立体几何图形操作步骤全解

合集下载

立体几何解题方法

立体几何解题方法

立体几何解题方法1. 立体几何的基本概念在立体几何中,我们需要掌握的基本概念包括几何体、平面几何图形、平面曲线图形等。

几何体是三维空间内的图形,如立方体、长方体、圆柱体、圆锥体等。

平面几何图形是二维平面内的图形,如正方形、长方形、三角形等。

平面曲线图形是二维平面内的曲线图形,如圆、椭圆、抛物线等。

2. 解立体几何题的一般步骤解立体几何题目时,一般可以按照以下步骤进行:(1)仔细阅读题目,明确问题要求。

了解问题的背景和条件,确定所给信息及要求。

(2)根据题目中所给的条件,绘制平面图形或立体图形。

可以使用图纸或几何工具进行辅助。

(3)分析问题,寻找解题的关键信息。

有时需要通过几何关系或性质来推理或计算。

(4)选择适当的方法解题。

可以采用计算、作图、证明等方法来解决问题。

(5)检查解答,确保计算正确,符合题意。

要注意单位、精度等问题。

3. 解立体几何题的常见方法解立体几何题目时,可以采用一些常见的方法,如平面几何法、三角函数法、矢量法等。

下面分别介绍这几种方法的应用。

(1)平面几何法平面几何法是解立体几何题目中常用的方法之一,主要是通过几何图形的性质和几何关系来解决问题。

比如,要求计算一个立方体的表面积,可以通过计算各个面的面积然后求和来得到结果。

另外,还可以通过平行四边形、三角形等几何图形的性质来简化计算。

(2)三角函数法三角函数法是解立体几何题目的另一种常用方法,主要是利用三角函数的性质和关系来解决问题。

比如,要求计算一个圆锥体的体积,可以通过利用圆锥体的底面半径和高来计算对应的三角函数值,然后代入公式计算体积。

(3)矢量法矢量法是解立体几何题目的另一种有效方法,主要是通过引入矢量概念来简化问题的计算和推理。

比如,要求证明一个四面体是正四面体,可以通过计算四面体的各个边的矢量来证明各边长度相等,从而得出结论。

综上所述,解立体几何题需要熟练掌握立体几何的基本概念和方法,灵活运用各种解题方法。

只有不断练习和实践,才能在考试或竞赛中取得好成绩。

如何画立体图形

如何画立体图形

如何画立体图形立体图形在我们生活中无处不在,我们要要发挥我们的创造力,可以让画板为我们表现出丰富多彩的立体几何图形的。

一、立体几何图形的制作在空间里我们常用到的几何体有长方体、正方体、棱锥、棱台、圆锥和圆台等。

下面以正三棱锥为例,详细介绍下立体几何图形的制作画法。

设计标准:(1)能够反映正三棱锥的的几何性质,(2)能让其旋转。

设计的核心:解决正三角形在底面上的旋转。

为了使图形的直观性更强,我让一个三角形顶点在同一个椭圆上旋转,这样可以更好的表现出空间图形的立体感。

主要步骤:(1)画出椭圆上旋转的三角形。

用圆工具画一圆并在圆上任取一点C ,测算角CAB 的度数。

用线段工具。

作两条线段DE 和FG 并测算其长度。

利用三个测量值,计算出的值,选择二测算值,并在图表菜单中选择绘出(x,y ).这时画板中出现点J 。

标识中心A ,让点C 分别旋转120度和240度得到C`和C``,并分别测算角C`AB 和角C``AB ,然后通过上述画点J 的方法得到K ,L 。

连接三个点便生成了一个在底面可以旋转的三角形。

定义点C 在圆A 上旋转的动画,随着点C 的运动,三角形JKL 也开始旋转。

(2)构造棱锥。

将点A 平移到竖直的上方若干单位得到点A`。

(也可以标识一个向量,让点A 按着标识的向量来平移,这样能达到控制棱锥的高度的目的)。

构造线段JA`、KA`,LA`得到三棱锥的侧棱。

AA`为三棱锥的高,在此基础上我们再画出三棱锥的有关要素,例如高及三个重要的直角三角形。

类似的,我们可以得到圆柱、圆锥、圆台等几何图形。

另外,我们可以发挥几何画板动画的功能让我们的几何图形旋转起来,旋转的好处有二,一是在旋转的过程中选取最佳的识图视角,从而提高学生的识图能力;二是可以看到平面图形旋转成旋转体的生成过程,加强知识发生的过程的教学,变“知识重现”为“意义建构”,以往这部分内容的教学是引导学生展开“想象”,但对那些想象能力相对薄弱的学生来说,其中的困难可想而知。

几何画板课件制作之立体几何

几何画板课件制作之立体几何

立体几何在几何画板中绘制固定椭圆椭圆是数学中常见的一种图形,接下来我们看看如何在几何画板中绘制固定椭圆。

1.新建一个几何画板文件,选择“直线工具”,在绘图区域内画出线段AB,选择“构造”—“中点”命令,画出线段AB的中心C。

如下图所示。

2.选择“箭头工具”,依次选中点C、点A,选择“构造”—“以圆心和圆周上的点绘圆”命令,绘制出以点C为圆心经过点A的圆C。

如下图所示。

3.选择“点工具”,在圆周上绘制出点D。

选择“箭头工具”,选中点D和线段AB,选择“构造”—“垂线”命令,绘制出线段AB的垂线,并使线段AB和AB垂线的交点为E。

如下图所示。

4.选中圆C和直线DE,选择“显示”—“隐藏路径对象”命令,隐藏圆C和直线DE。

5.选择“线段工具”,绘制处线段DE。

选择“构造”—“中点”命令,绘制出线段DE的中点F。

如下图所示。

6.选择“箭头工具”,依次选中点D、点F,选择“构造”—“轨迹”命令,绘制出椭圆。

如下图所示。

7.选中点D、点E、点F、线段DE,选择“显示”—“隐藏对象”命令,隐藏点D、点E、点F、线段DE。

如下图所示。

8.选择“文件”—“保存”命令即可。

几何画板中球体的绘制方法球体如何在几何画板中绘制呢?接下来我们就一同看一看几何画板中球体的绘制。

1.新建一个几何画板文件。

选择“线段工具”,绘制出线段AB,选择“构造”—“中点”命令,绘制出线段AB的中点。

2.选择箭头工具,选中点C、点A,选择“构造”—“以圆心和圆周上的点绘圆”命令,绘制出圆C。

如下图所示。

3.选中点C、线段AB,选择“构造”—“垂线”命令,绘制出线段AB的中垂线。

点击线段AB的中垂线与圆C的交点,作出交点D、交点E。

如下图所示。

4.选择线段AB,选择“构造”—“线段上的点”命令,绘制出线段AB上的点F。

如下图所示。

5.选中点D、点F、点E,然后选择“构造”—“过三点的弧”命令,绘制出弧DFE。

如下图所示。

6.选中点F、弧DFE,选择“构造”—“轨迹”命令即可。

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEF­A′B′C′D′E′F′记作棱锥S­ABCD按底面多边形的边数分为三棱锥、记作棱台ABCD­A′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′­ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCD­A1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A­A1BD的体积及高.【解】(1)V三棱锥A1­ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1­ABD=a3-16a3=56a3.(2)V三棱锥A­A1BD=V三棱锥A1­ABD=1 6a 3.设三棱锥A­A1BD的高为h,则V三棱锥A­A1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。

word中怎么画立体几何图形

word中怎么画立体几何图形

如何在Word中画立体几何图形唐顺友出数学试卷时,看见某个立体几何题很好,但又不知道怎么把图弄在试卷上,有的老师用几何画板或用扫描仪把资料中的图形扫描,处理后再复制到Word中,这种做法存在画图效果不佳、效率低、图形修改时较麻烦等缺点。

而Word的画图工具,便能快速画出精致的立体几何图形,而且打印效果特别好,看后给人一种心情舒畅的感觉。

一、打开作图工具(视图→工具栏→绘图)具体操作:先必须把有关的图形工具请到工具栏上。

点击“视图→工具栏→绘图”,绘图工具栏便在界面下边显示出来。

二、设置作图工具1.去掉画布,目的是:避免每次画图时,都自动创建画布的麻烦事出现。

(工具→选项→常规→插入自选图形时自动创建画布):具体操作:在“工具→选项”这一菜单中,有个常规页,切换到这个页面后,在其中有个“插入自选图形时自动创建画布”选项,如果这个选项前面打“√”,则:单击之,取消这一选项,注:如果不设置也可以,每次画图时把画的图形拖出画布,然后把画布删除即可(选中画布,按回车键),要增加图形时选中已经画好的图形,再点击要增加的图形,也可以避免出现画布,操作相对来说要麻烦点。

2.设置间距,目的是:用鼠标移动图形时,较好地控制图形的大小以及搬动到预定地方。

(文件→页面设置→文档网格→绘图网格→会弹对话框→网格设置→水平间距”、“垂直间距”设置为0.01→确认→确认)具体操作:在“文件→页面设置”菜单中有个“文档网格”页面,切换到这个页面后,左下角有个“绘图网格”按钮,点击这个按钮时,会弹出一个设置对话框,在其中的“网格设置”的“水平间距”、“垂直间距”设置为0.01(取这一设置的最小值)。

如果不进行这个操作,移动图形时可能出现线条交接间隔过大,位置要向某个地方移动一点点,却不听使唤。

三、基本作图技巧1.画线段具体操作:点击左下方工具栏中的线条工具“”,在相应位置作图即可。

2.画虚线具体操作:先画线段,选中线段后,点击点击左下方工具栏中的虚线工具“”,选择需要的虚线类型单击即可。

第07章 立体几何图形的制作(1)

第07章 立体几何图形的制作(1)

第七章立体几何图形的制作一:基本立体图形的绘制例:绘制正方体思路:以一个面,按一条棱为标记的向量进行平移步骤:1、先画线段AB2、对点B绕点A旋转90后得A’,旋转45并缩放1/2之后得C3、B点按AC向量平移后得D4、连接BD.CD5、将整个ABCD按向量AA’平移后,连接各个点即可。

利用以上思路可以做各种基本的立体几何图形练习:绘制三菱台,绘制圆柱二:正方体的展开动画步骤:1、画线段AB2、双击点A,以A为中心,选中点B,执行“变换,旋转”得B’3、连接AB’,把B’旋转-45得到AB’’4、构造AB’’的中点C,依次选择点A、B’,标记向量AB’,选中点C,“变换,平移”后得到点C’,连接B’C’和CC’5、依次选中点A、B,执行“变换,标记向量”标记向量AB。

选中四边形AB’C’C,执行“变换,平移”,得到四边形BB’’’C’’’C’’’’。

连接B’B’’’,C’C’’’,CC’’’’完成后得到正方体6、双击点A,标记点A为中心,选中点B,执行“变换,旋转”,角度为180,绘制点D,依次选中A,B’和D,执行“构造,圆上的弧”命令,构造出弧B’D,在弧B’D上绘点E,依次选中点E,A。

执行“构造,以圆心和圆周上的点做圆”,绘制圆E。

双击E,以E为中心点,选中点A,执行“变换,旋转”,旋转角度为180,绘制出点A’,选中点A’,执行“变换,旋转”,旋转角度为-90,绘制出点A’’。

7、依次选中点E,A’’和A’,执行“构造,圆上的弧”,构造弧A’A’’。

在弧A’A’’上取一点F,依次选中点B’和C’。

执行“变换,标记向量”,标记出向量B’C’,选中点E,F。

执行“变换,平移”,按向量平移出点E’和F’。

连接AE,EF,FF’,F’E’,EE’。

这样就完成了上底面和左侧面的展开制作。

8、连接B’’C’,选中B’’C’,构造中点G,过点G做B’’C’的垂线,交AB’与H,依次选中H,B’’和C’,执行“构造,圆上的弧”,构造出弧B’’C’,在此弧上任取一点I,依次选中点C和C’’’’。

画好立体几何图形的方法

画好立体几何图形的方法

画好立体几何图形的方法绘制立体几何图形是一项具有挑战性的任务,需要使用一些技巧和技巧来确保图形清晰且准确。

接下来,本文将介绍如何画好立体几何图形的方法。

1.熟悉基础知识在开始描绘任何立体几何图形之前,您需要熟悉几何基础知识。

这包括理解不同形状的名称和特点,如正方体、长方体、圆锥体等,并了解它们的属性和特点,如表面积、体积、角度等。

这些知识将使您能够更好地理解几何形状,并更容易创建准确的图形。

2.选择正确的视角绘制立体几何图形需要选择正确的视角。

这可能需要一些尝试和错误,但一般来说,视角应该使图形的形状更清晰,并强调有关几何形状的重要信息。

为了达到这个目的,您可以尝试使用不同的视角,将图形放置在不同的角度和位置,并选择最好的视角来显示出图形的最佳形状。

3.绘制基本形状一旦您选择了正确的视角,接下来要做的就是开始绘制图形的基础形状,如绘制长方体四个立柱。

确保基础形状的比例和尺寸与您所绘制的图形相符,并使用精确的直尺和角度来确保直线和角是准确的。

您还可以使用计算机辅助设计软件来帮助创建更准确的图形。

4.考虑遮挡和透视在绘制立体几何图形时,您需要考虑遮挡和透视的问题。

遮挡是当一个形状被另一个形状遮挡时发生的现象,而透视是由于远离人眼的形状看起来比较小。

了解这些问题将有助于您绘制出更真实、更准确的图形,并考虑当形状之间发生遮挡时如何显示它们。

5.添加细节和深度一旦您完成了基础形状的绘制,并完成考虑遮挡和透视的问题后,您可以开始添加细节和深度。

这可以通过向图形中添加颜色、纹理、阴影等元素来实现。

对于颜色处理,您可以使用明亮的颜色来突出显示不同的形状和面,而添加纹理和阴影则可以增加深度和现实感。

6.检查图形的准确度最后一步是检查图形是否准确。

将几何形状和细节与原始的几何形状比较,确保它们与原始形状相匹配。

对于计算机辅助设计软件创建的图形,可以使用测量工具来检查长度、面积和体积是否准确。

总结绘制立体几何图形可以是一项有趣和创造性的任务,但也需要一些技巧和技巧来确保图形清晰、准确。

高中数学解题技巧之立体几何图像分析

高中数学解题技巧之立体几何图像分析

高中数学解题技巧之立体几何图像分析在高中数学中,立体几何是一个重要的知识点,涉及到空间几何图形的性质和计算。

解决立体几何题目的关键是分析图像,掌握一些解题技巧。

本文将介绍一些常见的立体几何图像分析方法,帮助高中学生更好地解决相关题目。

一、立体几何图像分析的基本步骤解决立体几何题目的第一步是分析图像,理解几何图形的性质和关系。

以下是一些基本的分析步骤:1. 观察图形:仔细观察给定的立体几何图形,注意其中的特征和形状,包括边长、角度、面积等。

2. 找出关键信息:在题目中找出与图形有关的关键信息,例如给定的长度、角度、面积等。

3. 确定未知量:根据题目要求,确定需要求解的未知量,这将有助于我们选择合适的解题方法。

4. 运用几何性质:根据立体几何的基本性质,利用已知信息推导出未知信息。

例如,利用平行线的性质、相似三角形的性质等。

5. 运用几何公式:在解题过程中,需要熟练掌握立体几何的相关公式,例如体积公式、表面积公式等。

二、应用立体几何图像分析的例题为了更好地理解立体几何图像分析的方法,我们来看一些具体的例题。

例题1:一个正方体的棱长为a,求其体积和表面积。

解析:首先观察图形,我们知道正方体的六个面都是正方形,边长为a。

根据题目要求,我们需要求解正方体的体积和表面积。

体积的计算公式为V = a³,其中a为正方体的边长。

代入已知条件,可得V =a³。

表面积的计算公式为S = 6a²,其中a为正方体的边长。

代入已知条件,可得S = 6a²。

通过对图形的观察和应用几何公式,我们可以得出正方体的体积和表面积。

例题2:一个圆柱体的高为h,底面半径为r,求其体积和侧面积。

解析:观察图形,我们知道圆柱体的底面是一个圆,侧面是一个矩形,高为h,长为2πr。

体积的计算公式为V = πr²h,其中r为底面半径,h为高。

代入已知条件,可得V = πr²h。

侧面积的计算公式为S = 2πrh,其中r为底面半径,h为高。

立体几何截图和作图教学课件

立体几何截图和作图教学课件
2°通过两已知相交直线;
3°通过两已知平行直线.
作图题2.求已知直线和已知平面的交点.
作图题3.求三已知平面的交点.
作图题4.通过已知直线外一已知点,求作一直线使与该直线平行.
教学类
16
教学类
17
作图题5(P62―4).给定两条异面直线,求作一平面通过其中一线
而平行于另一线.
命题:过两异面直线中一个有且只有一平面与另一直线平行。
(4)连接EM、EN,分别交SB、SD于点G、H。
(5)连接AG、AH。则多边形AGEH即为所求。
教学类
M
10
4°截面经过的三个已知点两两不在同一面内的棱上.
作图题9.P、Q、R三点分别在直四棱柱AC1的棱CC1、A1D1和
AB上,试画出过P、Q、R三点的截面.
D1
C
1
A1
Q
B1
C
D
A
教学类
P
R
B
已知锐角为ψ。
在斜线OA上任意取一点A,
并作AH⊥π于H,连接OH。
设∠AOH=φ,则由最小角定理
(4)连接BE,CF。则多边形BCFE为所求。
9
教学类
作图题8.在侧棱和高的夹角为α的正四棱锥中,求作一个过底面
顶点且与这点所对侧棱垂直的截面(α<45°)。 S
S
E
H
D
N
D
C
G
a
A
A
C
B
B
作法:(1)在平面SAC中,作AE⊥SC于点E。
(2)在底面ABCD内过A作a∥BD。
(3)延长CB、CD分别交a于点M、N。
为面上的点,再转化为棱上的点的问题来解决。
教学类

几何法解立体几何

几何法解立体几何

几何法解立体几何的步骤:
1. 确定问题中的已知信息
•识别给定的立体形状、线段、角度和面积。

•确定需要求解的未知量(例如:体积、表面积、高度、线段长度、角度)。

2. 分析形状
•观察立体形状并确定其关键特征(例如:底面、侧表面、顶点、棱)。

•寻找与已知信息相关的相似三角形或其他几何形状。

3. 使用相似性定理
•使用相似三角形定理或其他几何定理来建立已知量和未知量之间的关系。

•比例可以用于确定线段长度、角度或面积。

4. 代入公式或定理
•使用立体几何公式或定理来计算未知量。

•例如:体积公式、表面积公式、三视图公式等。

5. 求解方程
•代入已知信息并求解方程以确定未知量。

•可能需要使用代数或三角学技巧。

6. 检查答案
•确保答案与给定的信息相符。

•如果答案不合逻辑或不合理,则重新检查计算过程或假设。

提示:
•绘制立体形状的草图或三视图,以可视化问题。

•分解复杂的问题为更小的步骤。

•仔细检查单位和单位转换。

•利用几何软件(例如 GeoGebra)来协助计算和可视化。

立体几何知识点总结完整版讲解

立体几何知识点总结完整版讲解

立体几何知识点总结完整版讲解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】【重点知识整合】1.空间几何体的三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图;(2)侧视图:光线从几何体的左面向右面正投影得到的投影图;(3)俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2.斜二测画水平放置的平面图形的基本步骤 (1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox ′,Oy ′,使∠x ′Oy ′=45°(或135°),它们确定的平面表示水平平面;(3)画对应图形,在已知图形中平行于x 轴的线段,在直观图中画成平行于x ′轴,且长度保持不变;在已知图形中平行于y 轴的线段,在直观图中画成平行于y ′轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ; 台体的体积公式: V =棱台1()3h S SS S ''+;球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.【高频考点突破】考点一 空间几何体与三视图1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.画直观图时,与坐标轴平行的线段仍平行,与x 轴、z 轴 平行的线段长度不变,与y 轴平行的线段长度减半.例1、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 ( )【方法技巧】该类问题主要有两种类型:一是由几何体确定三视图;二是由三视图还原成几何体.解决该类问题的关键是找准投影面及三个视图之间的关系.抓住“正侧一样高,正俯一样长,俯侧一样宽”的特点作出判断.考点二 空间几何体的表面积和体积常见的一些简单几何体的表面积和体积公式:圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l )(其中r 为底面半径,l 为圆柱的高);圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中r 为底面半径,l 为母线长);圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl )(其中r 和r ′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高);锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′、S 分别为上、下底面面积,h 为高); 球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径). 例 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( )A.6 3B.9 3C.12 3 D.18 3【方法技巧】1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差、等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量.3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解.4.对于组合体的表面积要注意其衔接部分的处理.考点三球与空间几何体的“切”“接”问题1.长方体、正方体的外接球其体对角线长为该球的直径.2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线.4.正四面体的外接球与内切球的半径之比为3∶1.例3、一个棱锥的三视图如图,则该棱锥的外接球的表面积为________.【方法技巧】1.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题.2.若球面上四点P、A、B、C构成的线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,则4R2=a2+b2+c2(R为球半径).可采用“补形”法,构造长方体或正方体的外接球去处理.考点四空间线线、线面位置关系(1)线面平行的判定定理:a?α,b?α,a∥b?a∥α.(2)线面平行的性质定理:a∥α,a?β,α∩β=b?a∥b.(3)线面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α?a∥b.例4、如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.【方法技巧】1.证明线线平行常用的两种方法:(1)构造平行四边形;(2)构造三角形的中位线.2.证明线面平行常用的两种方法:(1)转化为线线平行;(2)转化为面面平行.3.证明直线与平面垂直往往转化为证明直线与直线垂直.而证明直线与直线垂直又需要转化为证明直线与平面垂直.考点五 空间面面位置关系1.面面垂直的判定定理:a ?β,a ⊥α?α⊥β.2.面面垂直的性质定理:α⊥β,α∩β=l ,a ?α,a ⊥l ?a ⊥β.3.面面平行的判定定理:a ?β,b ?β,a ∩b =A ,a ∥α,b ∥α?α∥β.4.面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ?a ∥b .5.面面平行的证明还有其它方法:⎭⎪⎬⎪⎫?1?a 、b ?α且a ∩b =A c 、d ?β且c ∩d =B a ∥c ,b ∥d ?α∥β,(2)a ⊥α、a ⊥β ?α∥β.例5、如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.【方法技巧】1.垂直问题的转化方向面面垂直?线面垂直?线线垂直.主要依据有关定义及判定定理和性质定理证明.具体如下:(1)证明线线垂直:①线线垂直的定义;②线面垂直的定义;③勾股定理等平面几何中的有关定理.(2)证明线面垂直:①线面垂直的判定定理;②线面垂直的性质定理;③面面垂直的性质定理.(3)证明面面垂直:①面面垂直的定义;②面面垂直的判定定理.2.证明面面平行的常用的方法是利用判定定理,其关键是结合图形与条件在平面内寻找两相交直线分别平行于另一平面.例6、如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(1)设G是OC的中点,证明:FG∥平面BOE;(2)证明:在△ABO内存在一点M,使FM⊥平面BOE.【方法技巧】1.用向量法来证明平行与垂直,避免了繁杂的推理论证而直接计算就行了.把几何问题代数化.尤其是正方体、长方体、直四棱柱中相关问题证明用向量法更简捷.但是向量法要求计算必须准确无误.2.利用向量法的关键是正确求平面的法向量.赋值时注意其灵活性.注意(0,0,0)不能作为法向量.考点七利用空间向量求角1.向量法求异面直线所成的角:若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cosθ=|cos〈a,b〉|=|a·b||a||b|. 2.向量法求线面所成的角:求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sinθ=|cos〈n,a〉|=|n·a| |n||a|.3.向量法求二面角:求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cosθ=|cos〈n1,n2〉|=|n1·n2| |n1||n2|;若二面角α-l-β所成的角θ为钝角,则cosθ=-|cos〈n1,n2〉|=-|n1·n2||n1||n2|.例7、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD =60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.考点八利用空间向量解决探索性问题利用空间向量解决探索性问题,它无需进行复杂繁难的作图、论证、推理,只须通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,可以使问题的解决更简单、有效,应善于运用这一方法.例8、如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【难点探究】难点一 空间几何体的表面积和体积例1、(1)一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80(2)某几何体的三视图如图所示,则该几何体的体积为( )A .92π+12B .92π+18C .9π+42D .36π+18难点二 球与多面体例 2、已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .3 3B .2 3 C. 3 D .1【解题规律与技巧】 .【历届高考真题】【2012年高考试题】 一、选择题1.【2012高考真题新课标理7】如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 182.【2012高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

高中数学中的立体几何证明案例详细步骤与演绎

高中数学中的立体几何证明案例详细步骤与演绎

高中数学中的立体几何证明案例详细步骤与演绎立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和变换关系。

在高中数学中,立体几何的证明是一个重要的部分,它既考察了学生对几何图形性质的理解,同时也培养了学生的逻辑推理和分析问题的能力。

本文将以几个典型的立体几何证明案例为例,详细介绍其步骤与演绎。

一、案例1:平行四边形的性质证明平行四边形是一种特殊的四边形,它的对边是平行的。

我们来证明平行四边形的一个性质:对角线互相平分。

证明过程如下:1. 过平行四边形ABCD的顶点A和C分别作BD和AC的垂线,设分别交于点E和F;2. 由平行线性质,得到AE // CF和DE // AF;3. 观察△ADE和△CFE,可以发现它们是全等三角形;4. 因此,AE = CF,DE = AF,即对角线互相平分。

二、案例2:立体图形的相似性质证明相似是几何中一个重要的概念,它描述了两个图形在形状上的相似程度。

我们来证明两个立体图形相似的性质:对应边成比例。

证明过程如下:1. 设立体图形A和B,它们的形状相似,记作A ~ B;2. 假设A的一个边长为a,B对应的边长为b;3. 观察A和B的对应边,可以发现它们的长度比为a : b;4. 因此,对应边成比例,即A ~ B。

三、案例3:球的体积公式证明球是一种典型的立体图形,它表现了三维空间中的旋转对称性。

我们来证明球的体积公式:V = (4/3)πr³。

证明过程如下:1. 设球的半径为r;2. 将球划分为无数个小圆柱,每个小圆柱的截面都是圆;3. 假设一个小圆柱的高为h,半径为r;4. 计算小圆柱的体积,即V₁ = πr²h;5. 通过对所有小圆柱体积求和,得到球的体积,即V = ∑V₁;6. 由于球的位置对称性,每个小圆柱的高都是2r,即h = 2r;7. 求和化简得到V = ∑(πr²h) = ∑(πr²·2r) = 2πr³;8. 由于无数个小圆柱填满整个球,因此球的体积为V = 2πr³;9. 化简得到V = (4/3)πr³,即球的体积公式成立。

结构素描知识:几何体结构素描画法有哪些?分步骤图解教你画

结构素描知识:几何体结构素描画法有哪些?分步骤图解教你画

结构素描知识:几何体结构素描画法有哪些?分步骤图解教你画在绘制几何形体的结构素描时,应主要以物体的线条结构为主要的表现手法。

绘制结构素描时应准确表现出物体的透视结构,但不注重明暗和体积感的塑造,结构素描是一种突出结构的表现形式。

1.切面圆柱体、四棱锥与正方体的结构素描切面圆柱体是圆柱体被斜切以后的剩余的形体状态,是上下由椭圆平面和圆形平面组成的几何形体。

四棱锥是底面为正方形、侧面为四个全等三角形组成的形体。

正方体,有六个面,每个面都是相等的正方形,是棱长都相等的六面体,是特殊的长方体。

【绘制目的】组合体的绘制要注意物体的组合关系。

起稿时要注意物体间的透视关系。

如果物体之间有遮掩部分,前后的透视关系要准确。

【绘制解析】【绘制步骤】步骤一:确定出所有物体的宽度与高度,画出各个物体的基本轮廓,注意物体的摆放位置及前后的遮挡关系。

步骤二:按照物体前后的透视关系,对靠近前方的部分色调加深绘制,增强物体之间的透视效果。

步骤三:使用较长的直线对物体的轮廓进行勾画,注意正方体顶点的位置,正确把握透视关系。

画出切面圆柱体与正方体的结构形体线。

步骤四:随后依据光源的照射方向,画出各个物体投影面的基本轮廓线,注意投影形状的把握。

同时画出背景与平面的分界线。

步骤五:对物体进行整体的亮暗区分,确定各个物体的明暗交界线,对暗部进行整体的排线。

同时画出投影面的整体排线,注意投影面色调的深浅变化,线条在绘制时要有虚实的变化。

步骤六:加强物体投影面的整体色调,增强画面的立体感。

使用较短的直线画出物体背景衬布的纹理色调。

注意色调的深浅变化与排线的方向变化。

2.圆柱体、球体、正方体与圆锥体的结构素描【案例介绍】圆柱体,是长方形水平旋转的形态,其顶面和底面的圆平面的圆心连线是圆柱体的中轴位置,形成了其宽度为圆面直径的圆柱形态,外观轮廓为方形。

球体,是一个连续曲面的几何体,由球面围成。

正方体,是各个面都相等的特殊长方体。

圆锥体,类似平面中的扇形,是由扇形和底部的圆形组成的几何形体。

立体几何图形操作步骤全解

立体几何图形操作步骤全解

实训二、制作几何球体(2学时)【实训目的】:1.掌握图层的基本操作2.掌握图层的种类,会建立各种图层3.掌握运用基本的形状如立体图形、基本规则形状、圆角矩形、圆角四边形,自定义图形,直线在图层上的相关的操作4.掌握在图层上进行字体设计【实训重难点】:掌握运用基本的形状如立体图形、基本规则形状、圆角矩形、圆角四边形,自定义图形,直线在图层上的相关的操作。

【实训教学手段】:教师讲解实验内容及要求,学生进行实验训练【实训内容】:1.制作球体、制作圆柱体、制作圆锥体、制作立方体、制作圆环、制作投影与倒影、2.完成综合布局【操作步骤】:1、制作球体(1)启动photoshop软件(2)执行菜单命令“文件”--“新建”,建立一个图像文件:400*400像素,分辨率280像素/英寸,RGB模式,背景白色。

(3)添加背景色。

单击“渐变”工具,再单击上方的“渐变编辑器”,打开渐变编辑对话框。

(4)设置线性渐变,从黑(R=0,G=0,B=0)到蓝(R=41,G=83,B=169).(5)回到工具面板,选择“渐变”工具,由上至下拉出渐变色.(6)执行菜单命令“窗口”--“图层”打开图层面板,新建图层1。

(7)回到工具面板,将“矩形选框工具“换成”椭圆选框工具“, 按shift键,在图层1画一个正圆。

(8)按照开始所讲的立体规律做一个渐变色,选择颜色块可以进行色彩的编辑。

如图2。

(9)回到工具面板,将“线性渐变”切换到“径向渐变”。

图1(10)在图层1的选区中,由圆的高光部位斜向下方拉出渐变。

图2(11)取消浮动,一个立体感的球体就呈现在你眼前。

最后存盘:文件--另存为--圆球。

图32、制作圆柱体(1)在层面板关闭球体层,建一个新层圆柱,回到工具面板,选取矩形选框工具,在新层上画一个长方形的选区。

(2)选择渐变工具,进行渐变编辑。

图4(3)在方形选区内从左至右进行渐变,然后取消浮动。

图5(4)圆柱的立体关系如下图:图6(5)新建层2,做圆柱的透视效果。

圆柱体、圆锥体、球体、正方体画法步骤

圆柱体、圆锥体、球体、正方体画法步骤

石膏几何体素描教学目的:通过教学使学生懂得写实素描、石膏几何体的临摹意义。

掌握写生的观察方法、透视规律、作画步骤。

教学重点:正确的观察方法,对形体空间状态的理解和分析,透视现象和原理。

教学难点:对形体空间状态的理解,绘画透视原理。

教学方法:讲授法、示范法、图片展示法。

教学准备:课件、范画、绘画工具教学过程:学习素描应遵循由浅入深、循序渐进的原则,石膏几何体概括了自然界各种不同的形体。

从研究石膏几何体和静物着手,是素描入门的开始。

研究几何体,便于理解物体的形体结构和在空间中的透视原理,便于理解物体的明暗调子和立体感。

素描这些最基本的规律,也贯串在其它一切复杂的形体中间,几乎包含了素描造型的各种关系。

通过对几何形体的理解和描绘,可以培养表现各种复杂形体的概括能力,为进一步学习素描打下基础。

我们今天先画一下石膏几何体的结构素描!首先我们来认识一下这些几何体吧!这些几何体你都叫得出名字不?没关系我们要画得好就行了!当然我们先从最简单容易的开始吧!◆球体的描绘圆球体与立方体相比较两者有着强烈的反差,圆球体的结构特征与立方体刚直的形态对立。

完全是由弧形构成的,给人以柔美、圆润、含蓄而灵动的感觉。

自然界中的一切物象均可以概括成立方体和圆球体这两种基本形态,也可以说立方体和圆球体是自然界中两种最基本的形态,两者的对立关系也完全符合“世界上的一切事物都是处于矛盾着的统一体之中”的这一基本规律。

矛盾着的事物在一定的条件下又是可以相互转让,方中寓圆,圆中有方,这两种视觉形象为我们认识世界提供了符号化的客观依据。

下面我们来认识一下圆球体的形体结构。

如图1是概括了的圆的形体结构。

图1圆球体圆球体的结构关系,要比方体复杂得多了,为了便于了解我们还是要对圆球体的结构关系加以概括,便于理解其形态构造。

如图2所示,是圆球体基本构造。

图2 圆球体的形体结构圆球体的绘画步骤①首先画一个正方形,画出对角线,找出一个交点为圆球体的圆心点,通过此圆心点作水平线和垂直线,找出圆球体外轮廓线与正方形相切的四个切点,(图3)。

画板各种立体几何图形的控制

画板各种立体几何图形的控制

如何实现立体图形的切割
隐藏长棱 、画短棱。 隐藏含切点的长棱AD、BD、CD,再画出留下部分的短棱AA’、BB’和CC’。 注:被切割部分的短棱不画。
如何实现立体图形的切割
3.标记向量,作“切割”和“复原”按钮。 画点E、F、G,标记向量EG。作G到E的移动,改标签为“复原”按钮;作G到F的移动,改标签为“切割”按钮。 3.单击编辑/移动命令 E F G
圆柱的侧面拉动展开
圆锥
定理: 如果圆锥体底面半径是 r ,周长是 c ,侧面母线长是 l ,那么它的侧面积是 : s=½ c l = r l 圆锥的侧面展开图:
3.圆台
定理: 如果圆台的上.下底面半径是 r´ .r ,周长是c´ .c ,侧母线长是l ,那么它的侧面积是: s=½(c + c´) l=( r +r´)l 圆台的侧面展开图:
如何实现立体图形的切割
4.按标记向量,移动被“切割”的部分。 同时选中切面、切点和被切的顶点 D,按标记向量平移,再画出移动部分的短棱D’A”、D’B”和D’C”。 。 4.单击变换/平动命令 E F G 范例
方法一、
(二) 如何控制立体图形的旋转
01
以点O、A作小圆,在该圆上取点B,并在AD上取点C;
范例
圆锥的截线和截面
(六)空间曲面
双 曲 抛 物 面 ; 山包曲面; 二面角; 环面
01
范例
02
极值问题
范例
注解:用同样的方法可作各种立体图形。 点A控制三棱锥上下翻转; 点B控制三棱锥左右旋转; 点C控制三棱锥前后旋转; 点H控制三棱锥的高 范例
1.圆柱
圆柱的侧面拉动展开
第一步:作线段:r ,L,以r为底面半径,L为高,作圆柱OO’。 圆柱底面椭圆由大圆上的点到一条直径的距离的一半的点追踪轨迹形成。 第二步:作圆柱的侧面展开。 1.画线段EF,上取一动点D,计算 Q=FD/EF*2π弧度,并标记为角度值。作点D到点E的移动,改标签为“展开”按钮,作点D到点F+0.01的移动,改标签为“还原”按钮。 2.以r为半径, O为圆心作圆,在圆取直径AB,以点O为标记中心,让点A按标记角Q旋转得点L,连接AL。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实训二、制作几何球体(2学时)
【实训目的】:
1.掌握图层的基本操作
2.掌握图层的种类,会建立各种图层
3.掌握运用基本的形状如立体图形、基本规则形状、圆角矩形、圆角四边形,自定义图形,直线在图层上的相关的操作
4.掌握在图层上进行字体设计
【实训重难点】:
掌握运用基本的形状如立体图形、基本规则形状、圆角矩形、圆角四边形,自定义图形,直线在图层上的相关的操作。

【实训教学手段】:
教师讲解实验内容及要求,学生进行实验训练
【实训内容】:
1.制作球体、制作圆柱体、制作圆锥体、制作立方体、制作圆环、制作投影与倒影、2.完成综合布局
【操作步骤】:
1、制作球体
(1)启动photoshop软件
(2)执行菜单命令“文件”--“新建”,建立一个图像文件:400*400像素,分辨率280像素/英寸,RGB模式,背景白色。

(3)添加背景色。

单击“渐变”工具,再单击上方的“渐变编辑器”,打开渐变编辑对话框。

(4)设置线性渐变,从黑(R=0,G=0,B=0)到蓝(R=41,G=83,B=169).
(5)回到工具面板,选择“渐变”工具,由上至下拉出渐变色.
(6)执行菜单命令“窗口”--“图层”打开图层面板,新建图层1。

(7)回到工具面板,将“矩形选框工具“换成”椭圆选框工具“, 按shift键,在图层1画一个正圆。

(8)按照开始所讲的立体规律做一个渐变色,选择颜色块可以进行色彩的编辑。

如图2。

(9)回到工具面板,将“线性渐变”切换到“径向渐变”。

图1
(10)在图层1的选区中,由圆的高光部位斜向下方拉出渐变。

图2
(11)取消浮动,一个立体感的球体就呈现在你眼前。

最后存盘:文件--另存为--圆球。

图3
2、制作圆柱体
(1)在层面板关闭球体层,建一个新层圆柱,回到工具面板,选取矩形选框工具,在新层上画一个长方形的选区。

(2)选择渐变工具,进行渐变编辑。

图4
(3)在方形选区内从左至右进行渐变,然后取消浮动。

图5
(4)圆柱的立体关系如下图:
图6
(5)新建层2,做圆柱的透视效果。

图7
(6)选择层2,在圆柱的上部画一个椭圆选区。

(7)选择前景色为灰色,红框中是颜色的RGB值。

图8
(8)填充,注意不要取消浮动。

图9
(9)回到圆柱层,按键盘上的向下方向键,将选区向下移动。

(10)选择矩形选框工具,按键盘上的shift键进行加选。

图10
(11)选择菜单命令“选择”--“反向”进行反选,然后按键盘上的Delete键,删除不需要的部分,完成圆柱体的制作。

图11
(12)选择菜单命令“选择”--“反向”进行反选,然后按键盘上的Delete键,删除不需要的部分,完成圆柱体的制作。

图12
(13)如果你想得到一个空心体的圆筒,方法是:
a.在层面板上使层2的椭圆浮动(选择――载入选区――确定),
b.新建层3,
c.进行相反方向的渐变,
图13
(14)最后存盘,取名:圆柱体。

3、制作圆锥体
(1)建新层,命名:圆锥,画一个渐变的矩形,编辑--变换--透视。

图14
(2)点击右上方小方块平行移到中心,使左右两个方块在中心重叠。

图15
(3)在锥形的下方画一个椭圆选区。

图16
(4)在工具面板选择矩形工具,按Shift键进行加选.
图17
(5)执行菜单命令“选择”――“反向”,然后按Delete键删除多余的部分.
图18 (6)圆锥体的制作就完成了。

存盘。

图19 4、制作立方体
立方体在光线下,将产生不同的明暗面。

图20
(1)建新层:立方体,按shift键画正方形,填充灰。

图21
(2)复制这一层,“图象”--“调整”--“亮度/对比度”,设置如图:
图22
(3)将调整后的这一层复制,“图象”――“调整”――“亮度/对比度”。

图23
(4)调整立方体的透视效果,将暂不需要的层关闭。

(5)在立方体层执行“编辑”--“自由变换”,在菜单栏的下一栏设置变换的数值,然后按“回车”完成。

图24
(6)激活“立方体副本层”,自由变换,设置如图:
图25
图26
(7)激活“立方体副本2层",自由变换设置如图:
图27
(8)激活另外两层,分别移动到合适的位置。

图28
如果你觉得各个面的角度不好调节,也可手动修改,直到满意为止。

最后将三个层合并,存盘。

5、制作环形体
(1)建新层,画正圆,填充灰。

图29 (2)在中心画小圆,按Delete键删除。

图30 (3)按住Ctrl+D键,点取消选区。

(4)添加图层样式-斜面和浮雕,并设置相应的参数。

图31
(5)好了,一个圆环到此完成,保存。

图32
六、制作投影与倒影
(1)以前做好的球体没有删掉吧,如果删了就再做一个,全当是又练习了一回。

(2)复制球体层,按向下的方向键将复制的球体移动到适当位置,垂直翻转,稍微模糊一点,降低透明度。

倒影做完了,就怎么简单。

图33
(3)再复制一个球体层,放在球体层下,选择扭曲变换工具将其变形。

3.按住Ctrl 键不放点击层面板眼睛旁的方框,使投影变为选区。

4.填充黑色,高斯模糊,降低透明度,球体的投影便完成了。

图34
7、综合布局
我们的球体、圆柱、圆桶、锥体、圆环、立方体都还在吧,好!将它们分别缩小,加上阴影,摆好位置,做这一步的时候要细心哦。

若要看起来美观些,可分别调整上你喜欢的色调.。

相关文档
最新文档