2018年上海市静安区初三数学一模卷含答案

合集下载

2018年中考数学一模考试卷及答案

2018年中考数学一模考试卷及答案

2018年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2018年上海市静安区中考一模数学试卷(解析版)

2018年上海市静安区中考一模数学试卷(解析版)

18. (4 分)如图,矩形纸片 ABCD,AD=4,AB=3,如果点 E 在边 BC 上,将 纸片沿 AE 折叠,使点 B 落在点 F 处,联结 FC,当△EFC 是直角三角形时, 那么 BE 的长为 .
三、解答题(本大题共 7 题,满分 78 分) 19. (10 分)计算: 20. (10 分)解方程组: ﹣tan60°×sin60°. .
第 3 页(共 22 页)
(2)在 B 点又测得∠NBA=53°,求 MN 的长. (结果精确到 1 米) (参考数据: ≈0.75) ≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°
23. (12 分)已知:如图,梯形 ABCD 中,DC∥AB,AD=BD,AD⊥DB,点 E 是腰 AD 上一点,作∠EBC=45°,联结 CE,交 DB 于点 F. (1)求证:△ABE∽△DBC; (2)如果 ,求 的值.
6. (4 分)将抛物线 y1=x2﹣2x﹣3 先向左平移 1 个单位,再向上平移 4 个单位 后, 与抛物线 y2=ax2+bx+c 重合, 现有一直线 y3=2x+3 与抛物线 y2=ax2+bx+c 相交,当 y2≤y3 时,利用图象写出此时 x 的取值范围是(
第 1 页(共 22 页)

A.x≤﹣1
25. (14 分)已知:如图,四边形 ABCD 中,0°<∠BAD≤90°,AD=DC, AB=BC,AC 平分∠BAD.
第 4 页(共 22 页)
(1)求证:四边形 ABCD 是菱形; (2)如果点 E 在对角线 AC 上,联结 BE 并延长,交边 DC 于点 G,交线段 AD 的延长线于点 F(点 F 可与点 D 重合) ,∠AFB=∠ACB,设 AB 长度是 a(a 是常数,且 a>0) ,AC=x,AF=y,求 y 关于 x 的函数关系式,并写出定义 域; (3)在第(2)小题的条件下,当△CGE 是等腰三角形时,求 AC 的长(计算结 果用含 a 的代数式表示)

2018年上海市静安区中考数学一模试卷(有答案)

2018年上海市静安区中考数学一模试卷(有答案)

2018年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7 C.a10D.﹣a102.(4分)下列方程中,有实数根的是()A.B.C.2x4+3=0 D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C.D.36.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a0.(填“<”或“>”)12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是米.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=.16.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M 落在边BC上的点D处,那么BD=.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.20.(10分)解方程组:.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC 的面积.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x 轴于G,联结HG,求HG的长.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)2018年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7 C.a10D.﹣a10【解答】解:(﹣a2)•a5=﹣a7,故选B2.(4分)下列方程中,有实数根的是()A.B.C.2x4+3=0 D.【解答】解:A、由题意=﹣1<0,方程没有实数根;B、去分母得到:x2﹣x+1=0,△<0,没有实数根;C、由题意x4=﹣<0,没有实数根,D、去分母得到:x=﹣1,有实数根,故选D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,【解答】解:A、如果k=0或,那么,正确;B、设m为实数,则,正确;C、如果,那么或,错误;D、在平行四边形ABCD中,,正确;故选C5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C.D.3【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选:A.6.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0【解答】解:y1=x2﹣2x﹣3=(x﹣1)2﹣4,则它的顶点坐标为(1,﹣4),所以抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组得或,所以当﹣1≤x≤3.故选C.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.【解答】解:由等比性质,得==,故答案为:.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.【解答】解:设第三边为x,∵:=1:,∵与1是对应边,与是对应边,∵△ABC与△DEF相似,∴==,解得x=,即△DEF的第三边应该是.故答案为:.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是y=.【解答】解:将x=1代入y=2x,得y=2,∴点A(1,2),设反比例函数解析式为y=,∵一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,2),∴2=.解得,k=2,即反比例函数解析式为y=,故答案为:y=.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a<0.(填“<”或“>”)【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧的部分是上升的,∴抛物线开口向下,∴a<0.故答案为:<.12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是2.【解答】解:将抛物线y=(x+m)2向右平移2个单位后,得到抛物线解析式为y=(x+m﹣2)2.其对称轴为:x=2﹣m=0,解得m=2.故答案是:2.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是6米.【解答】解:∵斜坡AB 的坡度i=1:4,∴=,∵从点B 测得离地面的铅垂线高度BC 是6米,∴=,解得:AC=24,则斜坡AB 的长为: ==6(米).故答案为6.14.(4分)在等腰△ABC 中,已知AB=AC=5,BC=8,点G 是重心,联结BG ,那么∠CBG 的余切值是. 【解答】解::∵AB=AC=5,BC=8,点G 为重心,∴AD ⊥BC ,CD=BC=×8=4,∴AD===3,∴GA=2, ∴DG=1,∴BG=,∴∠CBG 的余切值=,故答案为:15.(4分)如图,△ABC 中,点D 在边AC 上,∠ABD=∠C ,AD=9,DC=7,那么AB= 12 .【解答】解:∵∠ABD=∠C 、∠BAD=∠CAB , ∴△ABD ∽△ACB ,∴,即AB 2=AC•AD ,∵AD=9,DC=7 ∴AC=16, ∴AB=12, 故答案为:1216.(4分)已知梯形ABCD ,AD ∥BC ,点E 和点F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)【解答】解:∵EF 是梯形的中位线,∴EF=(A D +BC ),∵AD :BC=3:4, =,∴BC=AD ,∴=(+)=(+)=.故答案为17.(4分)如图,△ABC 中,AB=AC ,∠A=90°,BC=6,直线MN ∥BC ,且分别交边AB ,AC 于点M 、N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD= 3 .【解答】解:∵△ABC 中,AB=AC ,∠A=90°,BC=6,∴AB=cos45°×BC=3,∵直线MN ∥BC , ∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分, ∴S △AMN :S △ABC =1:2,∴==,即=,解得AM=3,如图,过A作AD⊥BC于D,则AD=BC=3,∴将线段AM绕着点A逆时针旋转45°,可以使点M落在边BC上的点D处,此时,BD=BC=3.故答案为:3.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.【解答】解:原式=+﹣×=2+﹣=1.20.(10分)解方程组:.【解答】解:由②得:(x﹣y﹣3)(x﹣y+1)=0∴x﹣y=3或x﹣y=﹣1∴或∴或.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+5,(2)∵A(1,3)抛物线对称轴为:直线x=3∴B(5,3),令x=0,y=﹣(x﹣3)2+5=,则C(0,),△ABC的面积=×(5﹣1)×(3﹣)=5.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M到AB的距离.(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴,∴.23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.【解答】证:(1)∵∠ADB=90°,AD=BD,∴∠A=∠DBA=45°,又∵DC∥AB,∴∠CDB=∠DBA=45°=∠A,又∵∠CBE=∠DBA=45°,∴∠EBA=∠CBD,∴△CBD∽△EBA;(2)∵△CBD∽△EBA,∴,∵∠CBE=∠DBA,,∴.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x 轴于G,联结HG,求HG的长.【解答】解:(1)把A(﹣1,0)、B(5,0)代入抛物线解析式,得:,解得:,∴抛物线的解析式为:,∴顶点C(2,﹣3)(2)方法一:设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(﹣1,0)和C(2,﹣3)代入得:解得:则直线AC:y=﹣x﹣1,∴D(0,﹣1),同理可得直线BD:y=x﹣1,∴∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴∴△HPG∽△CPB,∴,∴,∴;方法二:如图2,过点H作HM⊥CG于M,∵,,,∴BD2=CD2+BC2,∴∠BCD=90°,=BD•CH=BC•CD,∵S△BCD∴,∵∠ABD=∠HCG,∴△OBD∽△MCH,∴,∴,,∴,由勾股定理得:GH=∴,方法三:直线AC:y=﹣x﹣1,∴D(0,﹣1),直线BD:y=x﹣1,∵CH⊥BD,∴k BD•k CH=﹣1,∴直线CH:y=﹣5x+7,联立解析式:,解得:,∴∴.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)【解答】(1)证明:∵AD=DC,AB=BC∴∠DAC=∠DCA,∠BAC=∠BCA又AC平分∠BAD∴∠DAC=∠BAC∴∠DCA=∠BAC,∠DAC=∠BCA,∴AB∥DC,AD∥BC∴四边形ABCD为平行四边形又AD=DC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,∴AF∥BC,AB=BC∴∠AFB=∠CBF,∠FAC=∠ACB,∠ACB=∠BAC∴∠EBC=∠BAC=∠AFB=∠FAC=∠ACB∴△AEF∽△ABC,△ABC∽△BEC∴∴BC2=EC•AC∴a2=EC•x∴,∴AE=AC﹣EC=x﹣,∵△AEF∽△ABC∴,即∴();(3)解:∵△CEG是等腰三角形,①当CG=EG时,∴∠CGE=∠ECG,∵∠ECG=∠CBF,∴∠CGE=∠CBF,∵∠CGB=∠ABF,∴∠ABF=∠CBF,此时,点F,G和点D重合,∴AF=AB,∴y=a,即∴,②当CG=CE时,∴∠CEG=∠CGB,∵∠CEG=∠AC B+∠CBF=2∠ACB=∠BCD,∴∠CGB=∠BCD,∵∠FDG=∠BAD=∠BCD,∴∠FDG=∠FGD,∴FG=FD,∴AF=BF,∵∠EBCC=∠ECB,∴BE=CE,∵∠EAF=∠EFA,∴AE=EF,∴FB=AC∴y=x即∴(负值已舍),③当EG=CE时,∴∠CEG=∠ACD,∵∠ACD=∠CBF,∴∠CEG=∠CBF,∵∠CEG=∠CBF+∠ACB,∴此种情况不存在.综上所述:或时,△CEG为等腰三角形.。

上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)

上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题宝山区19.(本题满分10分)计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)-长宁区19.(本题满分10分)计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2.崇明区19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区 虹口区19.(本题满分10分)计算:22sin 60sin 30cot 30cos30°°°°+-.黄浦区19.(本题满分10分)计算:2cot452cos 30sin60tan301︒︒+-︒︒+.嘉定区19. (本题满分10分,每小题5分) 计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒.静安区19.(本题满分10分)计算:οοοοο60sin 60tan 160cos 2130cos 45cot 3⨯-++.20.(本题满分10分)解方程组: . 闵行区 浦东新区 普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅-o o o o. 青浦区19.(本题满分10分)计算:()021--+-o .20.(本题满分10分)解方程:21421242x x x x +-=+--. 松江区 徐汇区①② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分)计算:cos45tan45sin60cot60cot452sin30︒⋅︒-︒⋅︒︒+︒参考答案宝山区长宁区19. (本题满分10分)解:原式=233)22(412--⨯(4分)=23321--(2分)=2332-+(2分)=232+(2分) 崇明区19、解:原式=32 3232-⨯+⨯-…………………………………………5分332322=+-+………………………………………………3分12232=-………………………………………………………2分虹口区黄浦区19.解:原式=233231⨯+⎝⎭+4分)=3333222+-————————————————————————(4分)=33(2分)嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan30cos2260sin30cot【解答】12331232223345tan30cos2260sin30cot+=-⋅+-=︒-︒+︒-︒金山区静安区三、解答题:19.解:原式= …………………………………(5分)=23212-+ ……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---y x y x , ……………………………………(2分)得03=--y x 或01=+-y x , ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5y x y x ⎩⎨⎧-=-=+;1,5y x y x…………………………………(2分) 解得,原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x…………………………………(4分) ∴原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x.闵行区浦东新区 普陀区19.解: 原式223()321=⨯- ····································································· (4分) 313+=·················································································· (4分) 233121212313⨯-+⨯+⨯12=. ····························································································· (2分) 青浦区19. 解:原式=1+2⨯(8分)=2-.………………………………………………………………………(2分) 20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区 徐汇区 杨浦区19.(本题满分10分)解:原式=12231122+⨯--------------------------------------------------(6分)=1222----------------------------------------------------------------(2分). --------------------------------------------------------------(2分)。

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。

2018年初三一模数学试卷及答案

2018年初三一模数学试卷及答案

2018年初三毕业考试数学试卷考生须知1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如图所示,以下说法正确的是12–1–2abA .0a b +=B .b a <C .b a <D .0ab > 3.下列几何体中,俯视...4.下列博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°, 则∠C 的度数是A .40°B .65°C .70°D .80°ABCDA B C DA B C D D . D . C . D . C . B . A . D . C . B . 6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.对于函数6y x=,若2x >,则y 3(填“>”或“<”). 10.若正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y ÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦, 已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________.13.如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =, 3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .(精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°)D 63°C B A 第13题图 第14题图CDEA O BD E BC16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 .三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455(3---++°18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,.19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .OH G FE DCB A20.关于x 的一元二次方程2(32)60mx m x +--=. (1)当m 为何值时,方程有两个不相等的实数根; (2)当m 为何整数时,此方程的两个根都为负整数.21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =; (2)若tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -. (1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥, 求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤74 75≤x≤79 80≤x≤84 85≤x≤89 90≤x≤94 95≤x≤100 学生甲乙 1 1 4 2 1 1 (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲83.7 86 13.21乙24 83.7 82 46.21 (3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙),理由为.25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm .B26.在平面直角坐标系xOy中,将抛物线21G y mx =+:0m ≠个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线3y x =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.图1 备用图数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.<. 10.八. 11.5. 12.100,3100.3x yx y +=+=⎧⎪⎨⎪⎩13. 2. 14.4. 15. 40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每 小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程. 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分①②图120.解:(1)∵24b ac ∆=- 2(32)24m m =-+ 2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径,∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==- ………………5分 24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分 (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定; 两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. (写出其中一条即可)或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 (答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分 (2)4分(3)1.1或3.7.………………6分26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x=+,如图所示,由题意可得AD=-=∵=90BAC∠°,AB AC=,∴=45ABD∠︒.∴BD AD==∴点B的坐标为.∵点B在抛物线2G上,可得3m=-.∴抛物线2G的表达式为23y x=-+,即223y x=++………………… 5分②m<<-. ………………… 7分27.(1)补全图形如图1. ………………… 1分C图1(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分。

上海-初三数学一模-2018年-24题-分题合集

上海-初三数学一模-2018年-24题-分题合集

上海-初三数学一模-2018年-24题-分题合集1.如图,在平面直角坐标系xOy中,已知抛物线y=38 2+bx+c与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,﹣3),经过点A的射线AM与y 轴相交于点E,与抛物线的另一个交点为F,且 =13.(1)求这条抛物线的表达式,并写出它的对称轴;(2)求∠FAB的余切值;(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,求点P的坐标.2.(2018•虹口区一模)如图,在平面直角坐标系x O y中,抛物线与x轴相交于点A(﹣2,0)、B(4,0),与y轴交于点C(0,﹣4),BC与抛物线的对称轴相交于点D.(1)求该抛物线的表达式,并直接写出点D的坐标;(2)过点A作AE⊥AC交抛物线于点E,求点E的坐标.3.(2018•金山区一模)平面直角坐标系x O y中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.4.(2018•黄浦区一模)在平面直角坐标系x O y中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.5.(2018•深圳模拟)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.6.(2018•深圳模拟)在直角坐标平面内,直线y=12x+2分别与x轴、y轴交于点A、C.抛物线y=﹣12 2+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.7.(2018•松江区一模)如图,在平面直角坐标系x O y中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与对称轴交于点E,设点P的横坐标为t.(1)求点A的坐标和抛物线的表达式;(2)当AE:EP=1:2时,求点E的坐标;(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.8.(2018•嘉定区一模)已知在平面直角坐标系x O y(如图)中,已知抛物线y=23 2+bx+c点经过A(1,0)、B(0,2).(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x轴的交点为C,第四象限内的点D在该抛物线的对称轴上,如果以点A、C、D所组成的三角形与△AOB相似,求点D 的坐标;(3)设点E在该抛物线的对称轴上,它的纵坐标是1,联结AE、BE,求sin∠ABE.9.(2018•宝山区一模)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=2018 是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k 和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.10.(2018•马边县模拟)如图,抛物线y=﹣43 2+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x 轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.11.(2018•徐汇区一模)如图,在平面直角坐标系x O y中,直线y=kx(k≠0)沿着y轴向上平移3个单位长度后,与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积;(3)如果点F在y轴上,且∠CDF=45°,求点F的坐标.12.(2018•长春模拟)如图,在平面直角坐标系x O y中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.13.(2018•杨浦区一模)在平面直角坐标系x O y中,抛物线y=﹣x2+2mx﹣m2﹣m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,﹣2),且不经过第一象限时,平移此抛物线到抛物线y=﹣x2+2x的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.14.(2018•静安区一模)在平面直角坐标系x O y中(如图),已知抛物线y=ax2+bx ﹣53,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.15.(2018•浦东新区一模)已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB?若存在,求出点E的坐标;若不存在,请说明理由.16.(12分)(2018•普陀区一模)如图,已知在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P 的坐标.。

[试卷合集3套]上海市静安区2018届中考数学三月一模拟试题

[试卷合集3套]上海市静安区2018届中考数学三月一模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m【答案】B 【解析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin ∠CAB =322BC AC == ∴∠CAB =45°.∵∠C′AC =15°,∴∠C′AB′=60°.∴sin60°=''362B C =, 解得:B′C′=33.故选:B .【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.2.若ab <0,则正比例函数y=ax 与反比例函数y=b x在同一坐标系中的大致图象可能是( ) A . B . C . D .【答案】D【解析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:1x(x-1)=55,2化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.4.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.5.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm【答案】D 【解析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( )A .60°B .65°C .70°D .75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D7.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-【答案】B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【答案】B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.10.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7B .2.5×10﹣6C .25×10﹣7D .0.25×10﹣5 【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6;故选B .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(本题包括8个小题)11.因式分解:a 3-a=______.【答案】a (a -1)(a + 1)【解析】分析:先提取公因式a ,再对余下的多项式利用平方差公式继续分解.解答:解:a 3-a ,=a (a 2-1),=a (a+1)(a-1).12.已知α ,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____.【答案】3.【解析】可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解. 【详解】得α+β=-2m-3,αβ=m 2,又因为211+-2m-3+===-1m αβαβαβ,所以m 2-2m-3=0,得m=3或m=-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m+3)2-4×m 2=12m+9>0,所以m >4-3,所以m=-1舍去,综上m=3. 【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.13.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .【答案】1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径. 解:扇形的弧长为:1445180π⨯=4π; 这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长. 14.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.【答案】-10【解析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可.【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4,∴−2+4=−m ,−2×4=n ,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键15.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a+b 的值是_______.【答案】1【解析】根据一元二次方程的解及根与系数的关系,可得出a 2-2a=1、a+b=2,将其代入a 2-a+b 中即可求出结论.【详解】∵a 、b 是方程x 2-2x-1=0的两个根,∴a 2-2a=1,a+b=2,∴a 2-a+b=a 2-2a+(a+b )=1+2=1.故答案为1.【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-b a 、两根之积等于c a是解题的关键. 16.如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 ▲ (结果保留π).【答案】133π-【解析】过D 点作DF ⊥AB 于点F .∵AD=1,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB ﹣AE=1.∴阴影部分的面积=平行四边形ABCD 的面积-扇形ADE 面积-三角形CBE 的面积 =2302114121336023ππ⨯⨯⨯--⨯⨯=-. 故答案为:133π-.17.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD=1,BD=2,BC=4,则EF=________.【答案】23【解析】由DE ∥BC 可得出△ADE ∽△ABC ,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE ∥BC ,∴∠F=∠FBC ,∵BF 平分∠ABC ,∴∠DBF=∠FBC ,∴∠F=∠DBF ,∴DB=DF , ∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD DE AD DB BC =+ ,即1124DE =+ , 解得:DE=43 , ∵DF=DB=2,∴EF=DF-DE=2-43 =23 , 故答案为23. 【点睛】此题考查相似三角形的判定和性质,关键是由DE ∥BC 可得出△ADE ∽△ABC .18.正六边形的每个内角等于______________°.【答案】120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.三、解答题(本题包括8个小题)19.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【答案】(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°. (4)∵1800×80300=1(名), ∴1800名学生中估计最喜爱科普类书籍的学生人数为1.20.如图,在△ABC 中,∠B =∠C =40°,点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动,到达C 点、B 点后运动停止.求证:△ABE ≌△ACD ;若AB =BE ,求∠DAE 的度数;拓展:若△ABD 的外心在其内部时,求∠BDA 的取值范围.【答案】(1)证明见解析;(2)40︒;拓展:5090BDA ︒<∠<︒【解析】(1)由题意得BD=CE ,得出BE=CD ,证出AB=AC ,由SAS 证明△ABE ≌△ACD 即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD ,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE 的度数;拓展:对△ABD 的外心位置进行推理,即可得出结论.【详解】(1)证明:∵点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动,∴BD=CE ,∴BC-BD=BC-CE ,即BE=CD ,∵∠B=∠C=40°,∴AB=AC ,在△ABE 和△ACD 中,AB AC B C BE CD =⎧⎪∠∠⎨⎪=⎩=,∴△ABE ≌△ACD (SAS );(2)解:∵∠B=∠C=40°,AB=BE ,∴∠BEA=∠EAB=12(180°-40°)=70°, ∵BE=CD ,AB=AC ,∴AC=CD ,∴∠ADC=∠DAC=12(180°-40°)=70°, ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD 的外心在其内部时,则△ABD 是锐角三角形.∴∠BAD=140°-∠BDA <90°.∴∠BDA >50°,又∵∠BDA <90°,∴50°<∠BDA <90°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.21.如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .【答案】证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AGAD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BFED DF=,由(1)知△DFD∽△DFC,∴BF DFDF CF=,∴EG DFED CF=,∴EG·CF=ED·DF.22.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.【答案】48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.23.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O 分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,【答案】(1)证明见解析;(2)AD=xy3013【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B , ∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD , ∴501013513AG AF DG OD ===,即DG=1323AD ,∴==,则DG=1323=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.24.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名) 补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P (恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.25.如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0m y m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线m y x =上,且△PAC 的面积为4,求点P 的坐标.【答案】(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x=-;(2)点P 的坐标为1(2,2)P -或2(2,2)P -【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可;(2)根据直线解析式求得点A 坐标,由S △ACP =12AC•|y P |=4求得点P 的纵坐标,继而可得答案. 详解:(1)∵直线()30y kx k =+≠与双曲线y =m x (0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x =-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0),4AC ∴=,∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.26.如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.【答案】(1)相切;(2)16433π- 【解析】试题分析:(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC ﹣S △OAC 计算即可.试题解析:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23 ∴S 阴=S 扇形OAC ﹣S △OAC =212041164234336023ππ-⨯⨯=-.考点:直线与圆的位置关系;扇形面积的计算.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】A【解析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.3.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 4.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图5.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.6.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.7.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【答案】C【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.9.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A .①②B .①③④C .①②③⑤D .①②③④⑤【答案】C 【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C10.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .3【答案】C 【解析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出225,AQ AB BQ =+=,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形,∴AD=BC,90DAB ABC ∠=∠=,∵BP=CQ ,∴AP=BQ ,在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩, ∴△DAP ≌△ABQ ,∴∠P=∠Q ,∵90Q QAB ∠+∠=,∴90P QAB ∠+∠=,∴90AOP ∠=,∴AQ ⊥DP ;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==, 225,AQ AB BQ =+=,DFO BAQ ∠=∠ ∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.二、填空题(本题包括8个小题)11.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.【答案】1.【解析】试题解析:设俯视图的正方形的边长为a .∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22,∴()22222a a+=,解得24a=,∴这个长方体的体积为4×3=1.12.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.【答案】2【解析】根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴22226810AB BC AC++=,∵点D为AB的中点,∴152CD AB==,∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.13.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

上海市16区2018届中考一模数学试卷分类汇编:选择题含答案.doc

上海市16区2018届中考一模数学试卷分类汇编:选择题含答案.doc

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编:选择题专题宝山区1.符号tan A 表示().(A)∠A 的正弦; (B)∠A 的余弦; (C)∠A 的正切; (D)∠A 的余切.2.如图△ABC 中∠C =90°,如果CD ⊥AB 于D ,那么(). (A)CD =12AB ; (B) BD =12AD ; (C) CD 2=AD ·BD ; (D) AD 2=BD ·AB . 3.已知a r 、b r为非零向量,下列判断错误的是().(A) 如果a r =2b r ,那么a r ∥b r ;(B)如果a r =b r ,那么a r =b r 或a r =-b r ;(C) 0r 的方向不确定,大小为0; (D) 如果e r 为单位向量且a r =2e r,那么a r =2.4.二次函数y =x 2+2x +3的图像的开口方向为().(A) 向上; (B) 向下; (C) 向左; (D) 向右.5.如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的(). (A)俯角30°方向; (B)俯角60°方向; (C)仰角30°方向; (D)仰角60°方向.6.如图,如果把抛物线y =x 2沿直线y =x向上方平移 后,其顶点在直线y =x 上的A 处,那么平移后的抛物线解析式 是().(A) y =(x+2+ (B) y =(x +2)2+2;(C) y =(x -2+ (D)y =(x -2)2+2.长宁区1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ )(A ) 21=EC AE ; (B ) 2=ACEC;A BCDE(C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )//; (B ) 2||=a ;(C ) ||2||a b -=; (D )b a 21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.崇明区1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34; (B)43; (C)35; (D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5; (B) 8;(C) 10.5; (D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ )第6题图O ABCD(第3题图)ABCDE (第4题图)BADECF(第6题图)BCEAF(A)3:4; (B)9:16; (C)9:1; (D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52; (B)83; (C)103; (D)154.奉贤区1.下列函数中是二次函数的是( )(A )2(1)y x =-;(B )22(1)y x x =--;(C )2(1)y a x =-;(D )221y x =-.2.在Rt △ABC 中,∠C =90°,如果AC =2,cos A =23,那么AB 的长是( ) (A )3;(B )43;(C )5;(D )13. 3.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD :BD =1:3,那么下列条件中能够判断DE ∥BC 的是( ) (A )14DE BC =;(B )14AD AB =;(C )14AE AC =;(D )14AE EC =. 4.设n 为正整数,a r为非零向量,那么下列说法不正确的是( )(A )na r 表示n 个a r 相乘;(B )na -r 表示n 个a -r 相加;(C )na r 与a r 是平行向量;(D )na -r 与na r互为相反向量. 5.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( ) (A )sin h α;(B )cos h α; (C )tan h α;(D )cot hα.6.已知二次函数2y ax bx c =++的图像上部分点的横坐标x 与纵坐标y 的对应值如下表:第5题图那么关于它的图像,下列判断正确的是( )(A )开口向上 ; (B )与x 轴的另一个交点是(3,0); (C )与y 轴交于负半轴;(D )在直线x =1的左侧部分是下降的.虹口区1.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( ) A .1:3; B .1:4; C .1:6; D .1:9. 2.抛物线224y x =-的顶点在( )A .x 轴上;B .y 轴上;C .第三象限;D .第四象限.3.如果将抛物线22y x =--向右平移3个单位,那么所得到的新抛物线的表达式是( ) A .25y x =--; B .21y x =-+; C .2(3)2y x =---; D .2(3)2y x =-+-.4.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r 表示向量b r 为( )A .35b a =r r ;B .53b a =r r ;C .35b a =-r r ;D .53b a =-r r.5.如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是13米,那么斜坡的坡度为( )A .1:2.6;B .51:13;C .1:2.4;D .51:12.6.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且5sin 5A =,那么点C 的位置可以在( )A .点1C 处;B .点2C 处; C .点3C 处;D .点4C 处.黄浦区1.已知二次函数2y ax bx c =++的图像大致如图所示,则下列关系式中成立的是( ▲ ) (A )0a >;(B )0b <;(C )0c <;(D )20b a +>.(第1题) (第4题)2.若将抛物线向右平移2个单位后,所得抛物线的表达式为22y x =,则原来抛物线的表达式为( ▲ ) (A )222y x =+; (B )222y x =-; (C )()222y x =+;(D )()222y x =-.3.在△ABC 中,∠C =90°,则下列等式成立的是( ▲ )(A )sin ACA AB =; (B )sin BCA AB =; (C )sin ACA BC=;(D )sin BCA AC=.4.如图,线段AB 与CD 交于点O ,下列条件中能判定AC ∥BD 的是( ▲ ) (A )OC =1,OD =2,OA =3,OB =4; (B )OA =1,AC =2,AB =3,BD =4;(C )OC =1,OA =2,CD =3,OB =4;(D )OC =1,OA =2,AB =3,CD =4.5.如图,向量OA uu r 与OB uu u r 均为单位向量,且OA ⊥OB ,令n OA OB =+r uu r uu u r,则n r =( ▲ )(A )1; (B(C(D )2.(第5题) (第6题)6.如图,在△ABC 中,∠B =80°,∠C =40°,直线l 平行于BC .现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若△AMN 与△ABC 相似,则旋转角为( ▲ ) (A )20°; (B )40°; (C )60°; (D )80°.嘉定区AODC BBOAClBA1、已知线段a 、b 、c 、d ,如果ab =cd ,那么下列式子一定正确的是( ) ..dc =b a (D) ; bd =c a (C) ;c b =d a (B) ;d b =c a (A) 2、在Rt △ABC 中,∠C =90°,AB =6,AC =b ,下列选项一定正确的是( )(A )b =6sinA ; (B )b =6cosA ; ( C ) b =6tanA ; ( D )b =6cotA .3、抛物线y =2(x +1)2—2与y 轴的交点的坐标是( ) (A )(0,-2); (B )(-2,0); ( C ) (0,-1) ; ( D )(0,0).4. 如图1,在平行四边形ABCD 中,点E 在边DC 上,联结AE 并延长交BC 的延长线于点F ,若AD =3CF ,那么下列结论中正确的是( )(A )FC :FB =1:3 (B )CE :CD =1:3 (C )CE :AB =1:4 (D )AE :AF =1:2B C F5. 已知矩形ABCD 的对角线AC 与BD 相交于点O ,如果=,=,那么等于( )(A )();21- (B )();21+ (C )();21- (D )b a -6. 下列四个命题中,真命题是( )(A )相等的圆心角所对的两条弦相等 (B )圆既是中心对称图形也是轴对称图形 (C )平分弦的直径一定垂直于这条弦 (D )相切两圆的圆心距等于这两圆的半径之和金山区1.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) (A )23a b =; (B )32a b =; (C )b 43a b +=; (D )b 53a b +=. 2.在Rt △ABC 中,︒=∠90C ,BC a =,AC b =,AB c =,下列各式中正确的是()(A )cos a b A =⋅; (B )sin c a A =⋅; (C )cot a A b ⋅=; (D )tan a A b ⋅=. 3.将抛物线()214y x =-++平移,使平移后所得抛物线经过原点,那么平移的过程为( ) (A )向下平移3个单位; (B )向上平移3个单位; (C )向左平移4个单位; (D )向右平移4个单位.4.如图1,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB , 下列各式正确的是( )(A )AB DC =u u u r u u u r ; (B )DE DC =u u u r u u u r ;(C )AB ED =u u u r u u u r ; (D )AD BE =u u u r u u u r .5.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( ) (A )30厘米、45厘米; (B )40厘米、80厘米; (C )80厘米、120厘米; (D )90厘米、120厘米.6.在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( ) (A )5r <; (B )5r >; (C )10r <; (D )510r <<.静安区1.化简52)(a a ⋅-所得的结果是(A )7a ; (B )7a -; (C )10a ; (D )10a -. 2.下列方程中,有实数根的是 (A )011=+-x ; (B )11=+x x ; (C )0324=+x ;(D )112-=-x .3.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成, 利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上, 使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开 两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时, AB 的长是(A )7.2 cm ; (B )5.4 cm ; (C )3.6 cm ; (D )0.6 cm .4.下列判断错误的是(A )如果0=k 或0ρρ=a ,那么0ρρ=a k ;(B )设m 为实数,则b m a m b a m ρρρρ+=+)(;(C )如果a ρ∥e ρ,那么e a a ρρρ= ;(D )在平行四边形ABCD 中,=-AB AD BD .5.在Rt △ABC 中,∠C =90°,如果sin A =31,那么sin B 的值是 (A )322; (B )22; (C )42; (D )3.6.将抛物线3221--=x x y 先向左平移1个单位,再向上平移4个单位后,与抛物线cbx ax y ++=22重合,现有一直线323+=x y 与抛物线c bx ax y ++=22相交,当2y ≤3y 时,利用图像写出此时x 的取图1A CDEa A B D C 第3题图值范围是(A )x ≤1-; (B )x ≥3; (C )1-≤x ≤3; (D )x ≥0.闵行区一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.如图,图中俯角是(A )∠1; (B )∠2; (C )∠3; (D )∠4. 2.下列线段中,能成比例的是(A )3cm 、6cm 、8cm 、9cm ; (B )3cm 、5cm 、6cm 、9cm ; (C )3cm 、6cm 、7cm 、9cm ; (D )3cm 、6cm 、9cm 、18cm . 3.在Rt △ABC 中,∠C = 90º,AB = 4,AC = 1,那么∠B 的余弦值为(A; (B )14; (C; (D4.在△ABC 中,点D 、E 分别在AB 、AC 的延长线上,下列不能判定DE //BC 的条件是(A )AB DA AC EA ::=; (B )AB DA BC DE ::=; (C )DB DA EC EA ::=; (D )DB AB EC AC ::=.5.已知抛物线c :322-+=x x y ,将抛物线c 平移得到抛物线,c ,如果两条抛物线, 关于直线1=x 对称,那么下列说法正确的是(A )将抛物线c 沿x 轴向右平移25个单位得到抛物线,c ;(B )将抛物线c 沿x 轴向右平移4个单位得到抛物线,c ;(C )将抛物线c 沿x 轴向右平移27个单位得到抛物线,c ;(D )将抛物线c 沿x 轴向右平移6个单位得到抛物线,c . 6.下列命题中正确的个数是① 直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为524; ② 如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切; ③ 过三点可以确定一个圆; ④ 两圆的公共弦垂直平分连心线.(A )0个; (B )4个; (C )2个; (D )3个.浦东新区一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值 (A )扩大为原来的两倍; (B )缩小为原来的21; (C )不变; (D )不能确定. 2.下列函数中,二次函数是(A )54+-=x y ; (B ))32(-=x x y ; (C )22)4(x x y -+=;(D )21x y =.(第1题图)水平线铅垂线3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是(A )75sin =A ; (B )75cos =A ; (C )75tan =A ; (D )75cot =A . 4.已知非零向量a ρ,b ρ,c ρ,下列条件中,不能判定向量a ρ与向量b ρ平行的是(A )c a //,c b //; (B )b a 3=;(C )c a =,c b 2=; (D )0=+b a .5.如果二次函数2y ax bx c =++的图像全部在x 轴的下方,那么下列判断中正确的是 (A )0<a ,0<b ; (B )0>a ,0<b ; (C )0<a ,0>c ;(D )0<a ,0<c .6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF ∥CD ,还需添加一个条件,这个条件可以是(A )EFADCD AB =; (B )AE ADAC AB =; (C )AF ADADAB=;(D )AF AD AD DB=.普陀区一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.下列函数中,y 关于x 的二次函数是( ▲ ) (A )2y ax bx c =++; (B )(1)y x x =-; (C )21y x=; (D )22(1)y x x =--. 2.在Rt △ABC 中,︒=∠90C ,2=AC ,下面结论中,正确的是( ▲ )(A )A AB sin 2=; (B )A AB cos 2=; (C )A BC tan 2=; (D )A BC cot 2=. 3.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断ED ∥BC 的是( ▲ )(A )BA CA BD CE =; (B )EA DAEC DB =; (C )ED EA BC AC =; (D )EA AC AD AB=. 4.已知→→=b a 5,下列说法中,不正确的是( ▲ )(A )05=-→→b a ; (B )a →与b →方向相同; (C )a →∥b →; (D )||5||→→=b a .5.如图2,在平行四边形ABCD 中,F 是边AD 上一点,射线CF 和BA 的延长线交于点E ,如果21=∆∆CDF EAF C C ,那么EBCEAF S S∆∆的值是( ▲ ) BA F E CDE ADF图1EDCBA(A )21; (B )31; (C )41; (D )91.6.如图3,已知AB 和CD 是⊙O 的两条等弦.AB OM ⊥,CD ON ⊥,垂足分别为点M 、N ,BA 、DC的延长线交于点P ,联结OP .下列四个说法中,①»»AB CD =;②ON OM =;③PC PA =;④DPO BPO ∠=∠,正确的个数是( ▲ )(A )1个; (B )2个; (C )3个; (D )4个.青浦区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 计算32()x -的结果是(▲)(A )5x ; (B )5x -; (C )6x ; (D )6x -. 2. 如果一次函数y kx b =+的图像经过一、二、三象限,那么k 、b 应满足的条件是(▲) (A )0k >,且0b >;(B )0k <,且0b <;(C )0k >,且0b <;(D )0k <,且0b >. 3. 下列各式中,2x -的有理化因式是(▲)(A )2x +; (B )2x -; (C )2x +; (D )2x -. 4.如图1,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD=6,那么:BC AC是(▲)(A )3:2; (B )2:3; (C )3:13; (D )2:13.5. 如图2,在□ABCD 中,点E 在边AD 上,射线CE 、BA 交于点F ,下列等式成立的是(▲)(A )AE CE ED EF =; (B )AE CDED AF =; (C )AE FA ED AB =; (D )AEFEEDFC=. 6. 在梯形ABCD 中,AD //BC ,下列条件中,不能判断梯形ABCD 是等腰梯形的是(▲)(A )ABC DCB ∠=∠; (B )DBC ACB ∠=∠; (C )DAC DBC ∠=∠; (D )ACD DAC ∠=∠.松江区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】B图3APC N MDO ABCDEF 图2ABCD图11.已知31=b a ,那么b a a +的值为( ) (A )31; (B )32; (C )41;(D )43. 2.下列函数中,属于二次函数的是 ( )(A )3-=x y ; (B )22)1(+-=x x y ; (C )(1)1y x x =--; (D )21x y =. 3.已知飞机离水平地面的高度为5千米,在飞机上测得该水平地面上某观测目标A 的俯角为α,那么这时飞机与目标A 的距离为( )(A )αsin 5; (B )αsin 5; (C )αcos 5; (D )αcos 5. 4.已知,非零向量a ,b ,c ,在下列条件中,不能判定a ∥b 的是( )(A )a ∥c r,b ∥c ; (B )a =2c ,b =3c ; (C )a =-5b ;(D=.5.在△ABC 中,边BC = 6,高AD =4,正方形EFGH 的顶点 E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么 这个正方形的边长等于( ) (A )3; (B )2.5; (C )2.4; (D )2.6.如图,已知在△ABC 中,点D 、E 分别在边AB 、AC 上, DE //BC ,AD ∶BD =2∶1,点F 在AC 上,AF ∶FC =1∶2,联 结BF ,交DE 于点G .那么DG ∶GE 等于( ) (A )1∶2; (B )1∶3;(C )2∶3; (D )2∶5.徐汇区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.已知34x y =,那么下列等式中,不.成立..的是 (A )37x x y =+; (B )14x y y -=; (C )3344x y +=+; (D )43x y =. 2. 在比例尺是1∶40000的地图上,若某条道路长约5cm ,则它的实际长度约为(A ) 0.2km ; (B ) 2km ; (C ) 20km ; (D ) 200km .3. 在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =1,BD =3,那么由下列条件能够判断DE //BC 的是 (A )13DE BC =; (B )14DE BC =; (C )13AE AC =; (D )14AE AC =. 4. 在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式正确的是(第6题图)C A G H FD (第5题图)(A )c b A =sin ; (B )a c B =cos ; (C )b a A =tan ; (D )ab B =cot . 5. 下列关于向量的说法中,不正确...的是 (A )3()33a b a b -=-r r r r; (B )若3a b =r r ,则3a b =r r 或3a b =-r r ;(C )33a a =r r ; (D )()()m na mn a =r r.6.对于抛物线2(2)3y x =-++,下列结论中正确结论的个数为(A )4; (B )3; (C )2;(D )1.①抛物线的开口向下; ②对称轴是直线2x =-;③图像不经过第一象限; ④当2x >时,y 随x 的增大而减小.杨浦区一、选择题:(本大题共6题,每题4分,满分24分) 1.如果5x =6y ,那么下列结论正确的是(A ):6:5x y =; (B ):5:6x y =; (C )5,6x y ==; (D )6,5x y ==.2.下列条件中,一定能判断两个等腰三角形相似的是(A )都含有一个40°的内角; (B )都含有一个50°的内角; (C )都含有一个60°的内角; (D )都含有一个70°的内角.3.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB ∶DE =1∶2,那么下列等式一定成立的是 (A )BC ∶DE =1∶2;(B ) △ABC 的面积∶△DEF 的面积=1∶2;(C )∠A 的度数∶∠D 的度数=1∶2;(D )△ABC 的周长∶△DEF 的周长=1∶2.4.如果2a b =r r (,a b r r均为非零向量),那么下列结论错误的是(A )//a b r r ; (B )20a b -=r r ; (C )12b a =r r ; (D )2a b =r r .5.如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么下列不等式成立的是 (A )0a >; (B )0b <;(C )0ac <;(D )0bc <.6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且∠AED =∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE ∽△BDF 的是 (A )EA EDBD BF =; (B )EA EDBF BD =;(C )AD AEBD BF=; (D )BD BABF BC=.参考答案(第6题图)宝山区CCBACD长宁区1.A;2.D;3.B;4.A;5.C;6.D.崇明区1、A2、D3、B4、B5、D6、C奉贤区DACABB虹口区ABCDCD黄浦区1.D;2.C;3.B;4.C;5.B;6.B.嘉定区CBDCAB金山区静安区一、选择题:1.B;2.D;3.B;4.C;5.A;6.C.闵行区一、选择题:1.C;2.D;3.A;4.B;5.B;6.A.浦东新区一、选择题:(本大题共6题,每题4分,满分24分)1.C;2.B;3.A;4.B;5.D;6.C.普陀区一、选择题:(本大题共6题,每题4分,满分24分)1.(B);2.(C);3.(C);4.(A);5.(D);6.(D). 青浦区一、选择题:(本大题共6题,每题4分,满分24分)1.C;2.A;3.C;4.B;5.C;6.D.松江区一、选择题1. C; 2.C; 3. A; 4. D; 5. C; 6.B徐汇区一、选择题:(本大题共6题,每题4分,满分24分)1. B2. B3. D;4.C;5. B;6.A.杨浦区一、选择题:(本大题共6题,每题4分,满分24分)1、A;2、C;3、D;4、B;5、C;6、C。

最新上海市2018届中考一模数学试卷分类汇编:平面向量(Word版,含答案)

最新上海市2018届中考一模数学试卷分类汇编:平面向量(Word版,含答案)

九年级上学期期末(一模)数学试卷分类汇编平面向量专题20.(本题满分10分,每小题各5分)如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别为5、3、2. (1)求AC :CE 的值;(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b表示).20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示EF . 20.(本题满分10分,每小题各5分) 如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D ,已知5AD =,4BD =.(1)求BC 的长度;(2)如果AD a = ,AE b = ,那么请用a 、b 表示向量CB.第20题图AD E ADE20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD 中,AD =2,点E 是边BC 的中点,AE 、BD 想交于点F ,过点F 作FG ∥BC ,交边DC 于点G . (1)求FG 的长;(2)设AD a = ,DC b = ,用、a b 的线性组合表示AF.如图,在△ABC 中,点E 在边AB 上,点G 是△ABC 的重心,联结AG 并延长交BC 于点D .(1)若AB a = ,AC b = ,用向量、a b 表示向量AG; (2)若∠B =∠ACE ,AB =6,AC =,BC =9,求EG 的长.如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设=AB a ,=AD b ,求向量MN关于a 、b 的分解式.20.(本题满分10分,每小题5分)第20题图且DE 经过△ABC 的重心,设BC a =. (1)=DE ▲ (用向量a表示);(2)设AB b = ,在图中求作12b a +.(不要求写作法,但要指出所作图中表示结论的向量.)22.(本题满分10分)下面是一位同学做的一道作图题:. ON 于点D .(1)试将结论补完整:线段 ▲ 就是所求的线段x . (2)这位同学作图的依据是 ▲ ;(3)如果4OA =,5AB =,AC m = ,试用向量m表示向量DB .20.(本题满分10分,每小题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF //AB ,2CF ADFA DB==. (1)设AB a = ,AC b = .试用、表示AE(2)如果△ABC 的面积是9,求四边形ADEF 的面积.MO ABCDab cN(第20题图)CE F B19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5. (1)求AC 的长(2)若设,CA a CB b ==u u r r u u r r,试用、的线性组合表示向量CD uu u r.20.(本题满分10分,第(1)、(2)小题各5分) 已知:如图,Rt △ABC 中,∠ACB =90°,sin B =35,点D 、E 分别在边AB 、BC 上,且AD ∶DB =2∶3,DE ⊥BC . (1)求∠DCE 的正切值; (2)如果设AB a = ,CD b = ,试用a 、b 表示AC.参考答案20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE //BC ∴52==AC EC AB BD (2分)(第20题图)又∵DF //AC ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵a BC =,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE AD BC AB= ……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC = ………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB = ∴95BC DE = …………………………………………………………1分又∵ED 与CB同向 ∴95CB ED = ………………………………1分∵AD a = ,AE b = ∴ED a b =-……………………………1分∴9955CB a b =-…………………………………………………………2分20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a r 、b r 和p u r,求作:(1)向量132a b -+r r. (2)向量p u r分别在a r 、b r 方向上的分向量.20.解:(1)作图.…………………………………………………………………………(3分)结论. …………………………………………………………………………(1分) (2)作图.…………………………………………………………………………(4分)结论. …………………………………………………………………………(2分)a r p u r (第20题图)b r20.解:(1)=23a.……………………………(5分)(2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).22.解:(1)CD ; ·························································································································· (2分) (2)平行线分线段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或:三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例). ··············································································································································· (2分)(3)∵BD ∥AC ,∴AC OABD OB=. ················································································ (1分) ∵4OA =,5AB =,∴49AC BD =. ········································································· (2分) 得94BD AC =. ········································································································· (1分)∵94BD AC = ,AC m = ,DB 与AC反向,∴94DB m =- . ·········································································································· (2分)20.解:(1)∵EF //AB∴CF CEFA EB = 又CF AD FA DB = ∴CE AD EB DB=…………………………………………(1分) ∴DE ∥AC , ………………………………………(1分) ∴四边形ADEF 是平行四边形………………………(1分)AE AF AD =+……………………………………(1分)∵2CF ADFA DB ==,AB a = ,AC b = ∴13AF b = , 23A D a= 2133AE a b =+………………………………………(1分)(2)∵EF //AB ,2CFFA=(第20题图)B∴9:4:=∆∆ABC CEF S S ………………………………(1分) ∵△ABC 的面积是9,∴4=∆CEF S ……………………………………………(1分) 由(1)得DE ∥AC , 且2ADDB= ∴9:1:=∆∆ABC BD E S S ………………………………(1分) ∴1=∆BDE S …………………………………………(1分) ∴四边形ADEF 的面积=9-4-1=4……………………(1分) 19.(1)在△ABC 中,∠ACD =∠B ,∠A =∠A ,∴ ACD ABC ∆:V . ……………………………………………………(2分)∴AD ACAC AB=,即2AC AD AB =g ∴249AC =⨯, 6.AC = ……………………………………………(2分) (2) 49CD CA AD a AB =+=+uu u r uu r uuu r r uu u r……………………………………………(2分)4()9a AC CB =++r uuu r uu r 4()9a a b =+-+r r r………………………………(2分)5499a b =+r r………………………………………………………(2分)20.(本题满分10分,第(1)、(2)小题各5分) 解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分) ∴设AC =3a ,AB =5a . 则BC =4a .∵AD :DB =2:3,∴AD =2a ,DB =3a .∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC ,∴AC//DE. ∴DE BD AC AB =, CE ADCB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵AD :DB =2:3,∴AD :AB =2:5. ------------------------------------------------(1分)∵AB a = ,CD b = ,∴25AD a = . DC b =-.--------------------(2分)∵AC AD DC =+,∴25AC a b =- .-----------------------------------(2分)。

最新上海市2018届中考一模数学试卷分类汇编:几何证明(Word版,含答案)

最新上海市2018届中考一模数学试卷分类汇编:几何证明(Word版,含答案)

九年级上学期期末(一模)数学试卷分类汇编23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .F EA第23题图(2)联结CF ,求证:45CFB ∠=︒.已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BD AB BC =⋅(1)求证:BD 平分∠ABC ; (2)求证:BE CF BC EF ⋅=⋅.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅. (1)求证AD AB AE AC ⋅=⋅;(2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADEECFS S 的值.23.(本题满分12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项. (1)求证:∠CDE =12∠ABC ; (2)求证:AD •CD =AB •CE . 23.如图6,已知梯形ABCD 中,AD ∥BC ,AB =CD ,点E 在对角线AC 上,且满足∠ADE =∠BAC 。

2018年上海静安区初三一模数学试卷答案

2018年上海静安区初三一模数学试卷答案

).
A. x ⩽ −1
B. x ⩾ 3
C. −1 ⩽ x ⩽ 3
D. x ⩾ 0
答案 C
解析
左移1,上移4
, y1
=
(x

3)(x
+
1)
−−−−−−−−−→
y2
=
(x

2)(x
+
2)
+
4
=
2 x
当 时,令 ,解得 , . y2 = y3
2 x
=
2x
+
3
x1 = −1 x2 = 3
则 时, . y2 ⩽ y3
∴ . AB = 12
−−→
16. 已知梯形ABC , D AD//BC ,点E和F分别在两腰AB和DC 上,且EF是梯形的中位线,AD = , 3 BC = 4,设AD = a,⃗ 那
−−→
么向量EF =
.(用向量a表⃗ 示)
答案 7
6
解析
, 1
7
EF = AD + (BC − AD) =
2
6
. 7
A. 7.2cm
B. 5.4cm
答案 B
解析
∵ , , OA = 3OC OB = 3OD
∴ , OA : OC = OB : OD
又∵ , ∠AOB = ∠C OD
∴ . △AOB ∽ △C OD
∴ , AB
OA
=
=3
CD
OC
∵ , C D = 1.8m
∴ . AB = 3C D = 5.4m
4. 下列判断错误的是( ).
y=1
y=3
21. 已知:二次函数图象的顶点坐标是(3, 5),且抛物线经过点A(1, . 3) (1) 求此抛物线的表达式.

上海市16区2018届中考一模数学试卷分类汇编:计算题(含答案)

上海市16区2018届中考一模数学试卷分类汇编:计算题(含答案)

上海市 16 区 2018 届九年级上学期期末(一模)数学试卷分类汇编计算题专题宝山区19.(本题满分 10 分)s in 60计算:+(tan60+ ) 0 -1 cos 45-s in 30长宁区19.(本题满分 10 分)co t 45 4sin 2 45 t an 60计算:cos30. 崇明区19.(本题满分 10 分)t an 45计算: 3s in60 2cos45co t30 2s in 45奉贤区 虹口区19.(本题满分 10 分)s in 60°s in30° 2 2 计算: .co t 30°cos30°黄浦区19.(本题满分 10 分)cot452cos 30 s in60 .2计算: t an301 嘉定区19. (本题满分 10 分,每小题 5 分)2计算:co t 30s i n 602 c os 30t an 45金山区19.(本题满分 10 分) cos30co t 45cos 60计算:s in 30 t an 60.静安区3 cot 45 1t an 60 s in 60 19.(本题满分 10 分)计算:.cos 30 2 c os 60 15 x y ① . 20.(本题满分 10 分)解方程组: (x y )2 2(x y )3 0 ② 闵行区 浦东新区 普陀区19.(本题满分 10 分)1计算:t an60 sin 245 .2cos30c o t 45青浦区19.(本题满分 10 分)272 01 3 +2cos30 计算:.20.(本题满分 10 分)1 4x2 1. 解方程:x 2 x 2 4 x 2松江区 徐汇区杨浦区19.(本题满分 10 分)cos 45 t an 45s i n 60 c o t 60 计算:co t 45 2s in 30参考答案宝山区长宁区1 319. (本题满分 10 分)解:原式=(4 分)22 4 ( ) 32 21 3=(2 分)(2 分)(2 分)2 3 2 32 32 =3 2= 2崇明区13 2 3 2 19、解:原式= …………………………………………5 分3 22 2 33 2 3 2 ………………………………………………3 分………………………………………………………2 分2 12 2 23 虹口区黄浦区23 1 3 2 19.解:原式=———————————————————(42 3 21 3分)3 3 3 3= ————————————————————————(4 分) 2 2 2=3 3—————————————————————————————(2分)嘉定区19. (本题满分 10 分,每小题 5 分)2计算:co t 30s i n 602 c os 30 t an 45 【解答】232 3 32 co t 30s in 6031 2 c os 30t an 45 2 32 1 2金山区静安区三、解答题: 19.解:原式=…………………………………(5 分)1 32 = ……………………………………………………(3 分) ……………………………………………………(2 分)2 2=120.解:由②得(xy 3)(x y 1) 0 , ……………………………………(2 分)y 3 0 或 x y 1 0,………………………………(2 分)得 x x y 5, x y 5,原方程组可化为 …………………………………(2 分)…………………………………(4 分) y 3; x y 1; x 4, x 2 x 解得,原方程组的解为12y 1; 1y 324, x 2 x ∴原方程组的解为 .12y 1; 1y 32闵行区 浦东新区 普陀区19.解:1 2原式 2 3 ( )2 ····································································· 4 ( 分) 32 123 1 3 ·················································································· (4 分) 2 21 . ····························································································· (2 分) 2青浦区319. 解:原式= 3 (8 分).…………………………………………………………2 1+3 1+2 2= 5 .………………………………………………………………………(22 2 分)x 2 x 2x 2 4x 2 x 22 20.解:方程两边同乘 得.…………………………(4x 4分)2 整理,得 .………………………………………………………………(2x 3x 2 0 分)1 x 2.…………………………………………………………解这个方程得 x , 12(2 分)经检验, x 2 是增根,舍去.…………………………………………………………x 1.……………………………………………………………(12(1 分)所以,原方程的根是 分)松江区徐汇区 杨浦区19.(本题满分 10 分)2 3 312 2 31 解:原式=--------------------------------------------------(6 分) 1 222 1 2 2 2= ----------------------------------------------------------------(2 分)21=.--------------------------------------------------------------(2分)4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静安区2017学年第一学期期末学习质量调研
九年级数学
2018.1
一、选择题(本大题共6题,每题4分,满分24分) 1. 化简2
5
()a a -⋅所得的结果是( )
A. 7a
B. 7a -
C. 10a
D. 10a -
2. 下列方程中,有实数根的是( )
A.
110x -+= B. 1
1x x
+
=
C. 4230x +=
D.
2
11
x =-- 3. 如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3,3OA OC OB OD ==),然后张开两脚,使,A B 两个尖端分别在线段a 的两个端点上,当 1.8CD =cm 时,AB 的长是( ) A. 7.2cm
B. 5.4cm
C. 3.6cm
D. 0.6cm
4. 下列判断错误的是( ) A. 如果0k =或0a =,那么0ka = B. 设m 为实数,则()m a b ma mb +=+ C. 如果//a e ,那么a a e =
D. 在平行四边形ABCD 中,AD AB BD -=
5. 在Rt ABC 中,90C ∠=,如果1
sin 3
A =
,那么sin B 的值是( ) A.
22
3
B. 22
C.
24
D. 3
6. 将抛物线2
123y x x =--先向左平移1个单位,再向上平移4个单位后,与抛物线
22y ax bx c =++重合,现有一直线323y x =+与抛物线22y ax bx c =++相交,当23y y ≤时,
利用图像写出此时x 的取值范围是( ) A. 1x ≤-
B. 3x ≥
C. 13x -≤≤
D. 0x ≥
二、填空题(本大题共12题,每题4分,满分48分) 7. 已知
13a c b d ==,那么
a c
b d
++的值是____________. 8. 已知线段AB 长是2厘米,P 是线段AB 上的一点,且满足2AP AB BP =⋅,那么AP 长为____________厘米.
9. 已知ABC 的三边长分别是2、6、2,DEF 的两边长分别是1和3,如果ABC 与
DEF 相似,那么DEF 的第三边长应该是____________.
10. 如果一个反比例函数图像与正比例函数2y x =图像有一个公共点(1,)A a ,那么这个反比例函数的解析式是____________.
11. 如果抛物线2
y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)在对称轴左侧的部分是上升的,那么a ____________0.(填“<”或“>”)
12. 将抛物线2()y x m =+向右平移2个单位后,对称轴是y 轴,那么m 的值是____________. 13. 如图,斜坡AB 的坡度是1:4,如果从点B 测得离地面的铅垂高度BC 是6米,那么斜坡AB
的长度是____________米.
14. 在等腰ABC 中,已知5,8AB AC BC ===,点G 是重心,联结BG ,那么CBG ∠的余切值是____________.
15. 如图,ABC 中,点D 在边AC 上,,9,7ABD C AD DC ∠=∠==,
那么AB =____________.
16. 已知梯形ABCD ,//AD BC ,点E 和F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,3,4AD BC ==.设AD a =,那么向量EF =____________.(用向量a 表示)
17. 如图,ABC 中,,90,6AB AC A BC =∠==,直线//MN BC ,且分别交边AB 、AC 于点M 、N ,已知直线MN 将ABC 分为面积相等的两部分,如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =____________.
18. 如图,矩形纸片,4,3ABCD AD AB ==.如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC 是直角三角形时,那么BE 的长为____________.
三、解答题(本大题共7题,满分78分) 19. (本题满分10
分)计算:451
tan 60sin 60cos302cos 601
+-⨯+.
20. (本题满分10分)解方程组:2
5
()2()30x y x y x y +=⎧⎨----=⎩
①②.
21. (本题满分10分,第1小题4分,第2小题6分)
已知:二次函数图像的顶点坐标是(3,5),且抛物线经过点(1,3)A .
(1)求此抛物线的表达式;
(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求ABC 的面积.
22. (本题满分10分,第1小题5分,第2小题5分)
如图,在一条河的北岸有两个目标M 、N ,现在位于它的对岸设定两个观测点A 、B ,已知
//AB MN ,在A 点测得60MAB ∠=,在B 点测得45MBA ∠=,600AB =米.
(1)求点M 到AB 的距离;(结果保留根号)
(2)在B 点又测得
53NBA ∠=,求MN 的长.(结果精确到1米)
1.732,sin 530.8,cos530.6,
tan 53 1.33,cot 530.75≈≈≈≈≈)
23. (本题满分12分,其中第1小题6分,第2小题6分)
已知:如图,梯形ABCD 中,//,,DC AB AD BD AD DB =⊥,点E 是腰AD 上一点,作
45EBC ∠=,联结CE ,交DB 于点F .
(1)求证:ABE ∽DBC ;
(2)如果
5
6
BC BD =,求
BCE BDA
S S 的值.
24. (本题满分12分,第1小题4分,第2小题8分)
在平面直角坐标系xOy 中(如图),已知抛物线25
3
y ax bx =+-
经过点(1,0)A -、(5,0)B . (1)求此抛物线顶点C 的坐标;
(2)联结AC 交y 轴于点D ,联结BD 、BC ,过点C 作CH BD ⊥,垂足为点H ,抛物线对称轴交x 轴于点G ,联结HG ,求HG 的长.
25. (本题满分14分,第1小题4分,第2小题6分,第3小题4分)
已知:如图,四边形ABCD 中,090,,,BAD AD DC AB BC AC <∠≤==平分BAD ∠.
(1)求证:四边形ABCD 是菱形;
(2)如果点E 在对角线AC 上,联结BE 并延长,交边DC 于点G ,交线段AD 的延长线于 点F (点F 可与点D 重合),AFB ACB ∠=∠,设AB 长度是a (a 实常数,且0a >),
,AC x AF y ==,求y 关于x 的函数解析式,并写出定义域;
(3)在第(2)小题的条件下,当CGE 是等腰三角形时,求AC 的长.(计算结果用含a 的代数式表示)
参考答案
一、选择题 1. B 2. D 3. B
4. C
5. A
6. C
二、填空题 7.
13
8.
1
9.
10. 2y x
=
11. < 12. 2
13.
14. 4 15. 12
16.
76
a 17. 3
18. 3或
32
三、解答题 19. 1 20. 121
242
,13x x y y ⎧==⎧⎪⎨

==⎪⎩⎩ 21. (1)21
(3)52
y x =-
-+; (2)5 22. (1
)(900-m ; (2)95m 23. (1)证明略; (2)
2536 24. (1)(2,3)C -; (2
25. (1)证明略; (2
)22)x y a x a a
=
-≤<; (3。

相关文档
最新文档