线性代数知识点全面总结

合集下载

线性代数知识点总结完整

线性代数知识点总结完整

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式()()111211222211221122010n t n n nn nn nna a a a a D a a a a a a a ==-=1212n nλλλλλλ=;()()1122121n n n nλλλλλλ-=-3.行列式的性质定义 记111212122212n n n n nna a a a a a D a a a =;112111222212n n T nnnna a a a a a D a a a =;行列式TD 称为行列式D 的转置行列式.. 性质1行列式与它的转置行列式相等..性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ;行列式变号.. 推论 如果行列式有两行列完全相同成比例;则此行列式为零..性质3 行列式某一行列中所有的元素都乘以同一数()⨯j k r k ;等于用数k 乘此行列式;推论1D 的某一行列中所有元素的公因子可以提到D 的外面;推论2 D 中某一行列所有元素为零;则=0D ..性质4若行列式的某一列行的元素都是两数之和;则1112111212222212()()()i i ni i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+1112111112112122222122221212i n i ni n i n n n ninnn nninna a a a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的某一列行的各元素乘以同一数然后加到另一列行对应的元素上去;行列式的值不变..算得行列式的值..4. 行列式按行列展开余子式 在n 阶行列式中;把元素ij a 所在的第i 行和第j 列划去后;留下来的1n -阶行列式叫做元素ij a 的余子式;记作ij M ..代数余子式 ()1i jij ij A M +=-记;叫做元素ij a 的代数余子式..引理一个n 阶行列式;如果其中第i 行所有元素除i;j (,)i j 元外ij a 都为零;那么这行列式等于ij a 与它的代数余子式的乘积;即ij ij D a A =..高阶行列式计算首先把行列上的元素尽可能多的化成0;保留一个非零元素;降阶定理n 阶行列式 111212122212=n n n n nna a a a a a D a a a 等于它的任意一行列的各元素与其对应的代数余子式的乘积之和;即1122i i i i in in D a A a A a A =+++;(1,2,,)i n =1122j j j j nj nj D a A a A a A =+++或;(1,2,,)j n =..第二章 矩阵1.矩阵111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭行列式是数值;矩阵是数表; 各个元素组成方阵 :行数与列数都等于n 的矩阵A .. 记作:A n.. 行列矩阵:只有一行列的矩阵..也称行列向量.. 同型矩阵:两矩阵的行数相等;列数也相等.. 相等矩阵:AB 同型;且对应元素相等..记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零..单位阵:主对角线上元素都是1;其它元素都是0;记作:E注意 矩阵与行列式有本质的区别;行列式是一个算式;一个数字行列式经过计算可求得其值;而矩阵仅仅是一个数表;它的行数和列数可以不同..2. 矩阵的运算矩阵的加法 111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时;才能进行加法运算.. 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记;A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-..数与矩阵相乘111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵;,λμ为数()()()1A A λμλμ=;()()2A A A λμλμ+=+;()()3A B A B λλλ+=+..矩阵相加与数乘矩阵统称为矩阵的线性运算..矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵;(b )ij B =是一个s n ⨯矩阵;那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =;其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑;()1,2,;1,2,,i m j n ==;并把此乘积记作C AB = 注意1..A 与B2..矩阵的乘法不满足交换律;即在一般情况下;AB BA ≠;而且两个非零矩阵的乘积可能是零矩阵..3..对于n 阶方阵A 和B;若AB=BA;则称A 与B 是可交换的..矩阵乘法的运算规律()()()1AB C A BC =; ()()()()2AB A B A B λλλ==()()3A B C AB AC +=+;()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵;则称 A k 为A 的k 次幂;即kk A A AA =个;并且mk m kA A A+=;()km mk AA =(),m k 为正整数..规定:A 0=E 只有方阵才有幂运算注意 矩阵不满足交换律;即AB BA ≠;()kk k AB A B ≠但也有例外转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵;叫做A 的转置矩阵;记作A T ;()()1TT A A =;()()2T T T A B A B +=+;()()3T T A A λλ=;()()4TT T AB B A =..方阵的行列式由n 阶方阵A 的元素所构成的行列式;叫做方阵A 的行列式;记作A注意 矩阵与行列式是两个不同的概念;n 阶矩阵是n 2个数按一定方式排成的数表;而n 阶行列式则是这些数按一定的运算法则所确定的一个数..()1T A A =;()2n A A λλ=;(3)AB A B B A BA ===对称阵 设A 为n 阶方阵;如果满足A =A T ;那么A 称为对称阵.. 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵.. 性质 AA A A A E **==易忘知识点总结1只有当两个矩阵是同型矩阵时;才能进行加法运算..2只有当第一个矩阵的列数等于第二个矩阵的行数时;两个矩阵才能相乘;且矩阵相乘不满足交换律.. 3矩阵的数乘运算与行列式的数乘运算不同..逆矩阵:AB =BA =E;则说矩阵A 是可逆的;并把矩阵B 称为A 的逆矩阵..1A B -=即..说明1 A ;B 互为逆阵; A = B -12 只对方阵定义逆阵..只有方阵才有逆矩阵 3.若A 是可逆矩阵;则A 的逆矩阵是唯一的..定理1矩阵A 可逆的充分必要条件是0A ≠;并且当A 可逆时;有1*1AA A-=重要奇异矩阵与非奇异矩阵 当0A =时;A 称为奇异矩阵;当0A ≠时;A 称为非奇异矩阵..即0A A A ⇔⇔≠可逆为非奇异矩阵..求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。

它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。

下面将全面总结线性代数的知识点。

1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。

向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。

向量的加法、减法、数乘等运算满足一定的性质。

2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。

向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。

向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。

3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。

矩阵可以表示线性方程组、线性变换等。

矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。

4.线性方程组线性方程组是由线性方程组成的方程组。

线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。

线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。

5.行列式行列式是一个包含数字的方阵。

行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。

6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。

特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。

通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。

7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。

8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。

最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。

9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。

正交变换是一种保持向量长度和夹角不变的线性变换。

线性代数知识点归纳,超详细

线性代数知识点归纳,超详细

线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。

⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

线性代数详细知识点

线性代数详细知识点

线性代数 第一章 行列式§1 二阶和三阶行列式一、二元一次线性方程组与二阶行列式结论:如果112212210a a a a -≠,则二元线性方程组 11112212112222a x a xb a x a x b +=⎧⎨+=⎩的解为122122*********b a a b x a a a a -=-,1121212112121a b b a x a b b a -=-。

定义:设11122122,,,a a a a ,记11221221a a a a -为11122122a a a a 。

称11122122a a a a 为二阶行列式有了行列式的符号,二元线性方程组的求解公式可以改写为112222111122122b a b a x a a a a =,111122211122122a b a b x a a a a =二、三阶行列式与三元一次线性方程组定义:111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---定理:如果1112132122233132330a a a D a a a a a a =≠,则***123(,,)x x x 是下面的三元线性方程组的解111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩当且仅当*1x =112132222333233/b a a b a a D b a a ,*2x =111132122331333/a b a a b a D a b a ,*3x =111212122231323/a a b a a b D a a b 其中111213212223313233a a a a a a a a a 为系数行列式。

线性代数超强总结

线性代数超强总结

考试重点第一章: 行列式的定义、行列式的计算;第二章: 1、求矩阵的逆阵(伴随矩阵法、初等变换法); 2.求矩阵的秩(用初等变换法);3.求矩阵方程: Ax=B, xA=B, AxB=C ; 第三章: 证明向量组的线性相关性; 第四章: 方程组Ax=0, Ax=b 求解; 第五章: 1、会求特征值与特征向量; 2.相似矩阵的性质;3.实对称矩阵的对角化; 第六章: 1.用正交变换把二次型化为标准形;2.二次型的秩, 二次型正定的定义; 3、矩阵正定的判断方法:(1)各阶顺序主子式都大于零;(2)每个特征值都大于零()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A BB οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线: √ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 设 , 对 阶矩阵 规定: 为 的一个多项式.√ 设 的列向量为 , 的列向量为 , 的列向量为 ,√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 判断 是 的基础解系的条件: ① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ④ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑤ ()0r A A ο=⇔=.⑥ 若 线性无关, 而 线性相关,则 可由 线性表示,且表示法惟一. ⑦ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑧ 矩阵的行初等变换不改变矩阵的秩,且不改变列 、行向量间的线性关系.⑨ 矩阵 与 等价 作为向量组等价,即: 秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.向量组 可由向量组 线性表示 ≤ .向量组 可由向量组 线性表示,且 , 则 线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑩ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑪ 任一向量组和它的极大无关组等价.⑫ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑬ 若两个线性无关的向量组等价,则它们包含的向量个数相等. 若 是 矩阵,则 ,若 , 的行向量线性无关;若 , 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦51212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解6线性方程组解的性质:√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:② 对称性: ③ 双线性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c c c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化: T AA E =.√ 是正交矩阵的充要条件: 的 个行(列)向量构成 的一组标准正交基.√ 正交矩阵的性质: ① ; ② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若 ,则 一定可分解为 = 、 ,从而 的特征值为: , .√ 若 的全部特征值 , 是多项式,则: ① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,n A AAλλλ.√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.. 相似于对角阵的充要条件: 恰有 个线性无关的特征向量.这时, 为 的特征向量拼成的矩阵, 为对角阵,主对角线上的元素为 的特征值. √ 可对角化的充要条件: 为 的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质: ① 若 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性.① √ 成为正定矩阵的充要条件(之一成立):②正惯性指数为n;③A的特征值全大于0;④A的所有顺序主子式全大于0;⑤大于0).√成为正定矩阵的必要条件: ;.11。

线性代数 知识点总结

线性代数 知识点总结

线性代数知识点总结一、向量1、向量的定义向量是指具有大小和方向的量,通常用定位矢量、力、速度、加速度等概念来描述,是线性代数的基础概念之一。

在向量的表示上,通常用箭头表示。

2、向量的加法向量的加法满足结合律和交换律,即对于任意两个向量a、b和任意数α,有a+b=b+a,(a+b)+c=a+(b+c),α(a+b)=αa+αb。

3、向量的数量积向量的数量积又称内积或点积,是指两个向量相乘后相加的结果。

表示为a•b,数值为|a||b|cosθ,其中θ为a、b之间的夹角。

4、向量的线性相关与线性无关若存在一组不全为零的实数α1、α2、…、αn,使得α1a1+α2a2+…+αnan=0,则向量a1、a2、…、an为线性相关。

否则为线性无关。

5、向量的外积向量的外积又称叉积,是指两个向量相乘后得到一个垂直于原两个向量的新向量。

其模长为两个向量长度的乘积与夹角的正弦。

6、向量的投影向量a在向量b上的投影是指垂直于b的向量a′,满足a=a′+a″,其中a″即为a在b上的投影。

7、标量标量是没有方向的,只有大小的量。

标量和向量共同构成线性代数的基础。

二、矩阵1、矩阵的定义矩阵是由m行n列的数按特定顺序排列的格式,通常用方括号表示。

其中m、n分别称为矩阵的行数和列数。

2、矩阵的运算矩阵的加法、数乘、矩阵乘法等运算是线性代数中矩阵的重要运算。

矩阵乘法中的常见性质有结合律、分配律、非交换性等。

3、矩阵的转置矩阵的转置是指行列互换,即对于矩阵A,其转置记为A',且满足(a')ij=(a)ji。

4、矩阵的秩矩阵的秩是指矩阵的列向量(或行向量)组成的矩阵的秩。

矩阵的秩有着一系列重要性质和应用。

5、矩阵的逆若矩阵A存在逆矩阵A-1,使得AA-1=A-1A=I,其中I是单位矩阵,则称矩阵A可逆。

良态矩阵的逆矩阵具有诸多性质。

6、矩阵幂矩阵的幂是指将矩阵连续乘积的运算。

矩阵幂在线性代数以及其他数学领域中有着广泛的应用。

线代知识点总结归纳

线代知识点总结归纳

线代知识点总结归纳1. 基本概念线性代数的基本概念包括向量、矩阵、线性方程组、行列式等。

向量是线性代数中的基本概念,它是一个有向量在空间中的表示。

通常用n维实数或复数坐标表示一个n维向量,例如,一个三维向量可以表示为(x,y,z)。

矩阵是由若干个数排成若干行和若干列组成的数表,通常用大写字母表示,例如,矩阵A。

线性方程组是由一组线性方程组成的方程组,通常用矩阵形式表示,例如,Ax=b。

行列式是一个数学概念,用来判断矩阵是否可逆,是一个非零数值。

2. 矩阵运算矩阵运算包括矩阵加法、矩阵数量乘法、矩阵乘法等。

矩阵加法是将两个相同维度的矩阵进行对应元素的相加,例如,矩阵A和矩阵B相加得到矩阵C。

矩阵数量乘法是将一个数与一个矩阵的每一个元素相乘,例如,数k与矩阵A相乘。

矩阵乘法是将一个m×n的矩阵与一个n×p的矩阵相乘得到一个m×p的矩阵,例如,矩阵A与矩阵B相乘得到矩阵C。

3. 向量空间向量空间是一个由向量构成的集合,并且满足一定的线性运算和封闭性质。

向量空间包括零向量、线性组合、线性相关与线性无关等概念。

零向量是所有元素都为零的向量,通常用0表示。

线性组合是将向量乘以一个标量再相加得到一个新的向量,例如,向量u和向量v的线性组合是ku+lv。

线性相关是指向量集合中存在非零标量使得它们的线性组合为零向量,线性无关是指向量集合中不存在非零标量使得它们的线性组合为零向量。

4. 特征值与特征向量矩阵的特征值和特征向量是线性代数中的重要概念。

特征值是一个数,特征向量是一个非零向量,使得矩阵与特征向量的乘积等于特征值与特征向量的乘积,即Ax=λx。

通过求解矩阵的特征值和特征向量,可以得到矩阵的对角化与相似对角化等结果,进而解决一些重要的问题,例如,求解线性方程组、奇异值分解等。

综上所述,线性代数是数学中的一个重要分支,它研究向量空间、矩阵、线性变换等代数结构,并且在科学与工程领域广泛应用。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是数学的重要分支,广泛应用于各个领域,如物理学、计算机科学、经济学等。

本文将全面总结线性代数的知识点,帮助读者系统地了解和掌握该学科。

1. 线性代数的基本概念1.1 向量及其表示:向量是线性代数的基本概念,可以用有序数对、矩阵或列向量表示,具有方向和大小。

1.2 矩阵及其运算:矩阵是由数字排列成的矩形数组,可以进行加法、乘法、转置等运算。

1.3 线性方程组:线性方程组是由一组线性方程组成的方程组,可以用矩阵和向量的表示形式来求解。

2. 向量空间2.1 向量空间的定义:向量空间是由一组满足一定条件的向量构成的集合,满足加法和数乘运算的封闭性。

2.2 子空间:子空间是向量空间的子集,也是向量空间,满足加法和数乘运算的封闭性。

2.3 线性无关与生成子空间:线性无关是指向量组中的向量之间不存在线性关系,生成子空间是指向量组中所有向量的线性组合的集合。

3. 线性映射3.1 线性映射的定义:线性映射是一个将一个向量空间映射到另一个向量空间的映射,保持加法和数乘运算的性质。

3.2 线性映射的矩阵表示:线性映射可以用矩阵表示,将一个向量空间的向量转化为另一个向量空间的向量。

3.3 核与像:核是线性映射中被映射为零向量的向量集合,像是线性映射中所有被映射到的向量组成的集合。

4. 矩阵的特征值与特征向量4.1 特征值和特征向量的定义:特征值是一个矩阵对应的线性变换中不改变方向的标量因子,特征向量是在特征值下发生伸缩的向量。

4.2 特征值与特征向量的计算:特征值与特征向量可以通过求解特征方程来计算。

4.3 对角化与相似矩阵:若一个矩阵相似于一个对角矩阵,则称其可对角化,对角矩阵是一个形式为对角线非零、其余元素均为零的矩阵。

5. 线性代数的应用5.1 物理学中的应用:线性代数在量子力学、力学等物理学领域有广泛应用,如描述粒子的状态和变换等。

5.2 计算机科学中的应用:线性代数在计算机图形学、机器学习等领域起到重要作用,如图像处理、数据分析等。

大学线性代数知识点总结

大学线性代数知识点总结

大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。

掌握线性代数的基本概念、理论和方法是解决实际问题的关键。

本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结1线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的20__年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。

下面,就将线代中重点内容和典型题型做了总结,希望对20__考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20__年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。

考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结一、向量空间向量空间是线性代数的核心概念,描述了向量的运算规则和性质。

一个向量空间必须满足以下条件:1. 封闭性:对于任意向量u、v属于向量空间V和标量c,有u+v和cu也属于向量空间V。

2. 相容性:向量空间中的向量和标量运算符必须相容,即对于任意u和v属于向量空间V和标量c,满足c(u+v) = cu + cv。

3.存在零向量:向量空间V中存在一个零向量0,满足对于任何向量v属于向量空间V,有v+0=v。

4.存在相反向量:对于任意向量v属于向量空间V,存在一个相反向量-w,满足v+(-w) = 0。

5.结合律:对于u、v、w属于向量空间V和标量c,满足(u+v)+w = u+(v+w)。

6.分配律:对于向量u和v属于向量空间V和标量a、b,满足(a+b)u = au+bu 和 a(u+v) = au+av。

二、矩阵与线性方程组1.矩阵的定义:矩阵是一个由m行n列元素组成的矩形数表。

一个m×n的矩阵有m行和n列,记作A=(aij)。

其中,i表示行索引,j表示列索引,aij表示矩阵A中第i行第j列的元素。

2.矩阵的运算:(1) 矩阵加法:对于两个具有相同维度的矩阵A和B,它们的和C记作C=A+B,定义为C的每个元素等于A和B对应位置元素的和。

(2) 矩阵乘法:对于两个矩阵A和B,如果A的列数等于B的行数,则矩阵A和B的乘积C记作C=AB,定义为C的第i行第j列的元素等于矩阵A的第i行元素与矩阵B的第j列元素的内积。

3.线性方程组:线性方程组是以线性方程为元素的方程组,其中每个未知数的最高次数为1。

(1)增广矩阵:线性方程组可以表示为增广矩阵的形式,增广矩阵是将系数矩阵与常数矩阵相连接而成的矩阵。

(2)矩阵的初等行变换:矩阵的初等行变换包括将矩阵的某一行乘以一个非零常数、将矩阵的某两行互换、将矩阵的某一行加上另一行的若干倍。

(3)矩阵的行阶梯形和行最简形:通过矩阵的初等行变换,可以将矩阵变成行阶梯形和行最简形。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。

线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。

下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。

向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。

在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。

2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。

矩阵的加法、数量乘法等运算满足线性运算的性质。

矩阵可以表示线性方程组、线性映射等。

3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。

线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。

4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。

线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。

线性方程组的求解可以使用消元法、矩阵求逆等方法。

5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。

对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。

6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。

内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。

内积空间可以是实数域或复数域上的。

7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。

线性代数知识点总结-最新

线性代数知识点总结-最新

线性代数⼀、⾏列式1. ⼆阶与三阶⾏列式对⼆元线性⽅程组有⼆阶段⾏列式若记则对个数组成的⾏列的数表有三阶⾏列式2.全排列和对换排列全排列:把个不同的元素排成⼀列,叫做这个元素的全排列排列。

逆序:对于个不同的元素先规定⼀个元素之间的标准次序在这个元素的任⼀排列中当某⼀对元素的先后顺序与标准次序不同时就说它构成⼀个逆序。

逆序数:⼀个排列中所有逆序的总数。

奇排列:逆序数为技术的排列偶排列:逆序数为偶数的排列排列的逆序数:对换:将排列中的任意两个元素对调,其余的元素不动的过程。

相邻对换:将相邻两个元素进⾏的对换。

定理:⼀个排列中的任意两个元素对换,排列改变奇偶性。

推论奇排列对换成标准排列的对换次数为奇数,偶数列对换成标准数列的对换次数为偶数。

3.n阶⾏列式对个数组成的⾏列的数表有阶⾏列式,记作4.⾏列式的性质⾏列⾏列式称为的转置⾏列式性质:⾏列式与它的转置⾏列式相等性质:对换⾏列式的两⾏列,⾏列式变号推论:如果⾏列式有两⾏列完全相同,则此⾏列式等于零性质:⾏列式的某⼀⾏列中所有的元素都乘同⼀数,等于⽤数乘此⾏列式性质:⾏列式中如果有两⾏(列)元素成⽐例,则此⾏列式等于零性质:若⾏列式的某⼀⾏的元素都是两数之和,则⾏列式可拆分为两个⾏列式相加性质:把⾏列式的某⼀⾏的个元素乘同义数然后加到另⼀⾏列对应的元素上去,⾏列式不变。

5.⾏列式按⾏(列)展开在阶⾏列式中把元所在的第⾏和第列划去后在阶⾏列式中把元所在的第⾏和第列划去后留下来的阶⾏列式叫做元的余⼦式记作记叫做元的代数余⼦式引理⼀个阶⾏列式如果其中第⾏所有元素除元外都为零那么这⾏列式等于与它的代数余⼦式的乘积即定理按⾏列展开法则⾏列式等于它的任⼀⾏列的各元素与其对应的代数余⼦式乘积之和即或例如四阶⾏列式中元的余⼦式和代数余⼦式分别为⼆、矩阵2.1 线性⽅程组、矩阵、矩阵的运算当常数项不全为零时有元⾮齐次线性⽅程组含有个末知数个⽅程的元⾮齐次线性⽅程组:其中是第个⽅程的第个末知数的系数是第个⽅程的常数项当全为零时有元齐次线性⽅程组:元齐次线性⽅程组⼀定有零解不⼀定有⾮零解即⼀组不全为零的解2.1.1 矩阵1、矩阵介绍对由个数排成的⾏列的数表称为⾏列矩阵矩阵:数位于矩阵的第⾏第列称为矩阵的元2、矩阵的种类矩阵的种类:其中称为系数矩阵称为末知数矩阵称为常数项矩阵称为增⼴矩阵⾏矩阵⾏向量:列矩阵列向量:实矩阵元素是实数的矩阵复矩阵元素是复数的矩阵除特别说明外都指实矩阵阶矩阵阶⽅阵:⾏数与列数都等于的矩阵同型矩阵⾏数、列数都相等的两个矩阵相等矩阵如果与是同型矩阵并且它们的对应元素相等即那么就称矩阵与矩阵相等记作零矩阵元素都是零的矩阵注意不同型的零矩阵是不同的对⾓矩阵对⾓阵:从左上⾓到右下⾓的直线叫做对⾓线以外的元素都是的阶⽅阵:特别当有阶单位矩阵单位阵:单位阵的元为:当当2.1.2 矩阵的运算1、矩阵的加法矩阵的加法:设有两个矩阵和那么矩阵与的和记作规定为只有当两个矩阵是同型矩阵时才能进⾏加法运算矩阵加法满⾜下列运算规律设都是矩阵设矩阵记称为矩阵的负矩阵由此规定矩阵的减法为2、矩阵数乘数与矩阵的乘积记作或规定为:数乘矩阵满⾜下列运算规律设、为矩阵、为数3、矩阵相乘矩阵相乘:对矩阵矩阵有矩阵记为其中按此定义⼀个⾏矩阵与⼀个列矩阵的乘积是⼀个阶⽅阵也就是⼀个数由此表明乘积矩阵的元就是的第⾏与的第列的乘积如:4、转置矩阵矩阵称为的转置矩阵:例如转置矩阵的运算规律:对称矩阵对称阵:元素以对⾓线为对称轴对应相等的阶矩阵如果阶⽅阵满⾜:即则为对称矩阵⽅阵的⾏列式:⽅阵的⾏列式或:由阶⽅阵的元素所构成的⾏列式各元素的位置不变伴随矩阵:⾏列式的各个元素的代数余⼦式所构成的矩阵称为矩阵的伴随矩阵有:注:2.2 逆矩阵、克拉默法则、矩阵分块法2.2.1 逆矩阵1、逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:对于阶矩阵如果有⼀个阶矩阵使则矩阵是可逆的的逆矩阵逆阵在矩阵的乘法中的作⽤与数类似如果矩阵是可逆的那么的逆矩阵是惟⼀的这是因为若、都是的逆矩阵则有所以的逆矩阵是惟⼀的定理若矩阵可逆,则定理若则矩阵可逆且其中为矩阵的伴随矩阵推论:若或,则故逆矩阵满⾜下述运算规律若可逆则亦可逆且若可逆数则可逆且若、为同阶矩阵且均可逆则亦可逆且2、逆矩阵的初步应⽤:逆矩阵的初步应⽤:设求矩阵使其满⾜解:若存在则⽤左乘上式右乘上式有即若⽽故知、都可逆且于是2.2.2 克拉默法则克拉默法则:含有个末知数的个线性⽅程的⽅程组:①它的解可以⽤阶⾏列式表⽰即有克拉默法则:如果线性⽅程组①的系数矩阵的⾏列式不等于零即:那么⽅程组①有惟⼀解其中是把系数矩阵中第列的元素⽤⽅程组右端的常数项代替后所得到的阶矩阵即2.2.3 分块矩阵1、分块矩阵分块矩阵:以⼦块为元素的形式上的矩阵将矩阵⽤若⼲条纵线和横线分成许多个⼩矩阵每⼀个⼩矩阵称为的⼦块例如将矩阵分成⼦块的分法很多下⾯举出三种分块形式,,分法可记为其中即为的⼦块⽽形式上成为以这些⼦块为元的分块矩阵2、分块矩阵的运算分块矩阵的运算与普通矩阵的运算相类似:分块矩阵的运算与普通矩阵的运算相类似:设矩阵与的⾏数相同、列数相同采⽤相同的分块法有:其中与的⾏数相同、列数相同那么:设为数那么:设为矩阵为矩阵分块成:其中的列数分别等于的⾏数那么:其中设则设为阶⽅阵若的分块矩阵只有在对⾓线上有⾮零⼦块其余⼦块都为零矩阵且在对⾓线上的⼦块都是⽅阵即其中都是⽅阵那么称为分块对⾓矩阵分块对⾓矩阵的⾏列式满⾜:由此性质可知若则并有:补充:。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是现代数学中的一个重要分支,主要研究向量空间及其上的线性映射。

它在许多科学领域中都有广泛的应用,包括物理学、计算机科学、经济学等。

本文将对线性代数中的一些重要知识点进行归纳总结,以帮助读者更好地理解和掌握这门学科。

一、向量与矩阵1. 向量的定义与运算- 向量的表示:向量可以用有序数组表示,也可以用线段箭头表示。

- 向量的加法与减法:向量之间可以进行加法和减法运算,满足交换律和结合律。

- 向量的数乘:向量与实数之间可以进行数乘运算。

- 内积与外积:向量之间有内积和外积两种运算,分别表示向量的夹角和与之垂直的面积。

2. 矩阵的定义与运算- 矩阵的表示:矩阵可以用二维数组表示,其中每个元素称为矩阵的一个元。

- 矩阵的加法与减法:矩阵之间可以进行加法和减法运算,要求矩阵的维度相同。

- 矩阵的数乘:矩阵与实数之间可以进行数乘运算。

- 矩阵乘法:矩阵乘法满足结合律,但不满足交换律。

二、线性方程组与矩阵运算1. 线性方程组- 线性方程组的定义:线性方程组由一组线性方程组成,其中每个方程都是线性的。

- 解的存在性与唯一性:线性方程组的解可能没有,可能有唯一解,也可能有无穷多解。

- 线性方程组的求解方法:高斯消元法、矩阵求逆、克拉默法则等。

2. 矩阵的逆与行列式- 矩阵的逆:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

- 行列式:行列式是一个与矩阵相关的标量值,用于判断矩阵的可逆性和计算矩阵的特征值。

三、线性映射与特征值问题1. 线性映射- 线性映射的定义:线性映射是一个满足线性性质的函数,将一个向量空间映射到另一个向量空间。

- 线性映射的表示与运算:线性映射可以用矩阵表示,可以进行加法、减法和数乘。

- 线性映射的核与像:线性映射的核是所有映射到零向量的向量集合,像是所有映射到的向量集合。

2. 特征值与特征向量- 特征值与特征向量的定义:对于一个线性映射,若存在一个非零向量使得线性映射作用于该向量后相当于对该向量进行标量乘法,该向量称为特征向量,该标量称为特征值。

线性代数知识点汇总

线性代数知识点汇总

线性代数知识点汇总线性代数是数学中的一个分支,研究向量空间及其上的线性变换。

它是现代数学中的一个重要基础学科,广泛应用于各个领域,如物理学、计算机科学、经济学等。

下面是线性代数的主要知识点的汇总。

1.向量空间:向量空间是线性代数的基本概念,它是一个集合,其中的元素称为向量,满足一定的运算规则,如加法和数乘。

向量空间具有加法和数乘封闭性、结合律、分配律等性质。

2.线性变换:线性变换是向量空间之间的一种映射,它保持向量空间中的加法和数乘运算。

线性变换可以用矩阵表示,矩阵的乘法运算对应于线性变换的复合运算。

3.矩阵:矩阵是线性代数中的一种重要工具,它是一个由数构成的矩形阵列。

矩阵可以表示向量空间中的线性变换,也可以用于解线性方程组、计算行列式、求逆矩阵等。

4.行列式:行列式是一个标量值,它是一个方阵的特征量。

行列式的值可以用于判断矩阵的可逆性、计算矩阵的逆、求解线性方程组等。

5.矩阵的逆:对于一个可逆矩阵,存在一个矩阵使得两者的乘积等于单位矩阵。

这个矩阵称为原矩阵的逆矩阵,它具有一些重要的性质,如对角矩阵的逆矩阵等。

6.线性方程组:线性方程组是线性代数中的一种基本问题,它由一组线性方程组成。

线性方程组的解可以通过矩阵的运算(如高斯消元法、矩阵的逆等)来求解。

7.特征值和特征向量:对于一个线性变换,存在一些特殊的向量,使得它们在变换后只改变了大小而没有改变方向。

这些向量称为特征向量,对应的大小称为特征值。

特征值和特征向量可以用于矩阵的对角化、求解差分方程等。

8.内积空间:内积空间是一种向量空间,它定义了一种内积运算。

内积运算满足对称性、线性性、正定性等性质,它可以用于定义向量的长度、角度、正交性等。

9.正交性:在内积空间中,两个非零向量的内积为零时称为正交。

正交性是线性代数中的一个重要概念,它可以用于构造正交基、正交投影、最小二乘法等。

10.最小二乘法:最小二乘法是一种用于拟合数据的方法,它通过最小化残差平方和来确定最优解。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习
矩阵
矩阵是线性代数的核心,矩阵的概念、运算及理论贯 穿线性代数的始终,对矩阵的理解与掌握要扎实深入。 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩 阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式。正确理解逆矩阵的概 念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。掌握矩阵 的初等变换,了解初等矩阵的性质和矩阵等价的概念,正 确理解矩阵的秩的概念,熟练掌握用初等变换求矩阵的秩 和逆矩阵的方法。了解分块矩阵及其运算。必须会解矩阵 方程。
三、重要公式
1、矩阵的秩 (1) R(A) = R(AT) ; (2) R(A+B) ≤ R(A) + R(B) (3) R(AB) ≤ min{ R(A) R(B)} (4) 若P、 Q可逆,则R(PA) = R(AQ) = R(PAQ)= R(A) R(A), k ≠ 0 , (5) R(kA) = 0 , k = 0; A 0 (6) R = R(A) + R(B)。 0 B
D=

D=
0 0 an1
0 a2 n 1 ann 1
n ( n 1) 2
a1n a2 n ann

a11 a21 an1
a12 a22 0
a1n 0 0
= (1)
a1n a2 n 1
an1.
3、设A是m 阶方阵,B是n 阶方阵,则 D= A 0 0 B A B;
0 D= B
1 x1 x
求 解
有非零解 R(A)<n. 1.化系数矩阵为最简形. 2.找等价的方程组.
3.写通解.
Ax b 有解 R(A)=R(B). Ax b
求 解 1.把增广矩阵B化为最简形. 2. 找等价的方程组.
3.写通解.
二、重要定理
1、若A 与B等价,则R(A) = R(B).
2、初等矩阵左(右)乘矩阵A,其结果就相当于对A 作相应的初等行(列)变换。 3、初等方阵均可逆,且其逆仍是同种的初等方阵。 4、若A 与B等价,则存在可逆矩阵P和Q,使PAQ = B.
三、重要公式、法则。
1、矩阵的加法与数乘 (1) A + B = B + A ; (2) (A + B ) + C = A + ( B + C ); (3) A + O = O + A = A; (4) A + (-A) = O; (5) k(lA) = (kl)A ; (6) (k+l)A = kA+ lA ; (7) k( A + B )= kA + kB ; (8) 1A = A, OA = O 。 2、矩阵的乘法 (1) (AB)C = A ( BC ) ; (3) (kA)(lB) = (kl)AB;
2 1
A (1)mn A B 。 0
1 x2 x2
2
4、范德蒙得行列式 1 xn xn
2
( xi x j )。
n i j 1
x1n-1
x2 n-1
xn n-1
四、典型例题
1、3~4阶的行列式
2、简单的n阶行列式
3、用公式
可逆矩阵与初等变换
矩阵的初等变换是矩阵的一种十分重要的运算,他在 解线性方程组、求逆矩阵及矩阵理论的探讨中都起到了十 分重要的作用。 熟练掌握矩阵的初等变换,了解初等矩阵的性质和 等价矩阵的概念,理解矩阵秩的概念,熟练掌握用初等变 换求矩阵的秩和逆矩阵的方法。理解齐次线性方程组有非 零解充分必要条件及非齐次线性方程组有解的充分必要条 件。深刻理解线性方程组通解的概念,掌握用初等变换求 解线性方程组的方法。
一、矩阵主要知识网络图
概 念 矩 阵 m×n个数aij (i = 1,2,…,m ; j =1,2,…,n) 构成的数表 单位矩阵: 主对角线元素都是1,其余元素 都是零的 n 阶方阵 E 特 殊 矩 阵
2 , 对角矩阵:主对角元素是 1, 元素都是零的n阶方阵 Λ
, n 其余
对称矩阵: AT = A
2、用初等变换求逆
( A E ) ~(E
A E ~ 1 列变换 E A
行变换
A )
1
3、用初等行变换求A-1B
(2) |kA| = kn|A| ; (4) |A-1| = |A|-1 ;
四、典型例题
1、方阵的幂运算
2、求逆矩阵
3、解矩阵方程
4、A*题
方阵的行列式 行列式是一个重要的数学工具,在代数学中有较多的 应用。 应当在正确理解n阶行列式的概念,掌握行列式性质 的基础上,熟练地计算3阶、4阶行列式,也要会计算简单 的n阶行列式。还要会运用行列式求解n个方程n个未知数 的n元一次线性方程组。 计算行列式的基本方法是用按行(列)展开定理,通 过降阶来实现,但在展开之前往往先运用行列式的性质, 对行列式作恒等变形,以期有较多零或公因式,这样可简 化计算。要熟练运用计算行列式的典型的计算方法和计算 技巧。
性 质
●某行有公因子可以提到行列式的外面。
●若行列式中某一行(列)的所有元素均为两元素之和,则 该行列式可拆成两个行列式.
●某行(列)的k倍加到另一行(列),行列式不变。
展 开
D ●行展开 aik Ajk k 1 0 n D ●列展开 aki Akj k 1 0
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1 x1 an 2 x2 ann xn bn 的系数行列式D ≠0 , 原方程组有惟一解 Dn D1 D2 x1 , x2 , xn = . D D D 其中Dj ( j = 1,2,…,n )是把系数行列式D 中的第j 列的元素用 方程组的常数项替换后得到的n阶行列式。
一、行列式主要知识点网络图
概 念 排 列 逆序,奇排列,偶排列
D a11 a21 an1 a12 a1n a22 a2 n an 2 ann (1)t a1 p1 a2 p2 anpn行 列 式行 列 式 知 识 点
一般项是不同行不同列元素乘积的代数和.
● D = DT ●互换行列式的两行(列),行列式变号。
1 A A
0 B 1
分块对 A 角矩阵 0
0 A 1 B 0
1
0 B 1 0 A 1 B 0 A 0
1
|A| ≠ 0 , A可逆 .
证 法 |A| = 0 , A不可逆 .
AB = E , A与B互逆.
= ai1Ai1 + ai2Ai2 + … + ainAin
=
a1jA1j+ a2jA2j + … + anjAnj (i≠j) (j≠k)
2、行列式展开定理的推论。 ai1 Aj1 + ai2Aj2 + … + ainAjn = 0 a1jA1k+ a2jA2k + … + anjAnk = 0
3、非齐次线性方程组克拉默法则。
反对称矩阵: AT = -A
A+B = ( aij + bij) A与B同型 kA= ( kaij ) 运 算 AB = C 其中 cij aik bkj , Ams , Bsn ,Cmn
k 1 n
AT: AT 的第 i 行是 A 的第 i 列.
|A|= detA , A必须是方阵.
性 质
2.对A经过有限次初等变换得到B, 则A等价B. 求逆,
A
E ~ E


A
1

A E E ~ A1 列
用 途
求矩阵A的秩、最简型、标准形.
求线性方程组的解.
初 等 方 阵
概 念 对单位矩阵实施一次初等变换而得到的 矩阵称为初等方阵.
反证法.
二、重要定理
1、设A、B是n阶矩阵,则|AB|=|A||B|。
2、若A是可逆矩阵,则A的逆矩阵惟一。 3、n阶矩阵A可逆⇔ |A| ≠ 0 ⇔ R(A)=n ⇔ A为满秩矩阵。 4、若AB = E( 或BA =E ), 则B = A-1 。 5、若A为对称矩阵,则AT =A 。 6、若A为反对称矩阵,则AT=-A 。
5、若A可逆,则存在有限个初等方阵P1,P2,…,Pl,使 A = P1P2…Pl 。 6、n 元齐次线性方程组Am×nx = 0 有非零解的充分必 要条件是系数矩阵的秩R(A) < n 。
7、n 元非齐次线性方程组Am×nx = b 有解的充分必要 条件是系数矩阵的秩R(A) 等于增广矩阵R(A,b) 的秩。
4、齐次线性方程组的克拉默法则。
a11 x1 a12 x2 a1n xn 0, a x a x a x 0, 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0 的系数行列式D 0, 则方程组没有非零解。
若齐次线性方程组有非零解,则它的系数行列式必为 零。
三、重要公式
1、对角行列式 λ1 D= λ2 λn λ1 λ2 λn ;
λ1 D= λn λ2 (1)
n ( n 1) 2
λ1 λ2
λn .
2、上、下三角行列式。 a11 a12 0 a22 0 = a11a22 0 ann . a1n a2 n ann a11 a21 an1 0 a22 an 2 0 0 ann
秩:矩阵非零子式的最高阶数.
零矩阵的秩为零. R(A)=R(AT) 若B可逆,则R(AB)=R(A).
性 质
相关文档
最新文档