小学六年级奥数试题及答案解析(中高难度)

合集下载

六年级奥数题及答案(高等难度)

六年级奥数题及答案(高等难度)

六年级奥数题及答案:图形(高等难度)1 图形:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD 分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形答案:2图形面积:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、B C为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?图形面积答案:3 应用题:(高等难度)我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?应用题答案:4 乒乓球训练(逻辑):(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.乒乓球训练(逻辑)答案:本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数.⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局.此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.5唐老鸭和米老师赛跑:(高等难度)唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米。

六年级数学中高难度奥数试题(含解析)(1)

六年级数学中高难度奥数试题(含解析)(1)

1 小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

的年龄根据学生自身特点而定。

2121世纪小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?【答案解析】解答:设获奖人数为x,则所以x=111x=111(人)(人)题2:(中等难度)"迎春杯迎春杯""数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖..甲说:甲说:""如果我能获奖,那么乙也能获奖奖,那么乙也能获奖."."."乙说:乙说:乙说:""如果我能获奖,那么丙也能获奖如果我能获奖,那么丙也能获奖."."."丙说:丙说:丙说:""如果丁没获奖,那么我也不能获奖么我也不能获奖."."."实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖..并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是那么没能获奖的同学是_________。

【答案解析】首先根据丙说的话可以推知,丁必能获奖首先根据丙说的话可以推知,丁必能获奖..否则,假设丁没获奖,那么丙也没获奖,这与否则,假设丁没获奖,那么丙也没获奖,这与""他们之中只有一个人没有获奖他们之中只有一个人没有获奖""矛盾。

其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能个人全都能获奖,不可能..因此,只有甲没有获奖。

六年级数学 中高难度奥数试题(含解析)(5)

六年级数学 中高难度奥数试题(含解析)(5)

小学六年级中高难度奥数题及答案解析(5)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

21世纪小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。

再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子【答案解析】设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.题2:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.【答案解析】(1)请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.关于某整数,它的"奇数的约数的个数减1",就是用连续的整数的和的形式来表达种数.根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40题3:(高等难度)求数的整数部分是几【答案解析】题4:(中等难度)(第六届小数报决赛)A ,A的整数部分是_________.【答案解析】题5:(中等难度)王母娘娘的蟠桃宴结束后,由于猪八戒吃的太多了,走不动了,第二天王母娘娘对猪八戒说只有完成一项任务才能让他走,任务是这样的,现有24米漂亮的小围栏,用这段围栏靠墙作一个长方形的小花圃(当然靠墙的一面就不用围栏了),为了种更多的花草,王母娘娘要求猪八戒围出的长方形花圃面积最大,同学们你能帮猪八戒想出最佳方案吗【答案解析】我们探索的结论是指封闭图形,但现在的长方形只有三条边,如何把它转化为封闭图形求解呢我们可以以墙面做对称轴,把周长乘二.(如下图)这时,矩形的周长为48米,那么,根据上面的定理,周长一定,正方形的面积最大.所以当这个长方形为正方形时,即边长为12米时,面积最大.而小花圃的面积是正方形面积的一半,则花圃的长为12米,宽为12÷2=6(米)那么,小花圃的面积为:12×6=72(平方米)题6:(中等难度)有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

小学六年级顶级数学奥数题库220道及答案

小学六年级顶级数学奥数题库220道及答案

小学六年级顶级数学奥数题库220道及答案1. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有0.5x - 1 人。

x + (3x + 1) + (0.5x - 1) = 180 ,解得x = 40 。

所以第一车间40 人,第二车间121 人,第三车间19 人。

2. 有两根铁丝,第一根长28 米,第二根长20 米。

两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下的长度的3 倍。

两根铁丝各剩下多少米?答案:设用去的长度为x 米。

28 - x = 3×(20 - x) ,解得x = 16 。

第一根剩下12 米,第二根剩下4 米。

3. 甲、乙、丙三人共有108 元,甲用了自己钱数的3/5,乙用了自己钱数的3/4,丙用了自己钱数的2/3,各买了一支相同的钢笔,问甲、乙、丙剩下的钱共有多少元?答案:设这支钢笔价格为x 元,则甲的钱数为5x/3 ,乙的钱数为4x/3 ,丙的钱数为3x/2 。

5x/3 + 4x/3 + 3x/2 = 108 ,解得x = 24 。

甲剩下16 元,乙剩下8 元,丙剩下12 元,共36 元。

4. 甲、乙两港相距360 千米,一轮船往返两港需35 小时,逆流航行比顺流航行多花了5 小时。

现在有一机帆船,静水中速度是每小时12 千米,这机帆船往返两港要多少小时?答案:轮船顺流时间:(35 - 5)÷2 = 15(小时),逆流时间:20 小时。

顺流速度:360÷15 = 24(千米/小时),逆流速度:360÷20 = 18(千米/小时),水速:(24 - 18)÷2 = 3(千米/小时)。

机帆船顺流时间:360÷(12 + 3) = 24(小时),逆流时间:360÷(12 - 3) = 40(小时),往返共64 小时。

奥数专题-计算问题(高难度)-详细讲解

奥数专题-计算问题(高难度)-详细讲解

3 7 6 3 8 6 3 9 6 3 10 6 7 8 9 10 = 1 1 1 1 7 8 9 10
3
=ቤተ መጻሕፍቲ ባይዱ
6 6 6 6 6 6 6 6 1 1 1 1 3 3 3 7 8 9 10 = 7 8 9 10 = 6 7 8 9 10 6 1 1 1 1 1 1 1 1 1 1 1 1 7 8 9 10 7 8 9 10 7 8 9 10
7. 3 位分数分裂通项公式: a n
【如
1 1 1 1 1 1 1 1 , ,……等等】 1 2 3 2 1 2 2 3 4 5 6 2 4 5 5 6
8. 等比数列前 n 项的求和公式: S n n a1 , (q 1) ,
(如 0.0 5
7.循环小数理解: 0.0 5 限循环,
1 0.14285 7 =0.142857142857…142857 无限循环。 7
常用计算公式(一定要记牢、理解,并能灵活运用) :
1.
1 2 3 ... n 1 2 3 ... 10
356 5 5 76 7 76 , 0.00 5 , 0. 7 6 , 0. 35 6 ……等) 0.7 6 90 900 90 99 999 5 76 =0.0555…5 无限循环, 0. 7 6 =0.767676…76 无 90 99
公式计算问题六年级去求分子的值明显计算量很大我们观察发现被减数和减数的项数是一一对应的如果我们将分子重新分组利用平方差公式会起到意想不到的效果
六年级奥数题—详细解答—计算专题

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。

解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。

解得x = -24。

2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。

解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。

解得x = 60。

3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。

解:设长方形的长为x厘米,宽为y厘米。

根据题意可得方程组:x - y = 4;2x + 2y = 32。

解得x = 10,y = 6。

所以长方形的长为10厘米,宽为6厘米。

4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。

解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。

解得x = 12。

5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。

解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。

将已知的三边长代入公式即可求得三角形的面积。

6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。

解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。

解得x = 10。

7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。

解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。

解得x = 4。

所以原来正方形的边长为4厘米。

8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。

小学六年级中高难度奥数题【含答案】(7)

小学六年级中高难度奥数题【含答案】(7)

小学六年级中高难度奥数题和答案解析(7)题1:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【答案解析】 题2:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?【答案解析】 题3:(高等难度)光明小学六年级选出的男生的1/11和12名女生参加数学竞赛,剩下的男生人数是剩下的女生人数的2倍.已知六年级共有156人,问男、女生各有多少人?【答案解析】 ②女生人数:156-99=57(人).题4:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【答案解析】 用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:a1+a3+a5-a2-a4-a6=11k (*)也就是:a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.题5:(中等难度)某学校的若干学生在一次数学中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【答案解析】 除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.题6:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【答案解析】 因为该数加1之后是15的倍数,也是5的倍数,所以d=4或d=9.因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.这表明m=27、37、47;32、42、52.(因为38m的尾数为6)又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k.由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.所求的四位数是1409,1979.题7:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【答案解析】 汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).题8:(高等难度)如果多位数能被7整除,那么О内的数字是几?【答案解析】 2009÷3=669…2,从最后一位开始三位三位一段,则奇数段减去偶数段的差为:999-О99+222-22=200+О×100。

六年级奥数经典题难题集粹(华杯赛难度)—附详细解答doc

六年级奥数经典题难题集粹(华杯赛难度)—附详细解答doc

六年级奥数经典题、难题集粹(华杯赛难度)—附详细解答一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。

(完整)重点小学新六年级数学奥赛竞赛题附参考答案

(完整)重点小学新六年级数学奥赛竞赛题附参考答案

学习奥数的重要性小学六年级数学奥赛比赛题1.学习奥数是一种很好的思想训练。

奥数包括了发散思想、收敛思想、换元思想、反向思想、逆向思想、逻辑思想、空间思想、立体思想等二十几种思想方式。

经过学习奥数,能够帮助孩子开辟思路,提升思想能力,从而有效提升剖析问题和解决问题的能力,与此同时,智商水平也会得以相应的提升。

2.学习奥数能提升逻辑思想能力。

奥数是不一样于且高于一般数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过剖析判断、逻辑推理以致“抽丝剥茧”,是达成不了奥数题的。

所以,学习奥数对提升孩子的逻辑推理和抽象思想能力大有帮助3.为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

假如孩子在小学阶段经过学习奥数让他的思想能力得以提升,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化多数能轻松应付。

4.学习奥数对孩子的意志质量是一种锻炼。

大多数孩子刚学奥数时都是兴趣盎然、信心百倍,但跟着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天赋,凭着在困难眼前的不屈不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了收效;一部分孩子在家长的“威胁利诱”之下,硬着头皮熬了下来;许多孩子更是或因天资不足、或害怕困难、或受不了这份苦、再或是其他原由此在半途打了退堂鼓。

我认为,只需能坚持学下来,无论最后获得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他此后的学习和生活都大有好处。

小学六年级数学奥赛比赛题一、计算1.×÷×.2.×2.3+1.9 ×.3. 1999+999 ×999.4. 8+98+998+9998+99998 .5.(﹣×25 十 75%×)÷15×1997.二、填空题6.六( 1)班男、女生人数的比是8: 7.( 1)女生人数是男生人数的_________ ( 2)男生人数占全班人数的_________( 3)女生人数占全班人数的_________ ( 4)全班有 45 人,男生有_________ 人.7.甲数和乙数的比是 2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是_________ .8.甲数和乙数的比 7:3,乙数和丙数的比是6:5,丙数是甲数的_________ ,甲数和丙数的比是_________ :_________ .9. 0.08 的倒数是_________ , 2.25 的倒数是_________ .10.一根铁丝长 3 米,剪去 1/3 后还剩 _________ 米;一根铁丝长 3 米,剪去 1/3 米后还剩_________ 米.11.甲、乙合做一件工作,甲做的部分占乙的,乙做的占所有工作的_________ .12.周长相等的正方形和圆形,_________ 的面积大.13. _________ ÷40=15 :_________ ═ 0.625= _________ %14.把、、 37%、 0.373 按从大到小的次序摆列是_________ .16.用一张长 5 厘米,宽 4 厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的_________ %.17.甲、乙、丙三种糖果每千克的价钱分别是9 元, 7.5 元, 7 元.现把甲种糖果 5 千克,乙种糖果 4 千克,丙种糖果 3 千克混淆在一同,那么用10 元可买_________ 千克这类混淆糖果.18.一个月最多有 5 个礼拜日,在一年的12 个月中,有 5 个礼拜日的月份最多有_________ 个月.19.奶奶告诉小明:“2006 年共有 53 个礼拜日”.聪敏的小明马上告诉奶奶: 2007 年的元旦必定是礼拜_________ .20.( 1)广场上的大钟 5 时敲响 5 下, 8 秒敲完, 12 时敲响 12 下,需要_________ 秒.( 2)甲、乙两数的比5: 8,甲数比乙数少_________ %,乙数比甲数多_________ %.三、图形计算21.电视塔的圆形塔底半径为15 米,此刻要在它的四周种上 5 米宽的环形草坪.(1)需要多少平方米的草坪?(2)假如每平方米的草坪需 500 元,那么植这块草坪起码需要多少钱?22.已知图中正方形的面积是20 平方厘米,求暗影部分的面积.23.图中正方形的面积是8 平方厘米,求圆的面积是多少?四、解答题(共16 小题,满分0 分)24.球从高处自由着落,每次接触地面后弹起的高度是前一次着落高度的.假如球从 25 米高处落下,那么第三次弹起的高度是多少米?25.在一块 20 公顷的土地上,用它的1/5 种小麦,其他的种大豆和玉米,种大豆和玉米的公顷数比是3: 5.种大豆和玉米各多少公顷?26.水结成冰后,体积增添1/10 .现有一块冰,体积是 2 立方分米,消融后的体积是多少?27.为民中药店计划收买中草药1500 千克,上半年达成了计划的55%,下半年达成了计划的65%.为民中药店超额收买中草药多少千克?28.公园的一个圆形花坛的直径是60 米,这个花坛的面积是多少?假如一盆花占地面积大概是1/10 平方米,这个花坛大概要摆多少万盆花?(得数保存整万数)29.一部手机降价后只卖1800 元,售价只有本来的 9/10 ,比本来降价了多少元?30.一台挂钟的分针长 8 厘米,在 5 小时里分针的针尖共走了多少厘米?31.生物小组同学要丈量一棵百年大榕树的横截面积,他们量得树干的周长是 6.28 米,这棵树的横截面积是多少平方米?32.张老师有一套住宅价值40 万,因为急需现金,他以九折优惠卖给老李.过了一段时间后,房价上升10%,张老师又想从老李处把房屋买回来.想想,假如老张买回房屋,总合损失多少万元?33.同学们参加野营活动.一个同学到负责后勤的教师那是去领碗.教师问他领多少,他说领55 个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗.”算一算这个同学给多少人领碗?34.某校五、六年级共有学生200 人.“六一”小孩节五年级有 11 人,六年级有25%的同学去市里参加庆贺活动,这时两个年级余下的人数相等.求六年级有学生多少人?35.修一条路,第一天修了全路的,次日修了余下的,两天共修路135 米,这条路全长多少米?36.少儿园买来红气、蓝、黑气球共180 个,此中红气球的个数是蓝气球的 3 倍,黑气球的个数是蓝气球的 2 倍,求红、蓝、黑气球各多少个?37.小强买了一本书,第一天看了全书的 2/5,次日可能看了剩下的5/8,还有 36 页没看,这本书一共有多少页?38.小东的存钱罐里存有 1 元的硬币若干,他每日拿出一部分买零食,第一天拿出1/9,此后 7 天赋别拿出当时硬币的 1/8、 1/7、 1/6、 1/5、1/4 、1/3 、1/2, 8 天后剩下 5 个硬币,本来罐内共有多少个硬币?39.一条路全长 60 千米,分红上坡、平路、下坡三段,各段行程长的比挨次是1:2:3,某人走各段行程所用时间比挨次是 4: 5: 6,已知他上坡的速度是每小时 3 千米,问这人走完整程用了多少时间?小学六年级数学奥赛比赛题参照答案与试题分析一、计算考点:乘除法中的巧算。

小升初六年级奥数题及答案 20道题(中等难度).doc

小升初六年级奥数题及答案 20道题(中等难度).doc

小升初六年级奥数题及答案 20道题(中等难度)小升初六年级奥数题及答案 20 道题(中等难度)【题-001】抽屉原理有 5 个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出 3 枚棋子.请你证明,这 5 个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果 10 人淘水,3 小时淘完;如 5 人淘水 8 小时淘完.如果要求 2 小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有 9 只杯子,全部口朝上,每次将其中 6 只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使 9 只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商 40,余数是 16.被除数、除数、商数与余数的和是 933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入 1 至 8 中的一个数字,使每行、每列、每条对角线上 8 个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小 1 时,恰好在打开某根进水管 1 小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开 1 小时,灌满一池水比第一周少用了 15 分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开 1 小时,比第一周多用了 15 分钟.第四周他三个管同时打开,灌满一池水用了 2 小时 20 分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为 15%的酒精溶液 1000 克,现在又分别倒入 100 克和 400 克的A、B 两种酒精溶液,瓶中的浓度变成了 14%.已知 A 种酒精溶液浓度是 B 种酒精溶液浓度的 2 倍,那么 A 种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把 A 桶里的液体倒入 B 桶,使其中液体的体积翻了一番,然后我又把 B 桶里的液体倒进 A 桶,使 A 桶内的液体体积翻番.最后,我又将 A 桶中的液体倒进 B 桶中,使B 桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在 B 桶中,水比牛奶多出 1 升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10 人,如果站成一个每边多 1 人的实心方阵,则还缺少 15 人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是 11 的倍数,那么这个自然数是 11 的倍数,例如 1001,因为 1+0=0+1,所以它是 11 的倍数;又如 1234,因为 4+2-(3+1)=2 不是 11 的倍数,所以 1234 不是11 的倍数.问:用 0、1、2、3、4、 5 这 6 个数字排成不含重复数字的六位数,其中有几个是 11 的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是 8250 分.第一、二、三名的成绩是 88、85、80 分,得分最低的是 30 分,得同样分的学生不超过 3 人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于 60 分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加 1 之后是 15 的倍数;②这个数减去 3 是38 的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被 10 整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔 12 分钟有一辆汽车从后面超过他,每隔 4 分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑 5 步的时间马跑 3 步,马跑 4 步的距离狗跑 7 步,现在狗已跑出 30 米,马开始追它。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

最难小学奥数题100道及答案(完整版)

最难小学奥数题100道及答案(完整版)

最难小学奥数题100道及答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。

这三个数分别是多少?解题方法:将60 分解质因数,60 = 2×2×3×5 = 3×4×5答案:3、4、5题目2:在一个减法算式里,被减数、减数与差的和是180,减数比差大10。

差是多少?解题方法:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 180,被减数= 90。

又因为减数-差= 10,减数+ 差= 90,所以差= (90 - 10)÷2 = 40答案:40题目3:甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次相遇在离 B 地55 千米处。

A、B 两地相距多少千米?解题方法:第一次相遇时,甲走了75 千米,两人共走了一个全程。

从开始到第二次相遇,两人共走了三个全程,所以甲走了75×3 = 225 千米。

此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米答案:170 千米题目4:一个数除以5 余3,除以6 余4,除以7 余5。

这个数最小是多少?解题方法:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208答案:208题目5:有一堆苹果,平均分给5 个人多4 个,平均分给6 个人多5 个,平均分给7 个人多6 个。

这堆苹果最少有多少个?解题方法:如果这堆苹果再多1 个,就能正好平均分给5 个人、6 个人、7 个人。

5、6、7 的最小公倍数是210,所以这堆苹果最少有210 - 1 = 209 个答案:209 个题目6:一个长方体,如果高增加2 厘米,就变成一个正方体。

这时表面积比原来增加56 平方厘米。

原来长方体的体积是多少立方厘米?解题方法:增加的表面积是 4 个相同的长方形的面积,长方形的宽是2 厘米,长就是正方体的棱长,正方体棱长= 56÷4÷2 = 7 厘米,原长方体高= 7 - 2 = 5 厘米,体积= 7×7×5 = 245 立方厘米答案:245 立方厘米题目7:甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物。

小学六年级奥数练习题及答案解析【5篇】

小学六年级奥数练习题及答案解析【5篇】

【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。

我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。

以下是整理的《⼩学六年级奥数练习题及答案解析【5篇】》相关资料,希望帮助到您。

1.⼩学六年级奥数练习题及答案解析 甲、⼄、丙三⼈在A、B两块地植树,A地要植900棵,B地要植1250棵。

已知甲、⼄、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,⼄先在A地植树,然后转到B地植树。

两块地同时开始同时结束,⼄应在开始后第⼏天从A 地转到B地? 【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么⼄就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后 即第11天从A地转到B地。

 2.⼩学六年级奥数练习题及答案解析 有三块草地,⾯积分别是5,15,24亩。

草地上的草⼀样厚,⽽且长得⼀样快。

第⼀块草地可供10头⽜吃30天,第⼆块草地可供28头⽜吃45天,问第三块地可供多少头⽜吃80天? 【解析】这是⼀道⽜吃草问题,是⽐较复杂的⽜吃草问题。

把每头⽜每天吃的草看作1份。

因为第⼀块草地5亩⾯积原有草量+5亩⾯积30天长的草=10×30=300份 所以每亩⾯积原有草量和每亩⾯积30天长的草是300÷5=60份 因为第⼆块草地15亩⾯积原有草量+15亩⾯积45天长的草=28×45=1260份 所以每亩⾯积原有草量和每亩⾯积45天长的草是1260÷15=84份 所以45-30=15天,每亩⾯积长84-60=24份 所以,每亩⾯积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份 第三块地⾯积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份 新⽣长的每天就要⽤38.4头⽜去吃,其余的⽜每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头⽜ 所以,⼀共需要38.4+3.6=42头⽜来吃。

小学六年级奥数试题及答案解析(中高难度)

小学六年级奥数试题及答案解析(中高难度)

小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【答案解析】当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人.题2:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【答案解析】要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。

∴被除数=21×40+16=856。

答:被除数是856,除数是21。

题3:(高等难度)在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。

【答案解析】假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色.设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色.则染红色次数为2m次。

∵2m≠1987(偶数≠奇数)∴假设不成立。

六年级数学 中高难度奥数试题(含解析)(6)

六年级数学 中高难度奥数试题(含解析)(6)

小学六年级中高难度奥数题及答案解析(6)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

21世纪小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)巧求整数部分题目:(中等难度)(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是_________.【答案解析】题2:(高等难度)数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

【答案解析】逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。

解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。

②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。

题3:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.【答案解析】题4:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?【答案解析】题5:(高等难度)我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?【答案解析】题6:(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.【答案解析】本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数.⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局.此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.题7:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【答案解析】∵被除数=除数×商+余数,即被除数=除数×40+16。

六年级奥数题及答案(高等难度)

六年级奥数题及答案(高等难度)

六年级奥数题及答案(⾼等难度)六年级奥数题及答案:图形(⾼等难度)1 图形:(⾼等难度)如图,长⽅形ABCD中,E为的AD中点,AF与BE、BD 分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形答案:2图形⾯积:(⾼等难度)直⾓三⾓形ABC的两直⾓边AC=8cm,BC=6cm,以AC、B C为边向形外分别作正⽅形ACDE与BCFG,再以AB为边向上作正⽅形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总⾯积等于多少?图形⾯积答案:3 应⽤题:(⾼等难度)我国某城市煤⽓收费规定:每⽉⽤量在8⽴⽅⽶或8⽴⽅⽶以下都⼀律收6.9元,⽤量超过8⽴⽅⽶的除交6.9元外,超过部分每⽴⽅⽶按⼀定费⽤交费,某饭店1⽉份煤⽓费是82.26元,8⽉份煤⽓费是40.02元,⼜知道8⽉份煤⽓⽤量相当于1⽉份的,那么超过8⽴⽅⽶后,每⽴⽅⽶煤⽓应收多少元?应⽤题答案:4 乒乓球训练(逻辑):(⾼等难度)甲、⼄、丙三⼈⽤擂台赛形式进⾏乒乓球训练,每局2⼈进⾏⽐赛,另1⼈当裁判.每⼀局的输⽅去当下⼀局的裁判,⽽由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,⼄共打了21局,⽽丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.乒乓球训练(逻辑)答案:本题是⼀道逻辑推理要求较⾼的试题.⾸先应该确定⽐赛是在甲⼄、⼄丙、甲丙之间进⾏的.那么可以根据题⽬中三⼈打的总局数求出甲⼄、⼄丙、甲丙之间的⽐赛进⾏的局数.⑴丙当了5局裁判,则甲⼄进⾏了5局;⑵甲⼀共打了15局,则甲丙之间进⾏了15-5=10局;⑶⼄⼀共打了21局,则⼄丙之间进⾏了21-5=16局;所以⼀共打的⽐赛是5+10+6=31局.此时根据已知条件⽆法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对⼿搭配,就是说不可能出现上⼀局是甲⼄,接下来的⼀局还是甲⼄的情况,必然被别的对阵隔开.⽽总共31局⽐赛中,⼄丙就进⾏了16局,剩下的甲⼄、甲丙共进⾏了15局,所以类似于植树问题,⼀定是开始和结尾的两局都是⼄丙,中间被甲⼄、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的⽐赛是在⼄丙之间进⾏的.那么,第三局的裁判应该是甲.5唐⽼鸭和⽶⽼师赛跑:(⾼等难度)唐⽼鸭与⽶⽼⿏进⾏⼀万⽶赛跑,⽶⽼⿏的速度是每分钟125⽶,唐⽼鸭的速度是每分钟100⽶。

六年级下册数学奥数题(高等难度)

六年级下册数学奥数题(高等难度)

六年级下册数学奥数题(高等难度)1. 题目求1 + (1)/(1 + 2) + (1)/(1 + 2+3)+·s+(1)/(1 + 2+3+·s+100)的值。

2. 解析首先分析通项公式。

对于数列的第n项a_n,分母是1+2 + 3+·s+n,根据等差数列求和公式S_n=(n(n + 1))/(2),所以a_n=(2)/(n(n + 1))。

则原式可转化为2×<=ft((1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(100×101))。

然后进行裂项相消。

因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

所以2×<=ft[<=ft(1-(1)/(2))+<=ft((1)/(2)-(1)/(3))+<=ft((1)/(3)-(1)/(4))+·s+<=ft((1)/(100)-(1)/(101))]。

可以发现中间项都可以消去,最后得到2×<=ft(1-(1)/(101))。

计算2×(100)/(101)=(200)/(101)。

3. 题目有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙?4. 解析设丙的速度为1。

因为乙比丙晚出发10分钟,出发后40分钟追上丙,那么乙40分钟走的路程等于丙(40 + 10)分钟走的路程。

根据路程=速度×时间,可得乙的速度是((10 + 40)×1)/(40)=(5)/(4)。

甲比乙晚出发20分钟,甲比丙晚出发(20 + 10)=30分钟,甲出发后1小时40分钟(100分钟)追上丙。

则甲100分钟走的路程等于丙(100+30)分钟走的路程,所以甲的速度是((100 + 30)×1)/(100)=(13)/(10)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【答案解析】当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人.题2:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【答案解析】要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。

∴被除数=21×40+16=856。

答:被除数是856,除数是21。

题3:(高等难度)在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。

【答案解析】假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色.设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色.则染红色次数为2m次。

∵2m≠1987(偶数≠奇数)∴假设不成立。

∴至少有一个珠子被染上红、蓝两种颜色。

题4:(高等难度)一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

【答案解析】这是一道古算题.它早在《孙子算经》中记有:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"关于这道题的解法,在明朝就流传着一首解题之歌:"三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知."意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去 105,直至小于105为止.这样就可以得到满足条件的解.其解法如下:方法1:2×70+3×21+2×15=233233-105×2=23符合条件的最小自然数是23。

题5:(高等难度)有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数.那么这18个数的平均数是:_______.【答案解析】题6:(高等难度)如下图,甲从A出发,不断往返于AB之间行走。

乙从C出发,沿C—E—F—D—C围绕矩形不断行走。

甲的速度是5米/秒,乙的速度是4米/秒,甲从背后第一次追上乙的地点离D 点____________米。

【答案解析】题7:(高等难度)如图所示,ABCD是一边长为4cm的正方形,E是AD的中点,而F是BC的中点。

以C为圆心、半径为4cm的四分之一圆的圆弧交EF于G,以F为圆心、半径为2cm的四分之一圆的圆弧交EF于H点,【答案解析】题8:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.【答案解析】题9:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.【答案解析】题10:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分( 与梯形BTFG)的总面积等于多少?【答案解析】小学六年级中高难度奥数题及答案解析(2)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)计算:【答案解析】本题的重点在于计算括号内的算式:.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.法一:观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以(法二)上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为a+nd,其中为公差d.如果能把分子变成这样的形式,再将a与nd分开,每一项都变成两个分数,接下来就可以裂项了.(法三)本题不对分子进行转化也是可以进行计算的:题2:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【答案解析】用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:a1+a3+a5-a2-a4-a6=11k (*)也就是:a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立. 对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.题3:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【答案解析】除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.题4:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【答案解析】因为该数加1之后是15的倍数,也是5的倍数,所以d=4或d=9.因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.这表明m=27、37、47;32、42、52.(因为38m的尾数为6)又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k.由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.所求的四位数是1409,1979.题5:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【答案解析】汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).题6:(高等难度)李大娘把养的鸡分别关在东、西两个院内.已知东院养鸡40只;现在把西院养鸡总数的卖给商店,卖给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%.原来东、西两院一共养鸡多少只?【答案解析】题7:(高等难度)在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )【答案解析】根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后将④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人数,可以求出它们的整数解:当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22又根据a23=a2-a3×2……⑤可知:a2>a3因此,符合条件的只有a2=6,a3=2。

相关文档
最新文档