轴向拉伸与压缩

合集下载

《建筑力学》第五章-轴向拉伸和压缩

《建筑力学》第五章-轴向拉伸和压缩

总结词
随着科技的发展,新型材料不断涌现,对新 型材料的轴向拉伸和压缩性能进行研究,有 助于发现更具有优良力学性能的材料,为工 程应用提供更多选择。
详细描述
近年来,碳纤维复合材料、钛合金等新型材 料在轴向拉伸和压缩方面的性能表现引起了 广泛关注。通过深入研究这些材料的力学特 性,可以进一步挖掘其潜在应用价值,为建 筑、航空航天、汽车等领域提供更轻质、高
2. 弹性模量计算
根据应力-应变曲线的初始直线段,计算材料的弹性模量,用于评估材料的刚度和抵抗弹性变形的能力 。
实验步骤与实验结果分析
3. 泊松比分析
通过测量试样在拉伸和压缩过程中的 横向变形,计算材料的泊松比,了解 材料在受力时横向变形的性质。
4. 强度分析
根据应力-应变曲线中的最大应力值, 评估材料的抗拉和抗压强度,为工程 实践中选择合适的材料提供依据。
供理论支持,确保结构的安全性和稳定性。
智能化技术在轴向拉伸和压缩领域的应用研究
要点一
总结词
要点二
详细描述
随着智能化技术的不断发展,其在轴向拉伸和压缩领域的 应用研究逐渐成为热点,有助于提高测试精度和效率,为 实验研究和工程应用提供有力支持。
例如,利用智能传感器和机器学习技术对轴向拉伸和压缩 实验进行数据采集和分析,可以提高实验的精度和效率。 同时,智能化技术的应用还可以为实验数据的处理、分析 和预测提供新的方法和手段,为实验研究和工程应用提供 更加全面和准确的数据支持。
特性
轴向拉伸和压缩时,物体在垂直 于轴线方向上的尺寸保持不变, 而在轴线方向上的尺寸发生改变 。
轴向拉伸和压缩的分类
按变形程度
可分为弹性变形和塑性变形。弹性变形是指在外力撤销后,物体能够恢复原状的 变形;塑性变形是指外力撤销后,物体不能恢复原状的变形。

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

轴向拉伸和压缩

轴向拉伸和压缩

六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S

p 0.2
脆性材料
u
( bt

bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A

轴向拉伸和压缩

轴向拉伸和压缩

第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。

(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。

这里要注意产生内力的前提条件是构件受到外力的作用。

2. 轴力 轴向拉(压)时,杆件横截面上的内力。

它通过截面形心,与横截面相垂直。

拉力为正,压力为负。

3. 应力 截面上任一点处的分布内力集度称为该点的应力。

与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。

轴拉(压)杆横截面上只有正应力。

4. 应变 单位尺寸上构件的变形量。

5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。

6. 极限应力 材料固有的能承受应力的上限,用σ0表示。

7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。

极限应力与许用应力的比值称为安全系数。

8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。

(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。

用截面法求轴力的三个步骤:截开、代替和平衡。

求出轴力后要能准确地画出杆件的轴力图。

画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。

2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。

泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。

轴向拉伸和压缩

轴向拉伸和压缩

§2 轴向拉压时横截面上 的内力和应力
一.轴力及轴力图 1.轴力的概念
(1)举例
F F
N
F
N
F
用截面法将杆件分成左右两部分,利用 方向的平衡可得 :
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由杆 件处于平衡状态可知,内力合力的作用线也必然 与杆件的轴线相重合。
二、应力
1、平面假设
① 实验:受轴向拉伸的等截面直杆,在外力施加之前, 先画上两条互相平行的横向线ab、cd,然后观察该两 横向线在杆件受力后的变化情况。
a
F
a b
c
c d
F
b
② 实验现象
d
变形前,我们在横向所作的两条平行线ab、cd, 在变形后,仍然保持为直线,且仍然垂直于轴线,只 是分别移至a’b’、c’d’位置。
③ 实验结论 变形前为平面的横截面,变形后仍保持为平面。 ——平面假设
F
N
N
F
平面假设
拉杆所有纵向纤维的伸长相等 材料的均匀性 各纵向纤维的性质相同
横截面上 内力是均 匀分布的
N A
(1)
A——横截面面积
拓展

——横截面上的应力
对于等直杆, 当有多段轴力时,最大轴力所对应的截 面——危险截面。危险截面上的正应力——最大工作应力, 其计算公式应为:
2)木材
各向异性材料。 3)玻璃钢:玻璃纤维与热固性树脂粘合而成的复合材料 各向异性材料。优点是:重量轻,强度高,工艺简单,耐 腐蚀。
思考题 1、强度极限b是否是材料在拉伸过程中所承受 的最大应力? 2、低碳钢的同一圆截面试样上,若同时画有两种 标距,试问所得伸长率10 和5 哪一个大?

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

第四章轴向拉伸与压缩

第四章轴向拉伸与压缩
第四章 轴向拉伸和压缩
4.1 轴向拉伸和压缩的概念
当作用在等截面直杆上的外力(或者外力合力)的 作用线和杆轴重合时,杆件的主要变形是轴向拉伸 或者压缩。
经历轴向拉伸(压缩)的等截面直杆称为拉(压) 杆。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向
O
B
C
4F 3F
D 2F
2A
2A
A
FN 3F
+ A
2F
B
+
+

C
D
F
4.3 拉(压)杆的应力
1. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
横截面积 A 成反比。即
l Fl A
引入比例常数E,可有
l Fl F
EA
EA
这一关系称为胡克定律。
E 称为杨氏模量,也叫弹性模量。它是材料本身的性质,表征 材料抵抗变形的能力,需要用实验来测定。单位为Pa。
在拉压杆中,有
F FN
l Fl FN l FN
EA EA
EA
※ “EA”称为杆的拉伸(压缩)刚度。对于长度相等,受力也 相等的拉压杆,拉伸(压缩)刚度越大,变形越小。
d
向缩短。若拉杆为圆截面,原始
直径为d,变形后直径为d1,

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

工程力学7.轴向拉伸和压缩

工程力学7.轴向拉伸和压缩
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
2
力学模型如图
P
P
轴向拉伸,对应的力称为拉力。
P
P
轴向压缩,对应的力称为压力。
3
§1–2 内力 ·截面法 ·轴力及轴力图 一、内力
指由外力作用所引起的、物体内相邻部分 之间分布内力系的合成。
4
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性
L E EA
EA
4、泊松比(或横向变形系数)
或 :
27
例4 小变形放大图与位移的求法。 1、怎样画小变形放大图?
A
B
L1
C L2
L2 P L1 C' C"
求各杆的变形量△Li ,如图 变形图严格画法,图中弧线 变形图近似画法,图中弧之
切线。
28
2、写出图中B点位移与两杆变形间的关系
x0 x
5、杆的横向变形: ac ac ac
6、x点处的横向线应变:
ac
ac
26
3、单向应力状态下的弹性定律(胡克定律)
1 ; E
E
在轴向拉伸和压缩情况下,根据应力及应
变的计算公式,胡克定律可以用轴力和变形之
间的关系式来表达。式中EA称为杆的抗拉压刚
度。
L 1 1 P L PL
当a = ± 45°时,
| a |max
0
2
(45 °斜截面上剪应力达到最大)
23
1.一点的应力状态:过一点有无数的截面,这一点 的各个截面上的应力情况,称为这点的应力状态。
2.单元体:构件内的点的代表物,是包围被研究点 的无限小的几何体,常用的是正六面体。 单元体的性质: a)平行面上,应力均布;

轴向拉伸与压缩的名词解释

轴向拉伸与压缩的名词解释

轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。

本文将对轴向拉伸与压缩进行详细的解释与探讨。

一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。

当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。

拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。

轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。

钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。

而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。

二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。

当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。

压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。

轴向压缩现象同样广泛应用于工程领域。

例如,桥梁中的墩柱、压缩试验中的压力传感器等。

墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。

三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。

1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。

通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。

这对材料的设计和应用具有重要的指导意义。

2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。

例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。

3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。

例如,电子产品中常使用弹性材料来保护内部电路。

这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。

材料力学轴向拉伸与压缩

材料力学轴向拉伸与压缩
轴向拉压变形
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。

轴向拉伸与压缩

轴向拉伸与压缩

轴向拉伸与压缩的特点:
◆ 受力特点:
◆ 变形特点:
F
F
F
F
承受轴向变形的杆件称为拉杆或压杆。
外力合力的作用线与杆轴线重合
主要是沿轴线方向伸长或缩短
第二节 轴力与轴力图 一、内力与截面法 内力 —— 外力引起的构件内部相连部分之间的相互作用力。 ◆ 内力为作用于整个截面上的连续分布力。今后,内力一般被用来特指截面上的分布内力的合力、或合力偶矩、或向截面形心简化所得到的主矢和主矩。
塑性材料为塑性屈服;脆性材料为脆性断裂
极限应力 ——
材料强度失效时所对应的应力,记作 u ,有
塑性材料(拉压相同)
脆性材料(拉压不同)
2.许用应力与安全因数
材料安全工作所容许承受的最大应力,记 作 [ ],规定
许用应力 ——
02
其中,n 为大于 1 的因数,称为安全因数 。
对于塑性材料,压缩与拉伸的许用应力基本相 同,无需区分;对于脆性材料,压缩与拉伸的许 用应力差异很大,必须严格区分。
(2)计算两杆应力
解得
AB 杆:
(2)计算两杆应力
AB 杆: AC 杆:
拉(压)杆斜截面上的应力 斜截面的方位角 : 以 x 轴为始边,以外法线轴 n 为终边,逆时针转向的 角为正,反之为负 。 斜截面上的全应力
将 p 沿斜截面的法向和切向分解,即得 斜截面上的正应力、切应力分别为 —— 横截面的面积 —— 横截面上的正应力 切应力的正负号规定:围绕所取分离体顺时针转向的切应力为正,反之为负。
[例 2-3] 试作出图示拉压杆的轴力图。
解:省略计算过程,直接作出轴力图如上图所示。
第三节 拉压杆的应力
一、应力的概念 应力是指截面上分布内力的集度 如图 为分布内力在 k 点的集度,称为 k 点的应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 轴力的正负规定:
N
N
N 与外法线同向,为正轴力(拉力)
N与外法线反向,为负轴力(压力)
N
N
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 N
及其所在横截面的位置,
P
即确定危险截面位置,为
+
强度计算提供依据。
N>0 N<0
x
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。
§1–2 内力 ·截面法 ·轴力及轴力图
一、内力 指由外力作用所引起的、物体内相邻部分之间分布内
力系的合成(附加内力)。
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
其中:[]--许用应力, max--危险点的最大工作应力。
依强度准则可进行三种强度计算:
①校核强度:
max
②设计截面尺寸:
Am in

Nmax
[ ]
③许可载荷: Nmax A ;
[例3] 已知一圆杆受拉力P =25 k N,直径 d =14mm,许用应力
[]=170MPa,试校核此杆是否满足强度要求。
max max( NA((xx)))
4. 公式的应用条件: 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
5. Saint-Venant原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。
6. 应力集中(Stress Concentration): 在截面尺寸突变处,应力急剧变大。
变形前
ab cd
受载后 P




P
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
N(x)


N ( x) A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。 危险点:应力最大的点。
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
7. 强度设计准则(Strength Design): 保证构件不发生强度破坏并有一定安全余量的条件准则。
max max(NA((xx)))
②材料承受荷载的能力。
一、应力的概念 1. 定义:由外力引起的内力集度。
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。
2. 应力的表示:
①平均应力:
P
M
pM

ΔP ΔA
A
②全应力(总应力):
lim p
ΔP dP
第一章 轴向拉伸和压缩
§1–1 轴向拉压的概念及实例 §1–2 内力、截面法、轴力及轴力图 §1–3 截面上的应力及强度条件 §1-4 拉压杆的变形 弹性定律 §1-5 拉压杆的弹性应变能 §1-6 拉压超静定问题及其处理方法 §1-7 材料在拉伸和压缩时的力学性能
§1–1 轴向拉压的概念及实例
解:① 轴力:N = P =25kN
②应力:
max
N A

4P
πd 2

4 25103 3.14 0.0142
162MPa
③强度校核: max 162MPa 170MPa
④结论:此杆满足强度要求,能够正常工作。
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
ΔA0 ΔA dA
③全应力分解为:
垂直于截面的应力称为“正应力” (Normal Stress);


lim
Δ A0
ΔN ΔA

dN dA
p


M
位于截面内的应力称为“剪应力”(Shearing Stress)。


ΔT
lim
Δ 0
Δ
A

dT dA
二、拉(压)杆横截面上的应力 1. 变形规律试验及平面假设:
杆的轴力图。 q(x)
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
O x
q
q(x)
Nx x
qL
N
N(x)

0x

kxdx


1 2
kx2

k L2 2
N ( x)m ax


1 2
kL2
§1–3 截面上的应力及强度条件
问题提出:
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:①内力在截面分布集度应力;
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN +
8kN – 3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出
一、概念 轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗。
力学模型如图
P
轴向拉伸,对应的力称为拉力。
P
轴向压缩,对应的力称为压力。
P P
二、
工 程 实 例
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
例如: 截面法求N。
P
A
P
截开:
P
A P
简图
代替: 平衡:
P A
X 0 PN 0
N
PN
2. 轴力——轴向拉压杆的内力,用N 表示。
OA
BC
D
PA
PB
PC
PD
N1
A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N1 PA PB PC PD 0
N1 5P 8P 4P P 0 N1 2P
同理,求得AB、
N2
BC、CD段内力分
别为:
N2= –3P
N3= 5P
N4= P
相关文档
最新文档