得像点 P3.请判断点 P3能否在直线 l 上,并说明原因.考点:一次函数图象与几何变换;一次函数图象上点的坐标特点;待定系数法求一次函数解析式.剖析:( 1)依据“左加右减、上加下减”的规律来求点P2的坐标;( 2)设直线 l 所表示的一次函数的表达式为y=kx+b ( k≠0),把点 P1( 2,1),P2( 3,3)代入直线方程,利用方程组来求系数的值;(3)把点( 6, 9)代入( 2)中的函数分析式进行考证即可.解答:解:( 1)P2( 3, 3).( 2)设直线l 所表示的一次函数的表达式为y=kx+b ( k≠0),∵点 P1( 2, 1),P2( 3, 3)在直线l 上,∴,解得.∴直线 l 所表示的一次函数的表达式为y=2x ﹣ 3.( 3)点 P3在直线 l 上.由题意知点P3的坐标为( 6, 9),∵2×6﹣ 3=9,∴点 P3在直线 l 上.评论:本题考察了待定系数法求一次函数分析式,一次函数图象上点的坐标特点以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移同样.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.( 10 分)( 2015?益阳) 2014 年益阳市的地域生产总值(第一、二、三家产的增添值之和)已进入千亿元俱乐部,如图表示2014 年益阳市第一、二、三家产增添值的部分状况,请根据图中供给的信息解答以下问题(1) 2014 年益阳市的地域生产总值为多少亿元?(2)请将条形统计图中第二家产部分增补完好;(3)求扇形统计图中第二家产对应的扇形的圆心角度数.考点:条形统计图;扇形统计图.剖析:( 1)用第一家产增添值除以它所占的百分比,即可解答;(2)算出第二家产的增添值即可补全条形图;(3)算出第二家产的百分比再乘以 360°,即可解答.解答:解:( 1)÷19%=1250 (亿元);(2)第二家产的增添值为 1250﹣﹣ 462.5=550 (亿元),绘图以下:( 3)扇形统计图中第二家产部分的圆心角为.评论:本题主要考察了条形统计图和扇形统计图,解题的重点是读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.18.( 10 分)( 2015?益阳)如图,在 ?ABCD 中,对角线 AC 与 BD 订交于点 O,∠ CAB=∠ACB ,过点 B 作 BE ⊥ AB 交 AC 于点 E.(1)求证: AC ⊥ BD ;(2)若 AB=14 , cos∠ CAB= ,求线段 OE 的长.考点:菱形的判断与性质;平行四边形的性质;解直角三角形.剖析:( 1)依据∠ CAB= ∠ACB 利用等角平等边获得AB=CB ,从而判断平行四边形 ABCD 是菱形,依据菱形的对角线相互垂直即可证得结论;(2)分别在 Rt△AOB 中和在 Rt△ABE 中求得 AO 和 AE ,从而利用 OE=AE ﹣ AO 求解即可.解答:解:( 1)∵∠ CAB= ∠ ACB ,∴ AB=CB ,∴ ?ABCD 是菱形.∴ AC ⊥ BD ;( 2)在 Rt△ AOB 中, cos∠ CAB==,AB=14,∴ AO=14 × =,在 Rt△ ABE 中, cos∠EAB==,AB=14,∴ AE= AB=16 ,∴ OE=AE ﹣ AO=16 ﹣=.评论:本题考察认识直角三角形及菱形的判断与性质、平行四边变形的判断与性质的知识,解题的重点是读懂题意,选择适合的边角关系,难度不大.五、解答题(本大题共 2 小题,每题12 分,共 24 分)19.(12 分)( 2015?益阳)大学生小刘回乡创立小微公司,早期购得原资料若干吨,每日生产同样件数的某种产品,单件产品所耗资的原资料同样.当生产 6 天后节余原资料36 吨,当生产 10 天后节余原资料30 吨.若节余原资料数目小于或等于 3 吨,则需增补原资料以保证正常生产.(1)求早期购得的原资料吨数与每日所耗资的原资料吨数;(2)若生产16 天后,依据市场需求每日产量提升20%,则最多重生产多少天后一定增补原资料?考点:一元一次不等式的应用;二元一次方程组的应用.剖析:( 1)设早期购得原资料 a 吨,每日所耗资的原资料为 b 吨,依据“当生产 6 天后节余原资料 36 吨,当生产10 天后节余原资料30 吨.”列出方程组解决问题;( 2)最多重生产x 天后一定增补原资料,依据若节余原资料数目小于或等于 3 吨列出不等式解决问题.解答:解:( 1)设早期购得原资料 a 吨,每日所耗资的原资料为 b 吨,依据题意得:.解得.( 2)设重生产 x 天后一定增补原资料, 依题意得: 45﹣ 16×﹣( 1+20% ) x ≤3,解得: x ≥10. 答:最多重生产10 天后一定增补原资料.评论:本题考察一元一次不等式组的实质运用, 二元一次方程组的实质运用, 找出题目包含的数目关系与不等关系是解决问题的重点.20.( 12 分)( 2015?益阳)已知点 P 是线段 AB 上与点 A 不重合的一点,且 AP < PB . AP 绕点 A 逆时针旋转角 α( 0°< α≤90°)获得 AP 1,BP 绕点 B 顺时针也旋转角 α获得 BP 2,连 接 PP 1、PP 2.(1)如图 1,当 α=90°时,求∠ P 1PP 2 的度数; (2)如图 2,当点 P 2 在 AP 1 的延伸线上时,求证: △P 2 1 2P P ∽△ P PA ; ( 3)如图 3,过 BP 的中点 E 作 l 1⊥ BP ,过 BP 2 的中点 F 作 l 2⊥ BP 2, l 1 与 l 2 交于点 Q ,连结 PQ ,求证: P 1P ⊥ PQ . 考点 :几何变换综合题.剖析:( 1)利用旋转的性质以及等腰直角三角形得出∠( 2)依据题意得出 △ PAP 1 和△ PBP 2 均为顶角为 α的等腰三角形,从而得出 ∠ P 1PP 2=∠ PAP 2=α,求出 △ P 2P 1P ∽△ P 2PA ;( 3)第一连结 QB ,得出 Rt △ QBE ≌Rt △ QBF ,利用∠ P 1PQ=180 °﹣∠ APP 1﹣∠ QPB求出即可.解答:( 1)解:由旋转的性质得: ∵ α=90 °,∴△ PAP 1 和 △ PBP 2 均为等腰直角三角形, ∴∠ APP 1=∠BPP 2=45°,∴∠ P 1PP 2=180°﹣∠ APP 1﹣∠ BPP 2=90 °;( 2)证明:由旋转的性质可知 △ PAP 1 和 △ PBP 2 均为顶角为 α的等腰三角形,∴∠ APP 1=∠BPP 2=90°﹣,∴∠ P 1 2 12) =180°﹣2( 90° ) =α, PP =180 °﹣(∠ APP +∠ BPP在 △ PP 2P 1 和 △P 2PA 中,∠ P 1PP 2=∠ PAP 2=α, 又∵∠ PP 2P 1=∠AP 2P , ∴△ P 2P 1P ∽△ P 2PA .AP=AP 1, BP=BP 2.APP 1=∠ BPP 2=45 °,从而得出答案;( 3)证明:如图,连结QB.∵l1, l 2分别为 PB, P2B 的中垂线,∴ EB= BP, FB= BP2.又BP=BP2,∴ EB=FB .在 Rt△ QBE 和 Rt△QBF 中,,∴Rt△ QBE≌ Rt△ QBF,∴∠ QBE= ∠ QBF= ∠ PBP2= ,由中垂线性质得:QP=QB ,∴∠ QPB= ∠ QBE= ,由( 2)知∠ APP1=90 °﹣,∴∠ P1PQ=180°﹣∠ APP1﹣∠ QPB=180 °﹣( 90°﹣)=90 °,即 P1P⊥ PQ.评论:本题主要考察了几何变换综合以及相像三角形的判断和全等三角形的判断与性质等知识,得出 Rt△ QBE≌ Rt△ QBF 是解题重点.六、解答题(本题满分15 分)E1:y=x 2经过点 A( 1,m),以原点为极点的抛物线21.(15 分)( 2015?益阳)已知抛物线E2经过点 B ( 2,2),点 A 、 B 对于 y 轴的对称点分别为点 A ′, B′.(1)求 m 的值及抛物线 E2所表示的二次函数的表达式;(2)如图 1,在第一象限内,抛物线 E1上能否存在点 Q,使得以点 Q、 B、 B ′为极点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明原因;(3)如图 2, P 为第一象限内的抛物线 E1上与点 A 不重合的一点,连结 OP 并延伸与抛物线 E2订交于点 P′,求△PAA ′与△P′BB ′的面积之比.考点:二次函数综合题.剖析:( 1)直接将( 2,2)代入函数分析式从而求出 a 的值;( 2)由题意可得,在第一象限内,抛物线 E1上存在点 Q,使得△ QBB ′为直角三角形,由图象可知直角极点只好为点 B 或点 Q,分别利用当点 B 为直角极点时以及当点Q 为直角极点时求出Q 点坐标即可;( 3)第一设P( c, c 2)、 P′( d,),从而得出 c 与 d 的关系,再表示出△ PAA′与△ P′BB ′的面积从而得出答案.解答:解:( 1)∵抛物线E1经过点 A ( 1, m),2∴ m=1 =1.∵抛物线E2的极点在原点,可设它对应的函数表达式为y=ax 2( a≠0),又∵点 B( 2,2)在抛物线E2上,∴ 2=a×22,解得: a=,∴抛物线E2所对应的二次函数表达式为y=x2.( 2)如图 1,假定在第一象限内,抛物线E1上存在点Q,使得△ QBB′为直角三角形,由图象可知直角极点只好为点 B 或点 Q.①当点 B 为直角极点时,过 B 作 QB⊥ BB ′交抛物线 E1于 Q,则点 Q 与 B 的横坐标相等且为2,将 x=2 代入 y=x 2得 y=4,∴点 Q 的坐标为(2, 4).2 2 2②当点 Q 为直角极点时,则有QB ′+QB =B ′B ,过点 Q 作 GQ ⊥ BB ′于 G,设点 Q 的坐标为( t, t 2)( t> 0),2 2 2 2 2﹣ 2)2则有( t+2) +( t ﹣2) +( 2﹣t ) +( t =4,4﹣ 3t 2整理得: t =0 ,∵ t> 0,∴ t 2﹣ 3=0,解得 t1= , t2=﹣(舍去),∴点 Q 的坐标为(, 3),综合①②,存在切合条件的点Q 坐标为( 2,4)与(, 3);(3)如图 2,过点 P 作 PC⊥ x 轴,垂足为点 C, PC 交直线 AA ′于点 E,过点 P′作 P′D⊥ x 轴,垂足为点 D , P′D 交直线 BB ′于点 F,依题意可设P( c,c 2)、 P′( d,)(c>0,c≠q),∵tan∠ POC=tan∠ P′OD,∴=,∴d=2c.∵AA ′=2, BB ′=4,∴====.评论:本题主要考察了二次函数综合以及直角三角形的性质和三角形面积求法,依据题意利用分类议论得出是解题重点.。

湖南省益阳市中考数学试卷含答案试卷分析详解

湖南省益阳市中考数学试卷含答案试卷分析详解

湖南省益阳市中考数学试卷(样卷)一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.2.(4分)下列各式化简后的结果为3的是()A.B.C.D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形6.(4分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、677.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤08.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.B.C.D.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.14.(4分)某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=.x (2)1.5﹣1﹣0.500.51 1.52…y…20.750﹣0.250﹣0.250m2…15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标.16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.湖南省益阳市中考数学试卷(样卷)参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.2.(4分)下列各式化简后的结果为3的是()A.B.C.D.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2,在数轴上表示为:.故选:A.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.6.(4分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、67【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选:C.7.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选:A.8.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小【解答】解:画出抛物线y=x2﹣2x+1的图象,如图所示.A、∵a=1,∴抛物线开口向上,A正确;B、∵令x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,∴该抛物线与x轴有两个重合的交点,B正确;C、∵﹣=﹣=1,∴该抛物线对称轴是直线x=1,C正确;D、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x>1时,y随x的增大而增大,D不正确.故选:D.10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠P B′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.B.C.D.【解答】解:设PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x﹣1=xsinα,∴(1﹣sinα)x=1,∴x=.故选:A.二、填空题:本题共8小题,每小题4分.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第四象限.【解答】解:将正比例函数y=2x的图象向上平移3个单位后得到的一次函数的解析式为:y=2x+3,∵k=2>0,b=3>0,∴该一次函数图象经过第一、二、三象限,即该一次函数图象不经过第四象限.故答案为:四.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.【解答】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为124°.【解答】解:∵AB ∥CD , ∴∠ABC=∠BCD=28°, ∵CB 平分∠ACD , ∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC ﹣∠ACB=124°, 故答案为:124°.14.(4分)某学习小组为了探究函数y=x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m= 0.75 . x…﹣2﹣1.5﹣1﹣0.50.511.52…y…20.75﹣0.25﹣0.25 0m2…【解答】解:(方法一)当x >0时,函数y=x 2﹣|x |=x 2﹣x , 当=0.75.(方法二)观察表格中的数据,可知:当x=﹣1和x=1时,y 值相等, ∴抛物线的对称轴为y 轴, ∴当x=1.5和=0.75. 故答案为:0.75.15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标 (1,﹣3) .【解答】解:任意取一个整数值如x=1,将x=1代入解析式得:y=﹣=﹣3,得到点坐标为(1,﹣3),则这个点坐标的横纵坐标都为整数,是符合要求的答案,本题可有多个答案.故答案为:(1,﹣3)(答案不唯一).16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4•π×6=24π.故答案为:24π.17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为115°.【解答】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).【解答】解:原式=﹣1+﹣1×(﹣)=﹣1++=.20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.【解答】解:原式==.当时,原式=4.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=0.3,b=4,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.=BC•AD=×14×12=84.∴S△ABC25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.【解答】解:(1)∵抛物线顶点为A(,1),设抛物线解析式为y=a(x﹣)2+1,将原点坐标(0,0)在抛物线上,∴0=a()2+1∴a=﹣.∴抛物线的表达式为:y=﹣x2+x.(2)令y=0,得0=﹣x2+x,∴x=0(舍),或x=2∴B点坐标为:(2,0),∵A(,1)在直线OA上,∴k=1,∴k=,∴直线OA对应的一次函数的表达式为y=x.∵BD∥AO,设直线BD对应的一次函数的表达式为y=x+b,∵B(2,0)在直线BD上,∴0=×2+b,∴b=﹣2,∴直线BD的表达式为y=x﹣2.令x=0得,y=﹣2,∴C点的坐标为(0,﹣2),由勾股定理,得:OA=2=OC,AB=2=CD,OB=2=OD.在△OAB与△OCD中,,∴△OAB≌△OCD.(3)点C关于x轴的对称点C'的坐标为(0,2),∴C'D与x轴的交点即为点P,它使得△PCD的周长最小.过点D作DQ⊥y,垂足为Q,∴PO∥DQ.∴△C'PO∽△C'DQ.∴,∴,∴P O=,∴点P的坐标为(﹣,0).26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.【解答】解:(1)如图①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,,又∵EF是△ACD的中位线,∴,在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,在△FGD中,GF=DF•sin60°=,∴矩形EFGH的面积;(2)如图②,设矩形移动的距离为x,则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去),当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴,即矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)如图③,作H2Q⊥AB于Q,设DQ=m,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.第21页共21页。

2013年湖南省益阳市中考数学试卷及答案(word解析版)

2013年湖南省益阳市中考数学试卷及答案(word解析版)

湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是友情提示:一、认真对待每一次复习及考试。

.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。

三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将102 000 000 000用科学记数法表示为:1.02×1011.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2013•益阳)下列运算正确的是()D.(a+b)2=a2+b2A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2考点:平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.分析:根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.解答:解:A、2a3÷a=2a2,故选项错误;B、(ab2)2=a2b4,故选项错误;C、正确;D、(a+b)2=a2+2ab+b2,故选项错误.故选C.点评:本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x= D.x=考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,95考点:众数;中位数.分析:根据众数和中位数的定义,结合表格和选项选出正确答案即可.解答:解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95,故中位数为:90,众数为:90.故选B.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个考点:由三视图判断几何体.分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数.解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体,从俯视图可以验证这一点,从而确定小正方体总个数为5个.故选;C.点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)考点:二次函数的性质.分析:根据顶点式解析式写出顶点坐标即可.解答:解:抛物线y=2(x﹣3)2+1的顶点坐标是(3,1).故选A.点评:本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy2﹣4x=x(y+2)(y﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.10.(4分)(2013•益阳)化简:=1.考点:分式的加减法.专题:计算题.分析:由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.解答:解:原式==1.故答案为:1.点评:本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.考点:概率公式;轴对称图形;中心对称图形.分析:由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概率公式即可求得答案.解答:解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,∴既是中心对称图形又是轴对称图形的概率是:.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.12.(4分)(2013•益阳)如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=5cm.考点:圆周角定理;含30度角的直角三角形.分析:根据圆周角定理可得出△ABC是直角三角形,再由含30°角的直角三角形的性质即可得出BC的长度.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AB=10cm,∠CAB=30°,∴BC=AB=5cm.故答案为:5.点评:本题考查了圆周角定理及含30°角的直角三角形的性质,解答本题的关键是根据圆周角定理判断出∠ACB=90°.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是21.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.考点:代数式求值.专题:计算题.分析:将a,b及c的值代入计算即可求出值.解答:解:当a=,b=|﹣2|=2,c=时,a2+b﹣4c=3+2﹣2=3.点评:此题考查了代数式求值,涉及的知识有:二次根式的化简,绝对值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.解答:证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.点评:本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?考点:反比例函数的应用;一次函数的应用.分析:(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.解答:解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.点评:此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?考点:条形统计图;统计表;概率公式.分析:(1)根据条形统计图可知a=4;(2)根据表格数据可知6次的人数是2,然后补全统计图即可;(3)根据概率公式解得即可.解答:解:(1)由条形统计图可知次数为8的有4人,所以,a=4;(2)由表可知,6次的有2人,补全统计图如图;(3)∵小组成员共10人,参加了10次活动的成员有3人,∴P=,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B 为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)考点:解直角三角形的应用.专题:应用题.分析:设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.解答:解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x+2x=80.0,解得:x≈24.6,即PD≈24.6米,∴DB=2x=49.2.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z<∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC 于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AE F绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A (x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.考点:二次函数综合题.分析:(1)根据y=2x+2与抛物线y=2x2交于A、B两点,直接联立求出交点坐标,进而得出C点坐标即可;(2)利用两点间距离公式得出AB的长,进而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;(3)点C作CG⊥AB于G,过点A作AH⊥PC于H,利用A,C点坐标得出H点坐标,进而得出CG=AH,求出即可.解答:(1)解:由,解得:,.则A,B两点的坐标分别为:A(,3﹣),B(,3+),∵P是A,B的中点,由中点坐标公式得P点坐标为(,3),又∵PC⊥x轴交抛物线于C点,将x=代入y=2x2中得y=,∴C点坐标为(,).(2)证明:由两点间距离公式得:AB==5,PC=|3﹣|=,∴PC=PA=PB,∴∠PAC=∠PCA,∠PBC=∠PCB,∴∠PAC+∠PCB=90°,即∠ACB=90°,∴△ABC为直角三角形.(3)解:过点C作CG⊥AB于G,过点A作AH⊥PC于H,则H点的坐标为(,3﹣),∴S△PAC=AP•CG=PC•AH,∴CG=AH=|﹣|=.又直线l与l′之间的距离等于点C到l的距离CG,∴直线l与l′之间的距离为.点评:此题主要考查了二次函数的综合应用以及两点之间距离公式和两函数交点坐标求法等知识,根据数形结合得出H点坐标是解题关键.精品初中数学、英语、语文、物理、化学、等,复习、分类知识点、总结。

湖南省益阳市中考数学真题试题(含解析)

湖南省益阳市中考数学真题试题(含解析)

2015年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•益阳)下列实数中,是无理数的为()A.B.C.0D.﹣3考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(5分)(2015•益阳)下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(xy2)3=x3y6D.x6÷x3=x2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据积的乘方,可判断C;根据同底数幂的除法,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C正确;D、通敌数幂的除法底数不变指数相减,故D错误;故选:C.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.(5分)(2015•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8考点:中位数;加权平均数;众数.分析:根据众数和中位数的概念求解.解答:解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.点评:本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.4.(5分)(2015•益阳)一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体考点:由三视图判断几何体.分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.解答:解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.5.(5分)(2015•益阳)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.A C=BD C.O A=OB D.O A=AD考点:矩形的性质.分析:矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.解答:解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.点评:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.6.(5分)(2015•益阳)下列等式成立的是()A.+=B.=C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.(5分)(2015•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.解答:解:设增长率为x,根据题意得20(1+x)2=80,故选D.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(5分)(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2015•益阳)计算:= 4 .考点:二次根式的乘除法.专题:计算题.分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.解答:解:原式===4.故答案为:4点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.10.(5分)(2015•益阳)已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式y=(x>0),答案不唯一.考点:反比例函数的性质.专题:开放型.分析:反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k<0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.解答:解:只要使反比例系数大于0即可.如y=(x>0),答案不唯一.故答案为:y=(x>0),答案不唯一.点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.11.(5分)(2015•益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与树状图法.分析:列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.点评:本题考查用列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.12.(5分)(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.考点:弧长的计算;正多边形和圆.分析:求出圆心角∠AOB的度数,再利用弧长公式解答即可.解答:解:∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=.故答案为:.点评:此题将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质.13.(5分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成 1 的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1 根小棒.考点:规律型:图形的变化类.分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.解答:解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.三、解答题(本大题共2小题,每小题8分,共16分)14.(8分)(2015•益阳)化简:(x+1)2﹣x(x+1).考点:整式的混合运算.分析:利用完全平方公式和整式的乘法计算,进一步合并得出答案即可.解答:解:原式=x2+2x+1﹣x2﹣x=x+1.点评:此题考查整式的混合运算,掌握计算方法与计算公式是解决问题的关键.15.(8分)(2015•益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.考点:平行线的性质.分析:由平行线的性质得到∠A BC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解答:解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.点评:本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.四、解答题(本大题共3小题,每小题10分,共30分)16.(10分)(2015•益阳)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.考点:一次函数图象与几何变换;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.分析:(1)根据“左加右减、上加下减”的规律来求点P2的坐标;(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.解答:解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴,解得.∴直线l所表示的一次函数的表达式为y=2x﹣3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵2×6﹣3=9,∴点P3在直线l上.点评:本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(10分)(2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.考点:条形统计图;扇形统计图.分析:(1)用第一产业增加值除以它所占的百分比,即可解答;(2)算出第二产业的增加值即可补全条形图;(3)算出第二产业的百分比再乘以360°,即可解答.解答:解:(1)2375÷19%=1250(亿元);(2)第二产业的增加值为1250﹣237.5﹣462.5=550(亿元),画图如下:(3)扇形统计图中第二产业部分的圆心角为.点评:本题主要考查了条形统计图和扇形统计图,解题的关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.(10分)(2015•益阳)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.考点:菱形的判定与性质;平行四边形的性质;解直角三角形.分析:(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.解答:解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.点评:本题考查了解直角三角形及菱形的判定与性质、平行四边变形的判定与性质的知识,解题的关键是读懂题意,选择合适的边角关系,难度不大.五、解答题(本大题共2小题,每小题12分,共24分)19.(12分)(2015•益阳)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据“当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.”列出方程组解决问题;(2)最多再生产x天后必须补充原材料,根据若剩余原材料数量小于或等于3吨列出不等式解决问题.解答:解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据题意得:.解得.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨.(2)设再生产x天后必须补充原材料,依题意得:45﹣16×15﹣15(1+20%)x≤3,解得:x≥10.答:最多再生产10天后必须补充原材料.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.20.(12分)(2015•益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.考点:几何变换综合题.分析:(1)利用旋转的性质以及等腰直角三角形得出∠APP1=∠BPP2=45°,进而得出答案;(2)根据题意得出△PAP1和△PBP2均为顶角为α的等腰三角形,进而得出∠P1PP2=∠PAP2=α,求出△P2P1P∽△P2PA;(3)首先连结QB,得出Rt△QBE≌Rt△QBF,利用∠P1PQ=180°﹣∠APP1﹣∠QPB求出即可.解答:(1)解:由旋转的性质得:AP=AP1,BP=BP2.∵α=90°,∴△PAP1和△PBP2均为等腰直角三角形,∴∠APP1=∠BPP2=45°,∴∠P1PP2=180°﹣∠APP1﹣∠BPP2=90°;(2)证明:由旋转的性质可知△PAP1和△PBP2均为顶角为α的等腰三角形,∴∠APP1=∠BPP2=90°﹣,∴∠P1PP2=180°﹣(∠APP1+∠BPP2)=180°﹣2(90°)=α,在△PP2P1和△P2PA中,∠P1PP2=∠PAP2=α,又∵∠PP2P1=∠AP2P,∴△P2P1P∽△P2PA.(3)证明:如图,连接QB.∵l1,l2分别为PB,P2B的中垂线,∴EB=BP,FB=BP2.又BP=BP2,∴EB=FB.在Rt△QBE和Rt△QBF中,,∴Rt△QBE≌Rt△QBF,∴∠QBE=∠QBF=∠PBP2=,由中垂线性质得:QP=QB,∴∠QPB=∠QBE=,由(2)知∠APP1=90°﹣,∴∠P1PQ=180°﹣∠APP1﹣∠QPB=180°﹣(90°﹣)=90°,即 P1P⊥PQ.点评:此题主要考查了几何变换综合以及相似三角形的判定和全等三角形的判定与性质等知识,得出Rt△QBE≌Rt△QBF是解题关键.六、解答题(本题满分15分)21.(15分)(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.考点:二次函数综合题.分析:(1)直接将(2,2)代入函数解析式进而求出a的值;(2)由题意可得,在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q,分别利用当点B为直角顶点时以及当点Q为直角顶点时求出Q点坐标即可;(3)首先设P(c,c2)、P′(d,),进而得出c与d的关系,再表示出△PAA′与△P′BB′的面积进而得出答案.解答:解:(1)∵抛物线E1经过点A(1,m),∴m=12=1.∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0),又∵点B(2,2)在抛物线E2上,∴2=a×22,解得:a=,∴抛物线E2所对应的二次函数表达式为y=x2.(2)如图1,假设在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q.①当点B为直角顶点时,过B作QB⊥BB′交抛物线E1于Q,则点Q与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q的坐标为(2,4).②当点Q为直角顶点时,则有QB′2+QB2=B′B2,过点Q作GQ⊥BB′于G,设点Q的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综合①②,存在符合条件的点Q坐标为(2,4)与(,3);(3)如图2,过点P作PC⊥x轴,垂足为点C,PC交直线AA′于点E,过点P′作P′D⊥x轴,垂足为点D,P′D交直线BB′于点F,依题意可设P(c,c2)、P′(d,)(c>0,c≠q),∵tan∠POC=tan∠P′OD,∴=,∴d=2c.∵AA′=2,BB′=4,∴====.点评:此题主要考查了二次函数综合以及直角三角形的性质和三角形面积求法,根据题意利用分类讨论得出是解题关键.。

益阳市2013年普通初中毕业学业考试试卷

益阳市2013年普通初中毕业学业考试试卷

益阳市2013年普通初中毕业学业考试试卷一、选择题(本大题共25小题,每小题2分共50分,每小题只有一个正确答案) 1.2013年6月1日,国家主席习近平访问特立尼这和多巴哥,对于这个国家许多同学感到陌生,要在地图上找到该国的位置虽好选用A地形图B.交通图c.导游图D.世界政治地图2.读右面“某地等高线地形图”,下列叙述不正确的是A、③表示陡崖B、①山顶和②地相对高度为220米C、④线易形成河流D、该图所示山地的南坡比北坡陡3、2013年3月份.我国北方地区多次出现严重的雾霾天气,严重影响人们的健康和交通出行,下列现象与引起雾霾天气无关的是A、降水多B、地表植被差C、汽车尾气和工业废气排放多D、地表开挖和建筑施工4.沙漠地区的聚落大多分布在沙漠边缘的绿洲上,其考虑的主要因素是A.地形B.气候C.水源D.生活习俗5.下列各地区域的文化或民族习俗与当地自然条件组合正确的是A、也门的住房大多是平顶——气候湿热的自然条件B、孟加拉国人以船为交通工具——地势低平,河网密布C、加里曼丹岛的达雅克人多住高脚屋——多地震D、沙特贝都因人居住帐篷,身着宽大袍子.过着游牧生涪一嘀纬度地区,气候严寒6.“莽原缠玉带,田野织彩绸”,亚洲分布着肥沃的原野。

F列平原不属于亚洲的是A、东北平原B、恒河平原C、西西伯利亚平原D、亚马孙平原7、今年日本加速对缅甸的投资,建立生产与销售基地,其原因不正确的是A、缅甸有丰富且廉价的劳动力B、缅甸有廉价的土地资源C、缅甸有先进的科学技术D、日本国内市场有限8、下列旅游胜地与所在国家搭配不正确的是A、缅甸——大金塔B、新加坡——婆罗浮屠C、越南——下龙湾D、柬埔寨一吴哥窟9、下列有关俄罗斯工业叙述正确的是A、俄罗斯轻重工业都发达B、俄罗斯工业区主要分布在亚洲C、圣彼得堡工业区是俄罗斯工业最发达的地区D、俄罗斯自然资源丰富,为工业发展奠定了良好的物质基础10、欧洲两部地区自西向东气候变化为A、海洋性逐渐增强B、大陆性逐渐增强C、气温年较差逐渐减小D、降水最逐渐增多11、粮食供应不足成为撒哈拉以南非洲各国普遍遇到的问题,造成该问题的原因不包括A 、农业生产落后B 、高原为主的地形C 、常受旱灾威胁D 、快速的人口增长12、读漫画“大难临头”,下列问蹰不属于该现象将带来 “太难”的是A 、水十流失加剧B 、淡水资源遭到破坏C 、野生动物失去栖息场所D 、酸雨污染13、美国是世界上的农业大国,农业生产效率高,成本低,产品市场竞争力强,主要原因是①耕地广阔,土壤肥沃 ②农业科技发达③气候条件优越 ④高度机械化和专业化A 、①②B 、①⑧C 、②④D 、③④14、下列关于美国和巴西叙述正确的一组是①都是所在太洲面积最大国 ②都有热带领土 ③都临大西洋 ④都是发达国家 ⑤人口和城市都集中在东南沿海 ⑥首都都不是本国最大城市A 、①③⑤B 、②④⑥C 、①②⑤D 、②③⑥15、关于南极洲叙述错误的是A 、比北极地区温暖B 、覆盖着很厚的冰层C 、纬度最高的大洲D 、严寒、干燥、烈风16.某中学举办“祖国省区万里行”社会实践主题班会,王灿同学的演讲中有一处表述错误,请你找出来A 、夏季最早看到日出的省是黑龙江省B 、全国第六次人口普查数据统计人口第一大省是广东C 、面积最大的省区是新疆D 、与云南省相邻的国家有缅甸、泰国、老挝读右面“我国水土资源资料图”,完成17——18题17、我国水资源和耕地资源分布的特点是A 、南方地多水少B 、南方地少水多C 、北方地多水多D 、北方地少水少18、针对资料反映出的问题而实施的重大工程是 A 、长江三峡工程 B 、淮河治理工程C 、南水北调工程D 、塔里木河治理工程19、某地地形平坦、土壤肥沃、夏季高温多雨,从自然条件考虑,最适宜发展的农业是A 、畜牧业B 、种植业C 、渔业D 、林业20、我国东部沿海四大工业基地的共同优势是( )①交通便利 ②人口稠密 ③工业基础好 ④矿产资源丰富A 、①②⑤B 、①②④C 、①③④D 、②③④21、北京市发展旅游业的最大优势是A 、优越的地理位置B 、便利的交通条件C 、众多的名胜古迹D 、全国的科技中心22 、2013年6月2日台湾南投县发生6. 7级地震,台湾多地震的原因是A 、位于亚欧板块内部B 、位于亚欧板块与太平洋板块交界处C 、位于太平洋板块内部D 、人为填海造陆引起23.珠江三角洲经济高速发展主要得益于A 、成本较高的劳动力资源B 、毗邻港澳的地理位置C 、丰富的矿产资源D 、发达的重工业24、在湖南省株洲相交的铁路干线正确的一组是①京广线 ②焦柳线 ③湘黔线 ④石长线 ⑤浙赣线A 、①②⑤B 、②③④C 、③④⑤D 、①③⑤25下列美称不符合湖南省的是A .天府之国 B.有色金属之乡 C.芙蓉国 D .鱼米之乡二、综合题(本大题共7个一1、题,共50分)26.读右图,回答下列问题 (6分)(1)图中A 、B 、C 分别代表地球五带中某一带,B 代表的是 带;跨纬度最广的是 (填代号)(2)2013年6月17日,A 、B 、C 三带中.白昼最长的是 (填代号)。

湖南省益阳市中考真题--数学(word版含答案)

湖南省益阳市中考真题--数学(word版含答案)

益阳市2010年普通初中毕业学业考试试卷注意事项:i.本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。

试题卷、选择题:本大题共 8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目 要求的•数轴上的点 A 到原点的距离是 6,则点A 表示的数为3, 4, 8, 4,这组数据的中位数和极差分别是5.如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y之间的关系用图象描述大致是A.1. 2. A. 6 或-6B. 6C. -6D. 3 或一3某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为 6, 10, 5, 3. 4. A . 4, 7B . 7, 55, 73, 7F 列计算正确的是A. 30 =0小军将一个直角三角板(如图1)绕它的一条体,将这个几何体的侧面展开得到的大致图形是c. 3」=_3D.C .形成一个几何图2B .C .D .36•—元二次方程 ax ?+bx + c =0(a 式0)有两个不相等 的实数根,则 疋一 4ac 满足的条件是22A. b 一4ac = 0 E . b -4ac >0 22c. b 一 4ac v 0D . b - 4ac > 0二、填空题:本大题共 5小题,每小题4分,共20分.把答案填在答题卡.中对应题号后的横线上.2 29.若 m -n =6,且 m -n =3,贝U m n= ____________ . 10.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是_____ .11. ____________________________________________________________________________ 如图4,在厶ABC 中,AB = AC = 8, AD 是底边上的高, E 为AC 中点,贝U DE = ______________________12. 如图5,分别以A 、B 为圆心,线段AB 的长为半径的两个圆相交于 C 、D 两点,则/CAD 的度数为 ___________k13.如图6,反比例函数y=—的图象位于第一、三象限,其中第一象限内的图象经过点A (1, 2),请在x第三象限内的图象上找一个你喜欢的点 P ,你选择的P 点坐标为 ____________ .三、解答题:本大题共 3小题,每小题8分,共24分.5x 7. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为X 千米/小时,依题意列方程正确的是A.25 35x X —20B. 2535C. 2535 x x 20D.x - 20 x 25 35 x 20 x如图 3,已知△ ABC ,求作一点 P ,使 P 到/A 的两边的距离相等,且 FA = PB .下列 确定P 点的方法正确的是A. P 为/ A 、/ B 两角平分线的交点B. P 为/A 的角平分线与 AB 的垂直平分线的交点C. P 为AC 、AB 两边上的高的交点D. P 为AC 、AB 两边的垂直平分线的交点B图4 C图5图6 x14. ------------------------ 解不等式-x 1,并将解集在数轴上表示出来.3I ■ ■ I I I 1-3-2-1012 315.已知 x -1 = ••、3,求代数式(x - 1)2 -4(x • 1) 4的值.,AB =4,0为对角线BD 的中点,过O 点作OE 丄AB ,垂足为E .(1) 求/ ABD 的度数;(2) 求线段BE 的长.⑶2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)18. 我们知道,海拔高度每上升 1千米,温度下降6C .某时刻,益阳地面温度为 20C ,设高出地面x 千米处的温度为y C .(1) 写出y 与x 之间的函数关系式;(2) 已知益阳碧云峰高出地面约 500米,求这时山顶的温度大约是多少C? (3) 此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 C,求飞机离地面的高度为多少千米?五、解答题:本题满分 12分.19.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度.相等.一条直线l 与方形环的边线有四个交点M 、M'、N'、N •小明在探究线段 MM '与N'N 的数量关系时,从点 M'、N'向对边作垂线段 M'E 、N'F ,利用三角形全等、相似及锐角三角函数等16.如图7,在菱形 ABCD 中,/ A=60 四、解答题:本大题共 2小题,每小题17.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季部门对2009年的油菜籽生产成本、市场价格、种植面积 调查统计, 请根 下列问题10分,共20分.并绘制了如下统计表与统计图: 每亩生产成本每亩产量 油菜籽市场价格110元130千克3元/千克菜每亩的种子成本是多少元?⑵农民冬种油菜每亩获利多少元?油菜•南县农业 和产量等进行了 据以上信息解答⑴种植油图7油菜每亩生产成本统计图相关知识解决了问题•请你参考小明的思路解答下列问题:⑴当直线I 与方形环的对边相交时(如图 8—1),直线I 分别交AD 、AD \ BC \ BC 于M 、M '、N'、N ,小明发现 MM '与N'N 相等,请你帮他说明理由;⑵当直线I 与方形环的邻边相交时 (如图8一2),I 分别交AD 、A D \ D'C \ DC 于M 、M'、 N'、N ,I 与DC 的夹角为:•,你认为MM '与N'N 还相等吗?若 相等,说明理由;若不相等,求出MM '的值(用含:的三角函数表示)•N'N图8-2六、解答题:本题满分 12分. 20.如图9,在平面直角坐标系中,已知 A 、B 、C 三点的坐标分别为 A (-2, 0), B ( 6, 0), C (0, 3)(1) 求经过A 、B 、C 三点的抛物线的解析式;(2) 过C 点作CD 平行于x 轴交抛物线于点 D ,写出D 点的坐标,并求 AD 、BC 的交点E 的坐标; (3) 若抛物线的顶点为 P ,连结P C 、P D ,判断四边形 CEDP 的形状,并说明理由.益阳市2010年普通初中毕业学业考试试卷数学参考答案及评分标准选择题: 本大题共 8小题,每小题 4分,共32分.题号123456 7 8 答案 A C B D A BCB二•填空题:本大题共 5小题,每小题4分,共20分.1 9. 210.11.412.1203图8 -1 A -------------- B'A IC13.答案不唯一,x、y满足xy =2且x :::0, y ... 0即可三•解答题:本大题共3小题,每小题8分,共24分.14.解:5x —1 —3x . 3 ................................. 2 分2x . 4 ................................. 4 分x 2 ................................. 6 分-2-1 0 1 2 ................................. 8 分15•解法一:原式=(x・1-2)2 ............................... 2分=(X-1)2 ...................................... 4 分当x -1 *3时原式=G 3)2 ............................... 6分=3 ...................................... 8 分解法二:由x -1 - 3得^ 3 1 ............................... 1分化简原式=x22x ^4^-4 4 ................................. 3分=x2-2x 1 ................................. 4 分=( ..3 1)2-2( .,3 1) 1 ........................... 5 分=3 2、3 1 - 2..3 - 2 1 ........................... 7分=3 ..................................... 8 分16•解:⑴ 在菱形ABCD 中,AB =AD , . A =60ABD为等边三角形••• . ABD =60 ................................. 4 分⑵由(1)可知BD =AB =4又••• O为BD的中点•• OB = 2 .................................. 6 分又••• OE _ AB,及ABD =60•BOE =30•BE =1 .................................. 8 分四、解答题:本大题共2小题,每小题10分,共20分.17 .解:⑴1-10% - 35 % - 45% —10% ...................................... 1 分110 10% =11 (元) ................... 3 分⑵ 1 3 03 -1 1 0 2 8 0元) ............................ 6分⑶280 500000=140000000................................. 8分=1.4 108 (元)................ 10 分答:略.18. 解:⑴y =20_6x ( x . 0).................... 4分 ⑵5 0米=0.5千米.................. 5分y =20 _6 0 5 =17(C )...................................... 7 分⑶-34 =20 - 6x.................................. 8 分x =9...................................... 10 分答:略.五、解答题:本题满分 12分. 19. ⑴解:在方形环中,•/ M E _ AD,N'F _ BC, AD // BC••• M E 二N'F,. M EM =• N'FN =90 ,• EMM ' EN'NF•••△ MM 'E 也厶 NN 'F • MM = N'N⑵解法一:••• NFN 二.MEM =90 ,. FNN = . EM M =:•• NFN s ;M EM • MM ' _ M E"N'N - NF •/ M E = N F:45 时,M M '严 NNM Msin :、.=ta n 〉(或 )NNcos -::解法二:在方形环中,D =90又••• M E _ AD,N'F _CD • M E // DC,N'F =M E • MM E "N'NF » 在 Rt NN F 与 Rt MM E 中,N'FM Esin,cos :NN MM 丄sin 。

湖南省益阳市中考数学试题(word版)

湖南省益阳市中考数学试题(word版)

相关资料2014年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·湖南益阳)四个实数﹣2,0,﹣,1中,最大的实数是( )A . ﹣2B . 0C . ﹣D .1 考点:实数大小比较.分析:根据正数大于0,0大于负数,正数大于负数,比较即可. 解答: 解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选D .点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小. 2.(2014·湖南益阳)下列式子化简后的结果为x 6的是( ) A . x 3+x 3B . x 3•x 3C . (x 3)3D . x 12÷x 2 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:根据同底数幂的运算法则进行计算即可. 解答: 解:A 、原式=2x 3,故本选项错误; B 、原式=x 6,故本选项错误;C 、原式=x 9,故本选项错误;D 、原式=x 12﹣2=x 10,故本选项错误.故选B .点评: 本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.3.(2014•益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A.B.C.D.考点:概率公式.分析:由小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,直接利用概率公式求解即可求得答案.解答:解:∵小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,∴她从中随机抽取1个,抽中数学题的概率是:=.故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 4.(2014·湖南益阳)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(2014·湖南益阳)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( ) A.m>1 B.m=1 C.m<1 D.m≤1考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m的不等式,解答即可.解答:解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选D.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2014·湖南益阳)正比例函数y=6x的图象与反比例函数y=的图象的交点位于( ) A.第一象限B.第二象限C.第三象限D.第一、三象限考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.解答:解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.7.(2014·湖南益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是( ) A.A E=CF B.B E=FD C.B F=DE D.∠1=∠2考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.8.(2014•益阳)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( ) A.1B.1或5 C.3D.5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(2014·湖南益阳)若x2﹣9=(x﹣3)(x+a),则a= 3 .考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.10.(2014·湖南益阳)分式方程=的解为 x=﹣9 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x=3x﹣9,解得:x=﹣9,经检验x=﹣9是分式方程的解.故答案为:x=﹣9.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•益阳)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 2.16 米.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:1.96,1.98,2.04,2.16,2.20,2.22,2.32,则中位数为:2.16.故答案为:2.16.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是 80 米/分钟.考点:函数的图象.分析:他步行回家的平均速度=总路程÷总时间,据此解答即可.解答:解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是 60° .考点:旋转的性质;等边三角形的性质.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键. 三、解答题(本大题共2小题,每小题6分,共12分)14.(2014·湖南益阳)计算:|﹣3|+30﹣.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果.解答:解:原式=3+1﹣3=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(2014·湖南益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.解答:解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.点评:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键. 四、解答题(本大题共3小题,每小题8分,共24分)16.(2014·湖南益阳)先化简,再求值:(+2)(x﹣2)+(x﹣1)2,其中x=.考点:分式的化简求值.专题:计算题.分析:原式第一项利用乘法分配律计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=1+2x﹣4+x2﹣2x+1=x2﹣2,当x=时,原式=3﹣2=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(2014•益阳)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(2)利用(1)中所求得出喜欢艺体类的学生数进而画出图形即可;(3)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.解答:解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200×=480(人).点评:此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.18.(2014•益阳)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B 之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.考点:解直角三角形的应用.分析:设AD=x米,则AC=(x+82)米.在Rt△ABC中,根据三角函数得到AB=2.5(x+82),在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.解答:解:设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=,∴AB=AC•tan∠BCA=2.5(x+82).在Rt△ABD中,tan∠BDA=,∴AB=AD•tan∠BDA=4x.∴2.5(x+82)=4x,解得x=.∴AB=4x=4×≈546.7.答:AB的长约为546.7米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.五、解答题(本大题共2小题,每小题10分,共20分)19.(2014·湖南益阳)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售数量销售时段A种型号销售收入B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B 型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a>10,∴在(2)的条件下超市不能实现利润1400元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.20.(2014•益阳)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.考点:二次函数综合题.分析:(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.解答:解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.六、解答题(本题满分12分)21.(2014•益阳)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;(2)若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP 中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=x•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=x•BM2代入计算即可.②当0<x≤2时,S2=x(x2﹣x+),最后根据S=S1+S2=x(x﹣)2+x即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.(2)存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=3.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=x•()2=x•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S1=x•BM2=x(x2﹣x+).②∵当0<x≤2时,S2=x(x2﹣x+)也成立,∴S=S1+S2=x•+x(x2﹣x+)=x(x﹣)2+x.∴当x=时,S=S1+S2取得最小值x.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.。

2013年湖南中考数学诊断试题含答案3

2013年湖南中考数学诊断试题含答案3

2013 初 中 学 业 模 拟 考 试数 学 试 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共 25 题;2. 答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题::(本大题共 6题,每题 4分,满分 24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂】 1.下列运算正确的是( )A .1393=±; B .1393=; C .1293=±; D . 1293=.2.下列各点中,在函数xy 6-= 图像上的是 ( ) A .(-2,-4); B .(2,3);C .(-6,1);D .(-21,3).3.下列说法正确的是( )A .事件“如果a 是实数,那么0 a ”是必然事件;B .在一次抽奖活动中,“中奖的概率是1001”表示抽奖100次就一定会中奖; C .随机抛一枚均匀硬币,落地后正面一定朝上;D .在一副52张扑克牌(没有大小王)中任意抽一张,抽到的牌是6的概率是131. 4.已知关于x 的一元二次方程02=++c bx x 有两个实数根,则下列关于判别式c b 42-的判断正确的是( )A .042≥-c b ;B .042≥-c b ;C .042≥-c b ;D .042≥-c b .5.对角线互相平分且相等的四边形是( )A .菱形;B .矩形;C .正方形;D .等腰梯形. 6.如果⊙1O 的半径是 5,⊙2O 的半径为 8,124O O =,那么⊙1O 与⊙2O 的位置关系是( )A .内含;B .内切;C .相交;D .外离.二、填空题::(本大题共 12题,每题 4分,满分 48分) 【在答题纸相应题号后的空格内直接填写答案】 7.化简:6363a a ÷= . 8.计算:)2)(2(y x y x +-= . 9.不等式组1023x x -≤⎧⎨-<⎩的整数解...是 . 10.函数3223x y x -=+的定义域为 . 11.写出一条经过第一、二、四象限,且过点(0,3)的直线的解析式 12.方程6x x +=的根为 .13.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问孤寡老人,如果给每位老人分5盒牛奶,则剩下38盒牛奶。

湖南省2013年最新中考数学试题及答案

湖南省2013年最新中考数学试题及答案

ABCDEO(第5题图) 2121-2013湖南省初中数学试题在考试过程中请你注意以下几点:1.答选择题时,请将答案直接填在选择题答题表中.2.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.) 1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上 C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P正方体长方体圆柱 圆锥 A B C D(第8题图)从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为 A.3cm B.4cmC.21cmD.62cm 二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = . 10.化简211xx x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180 元的运动服,打折后他比按标价购买节省了 元.12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.40%5=R (图1) (图2)(第13题图) A B C 1OD1C 2O 2C …… (第15题图) y60% ABDC(第7题图) A BC DE. F.P.·14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作 平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 .三、解答题(本大题共9个小题,满分72分.) 17.(本题满分5分)计算:20)21(8)21(3--+-+-18.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.C19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20 元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.20.(本题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量 校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)类别21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机 地取出1张卡片,请你用画树形(状)图或列表的方法求: (1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O(2)若2=BC ,2=CE ,求23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.24.(本题满分10分)华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等); (3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产A B A BCD EF 图1图2A BCDE FGM 图3ABCDEFMH图4量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?x (元/件))(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共24分) 1—8 D C B D B A B C 二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2- 13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(-- (第14题不写单位不扣分) 三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分) 只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD类别即5.445tan 35tan 00=-CDCD …………………………………………(5分) 解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)21.(8分)解:(1)由题意可列表:∴两张卡片上的数字恰好相同的概率是92.………………………(4分) (2)由题意可列表:∴两张卡片组成的两位数能被3整除的概率是95………………(8分) (画树状图略)22.(8分)(1)证明:∵AB 为半⊙O 的直径∴90=∠BCA又∵BC ∥OD , ∴AC OE ⊥ ∴090=∠+∠DAE D 而D ∠=∠∴090=∠+∠DAE OAE ∴AD 是半圆O 分)(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,22=+=BC AC AB 分)由DOA ∆∽ABC ∆可得:BC OAAC AD =即2322=AD ∴6=AD …………………………………………………………(8分)23. (10分)解:(1)MB =MD ………………………………………………………(1分)证明:∵AG 的中点为M ∴在ABG Rt ∆中, AG MB 21=在ADG Rt ∆中,AG MD 21=∴MB =MD ………………………………………………(3分)(2)∵BAM ABM BAM BMG ∠=∠+∠=∠21 2 4 2 (1,2) (2,2) (4,2) 4 (1,4) (2,4) (4,4) 5 (1,5) (2,5) (4,5) 1 2 4 2 12 22 42 4 14 24 44 5 15 2545A B A B同理DAM ADM DAM DMG ∠=∠+∠=∠2∴BMD ∠=DAM BAM ∠+∠22=BAC ∠2 而α-=∠090BAC∴α21800-=∠BMD …………………………………………(6分)∴当045=α时,090=∠BMD ,此时BMD ∆为等腰直角三角形.…(8分)(3)当CGD ∆绕点C 逆时针旋转一定的角度,仍然存在MB =MD , α21800-=∠BMD ………………………………………………(9分) 故当060=α时,BMD ∆为等边三角形.…………………………(10分) 24. (10分)解:(1)设y 与x 的函数解析式为:b kx y +=,将点)60,20(A 、)28,36(B代入b kx y +=得:⎩⎨⎧+=+=b k b k 36282060解得:⎩⎨⎧=-=1002b k∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y ……(3分)(2)当2820≤≤x 时,有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x ……………………………………………………(5分)当4028≤≤x 时,有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元,可使公司产销平衡.…………………(7分)(3)当461=y 时,则8523461+-=x ,∴261=x 当462=y 时,则1002462+-=x ,∴272=x∴112=-x x∴政府对每件纪念品应补贴25.(12分)解:(1)∵AB ∥OC ∴ 090=∠=∠AOC OAB 在OAB Rt ∆中,2=AB ,=AO ∴4=OB , 060=∠ABO ∴060=∠BOC 而060=∠BCO∴BOC ∆为等边三角形∴3223430cos 0=⨯==OB OH …(3分) (2)∵t PH OH OP -=-=32∴t OP x p 23330cos 0-== 2330sin 0t OP y p -== ∴)233(2121t t x OQ S p -⋅⋅=⋅⋅==t t 23432+- (320<<t )…………………………(6分)即433)3(432+--=t S ∴当3=t 时,=最大S 433………………………………………(7分)(3)①若OPM ∆为等腰三角形,则:(i )若PM OM =,MOP MPO ∠=∠=∠ ∴PQ ∥OC∴p y OQ =即23tt -= 解得:332=t此时33233223)332(432=⨯+⨯-=S (ii )若OM OP =,75=∠=∠OMP OPM ∴045=∠OQP过P 点作OA PE ⊥,垂足为E ,则有: EP EQ =即t t t 233)213(-=-- 解得:2=t 此时332232432-=⨯+⨯-=S (iii )若PM OP =,AOB PMO POM ∠=∠=∠∴PQ ∥OA 此时Q 在AB 上,不满足题意.……………………………………………(10分)②线段OM 长的最大值为23……………………………………………………(12分)。

湖南省益阳市中考数学试题(word版)

湖南省益阳市中考数学试题(word版)

相关资料2014 年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8 小题,每小题4 分,共32 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·湖南益阳)四个实数﹣2,0,﹣,1 中,最大的实数是()A.﹣2 B.0 C.﹣D.1考点:实数大小比较.分析:根据正数大于0,0 大于负数,正数大于负数,比较即可.解答:解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选D.点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(2014·湖南益阳)下列式子化简后的结果为x6 的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.3.(2014•益阳)小玲在一次班会中参与知识抢答活动,现有语文题6 个,数学题5 个,综合题9 个,她从中随机抽取1 个,抽中数学题的概率是()A.B.C.D.考点:概率公式.分析:由小玲在一次班会中参与知识抢答活动,现有语文题6 个,数学题5 个,综合题9 个,直接利用概率公式求解即可求得答案.解答:解:∵小玲在一次班会中参与知识抢答活动,现有语文题6 个,数学题5 个,综合题9 个,∴她从中随机抽取1 个,抽中数学题的概率是:=.故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(2014·湖南益阳)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(2014·湖南益阳)一元二次方程x2﹣2x+m=0 总有实数根,则m 应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m 的不等式,解答即可.解答:2解:∵方程x ﹣2x+m=0 总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选D.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2014·湖南益阳)正比例函数y=6x 的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.解答:解:解方程组得或,所以正比例函数y=6x 的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.7.(2014·湖南益阳)如图,平行四边形ABCD 中,E,F 是对角线BD 上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF 无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD 中,∴AB=CD,∠ABE=∠CDF,在△ABE 和△CDF 中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD 中,∴AB=CD,∠ABE=∠CDF,在△ABE 和△CDF 中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD 中,∴AB=CD,∠ABE=∠CDF,在△ABE 和△CDF 中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.8.(2014•益阳)如图,在平面直角坐标系xOy 中,半径为2 的⊙P 的圆心P 的坐标为(﹣3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为()A.1 B.1 或5 C.3 D.5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y 轴的左侧和y 轴的右侧两种情况写出答案即可.解答:解:当⊙P 位于y 轴的左侧且与y 轴相切时,平移的距离为1;当⊙P 位于y 轴的右侧且与y 轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.二、填空题(本大题共5 小题,每小题4 分,共20 分.把答案填在答题卡中对应题号后的横线上)9.(2014·湖南益阳)若x2﹣9=(x﹣3)(x+a),则a= 3.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:2解:∵x ﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.10.(2014·湖南益阳)分式方程=的解为 x=﹣9.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:4x=3x﹣9,解得:x=﹣9,经检验x=﹣9 是分式方程的解.故答案为:x=﹣9.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•益阳)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 2.16 米.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:1.96,1.98,2.04,2.16,2.20,2.22,2.32,则中位数为:2.16.故答案为:2.16.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80 米/分钟.考点:函数的图象.分析:他步行回家的平均速度=总路程÷总时间,据此解答即可.解答:解:由图知,他离家的路程为1600 米,步行时间为20 分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.(2014•益阳)如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD,BC 的中点E 的对应点为F,则∠EAF 的度数是60°.考点:旋转的性质;等边三角形的性质.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF 的度数.解答:解:∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD,BC 的中点E 的对应点为F,∴旋转角为60°,E,F 是对应点,则∠EAF 的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.三、解答题(本大题共2 小题,每小题6 分,共12 分)14.(2014·湖南益阳)计算:|﹣3|+30﹣.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果.解答:解:原式=3+1﹣3=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(2014·湖南益阳)如图,EF∥BC,AC 平分∠BAF,∠B=80°.求∠C 的度数.考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.解答:解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC 平分∠BAF,∴∠CAF= ∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.点评:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.四、解答题(本大题共3 小题,每小题8 分,共24 分)16.(2014·湖南益阳)先化简,再求值:(+2)(x﹣2)+(x﹣1)2,其中x=.考点:分式的化简求值.专题:计算题.分析:原式第一项利用乘法分配律计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x 的值代入计算即可求出值.解答:2 2解:原式=1+2x﹣4+x ﹣2x+1=x ﹣2,当x=时,原式=3﹣2=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(2014•益阳)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200 名学生,估计全校最喜爱文学类图书的学生有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(2)利用(1)中所求得出喜欢艺体类的学生数进而画出图形即可;(3)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.解答:解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200× =480(人).点评:此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.18.(2014•益阳)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B 两点,小张为了测量A、B 之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82 米.求AB 的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.考点:解直角三角形的应用.分析:设AD=x 米,则AC=(x+82)米.在Rt△ABC 中,根据三角函数得到AB=2.5(x+82),在Rt△ABD 中,根据三角函数得到AB=4x,依此得到关于x 的方程,进一步即可求解.解答:解:设AD=x 米,则AC=(x+82)米.在Rt△ABC 中,tan∠BCA=,∴AB=AC•tan∠BCA=2.5(x+82).在Rt△ABD 中,tan∠BDA=,∴AB=AD•tan∠BDA=4x.∴2.5(x+82)=4x,解得x=.∴AB=4x=4× ≈546.7.答:AB 的长约为546.7 米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.五、解答题(本大题共2 小题,每小题10 分,共20 分)19.(2014·湖南益阳)某电器超市销售每台进价分别为200 元、170 元的A、B 两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号第一周 3 台 5 台1800 元第二周 4 台10 台3100 元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400 元的金额再采购这两种型号的电风扇共30 台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30 台电风扇能否实现利润为1400 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)设A、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3 台A 型号5 台B 型号的电扇收入1800 元,4 台A 型号10 台B 型号的电扇收入3100 元,列方程组求解;采购A 种型号电风扇 a 台,则采购B 种型号电风扇(30﹣a)台,根据金额不多余5400 元,列不等式求解;利润为1400 元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,解得:,答:A、B 两种型号电风扇的销售单价分别为250 元、210 元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A 种型号电风扇10 台时,采购金额不多于5400 元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a>10,∴在(2)的条件下超市不能实现利润1400 元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.20.(2014•益阳)如图,直线y=﹣3x+3 与x 轴、y 轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X 轴交于另一点C,其顶点为P.(1)求a,k 的值;(2)抛物线的对称轴上有一点Q,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N 为顶点的四边形为正方形,求此正方形的边长.考点:二次函数综合题.分析:求出直线y=﹣3x+3 与x 轴交点A,与y 轴交点B 的坐标,再将A、B 两点坐标代入y=a(x﹣2)2+k,得到关于a,k 的二元一次方程组,解方程组即可求解;Q 点的坐标为(2,m),对称轴x=2 交x 轴于点F,过点B 作BE 垂直于直线x=2 于点E.在Rt△AQF 与Rt△BQE 中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m2,解方程求出m=2,即可求得Q 点的坐标;点N 在对称轴上时,由NC 与AC 不垂直,得出AC 为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M 点与顶点P(2,﹣1)重合,N 点为点P关于x 轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN 为正方形,在Rt△AFN 中根据勾股定理即可求出正方形的边长.解答:解:(1)∵直线y=﹣3x+3 与x 轴、y 轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线抛物线y=a(x﹣2)2+k 经过点A(1,0),B(0,3),∴,解得,故a,k 的值分别为1,﹣1;(2)设Q 点的坐标为(2,m),对称轴x=2 交x 轴于点F,过点B 作BE 垂直于直线x=2 于点E.在Rt△AQF 中,AQ2=AF2+QF2=1+m2,在Rt△BQE 中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q 点的坐标为(2,2);(3)当点N 在对称轴上时,NC 与AC 不垂直,所以AC 应为正方形的对角线.又∵对称轴x=2 是AC 的中垂线,∴M 点与顶点P(2,﹣1)重合,N 点为点P 关于x 轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN 为正方形.在Rt△AFN 中,AN==,即正方形的边长为.点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.六、解答题(本题满分12 分)21.(2014•益阳)如图,在直角梯形ABCD 中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P 沿线段AB 从点A 向点B 运动,设AP=x.(1)求AD 的长;(2)点P 在运动过程中,是否存在以A、P、D 为顶点的三角形与以P、C、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S1、S2,若S=S1+S2,求S 的最小值.考点:相似形综合题.分析:(1)过点C 作CE⊥AB 于E,根据CE=BC•sin∠B 求出CE,再根据AD=CE 即可求出AD;(2)若以A、P、D 为顶点的三角形与以P、C、B 为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB 与△ADP 不相似.(3)先求出S1=x•,再分两种情况讨论:①当2<x<10 时,作BC 的垂直平分线交BC 于H,交AB 于G;作PB 的垂直平分线交PB 于N,交GH 于M,连结BM,在Rt△GBH 中求出BG、BN、GN,在Rt△GMN 中,求出MN=(x﹣1),在Rt△BMN 中,求出BM2=x2﹣x+,最后根据S1=x•BM2 代入计算即可.②当0<x≤2 时,S2=x(x2﹣x+),最后根据S=S1+S2=x(x﹣)2+x 即可得出S 的最小值.解答:解:(1)过点C 作CE⊥AB 于E,在Rt△BCE 中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4× =2 ,∴AD=CE=2 .(2)存在.若以A、P、D 为顶点的三角形与以P、C、B 为顶点的三角形相似,则△PCB 必有一个角是直角.①当∠PCB=90°时,在Rt△PCB 中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2 ,在Rt△ADP 中,tan∠DPA=== ,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP 与△CPB 相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB 中,∠B=60°,BC=4,∴PB=2,PC=2 ,∴AP=3.则≠且≠,此时△PCB 与△ADP 不相似.(3)如图,因为Rt△ADP 外接圆的直径为斜边PD,则S1=x•()2=x•,①当2<x<10 时,作BC 的垂直平分线交BC 于H,交AB 于G;作PB 的垂直平分线交PB 于N,交GH 于M,连结BM.则BM 为△PCB 外接圆的半径.在Rt△GBH 中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN 中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN 中,BM2=MN2+BN2=x2﹣x+,∴S 1=x•BM2=x(x2﹣x+ ).②∵当0<x≤2 时,S2=x(x2﹣x+)也成立,∴S=S1+S2=x•+x(x2﹣x+)=x(x﹣)2+x.∴当x=时,S=S1+S2 取得最小值x.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.。

2013年湖南省各市中考数学分类解析专题11圆

2013年湖南省各市中考数学分类解析专题11圆

一、选择题1. (2013年湖南长沙3分)已知⊙O1的半径为1cm,⊙O2的半径为3cm,两圆的圆心距O1O2为4cm,则两圆的位置关系是【】A.外离 B.外切 C.相交 D.内切2. (2013年湖南常德3分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是【】A. B. C.D.∵OB=OC,∴∠B OM=12∠BOC=60°,BM=CM 。

∴BM OB sin6022=⋅︒=⨯=∴BC=2BM=。

B .如图,连接AC 、BD ,则BD 为这个图形的直径,∵四边形ABCD 是菱形,∴AC⊥BD,BD 平分∠ABC,BO=OD 。

∵∠ABC=60°,∴∠ABO=30°。

∴BO AB cos3022=⋅︒=⨯=∴BD=2BO=。

C .如图,连接AC ,则AC 为这个图形的直径,由勾股定理得:AC =D .如图,连接BD ,则BD 为这个图形的直径,由勾股定理得:BD∵8<10<12=,∴<。

∴图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是直角梯形。

故选C 。

3. (2013年湖南衡阳3分)如图,在⊙O 中,∠ABC=50°,则∠AOC 等于【 】A .50° B.80° C.90° D.100° 【答案】D 。

【考点】圆周角定理。

【分析】因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°。

故选D。

4. (2013年湖南衡阳3分)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为【】A. B.C.8D.5. (2013年湖南娄底3分)如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【】A.4.8cm B.9.6cm C.5.6cm D.9.4cm∴O1O2⊥AB。

2013年湖南省各市中考数学分类解析专题9三角形

2013年湖南省各市中考数学分类解析专题9三角形

一、选择题1. (2013年湖南郴州3分)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于【】A.25° B.30° C.35° D.40°2. (2013年湖南怀化3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是【】A.18米 B.24米 C.28米 D.30米4. (2013年湖南湘潭3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为【】A.BD=CE B.AD=AE C.DA=DE D.BE=CDD、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误。

故选C。

5. (2013年湖南张家界3分)下列事件中是必然事件的为【】A.有两边及一角对应相等的三角形全等 B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4 D.圆的切线垂直于过切点的半径二、填空题1. (2013年湖南长沙3分)如图,在△ABC中,点D,点E分别是边AB,AC的中点,则△ADE 和△ABC的周长之比等于▲ .2. (2013年湖南郴州3分)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是▲ (只写一个条件即可).3. (2013年湖南衡阳3分)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= ▲ °.4. (2013年湖南娄底4分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是▲ (添加一个条件即可).5. (2013年湖南邵阳3分)如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC= ▲ .6. (2013年湖南邵阳3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件▲ ,使四边形ABCD为矩形.【答案】∠B=90°。

益阳市2013年普通初中毕业学业考试试题

益阳市2013年普通初中毕业学业考试试题

益阳市2013年普通初中毕业学业考试试题历史一、选择题(本大题共20小题,每小题2分,共40分。

每小题所列的四个选项中只有一项符合题目要求。

)1.目前我国已发现的最大青铜器是A B C D解析:考查学生的识图能力,目前我国已发现的最大青铜器是司母戊鼎,故答案为:B。

2.经典诵读已成为人们传承历史文化的重要方式。

《三字经》中“魏蜀吴,争汉鼎,号之国……”所包含的史实是A.三国鼎立B.“楚汉之争”C.春秋争霸D.“三家分晋”解析:本题属材料型选择题,根据关键词“魏蜀吴,争汉鼎”,可知A为正确答案。

3.假如穿越时空隧道来到唐朝,你不可能经历的是A.到赵州桥上散步B.阅读《金刚经》C.用纸写诗D.查阅《本草纲目》解析:本题考查了学生的时序问题,《本草纲目》是明代人李时珍所著,故在唐朝不可能查阅,故答案为:D。

4.美国芝加哥的研究人员今年在肯尼亚发掘了一枚“永乐通宝”(见右图)。

研究人员判断此枚钱币铸造年份处于公元1402年至1425年间。

下列所举最有可能将这枚钱币从中国带到肯尼亚的是A.卫温率领的船队B.郑和率领的下西洋船队C.鉴真东渡D.玄奘西行解析:根据钱币铸造年份“公元1402年至1425年间”以及发现的地点“肯尼亚”,可知是郑和率领的下西洋船队,答案为:B。

5.下列人物与其作品搭配正确的是A.司马迁——《史记》B.王羲之——《离骚》C.屈原《论语》D.孔子《兰亭序》解析:《离骚》的作者是屈原,《论语》的作者是孔子,《兰亭序》的作者是王羲之,故答案为:A。

6.小明在历史知识抢答赛活动中,抽到了如下题签。

小明应选择的正确答案是解析:根据题签内容,可知签订的条约为《马关条约》,故答案为:B。

7.下列人物中不属于新文化运动主要代表人物的是A.陈独秀B.李大钊C.康有为D.胡适解析:新文化运动主要代表人物有陈独秀、李大钊、胡适以及鲁迅等,康有为是戊戌变法的代表人物,故答案为:C。

8.下列表述正确的有①《义勇军进行曲》曲作者聂耳②《黄河大合唱》曲作者是冼星海③《奔马》作者是张大千④《阿Q正传》作者是鲁迅A.①③④B.①②③C.②③④D.①②④解析:本题考查历史基本知识,《奔马》的作者为徐悲鸿,故答案为:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点: 专题:
代数式求值. 计算题. 将 a,b 及 c 的值代入计算即可求出值.
分析:
解答:
解:当 a= ,b=|﹣2|=2,c=时, a2+b﹣4c=3+2﹣2=3.
此题考查了代数式求值,涉及的知识有:二次根式的化简,绝对值,以及有理数的混合
点评:运算,熟练掌握运算法则是解本题的关键.
15.(6 分)( )如图,在△ABC 中,AB=AC,BD=CD,CE⊥AB 于 E.求证:△ABD∽△CBE.
中信息解答下列问题: (1)恒温系统在这天保持大棚内温度 18℃的时间有多少小时? (2)求 k 的值; (3)当 x=16 时,大棚内的温度约为多少度?
考点: 分析: 解答:
反比例函数的应用;一次函数的应用.
(1)根据图象直接得出大棚温度 18℃的时间为 12﹣2=10(小时); (2)利用待定系数法求反比例函数解析式即可; (3)将 x=16 代入函数解析式求出 y 的值即可. 解:(1)恒温系统在这天保持大棚温度 18℃的时间为 10 小时.
二、填空题(本大题共 5 小题,每小题 4 分,共 20 分.把答案填在答题卡中对应题号后的横 线上)
9.(4 分)( )因式分解:xy2﹣4x= x(y+2)(y﹣2) .
提公因式法与公式法的综合运用.
考点:
先提取公因式 x,再对余下的多项式利用平方差公式继续分解.
分析:
解答:
解:xy2﹣4x, =x(y2﹣4),
(2)∵点 B(12,18)在双曲线 y=上, ∴18=当 x=16 时,y= =13.5,
点评:
所以当 x=16 时,大棚内的温度约为 13.5℃. 此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.
17.(8 分)( )某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成
又∵AB=10cm,∠CAB=30°, ∴BC=AB=5cm. 故答案为:5. 本题考查了圆周角定理及含 30°角的直角三角形的性质,解答本题的关键是根据圆周角 点评:定理判断出∠ACB=90°.
13.(4 分)( )下表中的数字是按一定规律填写的,表中 a 的值应是 21 .
12358
13 a

2 3 5 8 13 21 34 …
解答: B、(ab2)2=a2b4,故选项错误; C、正确; D、(a+b)2=a2+2ab+b2,故选项错误. 故选 C. 本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟 练掌握
点评:并灵活运用.
3.(4 分)( )分式方程
的解是( )
x=3 A .
x=﹣3 B .
x= C .
88,95
90,95 D .
众数;中位数. 考点:
根据众数和中位数的定义,结合表格和选项选出正确答案即可. 分析:
解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95, 解答: 故中位数为:90,
众数为:90. 故选 B. 本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位 点评:数的定义.
(1)根据条形统计图可知 a=4; (2)根据表格数据可知 6 次的人数是 2,然后补全统计图即可; (3)根据概率公式解得即可. 解:(1)由条形统计图可知次数为 8 的有 4 人, 所以,a=4;
(2)由表可知,6 次的有 2 人, 补全统计图如图;
(3)∵小组成员共 10 人,参加了 10 次活动的成员有 3 人,
5.(4 分)( )一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这 个物体的小正方体的个数为( )
2个 A .
3个 B .
5个 C .
10 个 D .
考点:
由三视图判断几何体. 从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数.
分析: 解:从主视图与左视图可以得出此图形只有一排,只能得出一共有 5 个小正方体,
4.(4 分)( )实施新课 改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委
员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:
组别 1
2
3
4
5
6
7
分 值 90 95 90 88 90 92 85
这组数据的中位数和众数分别是(
88,90
90,90
A
B



C .
解答: 点评:
=1. 故答案为:1. 本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.
11.(4 分)( )有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正 方形、圆,从这三张卡片中任意抽取一 张,卡片正面的图形既是轴对称图形又是中心对称图形的 概率是 .
2.(4 分)( )下列运算正确的是( )
2a3÷a=6 A
(ab2)2=ab4
(a+b)(a﹣b)=a2
B
C ﹣b2
D




(a+b)2=a2+b2
考点: 分析:
平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法. 根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断. 解:A、2a3÷a=2a2,故选项错误;
x= D .
解分式方程. 考点:
计算题. 专题:
分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式 分析:方程的解.
解:去分母得:5x=3x﹣6, 解答: 解得:x=﹣3,
经检验 x=﹣3 是分式方程的解. 故选 B. 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式 点评:方程求解.解分式方程一定注意要验根.
概率公式;轴对称图形;中心对称图形. 考点:
由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概 分析:率公式即可求得答案.
解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆, 解答: ∴既是中心对称图形又是轴对称图形的概率是:.
故答案为:. 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 点评:
员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).
次数 10 8
6
5
人数 3
a
2
1
(1)表中 a= 4 ;
(2)请将条形统计图补充完整;
(3)从小组成员中任选一人向学校汇报义工活动情况,参加了 10 次活动的成员被选中的概
率有多少?
考点: 分析: 解答:
条形统计图;统计表;概率公式.
AC⊥BD D .
平行四边形的性质. 考点:
根据平行 四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出 分析:即可.
解:∵在平行四边形 ABCD 中, 解答: ∴AB∥CD,
∴∠1=∠2,故此选项正确,不合题意; ∵四边形 ABCD 是平行四边形, ∴∠BAD=∠BCD,AB=CD,故 B,C 选项正确,不合题意; 无法得出 AC⊥BD,故此选项错误,符合题意. 故选 D. 此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键. 点评:
1.02×1011
10.2×1010
1.02×1010
1.2×1011
A
B
C
D




科学记数法—表示较大的数. 考点:
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要 分析:看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
解得,x>2, 表示在数轴上为:
故选 B. 本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>, 点评:≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集 的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示 解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
相似三角形的判定. 考点:
证明题. 专题:
根据等腰三角形三线合一的性质可得 AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据 分析:两组角对应相等的两个三角形相似证明.
证明:在△ABC 中,AB=AC,BD=CD, 解答: ∴AD⊥BC,
∵CE⊥AB, ∴∠ADB=∠CEB=90°, 又∵∠B=∠B, ∴△ABD∽△CBE. 本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对 点评:应相等的角是解题的关键.
∴P= , 答:从小组成员中任选一人向学校汇报义工活动情况,参加了 10 次活动的成员被选中 的概率是 .
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决 点评:问题的关键.条形统计图能清楚地表示出每个项目的数据.
12.(4 分)( )如图,若 AB 是⊙O 的直径,AB=10cm,∠CAB=30°,则 BC= 5 cm.
圆周角定理;含 30 度角的直角三角形. 考点:
根据圆周角定理可得出△ABC 是直角三角形,再由含 30°角的直角三角形的性质即可得 分析:出 BC 的长度.
解:∵AB 是⊙O 的直径, 解答: ∴∠ACB=90°,
8.(4 分)( )已知一次函数 y=x﹣2,当函数值 y>0 时,自变量 x 的取值范围在数轴上表示 正确的是( )
A
B
C
D




在数轴上表示不等式的解集;一次函数的性质. 考点:
相关文档
最新文档