第二章 逻辑门电路

合集下载

数电讲义--2章

数电讲义--2章

1.0
VOL(max)0.5
输入标 准低电

0.4V
VNL
D VNH
E
V V 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
SL VOFF VON
SH
Vi (V)
输入标准
高电平
2. 输入特性
+VCC
1) 输入伏安特性
iI
R1 3kΩ
1
-1.6 mA
<50 uA vI A
31
B
T1
1.4 V
和边沿,T4放大。 VO随iOH变化不大。 当由i于Oi以OHH受↑:线时功性,R耗变4上的化压限。降制增,大i0,H过T大3 、会T4烧饱毁和T,4管V,O随所
功耗 1mW IOH 400 A
输出高电平时的扇出系数 3.6V
R2 750Ω 2T3 Vc2 1 3 R4
VO
+VCC
R 4 +5V 100Ω
抗干扰能力越强。 高电平噪声容限
VNH= VSH ¯ VON 。
VNH越大,输入为1态下
抗干扰能力越强。
Vo (V)
4.0 A B
3.5
3.0
VOH(min)2.5 2.4V
C
2.0
1.5
A(0V, 3. 6V) B(0.6V, 3.6V) C(1.3V, 2.48V) D(1.4V, 0.3V) E(3.6V, 0.3V)
• 导通(VD>VTH) • 2、二极管的开关时间
截止5V(VDR<VT+H)
0V
D VD
uo
_
VF Vi
二极管开关状态的转换需要时间:
t1 t2

第二章逻辑门电路

第二章逻辑门电路
& A
B
+V’CC RL
A B
&
线与
F A BC D
C
D
& CD
+V’CC RL & &
RL
构成总线输出
:多个逻辑门分时段
&
1
总线负载
共用同一条输出线
20
2.5.6
三态门
VT3
三态门符号 +VCC
VT4 VT2
A B EN
&
EN
VT1
A B EN
D
A B EN
F
VT5
vi vi vo
tpd tpd
vo
应大于tpd ,输出信号vo才能 完成响应。 如输入脉宽小于tpd ,则输出vo 不能产生完整响应,vo会保持 在原电平上基本不变。
(对称方波)
fmax=1/(2tpd)
fmax :
3
传输延迟的仿真
由仿真知, 门延迟 tpd 150nS. 见
vi
25KHz
20uS
IIS IIS 。 1.4mA。
VCC VB1 R1
IIS
vI /V
1.4V
-0.5
IIS
-1.0 -1.5 -2.0
1V
I IS
3K IIS
R1
VCC
vB1
VT2 R3
VO=VOH
VT5
&
IIS
11
或非门(或门) 输入端有多个并接时:
并接接地时, 每个输入端流出电流IIS
IIS
A A•B=A+B VCC
-2~ -1.5V : VIL

第2章 逻辑门电路-习题答案

第2章 逻辑门电路-习题答案

第2章逻辑门电路2.1 题图2.1(a)画出了几种两输入端的门电路,试对应题图2.1(b)中的A、B波形画出各门的输出F1~F6的波形。

题图2.1解:2.2 求题图2.2所示电路的输出逻辑函数F1、F2。

题图2.2解:2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出Y1~Y8状态。

题图2.3解: Y1=0, Y2=0, Y3=Hi-Z, Y4=0, Y5=0, Y6=0, Y7=0, Y8=0.2.4 题图2.4中各门电路为CMOS电路,试求各电路输出端Y1、Y2和Y的值。

题图2.4解: Y1=1, Y2=0, Y3=0.2.5 6个门电路及A、B波形如题图2.5所示,试写出F1~F6的逻辑函数,并对应A、B波形画出F1~F6的波形。

题图2.5解:2.6 电路及输入波形分别如题图2.6(a)和2.6(b)所示,试对应A、B、C、x1、x2、x3波形画出F端波形。

题图2.6解:2.7 TTL与非门的扇出系数N是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: N≤8 N由灌电流负载个数决定.2.8 题图2.8表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线,D1D2、D3D4、…、D m D n为三态门的输入端,EN1、EN2、EN n分别为各三态门的片选输入端。

试问:EN信号应如何控制,以便输入数据D1D2、D3D4、…、D m D n顺序地通过数据总线传输(画出EN1~EN n 的对应波形)。

题图2.8解:用下表表示数据传输情况2.9 某工厂生产的双互补对称反相器(4007)引出端如题图2.9所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。

题图2.9解: (1) 反向器(2)与非门 (3)或非门2.10 按下列函数画出NMOS 电路图。

123()()()F AB CD E H G F A B CD AB CD F A B=+++=+++=⊕解:(1)(2) (3)2.11 将两个OC门如题图2.11连接,试写出各种组合下的输出电压u o及逻辑表达式。

第02章 逻辑门电路

第02章 逻辑门电路

OC门的几种主要应用
实现线与逻辑
电路如右图所示,逻辑关系为
L L1 L2 AB CD
实现电平转换
如下图所示,可使输出高电平变为+12V
+12V
R
A& 3.4V 0.3V
12V F
0.3V
用作驱动电路
右图是用来驱动发光二极管的电路。
2.3.5 三态门
R1 4K
R2 1.6K
A
T1
T2 B
输出低电平时:NOL = IOLmax / IiLmax 输出高电平时:NOH = IOHmax / IiHmax
考虑最坏的情况,扇出系数:N = min(NL , NH)
TTL与非门的灌电流与拉电流负载
2.3.2 TTL与非门的特性及参数
平均传输延迟时间
tpd = 0.5(tpdL + tpdH ) 输出信号略滞后于输入信号. 典型值:纳秒级
Vo(V) VOH A 2.7
电压传输特性及相关参数 (1) 输出高电平 VOH
R1 4K
R2 1.6K
R4
VCC
130
A
B
B
T1
T3
T2
ቤተ መጻሕፍቲ ባይዱ
D3
F
D1
D2
R3
T4
1K
典型值VOH ≥ 3.4V
VOHmin是满足输出电流指标时, 输出高电平允许的最低值,一 般要求 VOHmin ≥ 2.7V
C
(2) 输出低电平 VOL
(5) 关门电平 VOFF
保证T4截止 输出高电平 时, 输入低电平的最大值.
VOFF ≥ 0.8V
2.3.2 TTL与非门的特性及参数

数字电子技术基础第三版第二章答案

数字电子技术基础第三版第二章答案

第二章逻辑门电路第一节重点与难点一、重点:1.TTL与非门外特性(1)电压传输特性及输入噪声容限:由电压传输特性曲线可以得出与非门的输出信号随输入信号的变化情况,同时还可以得出反映与非门抗干扰能力的参数U on、U off、U NH和U NL。

开门电平U ON是保证输出电平为最高低电平时输入高电平的最小值。

关门电平U OFF是保证输出电平为最小高电平时,所允许的输入低电平的最大值。

(2)输入特性:描述与非门对信号源的负载效应。

根据输入端电平的高低,与非门呈现出不同的负载效应,当输入端为低电平U IL时,与非门对信号源是灌电流负载,输入低电平电流I IL通常为1~1.4mA.当输入端为高电平U IH时,与非门对信号源呈现拉电流负载,输入高电平电流I IH通常小于50μA。

(3)输入负载特性:实际应用中,往往遇到在与非门输入端与地或信号源之间接入电阻的情况,电阻的取值不同,将影响相应输入端的电平取值。

当R≤关门电阻R OFF时,相应的输入端相当于输入低电平;当R≥ 开门电阻R ON时,相应的输入端相当于输入高电平。

2.其它类型的TTL门电路(1)集电极开路与非门(OC门)多个TTL与非门输出端不能直接并联使用,实现线与功能.而集电极开路与非门(OC门)输出端可以直接相连,实现线与的功能,它与普通的TTL与非门的差别在于用外接电阻代替复合管.(2)三态门TSL三态门即保持推拉式输出级的优点,又能实现线与功能。

它的输出除了具有一般与非门的两种状态外,还具有高输出阻抗的第三个状态,称为高阻态,又称禁止态.处于何种状态由使能端控制.3.CMOS逻辑门电路CMOS反相器和CMOS传输门是CMOS逻辑门电路的最基本单元电路,由此可以构成各种CMOS逻辑电路。

当CMOS反相器处于稳态时,无论输出高电平还是低电平,两管中总有一管导通,一管截止,电源仅向反相器提供nA级电流,功耗非常小。

CMOS器件门限电平U TH近似等于1/2U DD,可获得最大限度的输入端噪声容限U NH和U NL=1/2U DD。

第二章 逻辑门电路

第二章 逻辑门电路

电子技术基础教案 信息工程系 李开行逻辑门电路2.1基本要求1.正确理解以下基本概念:推拉式输出、线与、高阻态。

2.熟练掌握各种门电路的逻辑功能。

3. 熟悉各种门电路的结构、工作原理、主要参数及应用中注意的问题。

2.2 解答示例及解题技巧2.1 电路如图题2.1所示,写出输出L 的表达式。

设电路中各元件参数满足使三极管处于饱和及截止的条件。

BL D D (a)CC(c)1233(d)图题2.1解:(a)此电路由两级逻辑门构成,第一级是与门,输出为AB ;第二级是或门,输出为: C AB L +=1(b)此电路是只有一个输入端的逻辑电路。

当输入端A 为低电平时,T 1发射结导通,V B1<2.1V ,D 、T 2截止,L 2输出高电平;当输入端A 为高电平时,T 1发射结不通,+V CC 足以使D 、T 2导通, L 2输出低电平。

由以上分析可见: A L =2(c)此电路有两个输入端,可以分四种情况讨论其工作过程:当输入A 、B 均为低电平时,T 1、 T 2都截止,L 3以下部分的支路不通,输出高电平; 当输入A 、B 一高一低时,T 1、 T 2中有一个截止,L 3以下部分的支路仍不通,输出高电平;当输入A 、B 均为高电平时,T 1、 T 2都饱和导通,L 3以下部分的支路导通,输出低电平。

根据以上分析可以列出真值表如表2.1(a )。

由真值表可得表达式:AB B A B A B A L =++=3(d) 此电路有两个输入端,可以分四种情况讨论其工作过程:当输入A 、B 均为低电平时,T 1、 T 2都截止,L 4以下部分的支路不通,输出高电平; 当输入A 、B 一高一低时,T 1、 T 2中有一个饱和导通,L 3以下部分的支路导通,输出低电平;当输入A 、B 均为高电平时,T 1、 T 2都饱和导通,L 3以下部分的支路导通,输出低电平。

根据以上分析可以列出真值表如表2.1(b )。

第2章 逻辑门电路

第2章   逻辑门电路
第二章(1) 第二章( 2
20102010-9-14
2.1.1 非门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“非”逻辑关系。 逻辑关系。 逻辑符号: 逻辑符号: 非门电路: 非门波形图: 非门电路: 非门波形图:
非门工作特点: 非门工作特点: ● 当输入端A 为高电平1(+5V)时,晶体管 当输入端A 为高电平1 +5V) 导通, 端输出0.2~0.3V的电压 的电压, 导通,L 端输出0.2~0.3V的电压,属于低电平 范围; 范围; ● 当输入端为低电平0(0V)时,晶体管截止,晶体管集电 当输入端为低电平0 0V) 晶体管截止, 发射极间呈高阻状态,输出端L的电压近似等于电源电压; 极—发射极间呈高阻状态,输出端L的电压近似等于电源电压; ● 任何能够实现 L = A “非”逻辑关系的电路均称为“非门”, 逻辑关系的电路均称为“非门” 也称为反相器。式中的符号“ 表示取反, 也称为反相器。式中的符号“-”表示取反,在其逻辑符号的输出 端用一个小圆圈来表示。 端用一个小圆圈来表示。
同或门电路: 同或门电路:
逻辑符号: 逻辑符号:


双输入端同或门波形图: 双输入端同或门波形图:
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为低电平; 一定为低电平;而当输入端 A、B 的电平状态相同时, 的电平状态相同时, 一定为高电平。 输出端 L 一定为高电平。
20102010-9-14
第二章(1) 第二章(
3
2.1.2 与门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“与”逻辑关系。 逻辑关系。 与门电路: 逻辑符号: 与门波形图: 与门电路: 逻辑符号: 与门波形图:

第2章逻辑门电路-PPT精选

第2章逻辑门电路-PPT精选
第2章 逻辑门电路
逻辑门:完成一些基本逻辑功能的电子电路。现使用的 主要为集成逻辑门。
首先介绍晶体管的开关特性 着重讨论的TTL和CMOS门电路的
逻辑功能和电气特性
简要介绍其他类型的双极型和MOS门电路
2.1 晶体管的开关特性 在数字电路中,常将半导体二极管,三极管和场效应管
作 为开关元件使用。 理想开关: 接通时阻抗为零;断开时阻抗为无穷大;
1
VO
1
VI
VO 1输出 VOHmin
VNH VIHmin
0输出
VILman VNL
VOLman
VI
1输入 1输入
2.3.3 TTL与非门的静态输入与输出特性
1. 输入特性
1)输入伏安特性( II=f(Vi) ) 定义:电流流入T1的发射极
方向为正方向。
II(mA)
高电平输入
0.5 1.0 1.5 2.1 0
1.0
-15 -10 -5 0 5 10 15 I0(mA)
负载门的管脚的个数,即
IH=NIIH (IIH为负载门高电平输入电流,约为40μA左
右)
从曲线上看,当IO大于5mA时,VO才开始出现下降趋势, 但决定IOHmax值的并不是VOHmax,而是器件的功耗。在上 面讨论的电路中, IOHmax约为400mA。
在门输入端和地之间接电阻Ri,当电阻从0Ω逐步增加
时,由于电阻内部有电流流过,会使电阻两端电压Vi逐步
增加。
VCC
当T1管饱和导通时: Vi R1R iRi(VCC VB1E)
R1
4kΩ
T1
Roff≈0.9kΩ, Ron≈3kΩ。
Vi
Ri
当Ri小于R0ff时,输入为低 电平;当Ri高于Ron时,输入 为高电平。

数字电子技术基础第二章逻辑门电路基础

数字电子技术基础第二章逻辑门电路基础
数字电子技术基础第二章逻辑门电路 基础
(二)二极管的动态开关特性
给二极管电路加入一个方波信号,电流的波形怎样呢?
数字电子技术基础第二章逻辑门电路 基础
ts为存储时间 tt称为渡越时间 tre = ts 十 tt 称 为 反 向 恢 复时间
数字电子技术基础第二章逻辑门电路 基础
l 1. 反向恢复过程
数字电子技术基础第二章逻辑门电路 基础
数字电子技术基础第二章逻辑门电路 基础
(1)延迟时间td—— 从输入信号vi正跳变的 瞬 间开始,到集电极电流iC上升到0.1ICS所需的 时间
(2)上升时间tr——集电极电流从0.1ICS上升到 0.9ICS所需的时间。
(3)存储时间ts——从输入信号vi下跳变的瞬间 开始,到集电极电流iC下降到0.9ICS所需的时 间。
数字电子技术基础第二章逻辑门电路 基础
l 八、功率损耗(功耗)PD l 九、功耗-延时积DP
数字电子技术基础第二章逻辑门电路 基础
十、TTL门电路芯片的封装
数字电子技术基础第二章逻辑门电路 基础
十一、其它逻辑功能的TTL门电路
l (一)TTL正与非门
数字电子技术基础第二章逻辑门电路 基础
l (二)TTL正或非门
u (1)输入高电平噪声容限电压(最大允许负向干扰电压) u (2)输入低电平噪声容限电压(最大允许正向干扰电压)
数字电子技术基础第二章逻辑门电路 基础
输入高电平噪声容限 VNH=V OH(min)-VON =V OH(min)- V IH(min) =2.4V-2.0V=0.4V。
输入低电平噪声容限 VNL=V OFF-V OL(max) =V IL(max) -V OL(max) =0.8V-0.4V=0.4V。

第2章-逻辑门电路

第2章-逻辑门电路
类似74HC,可直接与TTL接口
高速,可代替74HC
高速,可代替74HCT
2.4.1.MOS反相器
2. MOS反相器
(1)电阻负载MOS电路:
如图2-37(a)所示,在这种反相器 中,输入器件是增强型MOS管,负载是线性 电阻。这种反相器在集成电路中很少采用。
(2)E/E MOS(Enhancement/Enhancement MOS) 反相器:
2.三态输出门电路(TSL门) 图227 三态门
三态输出门电路简称三态门,用 TSL(Three Sate Logic)表示,TSL电路的 主要特点是输出共有3种状态,即逻辑高电 平、逻辑低电平和高阻态。
图2-27所示为三态门电路及逻辑符号。 图中EN为三态使能端,A、B为输入逻辑变 量,Y为电路输出。
74F
速度比标准系列快近5倍, 功耗低于标准系列
2.2.1.TTL与非门的典型电路 及工作原理
1. 电路结构
电路由输入级、中间级和输出级三部 分组成。
2. 基本工作原理
(1)TTL工作在关态(截止态)
当输入信号A、B、C中少一个为低电 位(0.3V)时:
VO = VOH = VCC – VR2 – VBE3 – VD4 =5V-0.7V-0.7V =3.6V
实现了输出高电平,此时TTL工作在关 态,也称截止态。
(2)TTL工作在开态(饱和态)
输出电压Vo为
VO = VOL = VCES4 = 0.3V 实现了输出低电平,此时TTL工作在开 态,也称饱和态。
通过以上分析可知,当输入信号中至 少一个为低电位,即VI=ABC= VIL时,输出 高电平,即VO = VOH ;当输入信号全部为 高电位时,即VI=ABC= VIH时,输出低电平, 即VO = VOL。说明电路实现了与非门的逻辑 关系,即

第2章 逻辑门电路

第2章  逻辑门电路
VDD '
A
1
≥1
B1
VDD R
A&
TP
Y B
Y
TN Y
TN
VOH=VDD'- iLR
2.1.6 CMOS漏极开路门
4.OD门和OC门的应用 应用一:可以线与,简化硬件电路。
+5V
A
&
B
C
&
D
R L
L AB CD
2.1.6 CMOS漏极开路门
线与的实际应用实例——光电报警系统
光电传 1
+5V
R3kCΩ VT5
VT6
A
&
F
B
OC 门
A
&
L
B
2.2.2 LSTTL与非门
集成与非门—74LS00
74LS00是在一个封装内有四个相同的与非门。其外形 如图所示。
绝大多数 左上角Vcc
引线排列从左下角 开始,逆时针计算
14
8
正视图
VCC
&
&
缺口标记
&
&
GND
绝大多数
右下角GND
1
7
2.2.3 LSTTL门电路的电气特性
CMOS门电路几种常见系列: (1)CD4000系列:基本系列,速度较慢 (2)74HC系列:速度比CD4000系列提高近10倍 (3)74HCT系列:与LSTTL门电路兼容 (4)LVC系列:低电压系列
TTL集电极开路门 OC 门Open-Collector
A B
VD5
R1 20kΩ VD1
VD2 VD6
2.2.2 LSTTL与非门

电子技术基础数字部分第二章逻辑门电路经典课件

电子技术基础数字部分第二章逻辑门电路经典课件

V5
A
V1
V2
F 输出管
V3
R2
输入级
中间级 (推拉式)输出级
(中间放大且驱动互补输出)
(1)A=1时,V1管处于发射结与集电结倒置使用放大状态,V2、V3导通,V4截止,有F=0;
VCC
+2.5V
高电平箝位电路提高输出的正向抗干扰能 力;(低电平输入时正向波动导致V导通,
但只要仍有IQ的存在即VZ导通,仍可以保证 高电平输出)
加速电容
A
提高低电平输入的 正向抗干扰能力
IRC RC
VZ
IQ
Cb
F
Rb
V
R' VCC
饱和的深度提高高电平输入时的负向抗干扰能力; 但饱和深度又降低了开关速度,增加了电路损耗;
1、逻辑非:某件事物发生的条件与结果相反的逻辑关系。 2、非门:实现逻辑非运算,且单端输入单端输出的电路。
3、BJT非逻辑电路基本结构及工作原理
VCC
Rb
A
RC
V
F
电位表
VA VF V 0V 5V 止 5V 0.3V 通
4、非门符号
1
A
F
实现了非 逻辑功能
真值表
AF 01 10
5、BJT非逻辑电路改进
CMOS负载
V OH(min)/V TTL负载
CMOS负载
V OL(max)/V TTL负载
VDD/VCC/V tpd/ns PD/mW NO VNH/V VNL/V
CMOS
74HC 74HCT
0.001 -0.001 -0.02
-4
0.001 -0.001 -0.02
-4
0.02

第二章 逻辑门电路1

第二章 逻辑门电路1
5V
较大正偏 电压
0.2~0.3V
c、e间相当于一个受iB控制的开关
BJT的开关条件
工作状态
条件
截 止
iB≈0
放 大
0 < iB <
I CS




iB > I CS
发射结和集 发射结正偏, 发射结和集 偏置情况 电结均为反偏 集电结反偏 电结均为正偏
V CC ICS iCi= ICS ≈ ≈ CC C= Rc V Rc
Rc2
截 T2 饱和 止
相当于一 R个小电阻 c4
3.6
T4
集电极电流加大, D T3迅速截止
vI
0.2 集电极电流
T1
1.4V
vO
负载 T饱和 3
Re2
基区电荷迅速消散
饱和到截止,需要基区电荷消散时间
2)在T2、T3由截止→饱和(输出1 →0),
输入级提供大的正向基流,B区电子快速积累,
T2、T3快速饱和。 VCC
2.4V
1
VOH(min) VNH VIH(min) VIL(max)
1
2V
定义: 高电平噪声容限 VNH=VOH-VIH 低电平噪声容限 VNL=VIL-VOL 体现一种容错能力 对于TTL 74系列: VNH=2.4V-2V=0.4V VNL=0.8V-0.4V=0.4V
0.4V
VNL
0
0.8V
1
&
V V
“1”: 悬空或接+5V
1
·
2.4V
VOH(min)
2.输出高电平VOH(输入至少一个为0)
典型值:3.6V; 标准高电平 VOH=2.4V 3.输出低电平VOL(输入全为1)

第2章 逻辑门电路

第2章   逻辑门电路

等式两边的真值表如表1.3所示: 等式两边的真值表如表1.3所示: 1.3所示
A
0 0 1 1
B
0 1 0 1
A⋅ B
1 1 1 0
A+ B
1 1 1 0
2. 常用公式
利用上面的公理、定律、规则可以得到一些常用的公式。 利用上面的公理、定律、规则可以得到一些常用的公式。
(1)吸收律
A+A·B = A
工作原理 请自行分析
◆ 多变量的函数表达式
● ● ● ● ●
与 或 与非 或非
F=A·B·C… F=A+B+C…
F = A⋅ B ⋅C
F = A+ B +C
等等 ◆ 运算的优先级别
与或非 F = AB + CD
括号→非运算→与运算→ 括号→非运算→与运算→或运算
2.3 逻辑变量与逻辑函数
F=A+B
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
F = A ⋅ B ⋅C ⋅ D ⋅ E
1. 要保持原式中逻辑运算的优先顺序; 保持原式中逻辑运算的优先顺序; 原式中逻辑运算的优先顺序 2. 不是一个变量上的反号应保持不变,否则就要出错。 不是一个变量上的反号应保持不变,否则就要出错。 上的反号应保持不变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (2)放大状态:当VI为正值且大于死区电压时,三极 管导通。有 V V V
IB
I BE
Rb

I
Rb
• 此时,若调节Rb↓,则IB↑,IC↑,VCE↓,工作点沿着负 载线由A点→B点→C点→D点向上移动。在此期间,三极管 工作在放大区, 其特点为: IC=βIB。 • 三极管工作在放大状态的条件为: 发射结正偏,集电结反偏
VIL VOL
VNL
0
4、扇入与扇出数: 1)扇入数: 取决于它的输入端的个数。 2)扇出数: MIN (NOH, NOL)
拉电流工作情况: 输出为高电平时,与 非门带拉电流负载
N OH
I OH (驱动门) I IH (负载门)
0 1
4
IIH II
L
输出为低电平时,与 灌电流工作情况: 非门带灌电流负载
0
T3 通
该与非门输 出低电平, 门 2 T3导通
集电极开路TTL“与非”门(OC门)
OC门的结构
当输入端全为高电 VCC 逻辑符号: 平时,T2、T3导通, A A A R 输出为低电平; L B B B 输入端有一个为 低 电 平 时 , T2 、 输出逻辑电平: T3 截 止 , 输 出 高 低电平0.3V 电 平 接 近 电 源 电 (5-30V) TTL与非门 高电平为VC 压VC。 OC门完成 集电极开路与非门(OC门) “与非”逻辑功 能
§2.3
CC
基本逻辑门电路
真值表
一、二极管“与门”及“或门”电路 A V (5V) 1、与门电路: 0 0 R 3k 0 A 1 L 1 B 1 C 1
A,B,C 任一为0V,其中一个 二极管导通,VL被钳制在0.7V
A,B,C全为高电压5V,二极
B 0 1 1 0 0 1 1
C 1 0 1 0 1 0 1
其中ts称为存储时间,tt称为渡越时间,tre=ts+tt称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。
Vi
VF -VR
+ Vi _ RL
VF VD VF RL RL
IF
i
0.1IR
VR VD VR RL RL
-IR
ts:存储 时间
tt:渡越时间
二、产生反向恢复过程的原因 -----电荷存储效应
MOS集成逻辑门
3)按集成度分
SSI(100以下个等效门) MSI(<103个等效门) LSI (<104个等效门) VLSI(>104个以上等效门)
§2.1 二极管的开关特性
一、二极管从正向导通到截止有一个反向恢复过程.
通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。
给二极管电路加入一个方波信号,二极管电流的波形如图所示。
输出级:由T3、 T4组成推拉式输 出结构。具有较 强的负载能力, 提高工作速度。
输入端为低电平(0.2V) T1管发射结导通, 5V 0.9V 3.6V
Vb1 = Vi + Vbe1
= 0.2V+0.7V=0.9V 其它发射结均因反偏而截止。 此 时 , Vb1=0.9V, 所 以 T2 、 T3 截止, VC2≈Vcc=5V, T4 , D导通
T3存储电荷迅速从 集电极消散而截止
3、采用推拉式输出级以提高开关速度和带负载能力
提高带负载能力 VO=VOL T3饱和,RO=T3 的饱和电阻(小), 可驱动较大电流负载 T4截止,负载电流为Ic3,全驱动负载 VO=VOH T3截止 T4电压跟随器, RO小,输出电平
VC2 Ib4大
VC3
转折区 饱和区
五、TTL与非门电路
输入端全为高电平, T1倒置放大,T2,T3饱 和,输出为低电平 输入至少有一个为 低电平时,输出为高 电平 由此可见电路的输 出和输入之间满足 与非逻辑关系
A B C
ABC
六、TTL与非门的技术参数: 1、传输特性: 与TTL反相器类似 2、输入 和输出的高、低电压
0.2V
VO VCC Vbe4 VD
5-0.7-0.7=3.6V
2.1V 3.6V
输入端为高电平 T1:Vb1= Vbc1+Vbe2+Vbe5 = 0.7V×3 = 2.1V 发射结反偏而集电极正 偏.处于倒置放大状态 T2:饱和状态 T3:饱和状态, T4 : Vc2=Vces2+Vbe3≈0.9V , D,T4截止。 因此输出为逻辑低电 平VO = Vces3 =0.3V
二极管在开关转换过程中出现的反向恢复过程,实质上 是由于电荷存储效应所引起的,反向恢复时间就是存储 电荷消失所需要的时间。一般开关二极管的反向恢复时 间在纳秒(ns)数量级.
+
-
IR
VR VD VR RL RL
+
三、二极管的开通时间:
开通时间:二极管从截止转为正向导通所需的时间。这个 时间同反向恢复时间相比是很短的,它对开关速度的影响
F 0 0 0 0 0 0 1
逻辑表达式 L= A B C 逻辑符号:
管全截止,VL=+5V
规定:+5V为高电平并用逻辑1表示 0V,0.7V为低电平用逻辑0表示
A B C

L= A B C
2、或门电路:
A
B C
R 3k
真值表
L
A,B,C 任一为5V,其中一个 二极管导通,VL=5V A,B,C 全为低电压0V,二极管 全截止,VL=0V
(3)饱和状态:保持VI不变,继续减小Rb,当VCE =0.7V时,集电结 变为零偏,称为临界饱和状态,对应图(b)中的E点。
此时的集电极电流称为集电极饱和电流,用ICS表示,基极电流称为 基极临界饱和电流,用IBS表示,有:
I BS I CS


VCC RC
I CS
VCC - 0.7V VCC RC RC
很小,可忽略不计。
§2.2 BJT的开关特性
1.三极管的三种工作状态
+VCC RC iC Rb + VI - iB e
0.7V
1
iC VCC/RC ICS IB5 E D C B A VCC IB4 = IBS IB3 IB2 IB1 IB= 0 v
CE
b
c3 T
2
图 (a)
图 (b)
(1)截止状态:当VI小于三极管发射结死区电压时,IB=ICBO≈0,IC= ICEO≈0,VCE≈VCC,三极管工作在截止区,对应图(b)中的A点。 三极管工作在截止状态的条件为:发射结反偏或小于死区电压。
低电平
vi
T
CL
放电
+ vo -
电路由VCC通过BJT放电。
带负载电容CL的BJT反相器
即,CL充电,放电 均需要一定的时间
故,器件内部和负载电容 的影响,使得BJT反相器 的开关速度不高。
二、TTL反相器的基本电路
输入级: 由 晶 体 管 T1 和基极电组 Rb1组成。
中间级:是放大级,由T2、 RC2和Re2组成,T2的集电 极C2和发射极E2可以分提 供两个相位相反的电压信 号驱动T4和T3。
稳定,带载强. 提高开关速度 输出接负载电容CL
VO由
VC2
L
比VC3
H

T2,T3饱和
截止
(Vc 2 Vc3 )
I b 4 很大
VO由 H
Vcc经Rc4,T4的饱和电阻对CL充电
小,上升快 小,下降快 L T3深度饱和呈低阻, CL放电
T4的c e间呈低阻
四、TTL反相器的传输特性:
电压传输特性
TTL“反相器输入电压VI与输出电压VO之间的关系曲线,即 VO = f(VI) 线 性 区 当 0.4V≤VI≤1.1V , 截 止 b2 当 VI≤0.4V , 0.7V≤V 区<1.4V时,T2 导 Vb1≤1.1V时,T 、T3 截止, 通,T3 仍截止,V2C2 随Vb2 升 输出高电平VOH 、D使V 高而下降,经T3= 3.6V O 下 降
• 若再减小Rb,IB会继续增加,但IC已接近于最大值VCC/RC,不会再 增加,三极管进入饱和状态。饱和时的VCE电压称为饱和压降VCES, 其典型值为:VCES≈0.3V。


三极管工作在饱和状态的电流条件为:IB> IBS
电压条件为:集电结和发射结均正偏。
NPN型BJT截止、放大、饱和工作状态特点
pD---门电路的功耗. 一个逻辑门器件的DP的值愈小, 表明它的特性愈接近于理想情况
8 、 TTL集成门电路的封装
(a) 外封装图
(b)四个2输入端与非门 引脚分布图
14脚数字集成电路
六 .TTL或非门,集电极开路门和三态门电路.
1 、 TTL或非门.
A B全为低电平
R1B
T2A T2B截止,输 出为高电平
规定:5V为高电平用逻辑1表示 0V为低电平用逻辑0表示
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
L 0 1 1 1 1 1 1 1
逻辑表达式:
L = A+ B+ C
L A B C
L A B C A B C
逻辑符号: A B C 1 L = A+B+C
A B任一为高电平
A
T1A
T2A T2B
T1B B
L
T2A 或T2B饱和, T3饱和, 输出为低电平
L=
A B
A
0 0 1 1
B
0 1 0 1
L
相关文档
最新文档