01高等数学绪论 同济6版

合集下载

同济六版高数第一册第一单元.ppt

同济六版高数第一册第一单元.ppt
定理 映射 f : X Y 可逆 f 是 X 到Y 的一一映射.
上页 下页 返回 结束
三. 函数
1.函数概念 定义 设 A , B 是两个实数集, 则称映射 f :AB 为 一 元自变函量数, 记 为因变量 函数值 f : x y f (x), x A .
A 称为函数 f 的定义域, 记作 D( f ).
则 A C.
上页 下页 返回 结束
2 集合的基本运算
并集
由集合A与集合B的中所有元素构成的集合 称为A与B的并集,记为 A B
AB {x x A或 xB}
An { x n0 N , x An0 }
n1
A A BB
运算律
A A A, A A
B A AB A
上页 下页 返回 结束
我们也称 f 为“一一映射”. 单位映射: x X , f ( x) x, 即 f : x x
称为X上的单位映射, 记为 I或X I.
上页 下页 返回 结束
X
Y
f 满射
X f
Y f(X)
单射
X f
Y f(X)
内射
X
Y
f 单满射
上页 下页 返回 结束
例1 设A表示信管学院所有大一学生的集合, 用一种确定方法 f 给每一个学生分配一 个学号, 将全体学生学号的集合记为B. 这是一个集合 A到集合 B 的映射.
o
U(a, ) { x 0 x a }. 开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
上页 下页 返回 结束
例1、把-2的1/2邻域表示为开区间
解:U (2, 1) 2
(2 1 ,2 1) 22
( 5 , 3) 22

高等数学第六版上下册全同济大学出版社

高等数学第六版上下册全同济大学出版社
引例2
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
高等数学第六版上下册全同济大学 出版社
(满射)
目录 上页 下页 返回 结束
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
使
பைடு நூலகம்
其中
称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成
y f 1(x) , x f (D)
性质:
1) y=f (x) 单调递增 (减) , 其反函数
且也单调递增 (减) .
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2) 函数
与其反函数
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法
— 研究桥梁
第一节 映射与函数
一、集合 二、映射 三、函数
第一章
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
一、 集合
1. 定义及表示法
简称集
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素.
左 邻域 :
右 邻域 :
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济六版高等数学第一章第七节课件

同济六版高等数学第一章第七节课件

无穷大量的定义
如果当x趋于某值时,函数f(x)趋于无穷大,则称f(x) 为无穷大量。
无穷小量与无穷大量的关 系
两者之间存在密切的联系,无穷小量是无穷 大量的极限状态,而无穷大量则是无穷小量 的极限状态。
03
导数的概念与性质
导数的定义与几何意义
导数的定义
导数描述了函数在某一点处的切线斜 率,即函数在该点的变化率。
分部积分法
通过将两个函数的乘积进行不定积分, 将其中一个函数作为u,另一个函数
作为v',然后进行不定积分。
换元积分法
通过引入新的变量替换原函数中的自 变量,将不定积分转化为容易计算的
形式。
积分的应用
求面积
不定积分可以用来计算平面曲线下方的面积。
求长度
不定积分可以用来计算曲线在某个区间上的 长度。
物理应用
于这个值时的极限为A。
极限的性质
包括唯一性、有界性、局部 保号性等。这些性质对于理
解和应用极限非常重要。
极限的计算
包括直接代入法、因式分解 法、等价无穷小替换法等, 这些方法可以帮助我们计算 函数的极限。
无穷小量与无穷大量
无穷小量的定义
如果当x趋于某值时,函数f(x)趋于0,则称f(x) 为无穷小量。
同济六版高等数学第 一章第七节课件
目录
CONTENTS
• 引言 • 函数与极限 • 导数的概念与性质 • 导数的应用 • 不定积分 • 定积分 • 总结与回顾
01
引言
本章概述
01
本章主要介绍极限的概念、性质及其在数学分析中的基础地位。
02
通过本章学习,学生将了解极限在研究函数、导数、积分等数
学概念中的作用。

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

《高等数学》电子课件(同济第六版)01第一章 第1节 函数
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性质}
有限集 如 M {0,1,2, ,9}
无限集 如 M2 {( x, y) x2 y2 1}
2、集合间的关系:
(1) 子 集 ;(2) 集 合 相 等 ;(3) 空 集 ;
2
故定义域为
D
[
0
,
1 2
)
12
3、几个特殊的函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
定义域 D (, ), 值域 W {1,0,1}
图形:
y
1
o
x
-1
x sgn x x 13
(2) 取整函数: y=[x] [x]表示不超过 x 的最大整数
如 [3] 0, [ 3] 1, [8] 8, [3.8] 4.
x, x 1
f
(x)
min{ x , x2}
x
2
,
1 x 1
三、映射(自学)x, x 1
19
四、函数的特性
1.函数的有界性:
若X D,M 0,x X,有 f (x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
如 y cos x 在( , )上有界, 2 x2
y
1 x2
作业
习题11 P21
4(1)(3)(5)(7)(9),5(2)(3),6,7(1),10,11, 12(1)(3)(5),14(1)(3)(5),16,17,18

高等数学同济大学第六版1-01-函数课件

高等数学同济大学第六版1-01-函数课件

x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x

2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,

, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:

高等数学(同济第六版)课件 第一章 3.函数的极限(一)

高等数学(同济第六版)课件  第一章  3.函数的极限(一)

且a >b, (或a<b)
则正数X, 当x<-X时, 都有f(x) >b . (或f(x)<b) 当x>X时, 当|x|>X时,
(4) 充要条件:
lim lim lim f ( x ) A x f ( x ) A且 x f ( x ) A.
x
证: " " 0, X 1 0, 当x>X1 时,成立 f ( x ) A .
得 | x x0 |
x0
当 | x x0 | x0 时,才能使x>0, 取 min{ x0 , x0 } 当 0 x x0 时, 成立 | x x0 |
lim x
x x0
x0
" "定义
x x0
lim f ( x ) A
2 x2 x 1 3 lim x 1 x 1 2 x2 x 1 3 | 2 | x 1 | ( x 1) 0, | x 1 2 x2 x 1 3 | 当x与1多么接近时? | x 1 | x 1 | 2
2 x2 x 1 0, 当 0 | x 1 | 时, 成立 | 3 | 2 x 1
lim f ( x ) 0, 则 lim f ( x ) g( x ) 0
x x
1 x (7) 重要极限:lim (1 ) e x x
特点:(1)1 型 (2)底数减1等于指数的倒数 。
例2 求下列极限
2 x3 3 x2 5 (1) lim 3 2 x 7 x 4 x 1
二、 自变量趋向有限值时函数的极限 若当x无限接近于x0时,函数f(x)无限接近于常数A, 称常数A为当x趋于x0时,函数f(x)的极限。 记作 lim f ( x ) A

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)
跳跃间断点
左右极限都存在
第二类间断点
无穷间断点
振荡间断点
左右极限至少有一个不存在
在点
间断的类型
在点
连续的等价形式
思考与练习
1. 讨论函数
x = 2 是第二类无穷间断点 .
间断点的类型.
2. 设

提示:
3. P65 题 3 , *8

连续函数.
答案: x = 1 是第一类可去间断点 ,
P65 题*8 提示:
显然
正根 .
二、 连续与间断
一、 函数
三、 极限
习题课
函数与极限
第一章
一、 函数
1. 概念
定义:
定义域
值域
图形:
( 一般为曲线 )

函数为特殊的映射:
其中
2. 特性
有界性 ,
单调性 ,
奇偶性 ,
周期性
3. 反函数
设函数
为单射,
反函数为其逆映射
4. 复合函数
给定函数链
则复合函数为
作业 P65 4 ; 5
备用题 确定函数
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
一、连续函数的运算法则
第九节
二、初等函数的连续性
连续函数的运算与
初等函数的连续性
第一章
定理2. 连续单调递增函数的反函数也连续单调递增.
在其定义域内连续
一、连续函数的运算法则
, 使



内连续,
存在, 则
必在
内有界.
上连续 , 且恒为正 ,
例5. 设

同济高等数学第六版上册第一章ppt.

同济高等数学第六版上册第一章ppt.

第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

同济六版高等数学第一章第二节课件

同济六版高等数学第一章第二节课件
4. 如何判断数列1, -1, 1, -1, , (-1)N1, 是发散 的?
首页
上页
返回
下页
结束

内容小结 1. 数列极限的 “ e N 定义及应 用 2. 收敛数列的性质 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
首页
上页
返回
下页
结束

n
lim xn = a e 0, NN, 当nN时, 有|xn-a|e .
数列极限的几何意义 任意给定a的e邻域(a-e, ae),
•存在 NN, 当n<N时, 点xn一般落在邻域(a-e, ae)外
•当n>N时, 点xn全都落在邻域(a-e, ae)内
( ) ae
首页 上页 返回 下页 结束 铃
二、收敛数列的性质
定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一. 定理2(收敛数列的有界性) 如果数列{xn}收敛, 那么数列{xn}一定有界. •讨论 1. 如果数列{xn}收敛, 那么数列{xn}一定有界. 发散 的数列是否一定无界? 有界的数列是否收敛? 2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页 上页 返回 下页 结束 铃
n
lim xn = a e 0, NN, 当nN时, 有|xn-a|e .
例3 设|q|<1, 证明等比数列 1, q , q2, , qn-1, 的极限是0. 证明 因为e 0, N=[ log|q|e 1]N, 当nN时, 有 |qn-1-0|=|q|n-1<e ,
首页 上页 返回 下页 结束 铃
定理4(收敛数列与其子数列间的关系) 如果数列 { xn} 收敛于 a, 那么它的任一子数列也收敛 , 且极限也是a. •讨论

高等数学(同济第六版)课件第一章.绪论、第1节

高等数学(同济第六版)课件第一章.绪论、第1节

莱 布 尼 茨
莱布尼茨是一个博才多学的学者,1684 年,他发表了现在世界上认为是最早的微 积分文献,这篇文章有一个很长而且很古 怪的名字《一种求极大极小和切线的新方 法,它也适用于分式和无理量,以及这种 新方法的奇妙类型的计算》。就是这样一 片说理也颇含糊的文章,却有划时代的意 义。他以含有现代的微分符号和基本微分 法则。1686年,莱布尼茨发表了第一篇积 分学的文献。他是历史上最伟大的符号学 者之一,他所创设的微积分符号,远远优 于牛顿的符号,这对微积分的发展有极大 的影响。现在我们使用的微积分通用符号 就是当时莱布尼茨精心选用的.
微分与积分是分析中的两种基本的极限过程。 这两种过程的一些特殊的情况,甚至在古代就已经
有人考虑过(在阿基米德工作中达到高峰),而在
十六世纪和十七世纪 ,更是越来越受到人们的重
视。然而,微积分的系统发展是在十七世纪才开始
的,通常认为是牛顿和莱布尼茨两位伟大的科学先 驱的创造。这一系统发展的关键在于认识到:过去 一直分别研究的微分和积分这两个过程,实际上是 彼此互逆的联系着。
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心。
高等数学 以微积分为主要内容的学科
微积分的发展历程
微积分的创立 ——变量的数学
初等数学时代(17世纪前) —— 常量的数学
• 算术
• 初等几何 • 初等代数
初等数学时代 —— 算术

同济六版高等数学第一章第四节课件

同济六版高等数学第一章第四节课件
在自变量的同一变化过程xx0(或x)中 函数f(x)
具有极限A的充分必要条件是f(x)Aa 其中a是无穷小
例如 因为 1 x3 1 1 而 lim 1 0
2x3 2 2x3
x 2x3
所以
lim 1 x3 x 2x3
1 2
定理1证明 首页
上页
返回
下页
结束

❖无穷小的性质 •定理1 有限个无穷小的和也是无穷小
首页
上页
返回
下页
结束

证明 仅就两个xx0时的无穷小情形证明
设a及是当xx0时的两个无穷小 则 0 10 当0|xx0|1 时 有|a| 20 当0|xx0|2 时 有|| 取 min{1 2} 则当0|xx0|时 有
|a||a|||2
这说明a 也是当xx0时的无穷小
举例: 当x0时 x与sin x都是无穷小 所以xsin x也是当 x0时的无穷小
的铅直渐近线
首页
上页
返回
下页
结束

❖定理2(无穷大与无穷小之间的关系) 在自变量的同一变化过程中 如果f(x)为无穷大
则 1 为无穷小 反之 如果 f(x)为无穷小 且 f(x)0 f (x)
则 1 为无穷大 f (x)
定理2证明 首页
上页
返回
下页
结束

堂上练习 1 . P42 第5题 2 . P42 第6题 3 . P42 第8题 作业 P42 第3,7题
说明 : y = 0 是
的渐近线 .
y sin x x
首页
上页
返回
下页
结束

二、 无穷大
❖无穷大的定义
如果当xx0(或x)时 对应的函数值的绝对值|f(x)| 无限增大 那么称函数f(x)为xx0(或x)时的无穷大 记为

同济六版高等数学第一章第五节课件PPT课件

同济六版高等数学第一章第五节课件PPT课件
x x
解: sixn1
lim 1 0 x x
利用定理 2 可知
limsinx 0. x x
说明 : y = 0 是
y sin x 的渐近线 . x
y
y sin x x
o
x
第4页/共17页
❖极限的四则运算法则 •定理3
如果 lim f(x)A lim g(x)B 那么
(1)lim[f(x)g(x)]limf(x)limg(x)AB >>> (2)lim f(x)g(x)lim f(x)lim g(x)AB
x x 0 u u 0
例例 9 9 l x 求 3 x x 2 3 9 i m 解 解 y x 2 9 y 是 u 由 u 与 x 2 9 复 合 而 成 的
x 3 x 3 因 为 l x 2 9 i 6 m 所 以 lx 2 i 9 l m u i 6 m
例例 6 6 求 x l 2 3 x x 3 2 2 x 2 x i 5 1 m

先用x3去除分子及分母 然后取极限
x l 2 3 i x x 3 2 2 x m 2 x 5 1 x l 3 x 2 i x 1 2 2 m 5 x 1 3 0 2 0 x x 3
x x 0 u u 0
•说明
把定理中g(x)u0(xx0)换成g(x)(xx0或x) 而把f(u)A(uu0)换成f(u)A(u)可类似结果
第12页/共17页 下页
❖定理6(复合函数的极限运算法则)
设函数yf[g(x)]是由函数yf(u)与函数ug(x)复合而成 f[g(x)]在点x0的某去心邻域内有定义 若g(x)u0(xx0) f(u)A(uu0) 且l 在f x[ 0g 的( x ) 某i 去l 心邻f ( ] u 域m ) 内i A g (x)u0m 则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U (a ) { x a x a }.
a
a
a
0
x
点a的去心的邻域, 记作U (a ).
U (a ) { x 0 x a }.
a a0 4.绝对值: a a a 0 ab a b ; 运算性质:
(ac bd ) (a b )(c d )
2 2 2 2 2
又只须证明 2(ad )(bc) a d b c
2 2
2 2
2 2 上式是显然的 2 AB A B 由基本不等式
对三角不等式及其证明方法要加深印象,深刻 理解,灵活运用,后面将要讲到的极限在很多情况 下要用到三角不等式来对不等式进行放大和缩小。 | x || x y y || x y | | y |
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g( x )}
y
f ( x) g( x )
y min{ f ( x ), g( x )}
y
f ( x) g( x )
( a 0)
x a ( a 0) x a ( a 0)
a a ; b b a x a;
x a 或 x a;
x y x y. 绝对值不等式: 绝对值不等式的两个变形公式:
(1) | x y || x | | y |
( 2) | x | | y | | x y |
记作
因变量
y f ( x)
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x ), x D} 称为函数的值域 .
函数的两要素: 定义域与对应法则.
(
x
D
对应法则f
x0 )
f ( x0 )
自变量
(
W
y
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
有限集
M { x x所具有的特征 } 无限集
若x A, 则必x B, 就说A是B的子集. 记作 A B.
数集分类: N----自然数集 Q----有理数集 Z----整数集
R----实数集
数集间的关系: N Z , Z Q , Q R.
若A B, 且B A, 就称集合A与B相等. ( A B )
绝对值不等式的证明 ① | x | x | x | , | y | y | y | 两式相加得 (| x | | y |) x y (| x | | y |)
| x y || x | | y |
x+y y x
② 几何直观 ③ 分四种情况验证 (1) x 0, y 0
故 D f : [3,1]
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界.否则称无界.
y
M y=f(x) o -M
y
M
x
有界 X
o -M
x0
X 无界
x
2.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D, 如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
例如, y 1 x 2 1 例如, y 1 x2
D : [1,1] D : ( 1,1)
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 W y 数叫做单值函数,否 则叫与多值函数.

x
( x, y)
例如,x y a .
2 2 2
o
x
D
定义: 点集C {( x , y) y f ( x ), x D} 称为
a, b R, 且a b.
{ x a x b} 称为开区间,
记作 (a, b)
o a b { x a x b} 称为闭区间, o a
b
x 记作 [a, b] x
记作 [a , b) 记作 (a , b]
{ x a x b} 称为半开区间, { x a x b} 称为半开区间,
高等数学
绪论
课程名称 计划学时 考核形式 课堂纪律 学习方法 高等数学 36
考试
作业问题 答疑辅导
真、苦、巧、活
课前预习、重点听讲、简记笔记、 整理咀嚼、后作练习
参考书目
<工科数学分析基础> 马知恩 等编 (高教出版社) <高等数学释疑解难> 工科数学课委会编(高教出版社) <高等数学辅导> 盛祥耀 等编(清华大学出版社) <高等数学解题方法及同步训练> 同济大学编(同济大学出版社) <高等数学习题课教程> 黄松奇 等编 (气象出版社)
| x y || x | | y |
同理
| x y || y | | x |
| x | | y | | x y |
二、函数概念
例 圆内接正多边形的周长
S n 2nr sin n
S3
S4
S5
圆内接正n 边形
S6
n 3 ,4 ,5 ,
O
n
r
定义 设x和y是两个变量,D是一个给定的数集, 若对于x ∈ D,变量y按照确定的法则总有 确定的数值和它对应,则称y是x的函数
2
t
1 0 x1 设f ( x ) , 求函数 f ( x 3)的定义域. 2 1 x 2

例2
1 0 x1 f ( x) 2 1 x 2 1 0 x31 f ( x 3) 2 1 x 3 2 1 3 x 2 2 2 x 1
重点
极限概念,无穷小与极限的关系,极限运算法则, 两个重要极限,连续概念,初等函数的连续性,间断 点及其分类
难点
极限概念及求极限的方法技巧
基本要求
①能准确叙述并深刻理解极限定义,明确其几何意 义,会用定义验证极限 ②正确理解无穷小量及其与极限的关系
③牢固掌握极限运算法则,极限的性质,尤其是函
数 极限的保号性质
高等数学研究的主要对象是函数,主要研究函 数的分析性质(连续、可导、可积等)和分析运算 (极限运算、微分法、积分法等)。那么高等数学 用什么方法研究函数呢?这个方法就是极限方法, 也称为无穷小分析法。从方法论的观点来看,这是 高等数学区别于初等数学的一个显著标志。
由于高等数学的研究对象和研究方法与初等数学 有很大的不同,因此高等数学呈现出以下显著特点:
④理解极限存在准则,熟记两个重要极限及其证明 方法,灵活地运用它们及各种变形公式求极限 ⑤正确理解连续概念,理解间断点的分类
⑥理解初等函数的连续性,掌握闭区间上连续函数 的性质
一、基本概念
1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称 , a2 ,, an }
高等数学中几乎所有的概念都离不开极限,因此极 限概念是高等数学的重要概念,极限理论是高等数学 的基础理论,极限是高等数学的精华所在,是高等数 学的灵魂。因此很好地理解极限概念是学习好微积分 的关键,同时也是从初等数学迈入高等数学的一个重 要阶梯。 极限是研究在指定的过程中某变量的变化趋势,这 里所讲的变化趋势有其明确的含义:不管所指定的变 化过程多么复杂,我们所关心的仅仅是变量变化的终 极目标,若这个终极目标存在,就称之为变量的极限 本章我们首先介绍极限理论的基本概念、运算和性 质,然后讨论函数的连续性
( 2) ( 3) ( 4) x 0, y 0 x 0, y 0, x y 0 x 0, y 0, x y 0

在复数范围内成立
记 x a ib, y c id
则 x y (a c ) i (b d )
| x y |2 (a c )2 (b d )2 而 (| x | | y |)2 | x |2 2 | x || y | | y |2
概念更复杂 理论性更强 表达形式更加抽象
推理更加严谨
因此在学习高等数学时,应当认真阅读和深入钻研 教材的内容,一方面要透过抽象的表达形式,深刻理解 基本概念和理论的内涵与实质,以及它们之间的内在联 系,正确领会一些重要的数学思想方法,另一方面也要 培养抽象思维和逻辑推理的能力。
学习数学,必须做一定数量的习题,做习题不仅 是为了掌握数学的基本运算方法,而且也可以帮助我 们更好地理解概念、理论和思想方法。但我们不应该 仅仅满足于做题,更不能认为,只要做了题,就算学 好了数学。
例如 A {1,2},
C { x x 2 3 x 2 0}, 则 A C .
不含任何元素的集合称为空集. (记作 )
2 { x x R , x 1 0} 例如,
规定 空集为任何集合的子集.
2.区间:
是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
有限区间
[a ,) { x a x }
无限区间
( , b) { x x b}
o
a o
b
x x
区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度. 3.邻域:
设a与是两个实数, 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心 , 叫做这邻域的半径.
我们这门课程叫高等数学,它的内容包括一元 和多元微积分学,无穷级数论和作为理论基础的 极限理论,以及作为一元微积分学的简单应用— —常微分方程。由于构成它的主体是一元函数微 积分学,所以有时又称为微积分。
相关文档
最新文档