纳米TiO2光催化材料及其应用 PPT课件
合集下载
纳米二氧化钛的应用与发展讲义(PPT 78页)
气敏性是气体敏感性能的简称,一般指材料某
从尺寸一甲大性烷能,小(氢来如气说电等阻),等发纳)生米在变通化级入,二某而氧气气体敏化(性钛如就的乙是醇用粒,来 径在1~10表性0n示越m这好之种。间变气,化敏的性比程的表度综面,合变性积化能远程还大度包越括于大:普说响通明应气及二敏恢 氧化钛,因复此时间具,有最很佳响大应的温表度,面灵活敏性度,,稳并定以时间其长
紫外线的分类有 UVA、UVB、UVC和UVD。其中UVC 因为波长较短,在大气中就已经被臭氧层给吸收、散 射掉了,所以无法到达地面。UVB的波长居三者之中, 波长仅能达到肌肤的表皮, 它对人体具有红斑作用, 能促进体内矿物质代谢和维生素D的形成,但长期或 过量照射会令皮肤晒黑,并引起红肿脱皮。而波长较
三、纳米TiO2的生产现状 3.1国外纳米TiO2的生产现状
20世纪80年代以前,纳米TiO2的研究开发目的主 要是作为精细陶瓷原料、催化剂、传感器等,需求 量不大,没有形成大的生产规模。80年代以后,开 发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米 TiO2打开了市场,使纳米TiO2的生产和需求大大增加, 成为钛白工业和涂料工业的一个新的增长点。
纳米二氧化钛的应用与发展
11级粉体(2)班
赵亚君 资宇宸 钮大祥 丁超 宋伟伟 吴慧芬
一、引言 二、纳米TiO2概述 三、纳米TiO2生产现状 四、纳米TiO2的发展 五、纳米TiO2的应用
一、引言
纳米材料是指任意一维的尺度小于100nm 的晶体、非晶体、准晶体以及界面层结构的 材料。
纳米微粒的小尺寸效应、表面效应、量 子尺寸效应及宏观量子隧道效应使得它们在 电、磁、光、敏感性等方面表现出常规粒子
根据莎哈里本公司统计,2003年全球纳米TiO2销 售量仅为1800t左右,其消费量与产品应用见表1。
纳米光催化反应与应用PPT课件
催化光反应:光辐射被吸附分子吸收时,该分 子与基态催化剂相互作用。
敏化光反应:光辐射发生在催化剂上,处于激 发态的催化剂,将电子或 能量 转移给基态的吸附分子。
.
24
.
25
导带
价带
.
26
.
27
.
28
.
29
.
30
纳米半导体具有高光催化活性的原因:
(1)粒径小,量子尺寸效应显著,导带和价带的能隙变 宽,光生电子和空穴能量更高,具有更高的氧化、还原能 力; (2)粒径小,电子易于扩散到晶粒表面,减少光生电子 和空穴的复合,有效提高光效率; (3)粒径小,表面积增大,吸附反应物增强,促进光催 化反应;
的长度。
纳米科技:在纳米尺度空间(0.1~100nm)研究物质的特性和相
互作用。
.
7
在20世纪80年代末90年代初逐步发展起来的前沿、交叉性新兴学 科领域,在创造新的生产工艺、新的物质和新产品等方面有巨大潜能。
纳米材料:由1~100nm间的粒子组成,介于宏观物质和微观原子、分 子交界的过渡区域,是一种典型的介观系统。
相光催化反应,如光解水、CO2和N2的固化、降解污染物、有机 合成等。
此外,纳米半导体能够催化体相半导体所不能进行的反应。 如 ZnS半导体粒子,对于光催化还原CO2显示出效率高达80%的 量子效率,而体相半导体则无任何光催化活性。
原因: (1)量子尺寸效应使导带和价带能级变为分立的能级,能隙变 宽,导带电位变得更负,而价带电位变得更正。纳米半导体粒 子获得了更强的氧化和还原能力,提高光催化活性。 (2)粒径通常小于空间电荷层的厚度,可忽略空间电荷层的影 响。光生载流子可通过简单的扩散,从粒子内部迁移到粒子表 面,与电子给体或受体发生还原或氧化反应。
敏化光反应:光辐射发生在催化剂上,处于激 发态的催化剂,将电子或 能量 转移给基态的吸附分子。
.
24
.
25
导带
价带
.
26
.
27
.
28
.
29
.
30
纳米半导体具有高光催化活性的原因:
(1)粒径小,量子尺寸效应显著,导带和价带的能隙变 宽,光生电子和空穴能量更高,具有更高的氧化、还原能 力; (2)粒径小,电子易于扩散到晶粒表面,减少光生电子 和空穴的复合,有效提高光效率; (3)粒径小,表面积增大,吸附反应物增强,促进光催 化反应;
的长度。
纳米科技:在纳米尺度空间(0.1~100nm)研究物质的特性和相
互作用。
.
7
在20世纪80年代末90年代初逐步发展起来的前沿、交叉性新兴学 科领域,在创造新的生产工艺、新的物质和新产品等方面有巨大潜能。
纳米材料:由1~100nm间的粒子组成,介于宏观物质和微观原子、分 子交界的过渡区域,是一种典型的介观系统。
相光催化反应,如光解水、CO2和N2的固化、降解污染物、有机 合成等。
此外,纳米半导体能够催化体相半导体所不能进行的反应。 如 ZnS半导体粒子,对于光催化还原CO2显示出效率高达80%的 量子效率,而体相半导体则无任何光催化活性。
原因: (1)量子尺寸效应使导带和价带能级变为分立的能级,能隙变 宽,导带电位变得更负,而价带电位变得更正。纳米半导体粒 子获得了更强的氧化和还原能力,提高光催化活性。 (2)粒径通常小于空间电荷层的厚度,可忽略空间电荷层的影 响。光生载流子可通过简单的扩散,从粒子内部迁移到粒子表 面,与电子给体或受体发生还原或氧化反应。
纳米二氧化钛光催化材料84页PPT
纳米二氧化钛光催化材料
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
ห้องสมุดไป่ตู้
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
ห้องสมุดไป่ตู้
光催化课件:第五章 纳米氧化钛光催化活性
有重要影响,而且一般认为吸附量大, 底物的吸附量对光催化反应有重要影响,而且一般认为吸附量大, 降解快;但也不全是如此。 降解快;但也不全是如此。 另外,由于光催化反应,催化剂表面及底物、中间产物浓度的变化, 另外,由于光催化反应,催化剂表面及底物、中间产物浓度的变化, 使光照前后的吸附量有变化,但似乎还未发现较好的规律。 使光照前后的吸附量有变化,但似乎还未发现较好的规律。 粒径减少,吸附量明显增大。 粒径减少,吸附量明显增大。 (3)晶粒尺寸对能隙的影响 ) 半导体TiO2的能隙,随晶粒尺寸减少而增大的程度不如 的能隙,随晶粒尺寸减少而增大的程度不如CdS、CdSe 半导体 、 那样显著。 胶体的紫外-可见吸收光谱, 或ZnS那样显著。通过测定 那样显著 通过测定TiO2胶体的紫外-可见吸收光谱,可以测定 吸收带边界;对于粉体样品,则要测定漫反射光谱。 吸收带边界;对于粉体样品,则要测定漫反射光谱。 同尺寸的锐钛矿相和金红石相氧化钛纳米晶相比, 同尺寸的锐钛矿相和金红石相氧化钛纳米晶相比,金红石的纳米晶 尺寸效应更加明显,可能与介电常数有关。 尺寸效应更加明显,可能与介电常数有关。 晶粒尺寸小于10nm的TiO2纳米晶显示尺寸效应,其能隙随着晶粒尺 纳米晶显示尺寸效应, 晶粒尺寸小于 的 寸的减少而增大。因此可通过调控晶粒尺寸得到不同能隙的光催化剂。 寸的减少而增大。因此可通过调控晶粒尺寸得到不同能隙的光催化剂。 但能隙增大后, 但能隙增大后,常用的 中压或高压汞灯就不足以激发这种超细氧化钛纳 米晶了。 米晶了。
用锐钛矿催化剂时,苯醌浓度在 ~ 内达到最大值, 用锐钛矿催化剂时,苯醌浓度在30~60min内达到最大值,随后 内达到最大值 浓度基本不变。 浓度基本不变。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。
用锐钛矿催化剂时,苯醌浓度在 ~ 内达到最大值, 用锐钛矿催化剂时,苯醌浓度在30~60min内达到最大值,随后 内达到最大值 浓度基本不变。 浓度基本不变。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。
tio2光催化材料课件.
(1)是由量子尺寸效应引起的, 已被电子占据的分子轨道能级与 未被电子占据的分子轨道能级之 间的禁带宽度,由于粒子粒径减 小而增大,使得吸收边蓝移。(2) 是由纳米粒子的表面效应导致, 由于纳米粒子粒径较小,大的表 面张力使晶格发生改变,晶格常 数变小,造成吸收边向短波方向 移动。
(3)量子限域效应 随纳米半导体材料粒径不断减 小,激子浓度越高。在能隙中靠近导带底部形成一 些激子能级并产生激子发光带。
紫外可见漫反射光谱结果表明c掺杂tio在可见光区有很强的吸收带其光吸收限与纯的锐钛矿tioohno等以异丙醇钛和硫脲为原料先在乙醇溶液中水解再通过减压蒸发除去乙醇然后在不同的温度下热处理得到黄色的s掺杂tio粉体光谱分析结果表明s掺杂tio光催化剂在可见光区具有吸收效应xps分析结果表明s元素是以s的晶格臵换了一些ti离子的位臵通过对2丙醇和金刚烷的光催化降解发现s掺杂tio光催化剂在波长大于440nm的可见光下具有良好的光催化活性
从右图可以看出,TiO2粒径 越小,光量子产率提高,光 吸收边界蓝移,尤其当粒径 小于10nm时,光量子产率迅 速提高
1.4. 3 TiO2表面特性的影响
TiO2表面积大则吸附量大,活性就高。另外,表面的粗糙程 度、表面的结晶度、表面的羟基等也影响着表面的吸附和电 子空穴的复合,进而影响催化剂的活性。TiO2表面钛羟基 (TiOH)结构在光催化过程中起着重要作用,TiO2光催化活 性和表面Ti3+数量有关,如果Ti3+数量增加,光催化活性就提 高了。
金红石结构中TiO6八面体以共边的方式连接成八面体链,八 面体链之间则是以共点的方式连接成三维网状结构的。
TiO6八面体连接示意图
1.3.2 TiO2的能带结构
半导体光催化 作用的机理是以 能带结构为基础 的。对于光催化 活性的半导体有 着特殊的电子结 构,即能带结构。 常见半导体的能 带结构如右图所 示
(3)量子限域效应 随纳米半导体材料粒径不断减 小,激子浓度越高。在能隙中靠近导带底部形成一 些激子能级并产生激子发光带。
紫外可见漫反射光谱结果表明c掺杂tio在可见光区有很强的吸收带其光吸收限与纯的锐钛矿tioohno等以异丙醇钛和硫脲为原料先在乙醇溶液中水解再通过减压蒸发除去乙醇然后在不同的温度下热处理得到黄色的s掺杂tio粉体光谱分析结果表明s掺杂tio光催化剂在可见光区具有吸收效应xps分析结果表明s元素是以s的晶格臵换了一些ti离子的位臵通过对2丙醇和金刚烷的光催化降解发现s掺杂tio光催化剂在波长大于440nm的可见光下具有良好的光催化活性
从右图可以看出,TiO2粒径 越小,光量子产率提高,光 吸收边界蓝移,尤其当粒径 小于10nm时,光量子产率迅 速提高
1.4. 3 TiO2表面特性的影响
TiO2表面积大则吸附量大,活性就高。另外,表面的粗糙程 度、表面的结晶度、表面的羟基等也影响着表面的吸附和电 子空穴的复合,进而影响催化剂的活性。TiO2表面钛羟基 (TiOH)结构在光催化过程中起着重要作用,TiO2光催化活 性和表面Ti3+数量有关,如果Ti3+数量增加,光催化活性就提 高了。
金红石结构中TiO6八面体以共边的方式连接成八面体链,八 面体链之间则是以共点的方式连接成三维网状结构的。
TiO6八面体连接示意图
1.3.2 TiO2的能带结构
半导体光催化 作用的机理是以 能带结构为基础 的。对于光催化 活性的半导体有 着特殊的电子结 构,即能带结构。 常见半导体的能 带结构如右图所 示
纳米TiO2
添加了具有光催化活性的纳米TiO2的环保涂料,已应用于环境空气净 化,并扩展到室内的卫生保健,应用领域正在不断扩大。
精选完整ppt课件
19
2.3.1 光催化环保涂料
纳米TiO2氟碳涂料光照过程产生的羟基与生物大分子(如脂类、蛋白 质、酶以及核酸)通过一系列氧化链式反应对生物细胞结构引起广泛 的损伤性破坏,攻击有机物的不饱和键或抽取氢原子,使细菌蛋白质 变异或脂类分解(多肽链断裂和糖类解聚),将细胞质中的原生质活 酶破坏,以此杀灭细菌使之分解,赋予涂料很强的杀菌抑菌功能,对 空气中细菌、霉菌、发臭有机物等有净化的作用;有长期的防霉防藻 效果,强劲的抗粉尘和抗脏物的粘附能力;疏水性极佳,容易清洗涂 层表面的污物。
(5)含汞废水的处理:同六价铬还原相似,无机汞离子从半导体导带 到电子而被还原到零价汞。
精选完整ppt课件
15
2.2.3. 对室内空气中污染物的降解
纳米TiO2光催化技术在清除挥发性有机物上(VOC)具有独到之处,能 将许多难于用其他方法降解的污染物最终达到无机化,一般生成二氧 化碳和水,以及相应的化合物。
(4)毛纺染整废水处理:把表面涂覆有纳米TiO2膜的玻璃填料填充于 玻璃反应器中,毛纺染整废水在反应器内循环进行光催化氧化处理。
(5)印染废水处理
精选完整ppt课件
14
2.2.2. 降解水中无机污染物
(1)含铬废水的处理:用TiO2掺杂Pb 2+作为吸附剂,利用TiO2薄膜在光 催化下使Cr6+转化成Cr3+,去除率为99.5%。
精选完整ppt课件
7
1.3.3 TiCl4水解法
TiCl4水解法就是以TiCl4为原料,以碱为催化剂,得到 Ti02的水合物,然后经过离心、洗涤、干燥和煅烧即可得 到纳米二氧化钛。
精选完整ppt课件
19
2.3.1 光催化环保涂料
纳米TiO2氟碳涂料光照过程产生的羟基与生物大分子(如脂类、蛋白 质、酶以及核酸)通过一系列氧化链式反应对生物细胞结构引起广泛 的损伤性破坏,攻击有机物的不饱和键或抽取氢原子,使细菌蛋白质 变异或脂类分解(多肽链断裂和糖类解聚),将细胞质中的原生质活 酶破坏,以此杀灭细菌使之分解,赋予涂料很强的杀菌抑菌功能,对 空气中细菌、霉菌、发臭有机物等有净化的作用;有长期的防霉防藻 效果,强劲的抗粉尘和抗脏物的粘附能力;疏水性极佳,容易清洗涂 层表面的污物。
(5)含汞废水的处理:同六价铬还原相似,无机汞离子从半导体导带 到电子而被还原到零价汞。
精选完整ppt课件
15
2.2.3. 对室内空气中污染物的降解
纳米TiO2光催化技术在清除挥发性有机物上(VOC)具有独到之处,能 将许多难于用其他方法降解的污染物最终达到无机化,一般生成二氧 化碳和水,以及相应的化合物。
(4)毛纺染整废水处理:把表面涂覆有纳米TiO2膜的玻璃填料填充于 玻璃反应器中,毛纺染整废水在反应器内循环进行光催化氧化处理。
(5)印染废水处理
精选完整ppt课件
14
2.2.2. 降解水中无机污染物
(1)含铬废水的处理:用TiO2掺杂Pb 2+作为吸附剂,利用TiO2薄膜在光 催化下使Cr6+转化成Cr3+,去除率为99.5%。
精选完整ppt课件
7
1.3.3 TiCl4水解法
TiCl4水解法就是以TiCl4为原料,以碱为催化剂,得到 Ti02的水合物,然后经过离心、洗涤、干燥和煅烧即可得 到纳米二氧化钛。
纳米二氧化钛涂料ppt课件
末 对各种波长光的吸 收带有宽化和蓝移 现象的特点。
这一性能可以也应 用到防紫外线化妆 品(UV )
新型汽车TiO2涂料应用
纳米TiO2粒子添加 在轿车用金属闪光 面漆中,能使涂层产 生丰富而神秘的色 彩效果。纳米粒子 除提高轿车漆装饰 效果外,由于其具有 吸收紫外线的效应, 可明显提高轿车漆 的耐候性。
纳米二氧化钛用于造纸填料
纳米二氧化钛作为纸张填料,主要用 在高级纸张和薄型纸张中,用纳米TiO2作 填料的纸张更均匀、平整,吸油值高。此 外将纳米TiO2添加到化学纤维中,可以制 成耐光的亚光高白纸,以及色彩鲜艳的有 色纸,并且可以达到抗紫外线的效果。
纳
纳米二氧化钛涂料的简介
米
二
氧
化
纳米二氧化钛涂料的性能
谢谢大家!
1、降解室内外空气的有害有机物。 2、处理石油污。 3、降解农药。 4、抗菌作用。
纳米二氧化钛作为太阳能电池光 电极材料
由于太阳能电池的良好的应用价值。使 其研究越来越受到科研人员的重视。纳米 TiO2半导体用于太阳能电极材料的优势在 于其具有较大的禁带宽度和稳定的耐光腐 蚀性。
研究人员通过各种方式例如半导体复 合掺杂、过渡金属离子掺杂、非金属离子 掺杂、导电高聚物掺杂以及贵金属沉积掺 杂等方式,扩展其对可见光的吸收范围, 提高光电转换效率,使纳米TiO2太阳能得 到广泛开发和应用。
用于抗菌型陶瓷品, 该产品在光照射下 能完全杀死表面细 菌;其在微弱光下 亦有抗菌性能。
纳米二氧化钛涂料在玻璃的应用
具有自洁、易清洗、抗菌、除臭、防污、防雾 等功能
纳米二氧化钛涂料油墨的应用
无毒无害,与涂料、油漆、油墨原料有极好的相 容性。
造纸工业中,能提高易打印性和不渗透性。
这一性能可以也应 用到防紫外线化妆 品(UV )
新型汽车TiO2涂料应用
纳米TiO2粒子添加 在轿车用金属闪光 面漆中,能使涂层产 生丰富而神秘的色 彩效果。纳米粒子 除提高轿车漆装饰 效果外,由于其具有 吸收紫外线的效应, 可明显提高轿车漆 的耐候性。
纳米二氧化钛用于造纸填料
纳米二氧化钛作为纸张填料,主要用 在高级纸张和薄型纸张中,用纳米TiO2作 填料的纸张更均匀、平整,吸油值高。此 外将纳米TiO2添加到化学纤维中,可以制 成耐光的亚光高白纸,以及色彩鲜艳的有 色纸,并且可以达到抗紫外线的效果。
纳
纳米二氧化钛涂料的简介
米
二
氧
化
纳米二氧化钛涂料的性能
谢谢大家!
1、降解室内外空气的有害有机物。 2、处理石油污。 3、降解农药。 4、抗菌作用。
纳米二氧化钛作为太阳能电池光 电极材料
由于太阳能电池的良好的应用价值。使 其研究越来越受到科研人员的重视。纳米 TiO2半导体用于太阳能电极材料的优势在 于其具有较大的禁带宽度和稳定的耐光腐 蚀性。
研究人员通过各种方式例如半导体复 合掺杂、过渡金属离子掺杂、非金属离子 掺杂、导电高聚物掺杂以及贵金属沉积掺 杂等方式,扩展其对可见光的吸收范围, 提高光电转换效率,使纳米TiO2太阳能得 到广泛开发和应用。
用于抗菌型陶瓷品, 该产品在光照射下 能完全杀死表面细 菌;其在微弱光下 亦有抗菌性能。
纳米二氧化钛涂料在玻璃的应用
具有自洁、易清洗、抗菌、除臭、防污、防雾 等功能
纳米二氧化钛涂料油墨的应用
无毒无害,与涂料、油漆、油墨原料有极好的相 容性。
造纸工业中,能提高易打印性和不渗透性。
半导体光催化基础-第四章-纳米二氧化钛PPT课件
第四章 纳米半导体与 纳米二氧化钛
4.1 纳米材料的基本概念
▪ 所谓纳米材料,是指晶粒尺度介于原子簇 和通常所说的尺度大于亚微米粒子之间的 超细材料,其晶粒尺寸一般为1~100nm。
▪ 在这个尺度范围内,电子波函数的相关长 度与体系的特征尺寸相当,或者说,固体 颗粒的尺度与第一激子的德布洛依半径相 当,电子的波动性在电子输运过程中得到 充分的展现。
易团聚Biblioteka 纳米TiO2的气相制备方法
▪ 气相法的主要优点是:纯度高,分散性好,粒度分 布窄,后处理简单。其缺点是气相反应需要将物料 气化,能耗较高,对反应器的形式、材质及进出料 方式均有很高的要求,技术难度较大。
▪ Degussa P25 TiO2的制备:在高于1200℃的高温 火焰中,在H2、O2参与下将TiCl4水解而制得,所 得产品再用过热蒸汽处理以除去表面的HCl。
4.2.4 热载流子效应
▪ 在粉末体系光催化反应中,当入射光子能量 hυ>Eg时,多余能量△E= hυ—Eg往往以 热能形式耗散在晶格中,但当半导体微粒进 入纳米尺度时,光生载流子的转移路径很短, 颗粒中原子数目也很少。因此,碰撞几率大 大减少,热损失可显著降低并以热动能形式 提高电荷转移速度,相应地提高了能量转换 效率。这种大于带隙的激发能被利用的过程 称为热载流子注入或热载流子效应。
▪ 其次,随着纳晶粒子粒粒径的减小,比表面则 急剧增高,如粒径为10nm时,比表面为90m2/g, 粒径为5 nm时,比表面增至180 m2/g,粒径再 下降到2 nm时,比表面猛增至450 m2/g,这种 巨大的表面积亦为光催化的反应的进行提供了 有利条件。
4.2.3 超微粒的体效应
▪ 纳米颗粒体积小,所含的原子数目少,它的粒 径小于大块材料的空间电荷层的厚度,或者说 常规半导体材料界面的能带弯曲已退化至接近 平带状态。
4.1 纳米材料的基本概念
▪ 所谓纳米材料,是指晶粒尺度介于原子簇 和通常所说的尺度大于亚微米粒子之间的 超细材料,其晶粒尺寸一般为1~100nm。
▪ 在这个尺度范围内,电子波函数的相关长 度与体系的特征尺寸相当,或者说,固体 颗粒的尺度与第一激子的德布洛依半径相 当,电子的波动性在电子输运过程中得到 充分的展现。
易团聚Biblioteka 纳米TiO2的气相制备方法
▪ 气相法的主要优点是:纯度高,分散性好,粒度分 布窄,后处理简单。其缺点是气相反应需要将物料 气化,能耗较高,对反应器的形式、材质及进出料 方式均有很高的要求,技术难度较大。
▪ Degussa P25 TiO2的制备:在高于1200℃的高温 火焰中,在H2、O2参与下将TiCl4水解而制得,所 得产品再用过热蒸汽处理以除去表面的HCl。
4.2.4 热载流子效应
▪ 在粉末体系光催化反应中,当入射光子能量 hυ>Eg时,多余能量△E= hυ—Eg往往以 热能形式耗散在晶格中,但当半导体微粒进 入纳米尺度时,光生载流子的转移路径很短, 颗粒中原子数目也很少。因此,碰撞几率大 大减少,热损失可显著降低并以热动能形式 提高电荷转移速度,相应地提高了能量转换 效率。这种大于带隙的激发能被利用的过程 称为热载流子注入或热载流子效应。
▪ 其次,随着纳晶粒子粒粒径的减小,比表面则 急剧增高,如粒径为10nm时,比表面为90m2/g, 粒径为5 nm时,比表面增至180 m2/g,粒径再 下降到2 nm时,比表面猛增至450 m2/g,这种 巨大的表面积亦为光催化的反应的进行提供了 有利条件。
4.2.3 超微粒的体效应
▪ 纳米颗粒体积小,所含的原子数目少,它的粒 径小于大块材料的空间电荷层的厚度,或者说 常规半导体材料界面的能带弯曲已退化至接近 平带状态。
纳米TiO2光催化材料及其应用
在光电转换效率提高方面的应用实例
太阳能电池:纳米 TiO2光催化材料 可以提高太阳能电 池的光电转换效率
光电探测器:纳米 TiO2光催化材料 可以提高光电探测 器的灵敏度和响应 速度
光催化反应:纳米 TiO2光催化材料 可以提高光催化反 应的效率和选择性
光催化降解:纳米 TiO2光催化材料 可以提高光催化降 解污染物的效率和 选择性
纳米TiO2光催化材 料及其应用
,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
纳米TiO2光催 化材料的应用 领域
02
纳米TiO2光催 化材料的特性
05
纳米TiO2光催 化材料的应用 实例
03
纳米TiO2光催 化材料的制备 方法
06
纳米TiO2光催 化材料的发展 前景与挑战
01 添加章节标题
理效率
纳米TiO2光催 化材料可以应 用于家庭净水 器提高家庭用
水质量
纳米TiO2光催 化材料可以应 用于农业灌溉 提高灌溉水质 促进农作物生
长
在空气净化方面的应用实例
纳米TiO2光催化材料可以分解空气中的有害气体如甲醛、苯等 纳米TiO2光催化材料可以杀灭空气中的细菌和病毒提高室内空气质量 纳米TiO2光催化材料可以降解空气中的PM2.5等颗粒物降低空气污染程度 纳米TiO2光催化材料可以消除空气中的异味如烟味、宠物异味等
04
纳米TiO2光催化材料 的应用领域
水处理
光催化降解水中的有机物和 微生物
光催化氧化水中的污染物和 重金属
光催化净化水中的异味和颜 色
纳米TiO2光催化材料在水处 理中的应用
光催化处理废水和污水实现 水资源的循环利用
纳米二氧化钛光催化材料及其应用PPT资料(正式版)
Ø 室内环境净化
主要有机物光催化降解反应
有机物 催化剂 光源
光解产物
烃
TiO2
卤代烃
TiO2
羧酸
TiO2
表面活性剂 TiO2
染料
TiO2
含氮有机物 TiO2
有机磷杀虫剂 TiO2
紫外
CO2 ,H2O
紫外
HCl,CO2,H2O
紫外,氙灯 CO,H2,烷烃,醇,酮,酸
日光灯
CO2,SO32-
紫外
CO2,H2O,无机离子,中间物
形态 锐钛矿
晶格常数 相对密度 晶格类型
3.84
a
c
正方晶系 5.27 9.37
Ti-O距离 禁带宽度 /nm /eV
0.195 3.2
金红石
4.22 正方晶系 9.05 5.8 0.199 3
板钛矿
4.13 斜方晶系
TiO6
Ti
O
锐钛矿相和金红石相二氧化钛的能带结构
CB/e-
3.2eV
VB/h+
Valence band
Ø表面积效应 载Pt后的TiO2光催化性能
N2(g)+3H2
2NH3
光催化剂固定化的技术优势
近十几年来,半导体光催化技术在环保、卫生保健等方面的
但是也存在光随催化着剂分粒散子度降尺低,寸与反减应小物接到触面纳积米减小级,光,吸光收效催果变化差剂等缺的点 比表面积大大增加,对底
Overall reaction: D+A
h PC
Doxidized +Areduced
有代表性的光催化半导体材料及其能带
(NHE)
0 △
GaAs CdS (n,p) (n)
主要有机物光催化降解反应
有机物 催化剂 光源
光解产物
烃
TiO2
卤代烃
TiO2
羧酸
TiO2
表面活性剂 TiO2
染料
TiO2
含氮有机物 TiO2
有机磷杀虫剂 TiO2
紫外
CO2 ,H2O
紫外
HCl,CO2,H2O
紫外,氙灯 CO,H2,烷烃,醇,酮,酸
日光灯
CO2,SO32-
紫外
CO2,H2O,无机离子,中间物
形态 锐钛矿
晶格常数 相对密度 晶格类型
3.84
a
c
正方晶系 5.27 9.37
Ti-O距离 禁带宽度 /nm /eV
0.195 3.2
金红石
4.22 正方晶系 9.05 5.8 0.199 3
板钛矿
4.13 斜方晶系
TiO6
Ti
O
锐钛矿相和金红石相二氧化钛的能带结构
CB/e-
3.2eV
VB/h+
Valence band
Ø表面积效应 载Pt后的TiO2光催化性能
N2(g)+3H2
2NH3
光催化剂固定化的技术优势
近十几年来,半导体光催化技术在环保、卫生保健等方面的
但是也存在光随催化着剂分粒散子度降尺低,寸与反减应小物接到触面纳积米减小级,光,吸光收效催果变化差剂等缺的点 比表面积大大增加,对底
Overall reaction: D+A
h PC
Doxidized +Areduced
有代表性的光催化半导体材料及其能带
(NHE)
0 △
GaAs CdS (n,p) (n)
TiO光催化处理有机物(共27张PPT)
(Eg = 3.6 eV). • Ti02 最适合环境中处理有机物的应用,生物和化学的惰性,化
学和光化学腐蚀的稳定性,廉价 • 金属硫化物和铁的氧化物晶体阴极易腐蚀
锐钛型的TiO2粒径愈小,光催化活性愈高,达到纳 米量级,特别是≤10nm时,光催化活性尤为显著。
一方面由于量子尺寸效应,能级分裂,使能隙增大, 导带能级向负移,价带能级向正移,从而使导带电位更 负,价带电位更正,增强了半导体光催化剂TiO2的氧化 还原能力,提高了光催化活性。
正电荷,有利于光生电子向表面迁移;
• 当溶液pH值较高时,由于OH-的存在, TiO2表面带负电荷,有利于光生空穴向表面 迁移;
• 研究表明,当pH=3~9时,TiO2具有较好的
氧化性
各种常用半导体的能带宽度和能带边缘电位示意图(pH = 1)
提高活性的途径
• 半导体耦合 • 金属沉积
• 金属离子的掺杂
子效率。
金属沉积
•
沉积在TiO2表面的金属有利于被激发电子的积蓄,而
空穴则会下沉 如果金属沉积超过一定范围后电子空穴电子会与空穴
复合
金属离子的掺杂
在TiO2中掺杂不同的金属离子,不仅能影响电子-空穴对 的复合率,提高表面羟基位,改善光催化效率,还可能使 TiO2的吸收波长范围扩大到可见以下条件:
(氧化) (还原)
hvb+将吸附在TiO2颗粒 表面的OH-分子氧化成 OH·自由基缔合在Ti4+ 表面形成强氧化剂
光电机制中活性氧的反应
由于载流子寿命相对于空穴较短,电子向分子氧的转 移被认为是光催化氧化反应的速率控制步骤。O2是半 导体导带光生电子的俘获剂, 可有效地阻止电子与空穴 的复合, 同时, O2通过俘获电子产生的各种活性自由 基O2−、 ·O、氧化有机物。
学和光化学腐蚀的稳定性,廉价 • 金属硫化物和铁的氧化物晶体阴极易腐蚀
锐钛型的TiO2粒径愈小,光催化活性愈高,达到纳 米量级,特别是≤10nm时,光催化活性尤为显著。
一方面由于量子尺寸效应,能级分裂,使能隙增大, 导带能级向负移,价带能级向正移,从而使导带电位更 负,价带电位更正,增强了半导体光催化剂TiO2的氧化 还原能力,提高了光催化活性。
正电荷,有利于光生电子向表面迁移;
• 当溶液pH值较高时,由于OH-的存在, TiO2表面带负电荷,有利于光生空穴向表面 迁移;
• 研究表明,当pH=3~9时,TiO2具有较好的
氧化性
各种常用半导体的能带宽度和能带边缘电位示意图(pH = 1)
提高活性的途径
• 半导体耦合 • 金属沉积
• 金属离子的掺杂
子效率。
金属沉积
•
沉积在TiO2表面的金属有利于被激发电子的积蓄,而
空穴则会下沉 如果金属沉积超过一定范围后电子空穴电子会与空穴
复合
金属离子的掺杂
在TiO2中掺杂不同的金属离子,不仅能影响电子-空穴对 的复合率,提高表面羟基位,改善光催化效率,还可能使 TiO2的吸收波长范围扩大到可见以下条件:
(氧化) (还原)
hvb+将吸附在TiO2颗粒 表面的OH-分子氧化成 OH·自由基缔合在Ti4+ 表面形成强氧化剂
光电机制中活性氧的反应
由于载流子寿命相对于空穴较短,电子向分子氧的转 移被认为是光催化氧化反应的速率控制步骤。O2是半 导体导带光生电子的俘获剂, 可有效地阻止电子与空穴 的复合, 同时, O2通过俘获电子产生的各种活性自由 基O2−、 ·O、氧化有机物。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本高
晶粒完整,粒径小,分布均匀, 反应条件为高温、高 原料要求不高,成本相对较低 压,材质要求高
化学气相沉积法 粒径小,分散性好,分布窄,化 技术和材质要求高,
(CVD)
学活性高,可连续生产
工艺复杂,投资大
微乳液法 可有效控制TiO2纳米粉末的尺寸
易团聚
纳米TiO2光催化剂的应用
环保方面的应用 卫生保健方面的应用 防结雾和自清洁涂层 光催化化学合成
负载型TiO2光催化剂制备方法
化学气相沉积法 溶胶-凝胶法 偶联法
溶胶凝胶法工艺简单,条件温和,制得的 催化剂光催化活性高,是实验室最常用的方 法。但存在着在干燥过程中薄膜易发生龟 裂,薄膜厚度受到限制的缺点
离子交换法
液相沉积法
其他如粉体烧结法、掺杂法、溅射法等
纳米TiO2光催化前景展望
纳米TiO2光催化有着广阔ቤተ መጻሕፍቲ ባይዱ应用前景 今后工作的重点
贵金属沉积
离子掺杂
添加适当的有机染料敏化剂 采用复合半导体
载Pt后的TiO2光催化性能
h≥Eg
A
光生电子在Pt岛上富集,光生空
h+ e- Pt
穴向TiO2晶粒表面迁移,这样形
D
TiO2
成的微电池促进了光生电子和空 Areduced 穴的分离,提高了光催化效率
Doxidized
离子掺杂的TiO2光催化性能
Overall reaction: D+A
h PC
Doxidized +Areduced
有代表性的光催化半导体材料及其能带
(NHE)
-1.5 -1.0 -0.5
GaAs CdS (n,p) (n)
ZnO (n)
0 △E=1.4eV
+0.5 +1.0 +1.5 +2.0
2.5eV 3.2eV
+2.5 +3.0 +3.5 +4.0
光催化活性,这是因为在混晶氧化钛中,锐钛
矿表面形成金红石薄层,这种包覆型复合结构
VB/h+ 能有效地提高电子-空穴对的分离效率
锐钛矿相
金红石相
粉体纳米TiO2光催化剂的制备
制备方法 溶胶-凝胶法 (sol-gel)
水热合成法
优点
不足
粒径小,分布窄,晶型为锐钛矿 前驱体为钛醇盐,成
型,纯度高,热稳定性好
染料 含氮有机物 有机磷杀虫剂
TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 TiO2
紫外
CO2 ,H2O
紫外
HCl,CO2,H2O
紫外,氙灯 CO,H2,烷烃,醇,酮,酸
日光灯
CO2,SO32-
紫外
CO2,H2O,无机离子,中间物
紫外
CO32-,NO32-,NH4+,PO43-,F- 等
紫外,太阳光
Cl-,PO43-,CO2
纳米TiO2光催化绿色涂料对室内氨气等的降解
测试条件 气体浓度
放入涂料板前 一天
放入涂料板后 两天 五天 七天
去除效率 (%)
氨气(mg/m3) 1.93 0.60 0.32 0.22 0.18 91
甲醛(mg/m3) 0.90 0.43 0.21 0.13 0.07 92
表面积效应
随着粒子尺寸减小到纳米级,光催化剂的比表面积大大增加,对底 物的吸附能力增强
载流子扩散效应
粒径越小,光生电子从晶体内扩散到表面的时间越短,电子和空穴 的复合几率减小,光催化效率提高
TiO2光催化材料的特性
光催化活性高(吸收紫外光性能强;禁带和导带 之间的能隙大,光生电子和空穴的还原性和氧化 性强)
苯(mg/m3) 0.86 0.64 0.25 0.15 0.05 94
卫生保健方面的应用
灭杀细菌和病毒
可以用于生活用水的的杀菌消毒;负载TiO2 光催化剂的玻璃、 陶瓷等是医院、宾馆、家庭等各种卫生设施抗菌除臭的理想材料
使某些致癌细胞失活
防结雾和自清洁涂层方面的应用
在紫外光照射下,水在氧化钛薄膜上完全浸润。因此,在浴室 镜面、汽车玻璃及后视镜等表面涂覆一层氧化钛可以起到防结雾 的作用
2001年Asahi等日本学者报道了 氮掺杂的TiO2 ,引起人们对阴离 子掺杂光催化剂及其可见光响应 性能的广泛兴趣。
过渡金属离子的掺杂会在半导体晶格中引入能捕获光致 电子和空穴的缺陷;或改变结晶度,使激发光的波长红移
光敏化原理示意图
S1 CB
h
S0 色素或染料 VB
TiO2
ES1 ﹥ ECB 有光生电流产生
(1)对纳米TiO2催化剂进行修饰,研制复合纳米TiO2催化 剂,提高催化活性 (2)加强采用自然光源和光催化剂固定技术的研究 (3)设计新型光催化反应器,提高光催化效率 (4)积极推广应用研究成果
化学性质稳定(耐酸碱和光化学腐蚀),对生物无 毒
在可见光区无吸收,可制成白色块料或透明薄膜 原料来源丰富
纳米TiO2是当前最有应用潜力的光催化剂
二氧化钛晶体的基本物性
形态 锐钛矿
晶格常数 相对密度 晶格类型
3.84
a
c
正方晶系 5.27 9.37
Ti-O距离 禁带宽度 /nm /eV
0.195 3.2
C.近十几年来,半导体光催化技术在环保、卫生保健等方面的 应用研究发展迅速,纳米光催化成为国际上最活跃的研究领 域之一。
光催化机理
D Doxidized
Eg Dads
Conduction band
A -
Aads
h
Areduced
band gap
+ Valence band
semiconductor particle
纳米 TiO2光催化材料及其应用
光催化技术的发展概况
A.1972年Fujishima和Honda在n-型半导体TiO2电极上发现了水 的光催化分解作用,揭开了光催化技术研究的序幕。
B.1976年Garey用TiO2光催化剂脱除了多氯联苯中的氯,1977年 Frank光催化氧化CN-为OCN-,光催化技术在环保方面的应用 研究开始启动。
CB S1
h
VB
S0
色素或染料
TiO2
ES1 ﹥ ECB 无光生电流产生
偶合型复合半导体电荷分离示意图
CB —
B
— CB
h CdS
TiO2 h
B-
A
VB +
+ VB A+
包覆型复合半导体电荷分离示意图
TiO2
—
CB
— CB
h
SnO2 h
A
+
+ VB VB
A+
光催化剂固定化的技术优势
将光催化剂制成薄膜或以微粒形式负载于基质上: 有效解决了悬浮相光催化剂分离回收难的问题 可以克服悬浮相催化剂稳定性差、容易中毒等缺点 应用活性组分和载体的功能组合来设计新型光催化反应器 但是也存在光催化剂分散度降低,与反应物接触面积减小, 光吸收效果变差等缺点
环保方面的应用
有机污染物的处理 无机污染物的处理
1. 光催化能够解决Cr6+、Hg2+、Pb2+等重金属子的污染问题 2. 光催化还可分解转化其它无机污染物,如CN-、NO2-、H2S、 SO2, NOx等
室内环境净化
主要有机物光催化降解反应
有机物 催化剂
光源
光解产物
烃 卤代烃
羧酸 表面活性剂
金红石
4.22 正方晶系 9.05 5.8 0.199 3
板钛矿
4.13 斜方晶系
TiO6
Ti
O
锐钛矿相和金红石相二氧化钛的能带结构
CB/e-
3.2eV
VB/h+
0.2eV CB/e-
两者的价带位置相同,光生空穴具有相同的氧 化能力;但锐钛矿相导带的电位更负,光生电
子还原能力更强
3.0eV
混晶效应:锐钛矿相与金红石相混晶具有更高
在窗玻璃、建筑物的外墙砖、高速公路的护栏、路灯等表面涂 覆一层氧化钛薄膜,利用氧化钛在太阳光照射下产生的强氧化能 力和超亲水性,可以实现表面自清洁
有机污垢
无机污垢
CO2 H2O
TiO2薄膜
光催化化学合成
有机合成
光催化不仅可分解破坏有机物,在适当条件下还能用 来合成一些有机物。如在非水溶剂中,苯乙烯光催化聚合 生成聚苯乙烯
无机反应
H2O(l)
h
PC
H2+1/2O2
N2(g)+3H2 h 2NH3
PC
纳米TiO2光催化技术的不足
光致电子和空穴对的转移速度慢,复合率高,导致光
催化量子效率低
只能用紫外光活化,太阳光利用率低 粉末状TiO2在使用过程中存在分离、回收困难等问题
提高TiO2光催化性能的主要途径
WO3 (n)
3.2eV
SnO2 (n)
3.8eV
TiO2 -1.0 (n)
0 +1.0
3.2eV +2.0 +3.0
+4.0
-2H+/H2
--Cl2/2Cl-(1.40eV) --O3/O2+H2O(2.07) --F2/2F-(2.87)
光催化剂的纳米尺寸效应
量子效应
当半导体粒径小于某一纳米尺寸时,导带和价带间的能隙变宽,光 生电子和空穴的能量增加,氧化还原能力增强