七年级数学上册 代数式教案1 北师大版
代数式(第1课时)七年级数学上册课件24张(北师大版)
(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?
(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
二、新知探究
跟踪练习3
现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体质量
(千克)与人体身高(米)平方的商.对于成年人来说,身体质量指数在
20~25之间,体重适中;身体质量指数低于18,体重过轻;身体质量指数
高于30,体重超重.
(1)设一个人的体重为w(千克),身高为h(米),求他的身体质量指数.
四、当堂练习
3.一个两位数,十位上的数字为a,个位上的数字为b,这个两
10a+b
位数可以表示为________.
4.对式子“0.6a”可以解释为一件商品的原价为a元,若按原价的6
折出售,这件商品现在的售价是0.6a元.请你对“0.6a”再赋予一
个含义: 练习本每本0.6元,某人买了a本,共付款0.6a元(答案不唯一) .
例3:(1)代数式(1+8%)x可以表示什么?
(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义。
解:答案不唯一
(1)(1+8%)x可以表示比 x多8%的数;
(2)一件商品进价是100元,要使这件商品的利润率到达8%,售价应为
(1+8%)×100=108(元).
四、当堂练习
2
1
2 5
所以x本课本摞在一起高出地面的距离为(85+0.5x)cm.
北师大版数学七年级上册《代数式求值》教学设计1
北师大版数学七年级上册《代数式求值》教学设计1一. 教材分析《代数式求值》是北师大版数学七年级上册的一章内容。
本章主要让学生掌握代数式的求值方法,培养学生运用代数知识解决实际问题的能力。
本章内容较为抽象,需要学生具备一定的逻辑思维能力。
二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备一定的数学运算能力。
但是,对于代数式的求值,学生可能还存在一定的困难,因此需要教师在教学中进行引导和讲解。
三. 教学目标1.让学生掌握代数式的求值方法。
2.培养学生运用代数知识解决实际问题的能力。
3.培养学生合作交流、归纳总结的能力。
四. 教学重难点1.重点:代数式的求值方法。
2.难点:灵活运用代数式求值方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入代数式求值的概念,激发学生兴趣。
2.合作学习法:分组讨论,引导学生主动参与课堂,培养团队协作能力。
3.归纳总结法:引导学生自主总结代数式求值的方法,提高学生的归纳能力。
六. 教学准备1.PPT课件:制作代数式求值的PPT课件,包含例题、练习题等。
2.教学素材:准备一些与生活实际相关的问题,用于引入和巩固代数式求值的应用。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入代数式求值的概念。
引导学生思考:如何快速准确地计算代数式的值?2.呈现(10分钟)展示PPT课件,讲解代数式求值的基本方法。
通过PPT课件,让学生了解代数式求值的方法和步骤。
3.操练(10分钟)分组讨论,让学生互相练习代数式求值。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对每组学生的练习结果,进行讲解和分析。
让学生理解代数式求值的关键点。
5.拓展(10分钟)利用生活实际问题,让学生运用代数式求值的方法解决问题。
培养学生的应用能力。
6.小结(5分钟)引导学生自主总结代数式求值的方法和步骤。
提高学生的归纳能力。
7.家庭作业(5分钟)布置一些代数式求值的练习题,让学生课后巩固所学知识。
3.1 代数式(教案)北师大版(2024)数学七年级上册
第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
北师大版数学七年级上册3.2 第1课时 代数式1教案与反思
3.2 代数式满招损,谦受益。
《尚书》怀辰学校陈海峰组长路漫漫其修远兮,吾将上下而求索。
屈原《离骚》江南学校李友峰祸兮福之所倚,福兮祸之所伏。
《老子·五十八章》涵亚学校陈冠宇第1课时代数式1.在具体情境中,进一步理解字母表示数的意义.2.能解释一些简单代数式的实际背景或几何意义.一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方形的边长为a,则正方形的面积是,体积是W.(2)设n表示一个数,则它的相反数是;(3)铅笔的单价是x 元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是 元.(4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为 千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.二、合作探究探究点一:代数式的识别有下列式子:x 2,m -n >1,p +q ,12ab ,s =πR 2,2016,代数式有( ) A.3个 B.4个 C.5个 D.6个解析:代数式是用运算符号把数和字母连接而成的式子,m -n >1是用不等号“>”连接而成的式子、s =πR 2是用等号“=”连接而成的式子,它们都不是代数式.而x 2,p +q ,12ab ,2016都是代数式.故选B. 方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.探究点二:列代数式用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和;(4)x 与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)是先平方再求和,即x 2+22;(2)中是先求和再平,即(x +2)2;(3)中是先x 的平方再求和,即x 2+2;(4)是先2的平方再求和,即x +22.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2;(4)x +4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.探究点三:代数式的意义下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).解析:解释代数式的意义,可以从两个方面入手,一是从母表示数的角度考虑;二是可以联系生活实际来举例说.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背赋予其中字母一定的实际意义加以描述.探究点四根据实际问题列代数式用代数式表示下列各式:(1)王明同学买本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本 练习册花n 2元,再根据买了m 本练习册,即可列出式.(2)根据正方体棱长为a 和表面积公式体积公式列出式子.:(1)∵买2本练习册花了n 元,∴1本练习册花f (n,2)元,∴买m 本练习册要花12mn 元; (2)∵正方体的棱长为a ,∴它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键. 三、板书设计教学过程中,应拓展学生的思,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
北师大版七年级数学代数式教案
代数式〖教学目的〗〖知识与技能目标:〗使学生认识字母表示数的意义,了解字母表示数是数学的一大进步。
〖过程与方法:〗了解代数式的概念,使学生能说出一个代数式所表示的数量关系。
〖情感态度与价值观:〗通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力,通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
〖教学重点、难点:〗重点:用字母表示数的意义难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
〖教学方法:〗引导发现法〖教具准备:〗尺、小黑板。
〖教学过程:〗Ⅰ.复习,引入新课1.在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(1)加法交换律 a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律 (a+b)+c=a+(b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+acⅡ.讲授新课代数式:例1 填空:(1)每包书有12册,n包书有__________册;(2)温度由t℃下降到2℃后是_________℃;(3)棱长是a厘米的正方体的体积是_____立方厘米;(4)产量由m千克增长10%,就达到_______千克例2 说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b)2(3) 的意义是c除以ab的商; (4)a- 的意义是a减去的差;(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等例3 用代数式表示:(1)m与n的和除以10的商;(2)m与5n的差的平方;(3)x的2倍与y的和;(4)ν的立方与t的3倍的积Ⅲ.做一做1填空:(1)n箱苹果重p千克,每箱重_____千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;(3)底为a,高为h的三角形面积是______;(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____ 2说出下列代数式的意义:(投影)(1)2a-3c; (2) ; (3)ab+1; (4)a2-b23用代数式表示:(投影)(1)x与y的和;(2)x的平方与y的立方的差;(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和Ⅳ.课时小结1本节课学习了哪些内容?2用字母表示数的意义是什么?3什么叫代数式?Ⅴ.课后作业题后习题〖板书设计:〗代数式。
北师大版(2024新版)七年级数学上册教案:3.1 课时3 代数式的值
3.1 课时3 代数式的值一、教学目标1.在代数式的求值过程中,初步感受函数的对应思想。
2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
二、教学重点难点重点:当字母取具体数时,对应的代数式的值的求法及规范书写格式。
难点:会正确地求出代数式的值.感受这种对应关系。
三、课堂结构设计回顾旧知---创设情境,探求新知---即时训练,巩固新知-------练习交流,巩固提高-------总结反思,感悟收获。
四、教学过程(一)回顾旧知回顾上节课所学习代数式和代数式值的概念,以及代数式在具体情境中的意义。
(二)创设情境,探求新知在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”,通过“数值转换机”直观形象的体现字母取值的变化与代数式的值的变化之间的对应关系,从而初步渗透函数的思想。
讲解教材中的议一议,填表并看谁算的又快有准。
注意规范书写格式。
(三)即时训练,巩固新知内容:课后习题第2题。
目的:根据老师们平时的教学经验,课后的这个第2题是学生做的最差的一道题。
作为初学者,学生刚刚知道了代数式和代数式值的意义,会求代数式的值,而这题中涉及到合并同类项的内容,在课堂上老师适当引导,可以给以后的合并同类项埋下伏笔,制造悬念,提高学生的学习兴趣。
(四)练习交流, 巩固提高解决教材中的随堂练习等.思考题:已知ab>0,且a、b的绝对值分别为6、8,求a+b的值。
(五)总结反思,感悟收获同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容。
五、教学反思《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容。
本节课一开始就直奔主题,提出数值转换机,并要求学生根据两个不同的数值转换机列出不同的代数式,并求相同字母下代数式的值。
进而引出议一议,让学生通过表格中大量的计算,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力。
代数式北师大版数学初一上册教案
代数式北师大版数学初一上册教案代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子或含有字母的数学表达式。
在复数范围内,代数式分为有理式和无理式。
以下是整理的代数式北师大版数学初一上册教案,欢迎大家借鉴与参考!《代数式》学案一、学习目标(1)在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
(2) 初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
(3)通过学习,培养学生正确规范的数学语言表达能力。
二、学习重点难点代数式的意义以及正确地列出代数式。
三、学习过程1.(1)我们知道用字母可以表示数,请你填空。
①七年级一班有男生20人,女生n人,那么共有学生_________人。
②买苹果s千克用了4元钱,买1千克苹果需要________元。
③长方形的长和宽分别是a厘米和b厘米,正方形的边长是c厘米,长方形与正方形面积的和是_______。
(2) 上述各问题中出现的如20+n、、4n、(ab+c2)以及以前学习的n-m、2(a+b)、ab+ac等式子,都称为代数式。
(3)指出下列哪些是代数式:_______________________ (填序号)(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3lt;xlt; p=(5) (m-5n)2 (6) abc (7)a (8) 2+x=32.(1)例1 填空:①甲数用a表示,乙数比甲数大3,那么乙数是______________.②甲数用a表示,甲、乙两数的和为10,那么乙数是______________.③甲数用a表示,甲数是乙数的5倍,那么乙数是______________.④甲数用a表示,乙数比甲数的平方少2,那么乙数是______________.⑤长方形的长和宽分别为 a cm、b cm .则该长方形的周长为________cm(1)自主归纳。
结合上面所有练习中出现的问题,能否总结出代数式的书写格式?(2)下列代数式中符合书写要求的是________ ,并说明理由。
北师大版数学七年级上册3.2《代数式》教案
北师大版数学七年级上册3.2《代数式》教案一. 教材分析《北师大版数学七年级上册 3.2《代数式》》一课是在学生已经掌握了有理数、整式等知识的基础上进行学习的。
本节课的主要内容是让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,同时让学生掌握代数式的运算方法。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识的掌握程度参差不齐。
有的学生已经具备了一定的代数基础,但也有部分学生对代数知识比较陌生。
因此,在教学过程中,教师需要关注全体学生,既要照顾到基础较好的学生,也要帮助基础薄弱的学生。
三. 教学目标1.知识与技能目标:让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,掌握代数式的运算方法。
2.过程与方法目标:通过自主学习、合作交流等环节,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:让学生体验数学在实际生活中的运用,提高学生对数学的兴趣和自信心。
四. 教学重难点1.重点:代数式的概念及其表示方法。
2.难点:代数式的运算方法。
五. 教学方法1.情境教学法:通过生活实例引入代数式概念,让学生在实际情境中感受数学的魅力。
2.自主学习法:引导学生独立思考,自主探究,培养学生的学习能力。
3.合作交流法:学生进行小组讨论,分享学习心得,提高学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入新课。
2.准备代数式的相关练习题,用于巩固和拓展环节。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用生活实例和图片,引导学生思考:如何用数学语言表示这些实例中的几何图形和物理量?从而引出代数式的概念。
2.呈现(10分钟)讲解代数式的定义,让学生了解代数式的组成和表示方法。
通过PPT 展示代数式的相关例子,让学生初步感知代数式的运用。
3.操练(10分钟)让学生独立完成一些代数式的基本运算题目,巩固所学的知识。
教师在这个过程中要注意引导学生思考,解答学生的疑问。
七年级初一数学上册代数式代数式教案北师大
代数式教学目标1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。
重点列代数式。
难点正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。
教学用具多媒体、PPT教学环节说明二次备课课程讲授一、旧知归纳,直奔主题学生在通过上一节知识的回顾,知道像4+3(x-1),x+x+(x-1),a+b,ab,2(m+n),ts,a3 ……这样一些式子都具有一定的实际意义,而探求当x=200时4+3(x-1)的代数式的值,不仅理解了代数式和代数式的值的意义,而且了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.讲解教材中的例1 列代数式,并求值.二、创设背景,理解概念承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容.根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y”可以赋于很多的实际的意义。
三、反设探究,意义升华展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想加深对蟋蟀1分叫的次数与当时温度的关系的体会.四、趣题滋润,建模感悟解决教材中的随堂练习等。
北师大版数学七年级上册3.2.1 代数式教案
2 代数式第1课时 代数式●置疑导入 在国庆阅兵式上,曾有女民兵和三军女兵两种特殊方队,请据此回答:(1)若女民兵有a 人,三军女兵有b 人,则两种方队共有女兵__a +b __人; (2)若三军女兵平均年龄为m 岁,比女民兵平均年龄大n 岁,则女民兵平均年龄为__m -n __岁;(3)若三军女兵共有m 排,且每排有20人,则三军女兵的人数为__20m __;(4)女民兵方队用t s 走了s m ,她们的平均速度可以表示为__s t__m/s; (5)以上所填各式有何特点?【教学与建议】教学:通过阅兵式的情境再现,激发学生的学习热情.建议:采取抢答的形式回答问题,调动学生的积极性.●复习导入 师:观察下列式子的特点,并说明哪些是等式:(1)a +b =b +a ;(2)a ×b =b ×a ;(3)(a +b )+c =a +(b +c );(4)a ×b ×c =a ×c ×b ;(5)a ×(b +c )=a ×b +a ×c ;(6)x -y ;(7)3×(a +b );(8)a ×b ;(9)12×(a -b )×c ;(10)x -1>2;(11)3;(12)b ;(13)x +5≠3;(14)5a . 生:等式有(1)(2)(3)(4)(5).师:除了等式,其他的是什么式子呢?生:不等式有(10)(13).师:现在我们来分析剩下的式子有哪些共同的特征.(6)x -y ,(7)3×(a +b ),(8)a ×b ,(9)12×(a -b )×c ,(11)3,(12)b ,(14)5a . 【教学与建议】教学:学生找出已经学过的等式、不等式,发现剩下的式子具备的共同特点,为代数式的学习做好铺垫.建议:教师抓住学生分析过程中的观点适时引导,最后归纳总结.*命题角度1 代数式的概念代数式是用运算符号把数和字母连接而成的式子,单独的一个数或一个字母也是代数式.【例1】以下是代数式的是(C)A .m =abB .(a +b )(a -b )=a 2-b 2C .a +1D .S =πR 2【例2】下列式子:①12a -b =c ;②234;③24a >0;④25a 2n ,其中属于代数式的有__②④__.*命题角度2 代数式所表示的实际意义描述一个代数式的意义,可以描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中的字母一定的实际意义加以描述.【例3】下面是4位同学关于“代数式4x 表示什么”的说法:①贝贝说他每小时走x km ,4 h 共走4x km ;②晶晶说她每分钟跑x m ,则4 min 跑4x m ;③小明说一个瓶子的体积为x L ,4个同样的瓶子的体积为4x L ;④小强说一只老虎平均一天吃4 kg 肉,则x 天吃4x kg 肉.其中正确的有(D)A .1个B .2个C .3个D .4个【例4】班长小强带了600元钱去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式600-4x -3y 表示的实际意义是__班长小强购买4个足球,3个篮球后剩余的钱__.*命题角度3 代数式的运用列代数式需要注意的问题:(1)认真审题;(2)注意题目的语言叙述所表述的运算顺序;(3)需弄清题目中数量关系的运算顺序,逐步列出代数式.【例5】一个三位数的各数位上的数字之和等于12,且个位数字为a ,十位数字为b ,则这个三位数可表示为(D)A .12+10b +aB .12 000+10b +aC .112+10b +aD .100(12-a -b )+10b +a【例6】某种长途电话的收费方式如下:接通电话的前3 min 收费a 元,之后的每分钟收费b 元(不足1 min按1 min 收费).若某人打该长途电话一共付费8元(a <8),则此人的通话时长为__(8-a b +3)__min.高效课堂 教学设计1.理解代数式,能解释一些简单代数式的实际背景或几何意义.2.在具体情境中,能求出代数式的值,并解释它的实际意义.解释代数式的实际意义.理解具体代数式的意义,能用代数式表示简单的数量关系. 活动一:创设情境 导入新课1.思考:(1)若正方形的边长为a ,则它的周长为__4a __,面积为__a 2__;(2)设n 表示一个数,则它的相反数是__-n __;(3)铅笔的单价是x 元,4支铅笔要花__4x __元.2.观察所列算式包含哪些运算,有何共同的运算特征.活动二:实践探究 交流新知【探究1】代数式的概念问题:什么样的式子是代数式?学生在活动里找到这些式子的共同特征.【归纳】用运算符号把数和字母连接而成的,像这样的式子叫做代数式.注意:单独一个数或一个字母也是代数式,代数式不能带不等号或者等号.【探究2】列代数式(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和.问题:这三题中都有关键词“平方”和“和”,但语序不一样,列出的代数式也不一样.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2.【归纳】用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.活动三:开放训练 应用举例【例1】(教材P 81例题)(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?【方法指导】把实际问题中的数量关系用代数式表示出来.解:该旅游团应付门票费是(10x +5y )元.(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?【方法指导】把x ,y 的值代入代数式中即可求出代数式的值.解:他们应付10×37+5×15=445(元).(3)代数式10x +5y 还可以表示什么?【方法指导】同一个代数式可以表示不同的意义.如:x 表示1元硬币枚数,y 表示5角硬币枚数,则10x +5y 表示x 枚1元硬币和y 枚5角硬币共是多少角钱.【例2】下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).【方法指导】解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.活动四:随堂练习1.下列各式不是代数式的是(A)A .S =πR 2B .1C .1aD .m +n 2.“x 的2倍与y 的13的和”用代数式表示为(B) A .(2x +y )×13 B .2x +13y C .2⎝⎛⎭⎫x +13y D .3(2x +y ) 3.国庆节期间,李老师一家四口开车去森林公园游玩,若门票每人a 元,进入园区每辆车收费30元,李老师一家开一辆车进园区所需费用是__(4a +30)__元.4.教材P 82随堂练习T 2解:(1)10b+a;(2)若个位数字是a,十位数字是b,百位数字是c,则这个三位数为100c+10b+a.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?教学说明:教师引导学生回顾代数式的概念和应用,让学生大胆发言,加深对新学知识的理解.作业:课本P83习题3.2 T1、T3、T4本节课从学生了解代数式的概念,到列代数式,培养学生爱思考,爱学习的习惯,让学生学会运用所学知识解决实际问题,提高解决问题的能力.利用生活中的案例,激发学生的学习兴趣,调动学生学习数学的积极性.。
3.1 代数式(一)——代数式+课件+2024-2025学年+北师大版(2024)七年级数学上册
,
·数学
(2)含字母式子的书写规范:
类型
书写要求
①数与字母或字母与字 “×”通常写作 · 或 省略 ,并且把
数 写在 字母 的前面,如5·a或5a
母相乘
②数与字母或字母与字
写成 分数 的形式,如
母相除
③1或-1与字母相乘
省略 1 ,如1·x写成x,-1·x写成-x
cm,则该长方形的周长
小结:结合小学学过的公式列代数式;结果中有单位时,以
和或差的形式表示结果的式子要记得加括号.
·数学
10.(跨学科融合)(人教7上P99改编)轮船沿江从A港顺流行驶
到B港,若船在静水中的速度为26千米/时,水流速度为x千
米/时,则它从A港到B港航行的速度是 (26+x) 千米/时,
用运算符号把 数
和 字母
连接而成的式子叫作代数
3
式,如m-1,m+5,2a,(a-1) , ab等式子都是代数
式.单独一个数或一个字母也是代数式,如a,-1,x,3
等.
特别提醒:①判断一个式子是不是代数式,关键是看它们是
不是由数、字母和运算符号连接而成;②代数式不含有等号
或不等号.
·数学
4.下列各式中哪些是代数式?哪些不是代数式?
第三章
整式及其加减
代数式(一)——代数式
·数学
1.(2022新课标)借助现实情境了解代数式,进一步理解用
字母表示数的意义;能分析具体问题中的简单数量关系,并
用代数式表示.
2.能用字母表示计算公式以及一些简单问题中的数量关系
和变化规律.
抽象能力
几何直观
3.2《代数式第1课时》 北师大版七年级数学上册教案
第三章整式及其加减2 代数式第1课时一、教学目标1.了解代数式的概念,能用代数式表示简单问题中的数量关系.2.能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.3.在代数式求值过程中,初步感受函数的对应思想.4.在具体情境中列代数式,发展学生的符号意识.二、教学重难点重点:了解代数式的概念,能用代数式表示简单问题中的数量关系.难点:能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:通过复习用字母表示数,引导学生思考,初步感受代数式.师:还记得吗?拼摆x个这样的正方形需要多少根火柴棒?预设答案:4+3(x-1)1+3xx+x+x+14x-(x-1)师讲解:这些都是代数式!用字母表示出下列数量关系.学生回忆上节课的知识并回答.通过复习用字母表示数或数量关系的知识,初步让学生感知代数式,为接下来学习代数式的知识奠定基础.(1) a与b的和可以表示为______.(2)苹果每千克a元,买5千克需要_____元.(3) 汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有_________名乘客.预设答案:a+b5a(a-b+c)师讲解:a+b,5a,(a-b+c)也是代数式.这节课我们一起来研究一下代数式的相关知识吧!学生思考并反馈.环节二探究新知【归纳】4+3(x-1),1+3x,x+x+x+14x-(x-1),a+b,5a,(a-b+c)它们都是用运算符号把数和字母连接而成的. 像这样的式子叫做代数式.注意:①单独一个数或一个字母也是代数式.②代数式不含“=”、“>”、“<”、“≤”、“≥”,“≠”.③代数式中可以含有括号.代数式的书写格式:①数与字母,字母与字母相乘时,可以用“·”来代替,或者省略不写,但是数与数之间不可以省略“×”;②1或-1与字母相乘时,1通常省略不写;③数字要写在字母的前面;④除法通常写成分数的形式,如1÷a通常写成.⑤代数式后面有单位时,和、差形式的代数式要在单位前把代数式括起来.认真听讲.通过归纳代数式的基本概念及其注意事项,加深学生对代数式的认识与理解,为接下来用代数式解决具体问题做铺垫.【做一做】列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人,学生y 人,那么该旅游团应付多少门票费?预设答案:解:(1)该旅游团应付的门票费是(10x+5y)元.注意:和、差形式的代数式要在单位前把代数式括起来.(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?提示:用具体数值代替代数式中的字母,就可以求出代数式的值.预设答案:解:(2)将x=37,y=15代入代数式10x+5y 中,得:10×37+5×15=445答:他们应付445元门票费.【想一想】师:代数式10x+5y还可以表示什么?预设答案:x表示小明跑步的速度,y表示小明走路的速度,10x+5y表示他跑步10s和走路5s所经过的路程;用x和y分别表示1元硬币和5角硬币的枚数,10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.提问:你还能举出其他的例子吗?【做一做】学生认真思考,列出代数式并交流反馈.代入数值进行计算.让学生结合具体情境列代数式并求值,体会求值是解决实际问题的需要.通过类比,不仅拓宽学生的思维,锻炼了学生联想、类比的能力,同时进一步帮助学生体会字母可以表示任何数,感受一个代数式在不同的情境中可以表示不同的意义.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg)与人体身高(m)平方的商.对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高为h (m),求他的身体质量指数.(2)张老师的身高是1.75m ,体重是65kg ,他的体重是否适中?(3)你的身体质量指数是多少?预设答案:解:(1)他的身体质量指数是:.(2)将w =65,h =1.75代入,得:他的体重适中.(3)根据自己的身高和体重算一下你自己的身体健康指数吧!学生认真思考并作答,然后交流反馈.让学生从比较贴近生活的例子中经历列代数式并求值的过程,使学生进一步理解列代数式和求值的意义,同时让学生感受数学与生活及其他学科之间的紧密联系.环节三应用新知【典型例题】例1 (1)一个两位数的个位数字是a ,十位数字是b (b ≠0),请用代数式表示这个两位数.(2)如何用代数式表示一个三位数?分析:个位上的数字是a ,表示a 个一,十位上的数字是b (b ≠0)表示b 个十.解:(1)这个两位数是10b +a :(2)个位上的数字用a 表示,十位上的数字通过例题,让学生进一步掌握用b表示,百位上的数字用c (c≠0)表示,这个三位数是100c+10b+a:例2 (1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.解:(1)若x表示某件物品的原价,那么(1+8%)x表示价格提高8%后的价格.(2)如果x是100元,将x=100代入代数式(1+8%)x,得:(1+8%)×100=108(元)表示原价为100元的衣服,价格提高8%的价格为108元.追问:这个代数式还可以表示什么?学生认真思考并作答.列代数式并求值的知识,让学生进一步熟悉具体情境中各代数式所表示的意义,加强学生的应用意识.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.用代数式表示:(1) f 的11倍再加上2可以表示为__________;(2)一个数a的与这个数的和可以表示为________;(3)一个教室有2扇门和4扇窗户,n个这样的教室有______扇门和_______扇窗户;(4)产量由m kg增长15%后,达到________kg.答案:(1)11f+2(2)自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.(3)2n,4n(4)(1+15%)m2.代数式6a可以表示什么?答案:答案不唯一,合理即可.①如果a表示正六边形的边长,那么代数式6a可以表示正六边形的周长;②如果a表示一本书的价格,那么6a可以表示买6本这种书的价格;③如果1条长凳可以坐6个小朋友,那么6a可以表示a条长凳可以坐6a个小朋友.3.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?答案:(1)用x表示蟋蜂1min叫的次数,则该地当时的温度为℃;(2)将x=80,100,120分别代入,求得当地当时的温度大约分别是14℃,17℃和20℃.环节五课堂小结思维导图的形式呈现本节课的主要内容:回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第83页习题3.2第2、3题课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
北师大版七年级数学3.2 代数式(1)教案
例2.用代数式表示:a与b两数的平方和减去它们积的两倍.
a2+b2-ab
五、自我尝试
1.设甲数为x,乙数为y,用代数式表示:
(1)甲、乙两数和的平方;
(2)甲数的2倍与乙数的13的和;
(3)甲、乙两数平方的差;
(4)甲、乙两数平方的和.
2.一个三位数百位数字和十位数字组成的两位数是a,个位数字是b,用代数式表示这个三位数是___________.
3.某出租车收费标准为:起步价为7元,3千米后每千米1.8元,则某人乘坐出租车x(x>3,且为整数)千米应付费____________元.
小彬:可以表示成2个单价为a的铅笔和3个单价为b的橡皮的总价格。
小新:2个质量为a的书本和3个质量为b的文具的总质量。
小雅:分别用速度a行走2个小时和速度b行走3个小时的总路程。
四、典例解析
例1〔1〕1箱苹果重m kg,5箱重____kg;(5m)
〔2〕一个数比a的2倍小5,则这个数为____;(2a-5)
章 整式的加减
3.2 代数式〔1〕
教学设计
所属知识领域
数与代数
授课教师
微视频看点
探究代数式的概念和性质,让学生进一步感受数学与现实生活的联系,增强符号感。
录制工具和方法
设计思路
本微课通过情境引入,引导学生通过合作讨论、自主探究、总结归纳来学习代数式,并能正确地列出代数式以及理解代数式表示的现实含义。
1.的温度是x度,北京的温度比的温度低10度,那么北京的温度是_______度.〔x-10〕
2.老师们搭乘的飞机的速度是v千米/小时,与北京相距s公里,则老师们需要______小时才能抵达北京.〔s/v〕
北师大版数学七年级上册3.2《代数式》教学设计
北师大版数学七年级上册3.2《代数式》教学设计一. 教材分析《代数式》是北师大版数学七年级上册第三章第二节的内容。
本节内容主要介绍代数式的概念、分类和简单运算。
通过本节的学习,使学生能够理解代数式的意义,掌握代数式的分类和基本运算,为后续的方程和不等式学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算有一定的了解。
但代数式作为一个新的概念,对学生来说较为抽象,需要通过具体例子和实际操作来逐渐理解和掌握。
三. 教学目标1.理解代数式的概念,能够正确识别各种代数式。
2.掌握代数式的分类,能够对不同类别的代数式进行准确区分。
3.学会代数式的简单运算,能够进行基本的代数式运算。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.代数式的概念和分类。
2.代数式的简单运算。
五. 教学方法1.采用情境教学法,通过具体例子引入代数式概念。
2.采用分类教学法,让学生对代数式进行准确分类。
3.采用操作教学法,让学生通过实际操作掌握代数式的运算方法。
4.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.教学素材和例子。
3.练习题。
4.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个具体例子,如“小明的年龄比小红大3岁,小红今年10岁,求小明的年龄”,引出代数式的概念。
让学生思考并回答:这个例子中的代数式是什么?它是如何表示小明年龄的?2.呈现(10分钟)呈现各种代数式的例子,如整式、分式、无理式等,让学生观察并讨论:这些代数式有什么共同点和不同点?它们分别表示什么含义?3.操练(10分钟)让学生分组,每组选取一个代数式,进行分类和简要说明。
然后,各组汇报成果,互相交流,共同总结代数式的分类和特点。
4.巩固(10分钟)让学生独立完成一些代数式的分类和简单运算题目,教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生思考:代数式在实际生活中有哪些应用?如何运用代数式解决问题?让学生举例说明,并进行讨论。
3.2.1代数式(教案)北师大版数学七年级上册
在今天的教学中,我引导学生们进入了代数式这一章节的学习。回顾整个教学过程,我觉得有几个地方值得思考和改进。
首先,关于导入新课的部分,我发现通过提问的方式能够激发学生的兴趣,使他们更快地进入学习状态。但在实际操作中,可能需要针对不同学生的反应,适时调整问题的难度和表述方式,以便让更多学生参与到课堂讨论中来。
3.代数式的值:掌握求代数式值的方法,如代入法、计算法等,并能够运用这些方法求解实际问题。
4.代数式的化简:学习合并同类项、去括号等基本变形法则,掌握化简代数式的基本技巧。
二、核心素养目标
1.培养学生的符号意识:通过代数式的学习,使学生能够理解并运用符号表示现实世界中的数量关系,提高抽象思维能力。
2.发展学生的逻辑推理能力:在学习代数式的分类、化简等过程中,引导学生运用逻辑推理分析问题,培养严谨的逻辑思维。
-代数式的符号理解:学生对符号的理解可能不够深入,如对负号、指数等符号的含义和使用感到困惑。
-理解同类项的概念:学生可能难以判断哪些项是同类项,特别是当项中含有不同的字母或指数时。
-代数式的化简技巧:化简过程中,学生可能会在合并同类项、去括号等方面遇到困难。
-解决实际问题时代数式的运用:学生需要将实际问题转化为代数式,并求解,这一过程可能存在难度。
1.针对不同学生的认知水平,调整教学内容和难度,使更多学生能够跟上教学进度。
2.加强对重点知识点的讲解和练习,特别是同类项的判断和代数式的化简。
3.在实践活动和小组讨论中,关注学生的个体差异,给予他们更多的关注和指导。
4.课后布置适量的练习,帮助学生巩固所学知识,提高运用代数式解决问题的能力。
希望通过这些努力,能够使学生们在代数式这一章节的学习中取得更好的成绩。
北师大七年级上册数学教案代数式
代数式【知识要点】1.代数式的概念:用基本的运算符号(指加,减,乘,除,乘方以及以后要学的开方)把数或表示数的字母连结而成的式子叫做代数式。
数的一切运算规律也适用于代数式。
(1)加法交换律:a b b a +=+ (2)加法结合律:()()a b c a b c ++=++ (3)乘法交换律:ab ba = (4)乘法结合律:()()ab c a bc = (5)分配律:()a b c ab ac +=+ 2. 代数式的书写:(1)系数写在字母前面(2)带分数写成假分数的形式(3)除号用分数线“-”代替 3.列代数式把简单的与数量有关的词语用代数式表示出来叫做列代数式。
4.代数式的值用具体数值代替代数式中的字母,按照代数式指明的计算,计算出的结果就叫做代数式的值。
【典型例题】例1 下列式子中,是代数式的有: 。
①a b c d +=+ ②0 ③2()1a b +- ④2s R π= ⑤32x + ⑥23410x x ++=例2 下列式子中,符合书写要求的是( ) (A )5a b (B )2156a b (C )a b c ÷⨯ (D )2mn例3 叙述下列代数式的意义(1)2a b -(2)33a b - (3)3()a b - (4)(2)()a b a b -+ (5)bca (6) ab a b-例4 根据题意列代数式,设甲数为x ,乙数为y ,用代数式表示 ①甲、乙两数差的2倍; ②甲数的12与乙数的和的12; ③甲、乙两数的和与甲、乙两数的差的积; ④甲、乙两数的立方和。
例5 用代数式表示:比a除以b的商与c的差的3倍大7的数。
例6 当112a=,0.5b=时,求代数式))((12222babaa++-的值。
例7 已知:13xx+=,求代数式211()6x xx x++++的值。
例8 用代数式证明:一个四位数,它的末尾两位数如果是4的倍数,则这个四位数也是4的倍数.【巩固练习】一、选择题:1.下列式子中,符合代数式书写要求的是( ) A .3a B .132x C .12a D .3x +人 2.比a 多3的数是( )A .3a -B .3a +C .3aD .3a3.,a b 两数差的平方除以,a b 两数的平方差是( )A .222()a b a b --B .222()a b a b -- C .222a b a b -- D .222a b a b -- 4.代数式2a -所表示的意义是( ) A .比2多a 的数 B .比a 多2的数 C .比2少a 的数 D .比a 少2的数 5.下列各题中,错误的是( )A .代数式22x y +的意义是,x y 的平方和。
北师大版七年级数学上册优秀教学案例:3.2.2代数式
1.设计有针对性的问题,引导学生围绕问题展开思考,逐步揭示代数式的本质特征。
2.鼓励学生提出问题,培养学生的质疑精神和问题意识。
3.引导学生运用已有的知识解决实际问题,提高学生的知识运用能力。
(三)小组合作
1.合理分组,确保每个小组成员都能在合作中发挥自己的特长。
2.明确分工,让每个学生在合作过程中都有责任和任务。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我将根据学生的年龄特点、认知水平和学习需求,继续探索更多有效的教学方法和手段,为学生的全面发展奠定坚实基础。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
4.教学方法灵活多样:本节课运用了讲授、讨论、实践等多种教学方法,使学生在轻松愉快的氛围中掌握代数式的相关知识,提高了学生的学习效果。
5.教学评价关注全面发展:本节课采用多元化的评价方式,关注学生的知识掌握程度、思维品质、情感态度等方面的发展,使每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.要求学生在作业中运用本节课所学知识解决实际问题,提高学生的知识运用能力。
3.鼓励学生进行自我反思,发现自己的优点和不足,调整学习策略。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将关注学生的年龄特点、认知水平和学习需求,灵活运用各种教学方法和手段,充分调动学生的学习积极性,激发学生的思维潜能,培养学生的数学素养。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.运用多媒体教学手段,创设生动活泼的学习情境,激发学生的学习兴趣,提高学生的学习积极性。
2.1代数式一等奖创新教案1-北师大版七年级数学上册
2.1代数式一等奖创新教案1-北师大版七年级数学上册3.2.1代数式一、教学目标1.在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
2.初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
3.通过学习,培养学生正确规范的数学语言表达能力..二、课时安排1课时三、教学重点代数式的意义四、教学难点正确地列出代数式。
五、教学过程(一)导入新课请同学们看下列问题:如4+3(x-1),x+x+(x-1),a+b,ab,2(m+n),,a3 ……这些式子你熟悉吗?像这样的一些式子都是代数式。
单独的一个数或者一个字母也是代数式(二)讲授新课例1 列代数式,并求值.门票:成人10元/人;学生5元/人.(1)一个旅游团有成人x人、学生y人,请你根据上图确定该旅游团应付多少门票费?(2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?解:(1)(2)通过学生独立思考,再与同伴合作交流。
老师进行评价,多用鼓励性的语言,并规范做题格式老师总结出根据问题的要求,用具体数值代替代数式中的字母,就可以求出代数式的值。
想一想10x+5y还能表示什么?(1)如果用x(元/kg)表示大米的价格,用y(元/kg)表示食油的价格,那么10x+5y就表示小强的妈妈购买10kg大米和5kg食油所用的费用;(2)如果用x(cm3/个)表示某种正方体的体积,用y(cm3/个)表示某种长方体的体积,那么10x+5y就表示10个这样的正方体和5个这样的长方体的体积和;(3)如果用x(kg)表示一张课桌的质量,用y(kg)表示一个凳子的质量,那么10x+5y就表示10张课桌和5个凳子的质量和.做一做现代营养学家用身体质量指数衡量人体胖瘦程度以及是否健康,这个指数等于人体质量(千克)与人体身高(米)平方的商。
对于成年人来说,身体质量指数在20~25之间,体重适中;身体质量指数低于18,体重过轻;身体质量指数高于30,体重超重。
(北师大版2024)七年级数学上册同步3.1 第1课时 代数式 教案
第三章 整式及其加减1 代数式第1课时 代数式1.经历探索规律并用字母表示规律的过程.2.体会字母表示数的意义,形成初步的符号感,初步感受从特殊到一般的思维方式,体验用矛盾转化的观点认识问题.重点:会列代数式并理解代数式的意义.难点:会列代数式表示实际问题中的数量关系.一、情境导入1.从A 地到B 地要走3个小时.这里A ,B 表示什么?2.用字母表示加法交换律:a +b =b +a.二、合作探究探究点一:代数式的定义及书写格式下列各式中是代数式的是( )A .S =πr 2B .2a >bC .3x +yD .π≈3.14答案:C下列式子中,符合代数式书写格式的有( )①m ×n ;②313 ab ;③14(x +y ); ④m +2天;⑤abc 3A .2个B .3个C .4个D .5个解析:①正确的书写格式是mn ;②正确的书写格式是103ab ;③的书写格式是正确的,④正确的书写格式是(m +2)天;⑤的书写格式是正确的.故选A .方法总结:书写含字母的式子时应注意:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤后面带单位的式子相加或相减时,式子整体加括号. 探究点二:列代数式及代数式的意义用含有字母的式子表示下列数量:(1)练习簿的单价为a 元,100本练习簿的总价为 元;(2)练习簿的单价为b 元,a 本练习簿的总价是 元;(3)小明的家离学校s 千米,小明骑车上学.若每小时骑行10千米,则需 时;(4)若每斤苹果312元,则买m 斤苹果需 元; (5)小明个子高,经测量他通常跨一步的距离为1米,若取向前为正,向后为负,则小明向前跨a 步为 米,向后跨a 步为 米.答案:(1)100a (2)ab (3)s 10 (4)72m (5)a -a如图所示,搭一个正方形需要4根火柴棒.(1)按上面的方式,搭2个正方形需要 根火柴,搭3个正方形需要 根火柴;(2)搭7个这样的正方形需要 根火柴;(3)搭100个这样的正方形需要多少根火柴?(4)如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴? 解:(1)7 10 (2)22(3)4+3×(100-1)=301.故搭100个这样的正方形需要301根火柴.(4)4+3×(x -1)=3x +1.故搭x 个这样的正方形需要(3x +1)根火柴.对代数式a -b 2的意义表述正确的是( )A .a 与b 差的平方B .a ,b 平方的差C .a 减去b 的平方的差D .a 的平方与b 的平方的差答案:C方法总结:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.三、板书设计代数式⎩⎪⎨⎪⎧代数式的概念⎩⎪⎨⎪⎧代数式的书写要求识别代数式根据实际问题列代数式解释代数式所表示的实际意义通过本课时的教学要让学生经历在实际问题中列代数式,初步理解代数式的意义,让学生循序渐进的学习本部分内容,可以先用数,然后引入代数式.让学生在现实情境中去理解、感悟、体会字母能够代替数,发展学生的符号感.在数学教学中,让学生逐步学会用代数的思想方法分析和解决问题,体会其优越性,让学生体验成就感.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学目标:
知识与技能:
1.用字母表示数从而把文字语言表述的数量关系用代数式表示出来
2.解释一些简单代数式的实际意义或几何背景.
3.求代数式的值..
4.掌握代数式的书写规范。
过程与方法:在具体情境中经历列代数式的过程,体会代数式可以表示实际意义或几何背景中的数量关系.
情感态度与价值观:体会数学与现实世界的联系,增强符号感.。
二、教学重点:1.用代数式表示数量关系。
2.用实际背景或几何意义解释代数式。
三、教学难点:用实际背景或几何意义解释代数式。
四、教学过程:
(一)、问题引入课题
回忆上节课内容,看下列式子,说出它表示的实际意义或几何意义:
4+3(x-1) x+x+(x+1) a+b ab 2(m+n) s/t a3
学生回忆,小组内组织语言,全班交流,复习旧知。
这节课我们来研究形如上述式子的相关内容,引入课题。
(二)、明确学习目标
(三)、认识代数式
教师讲述代数式的描述性概念。
注意:单独一个数或一个字母也是代数式。
引申思考:
1、上面代数式中都出现了哪些运算?出现了哪些运算符号?
学生找出代数式中出现的运算和运算符号,教师给予鼓励。
2、速度公式
s
v
t
=,加法交换律a b b a
+=+是代数式吗?
学生讨论回答:代数式中不能出现等号。
教师点评,强调不等号也不行。
(四)、列代数式
填空
1、边长为a cm的正方形的周长为 cm,面积为 cm2。
2、小华、小明的速度分别为x米/分,y米/分,6分钟后他们一共走了米。
3、温度由2℃上升t℃后是。
4、小亮用t秒走了s米,他的速度为米/秒。
5、小彬拿166元钱去为班级买钢笔,买了单价为5元的钢笔n支,则剩下的钱为元,他最多能买这种钢笔支。
学生完成,师巡视观察,全班订正。
总结列代数式时的注意事项:
(1)数字与字母、字母与字母、数字或字母与括号相乘时,乘号通常简写作“·”或者省略不写,一般把数写在字母的前面,如果是带分数,需化成假分数.数字与数字相
乘一般仍用“×”。
(2)在实际问题中含有单位时,如果运算结果是和的形式,要把整个的代数式用括号扩起来再写单位。
(3)在代数式中出现除法运算时,一般按照分数的写法来写。
(五)、例题学习
106页例1,107页例2
学生自学教材,再次巩固列代数式,代数式求值,巩固列代数式的注意事项。
小组内释疑,互帮互学。
(六)、想一想:代数式10x+5y表示的实际意义或几何意义?
生思考,组织语言,全班交流,师点拨补充完善学生的回答。
(七)、达标练习
1、代数式6p可以表示什么?
2、(1)一个两位数的个位数字是a,十位数字是b,用代数式表示这个两位数是
(2)一个三位数的个位数字是a,十位数字是b,百位数字是c,用代数式表示这个两位数是
3、设n为整数,则两个相邻的偶数用含n的代数式可表示为,两个相邻的奇数用含n 的代数式可表示为。
4、被n整除得n+1的数用代数式可表示为,被5除商m+5余1的数用代数式可表示为。
5、代数式(1+8%)x可以表示什么?
(八)、回顾与反思
1.今天,我们学习了代数式,代数式中可以出现哪些运算符号?不允许出现什么符号?2.书写代数式有哪些注意事项?
(九)、作业
108页习题3.2。