高聚物结构与性能关系

合集下载

高聚物的结构与性能—聚合物的力学状态及其转变

高聚物的结构与性能—聚合物的力学状态及其转变

侧基的极性越强,数目越多,Tg越高,如:
CH2 CH
CH2CH
CH2CH
CH2CH
CH3
Cl
OH
CN
聚丙烯) -18
81
85
90
刚性侧基的体积越大,分子链的柔顺性越差,Tg越高,
如:
CH2 CH
CH2 CH
CH2CH
CH2CH
CH3
H3C C CH3
N
CH3
聚丙烯 Tg (oC) -18
率突变区,这两个突变区把热-机械曲线分为三个区域,分
别对应于三种不同的力学状态,三种状态的性能与分子运
动特征各有不同。
III
形 变I
II 温度
第七章 聚合物的结构与性能



形 变
I
III II
温度
在区域I,温度低,链段运动被冻结,只有侧基、链节、 链长、键角等的局部运动,因此聚合物在外力作用下的形 变小,具有虎克弹性行为:形变在瞬间完成,当外力除去 后,形变又立即恢复,表现为质硬而脆,这种力学状态与 无机玻璃相似,称为玻璃态。
Tm<Tf
Tm>Tf


高结晶度(>40%)
聚合物
Tg
温度
Tm
第七章 聚合物的结构与性能
7.5.3 力学状态的分子运动特点
聚合物的分子运动具有以下特点: (1)运动单元的多重性:
聚合物的分子运动可分小尺寸单元运动(即侧基、支链、 链节、链段等的运动)和大尺寸单元运动(即 整个分子运 动)。 (2)聚合物分子的运动是一个松弛过程:
CH2 CH
CH2-CH=CH-CH 2
CH3
CH3

第一章 高分子聚合物结构特点与性能

第一章  高分子聚合物结构特点与性能

第一章高分子聚合物结构特点和性能一、概念1.塑料:塑料是以高分子聚合物为原料,在一定温度和压力条件下可塑制成形的高分子材料。

2.高分子聚合物:由成千上万个结构相同的小分子单体通过加聚或缩聚反应形成的长链大分子。

例如:聚氯乙稀就是由氯乙烯(CH2=CHCl)单体通过加聚反应形成的长链大分子。

方括号内为高聚物的结构单元,也是其重复结构单元并简称为重复单元,也是也称为链节。

n代表重复单元数,又称为平均聚合度。

第一节聚合物分子的结构特点二、高分子合成反应高分子化合物一般是利用煤或石油中得到的有机小分子化合物作为单体,通过聚合反应而合成的。

具体的合成方法有加聚反应、缩聚反应等。

1. 加聚含有重键的单体分子,如乙烯、氯乙烯等,它们可以通过加成聚合反应得到聚合物。

在此反应过程中除了生成聚合物外,再没有任何其他产物生成,聚合物中包含了单体的全部原子。

这种反应可以在同一种物质的分子间进行(其反应产物称为均聚物),也可以在不同物质的分子间进行(其反应产物为共聚体)。

(2)缩聚反应含有双官能团或多官能团的单体分子,通过分子间官能团的缩合反应把单体分子聚合起来,同时生成水、醇、氨等小分子化合物,简称缩聚反应。

如聚酰胺是用已二胺和已二酸作为单体通过缩水聚合反应形成的长链高分子,同时形成水。

三、高分子物理结构1.高分子链的近程结构(1)高分子链结构单元的化学组成通常的合成高分子是由单体通过聚合反应连接而成的链状分子,称为高分子链,高分子链的重复结构单元数目称为聚合度,高分子链一般分为碳链高分子(-C-C-C),杂链高分子(C-C-O-C),元素有机与无机高分子(O-Si-O,侧基有无有机基团)等,高分子链的化学组成不同,高分子的化学和物理性能不同。

(2)高分子链结构单元的键接方式键接方式是结构单元在分子链中的连接方式。

在缩聚反应中结构单元的连接方式是固定的。

而在共聚物与均聚物中的键接方式比较复杂。

以氯乙烯为例,其结构单元在分子键中的键接方式可以有三种,即头-尾键接,尾-尾键接和头-头键接。

高分子化合物的合成和反应、结构与性能间的关系

高分子化合物的合成和反应、结构与性能间的关系
结构单元
重复单元
-C-O-CH2-CH2-O] nH O
结构单元
单体单元 ≠ 结构单元 ≠重复单元=链节 结论
重复单元≥结构单元
返回Biblioteka 聚合度(Degree of polymerization)
聚合度单个聚合物分子所含单体单元的数目。 是衡量高分子大小的一个指标。
有两种表示法:
以大分子链中的结构单元数目表示,记作
侧基(侧链、支链)
是由小分子氯乙烯通过双键打开连接而成的。小分子氯乙 烯称为单体。
返回
什么是单体?
聚 合 反 应 小 分 子 高 分 子
Polymerization
单 体
Monomer
单体 ——能够进行聚合反应,并构成高分子基本结构组成 单元的小分子。 *注:书P8 1.3.2 中(3)“原料”不准确
塑料
纤 维 性 质 和 用 途
以聚合物为基础,加入(或不加)各种助剂 和填料,经加工形成的塑性材料或刚性材料。
纤细而柔软的丝状物,长度至少为直径的 100倍。 具有可逆形变的高弹性材料。 涂布于物体表面能成坚韧的薄膜、起装饰和 保护作用的聚合物材料 能通过粘合的方法将两种以上的物体连接在 一起的聚合物材料
或少一个链节不会影响其基本性能时,称为高分子。
返回
1.2
高分子的分类
(1)根据高分子主链结构分类
碳链高分子:主链(链原子)完全由C原子组成。 主链元素 (链原子) 组成 杂链高分子:链原子除C外,还含O,N,S等杂原子。 元素有机高分子:链原子由Si,B,Al,O,N,S,P等杂原子组 成。 无机高分子:无论在主链还是侧链上均没有碳元素。 如玻璃、陶瓷等。不在本课程讨论之列。
[ CH2 CH ]n [ CH2 Cl CH ]m O C CH3 O

高分子的结构和性能的关系

高分子的结构和性能的关系

高分子的结构和性能的关系高分子的结构和性能的关系高分子化合物分子的大小对化学性质影响很小,一个官能团,不管它在小分子中或大分子中,都会起反应。

大分子与小分子的不同,主要在于它的物理性质,而高分子之所以能用作材料,也正是由于这些物理性质。

下面简要讨论高分子的结构与物理性能的关系。

一、高分子的两种基本结构及其性能特点高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。

第二种是体型结构,具有这种结构的高分子化合物称为体型高分子化合物。

此外,有些高分子是带有支链的,称为支链高分子,也属于线型结构范畴。

有些高分子虽然分子链间有交联,但交联较少,这种结构称为网状结构,属体型结构范畴。

在线型结构(包括带有支链的)高分子物质中有独立的大分子存在,这类高聚物的溶剂中或在加热熔融状态下,大分子可以彼此分离开来。

而在体形结构(分子链间大量交联的)的高分子物质中则没有独立的大分子存在,因而也没有相对分子质量的意义,只有交联度的意义。

交联很少的网状结构高分子物质也可能被分离的大分子存在(犹如一张张"鱼网"仍可以分开一样)。

应该指出,上述两种基本结构实际上是对高分子的分子模型的直观模拟,而分子的真实精细结构除了少数(如定向聚合物)外,一般并不清楚。

两种不同的结构,表现出相反的性能。

线型结构(包括支链结构)高聚物由于有独立的分子存在,故具有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。

体型结构高聚物由于没有独立大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。

因此从结构上看,橡胶只能是线型结构或交联很少的网状结构的高分子,纤维也只能是线型的高分子,而塑料则两种结构的高分子都有。

二、高分子化合物的聚集状态高聚物的性能不仅与高分子的相对分子质量和分子结构有关,也和分子间的互相关系,即聚集状态有关。

同属线型结构的高聚物,有的具有高弹性(如天然橡胶),有的则表现出很坚硬(如聚苯乙烯),就是由于它们的聚集状态不同的缘故。

第一篇第一章聚合物结构与性能

第一篇第一章聚合物结构与性能

2 粘度法 溶液的粘度一方面与聚合物的分子量有关,却也决定 于聚合物分子的结构、形态和在溶剂中的扩散程度。因此 该法为相对方法。 一、粘度的定义 流体流动时,可以设想有无数个流动的液层,由于液 体分子间相互摩擦力的存在,各液层的流动速度不同。单 位面积液体的粘滞阻力为ζ,切变速度为ξ,那么粘度为 η= ζ/ ξ 即流速梯度为1秒-1、面积为1厘米2的两层液体间的内摩 擦力。其单位为泊(厘泊): 1P=100cP=1gs-1cm-1=0.1kg s-1m-1 =0.98(Ns2m-1) s-1m-1 =0.98Nm-2s=0.98Pa·s≈1Pa·s 以上所定义的粘度是绝对粘度。对于高分子溶液,我们感 兴趣的是高分子进入溶液后引起的粘度变化,一般采用以 下几种参数:
1
端基分析 聚合物的化学结构明确,每个高分子链末端有一个或 x个可以用化学方法分析的基团,那么一定重量试样中 端基的数目就是分子链数目的x倍。所以从化学分析的 结果就可以计算分子量。 M= xw/n w为试样重量,n为被分析端基的摩尔数。 注意: • 该法要求聚合物结构必须明确。 • 分子量越大,单位重量试样中可分析基团的数目越少, 分析误差越大,故此法只适于分析分子量较小的聚合物, 可分析分子量的上限为2×104左右。 • 一般用于缩聚物。加聚反应产物分子量较大,且一般无 可供化学分析的基团,应用较少。 • 还可用于分析聚合物的支化情况,但要与其他方法配合 才行。 • 数均分子量。
第一篇 聚合物加工的理论基础
• • • • 聚合物的结构 聚合物的流变性质(聚合物的分子运动) 材料的力学性能 聚合物加工过程的物理和化学变化
第一章 聚合物的构
• 聚合物的结构 • 高分子的链结构与高分子的柔顺性 • 高分子的聚集态结构
第一章 聚合物的结构

高聚物的结构与性能

高聚物的结构与性能

9/24/2019
32
1.相对分子质量
聚合物的性能决定于平均相对分子量和相对分子量 分布。
除少数特殊用途(涂料、胶黏剂等)使用低相对分 子量的聚合物外,多数对材料力学性能要求较高的用途 都需要聚合物具有较高的相对分子质量。越高越好?
例:聚乙烯:聚合度为1~2时呈气态;聚合度为3~10时 为液体;聚合度为10~100时为黏性、力学性能极差的蜡 状固体;聚合度超过1000时,开始表现塑料的韧性、强度 和成膜特性,并随着聚合度的增加而增加。
5.共聚物序列结构
共聚物性能倾向于组分均聚物性能互补。
不同序列结构的特点: • 无规、交替——
改变了结构单元的相互作用状况, 因此其性能与相应的均聚物有很大差别 • 嵌段、接枝—均聚物有一定联系
25
① 无规共聚
两种高分子无规则地平行联结 — A—B—A—A—B—A—A —A—B—B—A— B— 由于两种高分子平行无规则地排列改变了结构单元的相
➢ 自由结合:无键角的限制,也不考虑空间位阻对移 动的影响(理想的)
39
小分子内旋转: 例如最简单的乙烷:如果C—C发生内旋转,则分子内与C
相连的H的相对位置就要发生变化: 分子内的旋转受
阻,使得高分子链在
空间可能有的构象数
交叉式 反式位能最低
叠同式 顺式位能最高
反式,氢原子间距离最远(0.25nm),斥 力最小;顺式,氢原子间距离最小 (0.228nm),斥力最大;氢原子半径 0.12nm。
远远小于自由内旋转 的情况。受阻程度越 大,可能有构象数就 越少。
40
影响旋转的因素
CH3-CH3分子旋转的位垒为11.7kJ·mol-1
◆ 若氢被甲基或卤素(极性、位阻) 取代,则位垒增大,取 代的基团越多,位垒越大;

高分子聚合物及其结构与性能关系的三个层次

高分子聚合物及其结构与性能关系的三个层次

高分子聚合物及其结构与性能关系的三个层次姓名:刘灵芝学号:2011020214 高分子聚合物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达104~106)化合物。

例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。

由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。

n代表重复单元数,又称聚合度,聚合度是衡量高分子聚合物的重要指标。

聚合度很低的(1~100)的聚合物称为低聚物,只有当分子量高达104~106(如塑料、橡胶、纤维等)才称为高分子聚合物。

由一种单体聚合而成的聚合物称为均聚物,如上述的聚氯乙烯、聚乙烯等。

由两种以上单体共聚而成的聚合物则称为共聚物,如氯乙烯—醋酸乙烯共聚物等。

1. 聚合物的分类聚合物的分类可以从不同的角度对聚合物进行分类,如从单体来源、合成方法、最终用途、加热行为、聚合物结构等。

(1)按分子主链的元素结构,可将聚合物分为碳链、杂链和元素有机三类。

碳链聚合物指大分子主链完全由碳原子组成。

杂链聚合物指大分子主链中除碳原子外,还有氧、氮、硫等杂原子。

元素有机聚合物指大分子主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、磷等原子组成,但侧基却由有机基团组成,如甲基、乙基、乙烯基等。

有机硅橡胶就是典型的例子。

元素有机又称杂链的半有机高分子,如果主链和侧基均无碳原子,则成为无机高分子。

(2)按材料的性质和用途分类,可将高聚物分为塑料、橡胶和纤维。

橡胶通常是一类线型柔顺高分子聚合物,分子间次价力小,具有典型的高弹性,在很小的作用力下,能产生很大的形变,外力除去后,能恢复原状。

纤维通常是线性结晶聚合物,平均分子量较橡胶和塑料低,纤维不易形变,伸长率小,弹性模量和抗张强度都很高。

塑料通常是以合成或天然聚合物为主要成分,辅以填充剂、增塑剂和其他助剂在一定温度和压力下加工成型的材料或制品。

高分子聚合物的结构特点与性能

高分子聚合物的结构特点与性能
第一章 高分子聚合物的结构特点与性能
1.1 高分子聚合物的结构特点 (研究高分子结构-性能关 系)
1.2 聚合物的热力学性能(研究形变-温度的关系) 1.3 聚合物的流变学性质(研究变形-流动的关系)研究 高分子聚合物的结构的意义 1.4 聚合物熔体在成型过程中的流动状态高分子材料定义 (研究流动方程) 1.5 聚合物成型过程中的物理化学变化高分子材料的结构
链节:大分子链中的重复结构单元叫链节, CH2一CHCl 聚合度:大分子链中链节的重复次数称为聚合度。n即为聚合度。 大分子链长:聚合度越高,分子链越长, 链节数越多。聚合度反映了大分子链的长短
第一章 高分子聚合物的结构特点与性能
1.1高分子聚合物的结构特点(研究高分子结构-性能关系 )
⑴高分子链结构特点与性能:
第一章 高分子聚合物的结构特点与性能
1.2.2聚合物的热力学性能
1.非晶态高聚物的热力学性能
(2)三种力学状态 ①玻璃态:当θb<θ<θg时,高 聚物呈玻璃态符合虎克定律;是塑料和 纤维使用状态。 ②高弹态:θg<θ<θf时 从玻璃态转入了能自由运动的高弹 态,是橡胶的使用状态 ③粘流态:θf<θ<θd时 从而使高聚物成为流动的粘液,进 行成型加工
第一章 高分子聚合物的结构特点与性能
⑵高聚物的聚集态结构特点
⒉)高聚物的聚集态结构 ②链状结构与聚集态结构关系: 线型高聚物:按结晶度可分为晶态和部分晶态两类, 体型高聚物:只能为非晶态(玻璃态) ③结晶度:用来表示聚合物中结晶区域所占的比例,聚合物结晶度 变化的范围很宽,一般从30%~80% ; 影响聚合物结晶的因素:内部结构的规整性(主链上带有的侧基体 积小,对称性高);外部的浓度、溶剂、温度等。结构越规整,越容易 结晶,反之则越不容易,成为无定型聚合物。

聚 合 物 的 结 构 与 性 能

聚 合 物 的 结 构 与 性 能

共聚物结构中的序列问题

为描述共聚物的序列结构,常用的参数有各单体单 元的平均序列长度和嵌段数R。例如下面共聚物分 子: A B AA BBB A BB AA BBBB AAA B 其中A单体9个,A序列为5段,B单体11个,B序列 为5段(短划表示序列)。 嵌段R的含义是指在100个单体单元中出现的各种嵌 段的总和。R与平均序列长度的关系是: —— —— R 200/( LA n LB n) 上例中R=50;当R为100时,表明是交替共聚;对 于嵌段共聚物,当分子无限长时,R的极限为0;无 规共聚物的R介于这两者之间。因此——R愈大愈富 有交替性,R愈小愈富有嵌段性。
这种由结构单元间的联结方式不同所产生的异构体称为 顺序异构体。
实验证明,在自由基或离子型聚合的产物中,大多数是 头——尾键接的。
支化与交联



线形高聚物可以在适当溶剂中溶解,加热可以熔 融,易于加工成型; 支化对物理机械性能的影响有时相当显著: 支化程度越高,支链结构越复杂,影响高分子材 料的使用性能越大;支化点密度或两相临支化点 之间的链的平均分子量来表示支化的程度,称为 支化度。 高分子链之间通过支链联结成一个三维空间网型 大分子时即成为交联结构。所谓交联度,通常用 相邻两个交联点之间的链的平均分子量 来表示。 _ 交联度越大, 越小。 Mc
第 四 章
聚合物的结构
聚 合 物 的 结 构 与 性 能
聚合物是由许多单个的高分子链聚集而成,因而其结构有 两方面的含义:(1)单个高分子链的结构;(2)许多高分子 链聚在一起表现出来的聚集态结构。可分为以下几个层次: 聚 合 物 的 结 构 一级结构 近程结构 二级结构 远程结构 结构单元的化学组成、连接顺序、 立体构型,以及支化、交联等 高分子链的形态(构象)以及 高分子的大小(分子量)

高聚物结构与性能

高聚物结构与性能
(2)固相开环聚合制得聚氯化磷腈
梯形聚合物
分子主链不是单链而是像“梯子”或“双股螺旋线”。
碳纤维
H2
H2
H2
C
C
C
CH
CH
CH
H2
H2
H2
C
C
C
CH
CH
CH
H
H
H
C
C
C
C
C
C
C
C
C
N
N
N
C
C
C
N
N
N
C
C
C
N
N
N
受热发生 环化芳构 化
高温处理 脱氢
端基--聚甲醛
聚甲醛的热降解
CH2OCH2OCH2OH
Good formability
SBS
Styrene-Butadiene-Styrene
-CH2-CH=CH-CH2-
Hard
Soft
Hard
Application of SBS
Poly(styrene-butadiene-styrene), or SBS, is a hard rubber, which is used for things like the soles of shoes, tire treads, and other places where durability is important.
重点及要求:掌握单个高分子链的基本化学结构及构 造,高分子链的构型等;了解当分子链的组成、构型、 构造不同时,高分子材料的性能会有很大差别。
一、二次结构 – 组成、构型和构象
Polymer chain structure 高分子链结构

高聚物结构与性能的关系

高聚物结构与性能的关系

高聚物结构与性能的关系;1.高聚物的结构;按研究单元的不同分类,高聚物结构可分为两大类:一;1.1高聚物链结构;高聚物的链结构包括近程结构和远程结构;高聚物链结构是决定高聚物基本性质的主要因素,各种;1.2高聚物的聚集态结构;高聚物的分子聚集态结构包括晶态、非晶态、液晶态、;因此对高聚物材料来说,链结构只是间接影响其性能,;2.高聚物结构与力学性能的关系;2高聚物结构与性能的关系1. 高聚物的结构按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。

对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。

1.1 高聚物链结构高聚物的链结构包括近程结构和远程结构。

近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。

高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。

例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。

1.2 高聚物的聚集态结构高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。

即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。

例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。

因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。

研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。

第1章 高分子聚合物结构特点与性能

第1章  高分子聚合物结构特点与性能

牛顿流体的流变方程式为 非牛顿流体。

不服从牛顿流动规律的流动称为非牛顿型流动,具有这种流动行为的液体称为
K n 1 a a K n 1
1.3 聚合物的流变学性质
1.3.2 假塑性液体的流变学性质及其影响因素 1.假塑性液体的流变学性质
当n<1时,这种黏性液体称为假塑性液体。
对于假塑性流体而言,当流体处于中等剪切速率区域时,流体变形和流动所 需的切应力随剪切速率而变化,并呈指数规律增大;流体的表观黏度也随剪切 速率而变化,呈指数规律减小。这种现象称为假塑性液体的“剪切稀化”。
1.3 聚合物的流变学性质
1.3.2 假塑性液体的流变学性质及其影响因素 2.影响假塑性液体流变性的主要因素 (1) 聚合物本身的影响 支链程度越大,黏度就越高,则熔体的流动性就越低。 聚合物的相对分子质量较大时,宏观上表现为熔体的表观黏度加大。 聚合物中的相对分子质量分布越宽,聚合物的熔体黏度就越小,熔体流动性就 越好,但成型的塑件性能并不理想。 尽量使用相对分子质量分布较窄的材料。
1.4 聚合物成型过程中的物理化学变化
1.4.1 聚合物在成型过程中的物理变化 1.聚合物的结晶
聚合物一旦发生结晶,则其性能也将随之产生相应变化:
• • • • • • • • 聚合物密度增加; 使聚合物的拉伸强度增大; 冲击强度降低; 弹性模量变小; 聚合物的软化温度和热变形温度提高; 使成型的塑件脆性加大; 表面粗糙度值增大; 塑件的透明度降低甚至丧失。
1.1.2 高聚物的结构特点
图1.1 高聚物的结构示意图
1.1 高分子聚合物分子的结构特点
1.1.2 高聚物的结构特点 1.高分子链结构特点 2.高聚物的聚集态结构特点 (1)聚集态结构的复杂性 (2)具有交联网络结构

高聚物的结构与性能

高聚物的结构与性能

高分子的聚集态结构也称三级结构,或超分子结构,它 是指聚合物内分子链的排列与堆砌结构。
虽然高分子的链结构对高分子材料性能有显著影响,但由 于聚合物是有许多高分子链聚集而成,有时即使相同链结构的 同一种聚合物,在不同加工成型条件下,也会产生不同的聚集 态,所得制品的性能也会截然不同,因此聚合物的聚集态结构 对聚合物材料性能的影响比高分子链结构更直接、更重要。
i+1
i
高分子链的运动是以链段为单元的,是蠕动。
高分子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。
高分子链的构象
构象是由分子内热运动引起的物理现象,是不断改变的, 具有统计性质。因此讲高分子链取某种构象是指的是它取 这种构象的能够通过内旋转作用改变其构象的性能称为高分 子链的柔顺性。 高分子链能形成的构象数越多,柔顺性越大。 由于分子内旋转是导致分子链柔顺性的根本原因,而高 分子链的内旋转又主要受其分子结构的制约,因而分子链的 柔顺性与其分子结构密切相关。分子结构对柔顺性的影响主 要表现在以下几方面:
CH=CH-CH=CH-CH=CH 聚乙炔 聚苯
因此,在主链中引入不能内旋转的芳环、芳杂环等环状 结构,可提高分子链的刚性。
(2) 侧基: 侧基的极性越大,极性基团数目越多,相互作用越强, 单键内旋转越困难,分子链柔顺性越差。如:
CH2CH2 柔顺性:聚乙烯 >
CH2CH2CH2CHCH2 Cl 氯化聚乙烯 >
研究掌握聚合物的聚集态结构与性能的关系,对选择合适的 加工成型条件、改进材料的性能,制备具有预期性能的聚合物 材料具有重要意义。 聚合物的聚集态结构主要包括晶态结构、非晶态结构、液 晶态结构和取向态结构。

聚合物结构与性能1

聚合物结构与性能1

2-3 氢键

分子间或分子内均可形成,是极性很强的X—H键上的氢 原子与另外一个键上的电负性很大的原子Y上的孤对电子 相互吸引而形成的一种键(X—H…Y),具有方向性和饱 和性。

氢键也可归入范德华力; 氢键的键能一般在13~29kJ/mol; 键长为:2.4~3.2 埃。

聚酰胺、聚胺酯和生物大分子中氢键起着重要的作用。

当 r < r0 时,分子间作用力呈现为完全的斥力。 范德华力作用能为 2—8 kJ/mol,比化学键小1~2个数量级, 但其平衡距离较长。
原子和基团的范德华半径(埃)
H 1.2 CH3 2.0 C6H6 1.85 N 1.5 P 1.9 O 1.40 S 1.85 F 1.35 Cl 1.80
n
这类高聚物不易水解,易加工,易燃烧,易老化, 耐热性较差。
2. 杂链高分子
分子主链由两种或两种以上原子如:O,N, S,C等以共价键相连的高分子,如:
CH2
O
n
聚甲醛
O O R O C R'
O C n 聚酯
O NH R NH C R'
O C 聚氨酯 n
CH3 O C CH3
O
O S
O
O
聚合物的结构和性能
Structures and Properties of Polymers
教材:
《聚合物的结构和性能》马德柱 等编,科学出版
社,1999年,第二版
参考书:
《高分子物理》何曼君 等编,复旦大学出版社, 1990年修订版
《高聚物的结构与性能》,陈平、唐传林 编,化
学工业出版社,2005年7月,第一版 《高分子物理》刘凤岐、汤心颐编,高等教育出 版社,2004年第二版

聚合物结构与性能的关系研究

聚合物结构与性能的关系研究

聚合物结构与性能的关系研究1. 引言聚合物是由单体分子经过化学反应而成的高分子化合物,具有重要的应用价值。

聚合物的性能随其分子结构的不同而有所差别,因此研究聚合物结构与性能的关系具有重要意义。

本文将从聚合物的分子结构和性能入手,探讨这两者之间的关系。

2. 分子结构对聚合物性能的影响聚合物的分子结构是指其单体分子排列的方式和化学键的类型以及构型等。

不同的分子结构会导致聚合物具有不同的性质和应用价值。

具体地说,聚合物的分子结构对其熔点、热稳定性、耐热性、硬度、强度、弹性和透明度等性能产生显著的影响。

2.1 聚合物的熔点聚合物的熔点是指其从固态转为液态时所需要的温度。

对于一般聚合物材料而言,其熔点与其分子结构的紧密程度有关。

例如,高聚物分子链段间的大分子相互作用力较强,导致其分子结构较紧密,因此其熔点较高。

相反地,低聚物之间的相对作用力弱,链段的排列较为松散,分子链间距离较宽,熔点则较低。

2.2 聚合物的热稳定性和耐热性聚合物的热稳定性和耐热性与其分子结构的稳定性有关。

聚合物分子内的键的结构确定了分子的分子结构形态,特别是分子的空间构型和疏密程度等,导致分子结构的稳定性不同,从而决定了聚合物的热稳定性和耐热性。

2.3 聚合物的硬度、强度和弹性聚合物的硬度、强度和弹性与其分子结构的分子链的直链长度、分支分布、交叉联结等有关。

分子链的直链长度越长,分支分布越少,交叉联结越多,其相互作用力相互增加,分子层次增强,硬度和强度就越高,聚合物的弹性就越小。

2.4 聚合物的透明度聚合物的透明度与其分子结构的规整程度和分子链的取向有关。

对于线性聚合物,如果其分子链排列整齐,分子链间距离相等,分子链之间能够形成大的颗粒结构并能吸收一定波长范围的光,从而导致聚合物的透明度降低。

3. 聚合物性能对分子结构的要求聚合物的性能对其分子结构的稳定性、空间结构和化学键的响应等都有较高的要求。

如何实现有效的聚合物结构设计,是提高聚合物材料品质和减少污染的重要途径。

高聚物的结构与性能—聚合物的力学松弛

高聚物的结构与性能—聚合物的力学松弛
不能回复,是不可逆形变。如下图:
e3
t1 t2
t
粘性流动示意图
第七章 聚合物的结构与性能
当聚合物受力时,以上三种形变是同时发生的,其综合结 果如下图:
e
e1
e2+e3
e2
e1
t1
t2
பைடு நூலகம்
e3 t
第七章 聚合物的结构与性能
(2)应力松弛
应力松弛是指在恒定温度和形变保持不变的情况下, 聚合物内部的应力岁时间增加而逐渐衰减的现象。如用塑 料绳绑捆东西,时间久了会变松。这是由于当聚合物被拉 长时,高分子构象处于不平衡状态,它会通过链段沿外力 方向的运动来减少或消除内部应力,以逐渐过度到平衡态 构象。
e1
t1
t2
t
普弹形变示意图
第七章 聚合物的结构与性能
(ii)高弹形变(e2): 聚合物受力时,高分子链通过链段运动产生的形变,
形变量比普弹形变大得多,但不是瞬间完成,形变与时间 相关。当外力除去后,高弹形变逐渐回复。如下图:
e2
t1
t2
t
高弹形变示意图
第七章 聚合物的结构与性能
(iii)粘性流动(e3): 受力时发生分子链的相对位移,外力除去后粘性流动
第七章 聚合物的结构与性能
(1)蠕变
在恒温下施加较小的恒定外力时,材料的形变随时间 而逐渐增大的力学松弛现象。如挂东西的塑料绳慢慢变长。
蠕变过程包括三种形变:
(i)普弹形变(e1):
聚合物受力时,瞬时发生的 高分子链的键长、键角变化引起 的形变,形变量较小,服从虎克 定律,当外力除去时,普弹形变 立刻完全回复。如右图:
第七章 聚合物的结构与性能
7.12 聚合物的力学松弛--粘弹性

高聚物的结构与性能讲述

高聚物的结构与性能讲述
丁二烯用钒或醇烯催化剂所制得的聚丁二烯橡胶,主要为反 式构型,分子链的结构比较规整,分子间的距离较小,容易结 晶,在室温下是弹性很差的塑料。
21
例:异戊二烯
异戊二烯采用定向聚合,选择不同的催化系体系可制备 高顺式1,4或高反式1,4聚异戊二烯。
高顺式1,4含量的聚异戊二烯的结构与天然橡胶(巴西橡 胶,含98%顺式1,4-聚异戊二烯)极为接近,故称合成天然 橡胶。由于分子间距离大,不易结晶,室温下柔软弹性好。
例如:3-甲基丁烯的阳离子聚合反应,往往发生叔 碳原子上氢原子的重排反应。生成不带氢原子的季碳原 子,使大分子链趋于稳定。
结构反常的结构单元往往成为聚合物的活性部位或 薄弱环节,在环境条件较为苛刻时聚合物的降解反应往 往从这些部位开始。
20
3.几何异构——顺反异构
例:丁二烯 丁二烯用钴、镍和钛催化系统可制得顺式构型含量大于 94%的聚丁二烯,称作顺丁橡胶;由于分子链与分子链之间 的距离较大,不易结晶,在室温下是一种弹性很好的橡胶。
几何排列 构(高结构级):织态结构。
6
高分子的二级和三级结构示意图 二级结构 三级结构
7
三.分子链的近程结构
结构单元的:化学组成
连接方式
结构异构
立体异构
共聚物的序列结构
聚合物的近程结构,即结构单元的化学组成及其空间结 构是决定大分子链远程结构和凝聚态结构、并最终决定聚合 物性能最重要的因素。
2020/10/6
4
二.高聚物结构的层次
结构是组成高分子的不同尺度的结构单 元在空间的相对排列。
近程 结构
远程 结构
凝聚态 结构
2020/10/6
5
近程结构(化学结构、一级结构):是构成聚合物

【高聚物的结构与性能课件】高分子间相互作用的特点及意义

【高聚物的结构与性能课件】高分子间相互作用的特点及意义
Ffdw = 200nN
H ≈ 10
−19
J 时
干型高分子粘合剂的仿生探索设计能获得类似于刚毛的粘合力
几种可能的纳制造、微制造技术
1. 纳模塑法(nanomolding) 2. 反应性等离子体干刻蚀法 (dry etching using reactive plasmas) 3. 静电诱导刻蚀法 (electrostatic lithography) 4. 软刻蚀法(soft lithography)
高分子间作用力与高聚物的使用性能
CED < 300 J / cm
非极性高聚物: 色散力为主,较弱 分子链的柔顺性较好 例如: PBu,NR 例外:PE(易结晶而失去弹性)
3
可用作橡胶
高分子间作用力与高聚物的使用性能
CED > 400 J / cm
3
分子链上有强极性基团,或能形成氢键 分子间的作用力大 较好的机械强度和耐热性 分子链结构规整,易于结晶、取向,强度很高 例如: PET, PCN
1. 2. 耦合效应 (柔顺主链的热运动干扰液晶基元的有序排列) 聚合困难 (如:含有硝基等官能团的单体) 3. 对外界响应滞后 (大分子运动缓慢,只有当温度高于它的玻璃化温度时,其响应 才能达到秒的数量级,这显然与实际要求相差甚远)
氢键诱导侧链液晶高分子:
1. 去耦作用(柔顺主链与液晶基元之间:氢键) 2. 自组装,不存在聚合(含有硝基等官能团的单体与高 分子混合) 3. 对外界响应不再滞后(功能小分子对外界响应)
特殊的高聚物溶解过程
先溶胀后溶解
特殊的高聚物溶解过程—先溶胀后溶解
a. 溶剂分子渗透到高分子线团里,高聚物胀大, 就好象链单元间作用着相斥力 (溶剂分子的单向渗透,整个高分子链并没有松 动) b. 溶剂分子-链单元间的作用逐步克服链单元间 的吸引力,直至克服高分子间的吸引力,拆散高 分子—如同揭下胶布 c. 溶解度与链的柔性:聚乙烯醇+水 溶解 纤维素+水 不溶解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

++
++ ++
<0℃
265℃ 215℃
橡胶
纤维、橡胶 纤维、塑料
聚已二酸乙二酯
聚对苯二甲酸乙二酯

- -
++
++ +

- ++
++
++ ++
54℃
265℃ 20℃
纤维
纤维 橡胶
天 然
橡 胶
高聚物结构与性能的关系
三、高分子材料的结构与性能 高分子材料性能与结构、合成、成型的关系
高分子材料性能
结构
链结构
聚集态结构
高分子合成制备
高分子材料成型
高聚物结构与性能的关系
常见高聚物的结构与性能及用途 高 聚 物 吸引力 对称性 柔顺性 结晶性 软化点 用 途


烯 乙 烯
- + +
++ + ++
+ + +
++ - ++
115℃ 130℃ 185℃
纤维、塑料 纤维、塑料 纤维、塑料
聚 氯
聚偏二氯乙烯
聚 丙 烯 腈
聚丙烯酸甲酯 聚 乙 烯 醇
++
- ++

+ +

+ -

- ++
220℃
10℃ 150℃
纤维
塑料、橡胶 纤维
聚 异 丁 烯
聚已二酰已二胺 聚已内酰胺

++ ++
++
++ ++

+ +
高聚物结构与性能的关系
二、高分子链内和高分子间的相互作用
作用的原因:质点间的吸引与排斥
(a)
非晶区
结晶区
(b) 高分子链形态示意
(a)为形象化串珠 (b)为热运动高分子链
高聚物聚集态
高聚物结构与性能的关系
作用的结果:
一定条件(T、P) 高分子内、间排斥与吸引达到平衡
组成的高聚物大分子、原子空间排列一定 高聚物的聚集态呈现静止可稳定状态 高聚物的聚集态结构与性能一定
项目1
课件一
绪论----高聚物结构与性能关系
高聚物结构与性能的关系
一、高分子物理的研究范畴 高分子物理主要研究高分子结构与性能的关系





聚集态结构
变化规律
影响
性能 功能
提供使用高分子材料原理的知识
提供高分子设计、合成的信息
高聚物结构与性能的关系
从时间上看高分子物理的发展情况:
不同高聚物结构不同、性能不同 同种高聚物形成不材料、性能不同 指导高分子材料的成型加工技术 20世纪 促进高分子材料潜在性能利用 促进高分子工业的发展 21世纪 研究结构多变性而赋予的多性能
相关文档
最新文档