人工神经网络_第四章
《人工神经网络》课件
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
研究生必备的人工神经网络电子书汇总(31本)
研究生必备的人工神经网络电子书汇总(31本)这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我QQ:415295747,或者登录我的博客/u/17236977421.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别5 译者序6 前9 致谢10 作者简介11 目录19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战27 第2章神经网络基础和线性数据分析模型72 第3章用于非线性模式识别的神经网络105 第4章神经网对非线性模式的学习166 第5章从数据中抽取可靠模式的神经网络模型的实现205 第6章数据探测、维数约简和特征提取235 第7章使用贝叶斯统计的神经网络模型的不确定性评估276 第8章应用自组织映射的方法发现数据中的未知聚类359 第9章神经网络在时间序列预测中的应用458 附录2.MATLB 神经网络30个案例分析第1章BP神经网络的数据分类——语音特征信号分类23 第2章BP神经网络的非线性系统建模——非线性函数拟合33 第3章遗传算法优化BP神经网络——非线性函数拟合48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模66 第6章PID神经元网络解耦控制算法——多变量系统控制77 第7章RBF网络的回归——非线性函数回归的实现85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测93 第9章离散Hopfield神经网络的联想记忆——数字识别102 第10章离散Hopfield神经网络的分类——高校科研能力评价112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算124 第12章SVM的数据分类预测——意大利葡萄酒种类识别134 第13章SVM的参数优化——如何更好的提升分类器的性能145 第14章SVM的回归预测分析——上证指数开盘指数预测153 第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测165 第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测171 第17章SOM神经网络的数据分类——柴油机故障诊断182 第18章Elman神经网络的数据预测——电力负荷预测模型研究188 第19章概率神经网络的分类预测——基于PNN的变压器故障诊断195 第20章神经网络变量筛选——基于BP的神经网络变量筛选200 第21章LVQ神经网络的分类——乳腺肿瘤诊断210 第22章LVQ神经网络的预测——人脸朝向识别220 第23章小波神经网络的时间序列预测——短时交通流量预测230 第24章模糊神经网络的预测算法——嘉陵江水质评价241 第25章广义神经网络的聚类算法——网络入侵聚类248 第26章粒子群优化算法的寻优算法——非线性函数极值寻优255 第27章遗传算法优化计算——建模自变量降维270 第28章基于灰色神经网络的预测算法研究——订单需求预测280 第29章基于Kohonen网络的聚类算法——网络入侵聚类289 第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类2.MATLAB 神经网络仿真与应用章节信息7 目录15 第1章神经网络概述38 第2章感知神经网络64 第3章自组织竞争神经网络106 第4章BP神经网络143 第5章线性神经网络171 第6章径向基函数神经网络196 第7章反馈神经网络及MA TLAB实现228 第8章神经网络预测与控制273 第9章神经网络优化及故障诊断302 第10章图形用户界面设计334 参考文献4.混合神经网络技术7 目录11 第1章绪论26 第2章基础知识43 第3章BP神经网络70 第4章RBF神经网络84 第5章Hopfield神经网络96 第6章随机神经网络114 第7章遗传神经网络158 第8章粒子群神经网络193 第9章模糊神经网络244 第lO章混沌神经网络293 第11章小波神经网络331 第12章神经网络集成356 附录5.神经网络控制(第三版)7 目录13 第1章绪19 第2章神经网络理论基础63 第3章基于神经网络的系统辨识101 第4章神经网络控制142 第5章遗传算法与神经控制179 附录203 参考文献6.脉冲耦合神经网络与数字图像处理丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 数字图像处理出版者:科学出版社ISBN:978-7-03-022389-0出版地:北京出版日期:200807页数:3047 《智能科学技术著作丛书》序9 前13 目录21 第1章脉冲耦合神经网络50 第2章图像滤波及脉冲噪声滤波器77 第3章脉冲耦合神经网络在图像分割中的应用142 第4章脉冲耦合神经网络与图像编码185 第5章脉冲耦合神经网络与图像增强195 第6章脉冲耦合神经网络与图像融合210 第7章脉冲耦合神经网络与形态学245 第8章脉冲耦合神经网络在特征提取中的应用278 第9章脉冲耦合神经网络与数字图像签名技术292 第10章脉冲耦合神经网络与组合决策优化306 第11章脉冲耦合神经网络和小波变换322 参考文献7.混沌系统的模糊神经网络控制理论与方法主要责任者:谭文; 王耀南主题词:混沌学; 应用; 模糊控制; 神经网络出版者:科学出版社ISBN:978-7-03-021258-0出版地:北京出版日期:200805页数:2364 内容简介5 前7 目录13 第1章绪论37 第2章模糊神经网络控制理论基础70 第3章神经网络在混沌控制中的作用83 第4章基于径向基神经网络的非线性混沌控制99 第5章超混沌系统的模糊滑模控制111 第6章不确定混沌系统的模糊自适应控制120 第7章模糊神经网络在混沌时间序列预测中的应用134 第8章混沌系统的混合遗传神经网络控制150 第9章不确定混沌系统的模糊神经网络自适应控制165 第10章基于动态神经网络的混沌系统控制200 第11章基于线性矩阵不等式方法的混沌系统模糊控制223 第12章基于递归神经网络的不确定混沌系统同步245 结束语8. 智能预测控制及其MATLB 实现(第2版)丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:人工智能; 预测控制; 计算机辅助计算; 软件包出版者:电子工业出版社ISBN:978-7-121-10147-2出版地:北京出版日期:201001页数:3364 内容简介5 前7 目录13 第一篇神经网络控制及其MA TLAB实现13 第1章神经网络控制理论87 第2章MATLAB神经网络工具箱函数160 第3章基于Simulink的神经网络控制系统175 第二篇模糊逻辑控制及其MATLAB实现175 第4章模糊逻辑控制理论208 第5章MA TLAB模糊逻辑工具箱函数237 第6章模糊神经和模糊聚类及其MA TLAB实现267 第三篇模型预测控制及其MATLAB实现267 第7章模型预测控制理论281 第8章MA TLAB预测控制工具箱函数320 第9章隐式广义预测自校正控制及其MA TLAB实现334 附录A 隐式广义预测自校正控制仿真程序清单341 附录B MA TLAB函数一览表347 附录C MA TLAB函数分类索引349 参考文献9. 基于神经网络的优化设计及应用主要责任者:孙虎儿出版者:国防工业出版社ISBN:978-7-118-06282-3出版地:北京出版日期:200905页数:111目录11 第1章绪论11 1.1 优化设计发展概况20 1.2 信号处理的主要方法22 1.3 正交设计方法25 1.4 基于神经网络的立体正交优化设计概述28 第一篇基拙理论篇28 第2章基于小波变换的信号处理28 2.1 小波变换的源起与发展概述30 2.2 小波分析基础34 2.3 小波分析的工程解释35 2.4 基于小波分析的信号处理38 第3章神经网络结构的确定38 3.1 神经网络综论42 3.2 神经网络的基本原理47 3.3 人工神经网络的建模53 3.4 前馈型神经网络57 第4章正交设计法57 4.1 正交设计法的基本内容60 4.2 正交设计法的基本内容60 4.3 有交互作用的正交设计法63 4.4 方差分析法67 第二篇创新篇67 第5章立体正交表67 5.1 建立立体正交表70 5.2 立体正交表的基本性质71 5.3 立体正交试验的误差分析75 第6章立体正交优化设计75 6.1 立体正交优化设计概述77 6.2 立体正交优化设计的建模基础78 6.3 立体正交优化设计的特点79 6.4 立体正交设计的步骤及实现85 第三篇实践篇85 第7章液压振动筛参数优化设计与试验85 7.1 振动筛基本原理89 7.2 试验台设计91 7.3 模拟试验101 7.4 液压振动筛参数的立体正交优化设计108 第8章液压激振压路机的液压振动系统优化108 8.1 液压激振压路机基本原理110 8.2 液压振动轮的模型试验117 参考文献10.神经网络稳定性理论主要责任者:钟守铭; 刘碧森; 王晓梅; 范小明主题词:人工神经网络; 运动稳定性理论; 高等学校; 教材出版者:科学出版社ISBN:978-7-03-02116-2出版地:北京出版日期:200806页数:289内容简介5 前7 目录11 第1章绪论73 第2章Hopfield型神经网络的稳定性97 第3章细胞神经网络的稳定性150 第4章二阶神经网络的稳定性212 第5章随机神经网络的稳定性243 第6章神经网络的应用291 参考文献11. 神经模糊控制理论及应用丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:神经网络; 应用; 模糊控制出版者:电子工业出版社ISBN:978-7-121-07537-7出版地:北京出版日期:200901页数:3326 目录10 第一篇神经网络理论及其MA TLAB实现12 第1章神经网络理论77 第2章MATLAB神经网络工具箱191 第3章神经网络控制系统218 第二篇模糊逻辑理论及其MATLAB实现220 第4章模糊逻辑理论258 第5章MA TLAB模糊逻辑工具箱295 第6章模糊神经和模糊聚类及其MA TLAB实现327 附录A MA TLAB程序清单334 附录B MA TLAB函数一览表340 附录C MA TLAB函数分类索引342 参考文献12.时滞递归神经网络主要责任者:王林山主题词:时滞; 递归论; 神经网络出版者:科学出版社ISBN:978-7-03-020533-9出版地:北京出版日期:200804页数:254出版说明9 前言13 目录15 第1章概述29 第2章几类递归神经网络模型44 第3章时滞局域递归神经网络的动力行为116 第4章时滞静态递归神经网络的动力行为154 第5章时滞反应扩散递归神经网络的动力行为214 第6章时滞反应扩散方程的吸引子与波动方程核截面的Hausdorff维数估计244 第7章Ляпунов定理的推广与矩阵微分方程的渐近行为研究265 索引13. 神经网络实用教程丛书题名:普通高等教育“十一五”规划教材主要责任者:张良均; 曹晶; 蒋世忠主题词:人工神经元网络; 高等学校; 教材出版者:机械工业出版社ISBN:978-7-111-23178-3出版地:北京出版日期:200802页数:1840001 7 目录0002 5 前言0003 11 第1章人工神经网络概述0004 19 第2章实用神经网络模型与学习算法0005 83 第3章神经网络优化方法0006 98 第4章nnToolKit神经网络工具包0007 135 第5章MA TLAB混合编程技术0008 175 第6章神经网络混合编程案例0009 181 附录2NDN神经网络建模仿真工具0010 194 参考文献14.细胞神经网络动力学主要责任者:黄立宏; 李雪梅主题词:神经网络; 细胞动力学; 生物数学出版者:科学出版社ISBN:978-7-03-018109-1出版地:北京出版日期:200704页数:3334 内容简介5 前7 目录9 第一章细胞神经网络的模型及基本概念30 第二章基本理论60 第三章细胞神经网络的完全稳定性118 第四章细胞神经网络的全局渐近稳定性和指数稳定性176 第五章细胞神经网络的周期解与概周期解242 第六章细胞神经网络的动力学复杂性285 第七章一维细胞神经网络的动力学性质322 参考文献15. 人工神经网络基础丛书题名:研究生用教材主要责任者:丁士圻; 郭丽华主题词:人工神经元网络出版者:哈尔滨工程大学出版社ISBN:978-7-81133-206-3出版地:哈尔滨出版日期:200803页数:2084 内容简介5 前7 目录9 第1章绪论44 第2章前向多层网络86 第3章Hopfield网络110 第4章波尔兹曼机(BM)网络简介131 第5章自组织特征映射网络(SOFM)163 第6章ART网络197 第7章人工神经网络的软件实践和仿真15.智能控制理论及应用丛书题名:国家精品课程教材主要责任者:师黎; 陈铁军; 等主题词:智能控制出版者:清华大学出版社ISBN:978-7-302-16157-8出版地:北京出版日期:200904页数:408目录17 第1章绪论30 第2章模糊控制91 第3章模糊建模和模糊辨识118 第4章神经网络控制227 第5章模糊神经网络259 第6章专家系统301 第7章遗传算法333 第8章蚁群算法351 第9章DNA计算与基于DNA的软计算389 第10章其他智能控制16. 人工神经网络及其融合应用技术∙丛书题名:智能科学技术著作丛书∙主要责任者:钟珞 ; 饶文碧 ; 邹承明∙主题词:人工神经元网络 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-018325-5∙出版地:北京∙出版日期:200701∙页数:1607 目录13 第1章绪论24 第2章前馈型神经网络47 第3章反馈型神经网络58 第4章自组织型神经网络72 第5章量子神经网络81 第6章神经网络与遗传算法103 第7章神经网络与灰色系统123 第8章神经网络与专家系统139 第9章模糊神经网络159 参考文献164 附录Matlab简介17.智能技术及其应用:邵世煌教授论文集∙主要责任者:丁永生 ; 应浩 ; 等∙主题词:人工智能 ; 文集∙出版者:科学出版社∙ISBN:978-7-03-023230-4∙出版地:北京∙出版日期:200902∙页数:573目录15 治学之路,开拓之道117 解析模糊控制理论:模糊控制系统的结构和稳定性分析127 不同模糊逻辑下模糊控制器的解析结构134 一个基于“类神经元”模型的智能控制系统及其在柔性臂上的应用研究142 交通系统的模糊控制及其神经网络实现149 采用遗传算法学习的神经网络控制器164 一种采用增强式学习的模糊控制系统研究169 基因算法及其在最优搜索上的应用191 DNA计算与软计算199 采用DNA遗传算法优化设计的TS模糊控制系统206 DNA计算研究的现状与展望223 混沌系统的一种自学习模糊控制228 用遗传算法引导混沌轨道405 模糊环境的表示及机器人轨迹规划409 多变地形下机器人路径规划415 一个环境知识的自学习方法444 含有模糊和随机参数的混合机会约束规划模型469 基于规则的模糊离散事件系统建模与控制研究491 基于最优HANKEL范数近似的线性相位IIR滤波器设计507 自适应逆控制的异步电机变频调速系统研究514 带有神经网络估计器的模糊直接转矩控制551 基于移动Agent的数字水印跟踪系统的设计和实现573 采用元胞自动机机理的针织电脑编织系统591 语词计算的广义模糊约束及其传播研究598 后记18.人工神经网络原理及应用∙丛书题名:现代计算机科学技术精品教材∙主要责任者:朱大奇 ; 史慧∙主题词:人工神经元网络∙出版者:科学出版社∙ISBN:7-03-016570-5∙出版地:北京∙出版日期:200603∙页数:218目录12 第1章人工神经网络的基础知识44 第2章BP误差反传神经网络76 第3章Hopfield反馈神经网络104 第4章BAM双向联想记忆神经网络117 第5章CMAC小脑神经网络139 第6章RBF径向基函数神经网络155 第7章SOM自组织特征映射神经网络175 第8章CPN对偶传播神经网络190 第9章ART自适应谐振理论210 第10章量子神经网络19.软计算及其应用要责任者:温显斌; 张桦; 张颖等主题词:电子计算机; 计算方法出版者:科学出版社ISBN:978-7-03-023427-8出版地:北京出版日期:200902页数:189前7 目录11 第1章绪论24 第2章模拟退火算法45 第3章人工神经网络93 第4章遗传算法138 第5章支持向量机162 第6章模糊计算20计算智能与科学配方∙主要责任者:冯天瑾 ; 丁香乾∙其他责任者:杨宁 ; 马琳涛∙主题词:人工智能 ; 神经网络 ; 计算 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-020603-9∙出版地:北京∙出版日期:200801∙页数:272前10 目录16 第一章绪论38 第二章产品配方与感觉品质评估65 第三章神经网络与感觉评估99 第四章知识发现与复杂相关性分析154 第五章模式识别与原料分类187 第六章支持向量机方法214 第七章进化计算配方寻优方法243 第八章计算智能的若干哲理256 第九章人机交互智能配方系统278 参考文献287 致谢21.计算智能与计算电磁学主要责任者:田雨波; 钱鉴主题词:人工智能; 神经网络; 计算; 研究出版者:科学出版社ISBN:978-7-03-021201-6出版地:北京出版日期:200804页数:2337 目录11 第1章绪论19 第2章遗传算法基本原理50 第3章遗传算法电磁应用98 第4章模糊理论基本原理122 第5章神经网络基本原理188 第6章神经网络电磁应用235 附录1 计算智能和计算电磁学相关网站236 附录2 相关程序22.脉冲耦合神经网络原理及其应用丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 理论; 应用出版者:科学出版社ISBN:7-03-016657-4出版地:北京出版日期:200604页数:1826 内容简介9 《智能科字技术著作丛书》库11 前15 目录19 第1章神经网络图像处理技术34 第2章PCNN模型及其应用概述49 第3章PCNN在图像滤波中的应用66 第4章PCNN在图像分割中的应用120 第5章PCNN在图像编码中的应用137 第6章PCNN与图像增强152 第7章PCNN与粗集理论、形态学和小波变换182 第8章PCNN的其他应用23.人工神经网络教程主要责任者:韩力群主题词:人工神经元网络; 研究生; 教材出版者:北京邮电大学出版社ISBN:7-5635-1367-1出版地:北京出版日期:200612页数:3307 序9 目录17 第1章绪论38 第2章人工神经网络建模基础63 第3章感知器神经网络100 第4章自组织竞争神经网络143 第5章径向基函数神经网络162 第6章反馈神经网络192 第7章小脑模型神经网络201 第8章支持向量机218 第9章遗传算法与神经网络进化237 第10章神经网络系统设计与软硬件实现267 第11章人工神经系统281 附录A 常用算法的MA TLAB程序298 附录B 常用神经网络源程序340 附录C 神经网络常用术语英汉对照344 参考文献24.神经网络专家系统主要责任者:冯定主题词:人工神经元网络出版者:科学出版社ISBN:7-03-017734-7出版地:北京出版日期:200609页数:3487 目录11 第1章从专家系统到神经网络专家系统22 第2章神经网络设计75 第3章数据的前后处理94 第4章神经网络专家系统中的模糊数146 第5章基于神经网络的知识表示199 第6章机器学习218 第7章基于神经网络的推理251 参考文献254 附录神经网络源程序25.神经网络新理论与方法主要责任者:张代远主题词:人工神经元网络出版者:清华大学出版社ISBN:7-302-13938-5出版地:北京出版日期:200611页数:1259 目录11 第1章概论17 第2章基本概念24 第3章实神经网络的代数算法44 第4章全局最小值分析51 第5章复数神经网络的代数算法61 第6章样条权函数神经网络及其学习算法124 第7章神经网络的统计灵敏度分析26.人工神经网络算法研究及应用主要责任者:田景文; 高美娟主题词:人工神经元网络; 计算方法; 研究出版者:北京理工大学出版社ISBN:7-5640-0786-9出版地:北京出版日期:200607页数:2837 目录9 第1章绪论32 第2章人工神经网络49 第3章改进遗传算法的径向基函数网络方法研究及应用95 第4章小波变换及小波神经网络方法研究及应用140 第5章模糊神经网络方法研究及应用189 第6章改进的模拟退火人工神经网络方法研究及应用235 第7章支持向量机方法研究及应用278 第8章结论281 参考文献27.神经计算与生长自组织网络主要责任者:程国建主题词:人工神经元网络; 计算; 自组织系统出版者:西安交通大学出版社ISBN:978-7-5605-2979-0出版地:西安出版日期:200810页数:242内容简介5 作者简介7 前17 目录23 第1章神经计算概述37 第2章人工神经网络的基本结构及其特性56 第3章神经感知器69 第4章自适应线性元件87 第5章多层前馈神经网络105 第6章径向基函数网络118 第7章古典生长型神经网络135 第8章生长型自组织神经网络158 第9章生长神经元结构及其变种182 第10章外生长型神经元结构206 第11章多生长神经元结构230 第12章双生长神经气网络252 参考文献28.神经计算原理丛书题名:计算机科学丛书主要责任者:(美)科斯塔尼克其他责任者:叶世伟; 王海娟主题词:突然南宫神经元网络; 计算出版者:机械工业出版社ISBN:978-7-111-20637-8出版地:北京出版日期:200705页数:491出版者的话7 专家指导委员会8 译者序9 前12 致谢13 重要符号和算符17 重要缩写词20 目录25 第一部分神经计算的基本概念和部分神经网络体系结构及其学习规则25 第1章神经计算概述40 第2章神经计算的基本概念95 第3章映射网络144 第4章自组织网络168 第5章递归网络和时间前馈网络201 第二部分神经计算的应用201 第6章用神经网络解决最优化问题238 第7章用神经网络解决矩阵代数问题275 第8章使用神经网络求解线性代数方程组318 第9章使用神经网络的统计方法372 第10章使用神经网络进行辨识、控制和枯计435 附录A 神经计算的数学基础497 主题索引29. 人工神经网络与模拟进化计算主要责任者:阎平凡主题词:人工神经元网络; 计算出版者:清华大学出版社ISBN:7-302-10663-0出版地:北京出版日期:200509页数:639出版说明9 前11 第一版前15 目录27 第1章绪论37 第2章前馈网络77 第3章径向基函数网络112 第4章学习理论与网络结构选择166 第5章核方法与支持向量机210 第6章自组织系统(Ⅰ)236 第7章自组织系统(Ⅱ)271 第8章自组织系统(Ⅲ)302 第9章动态信号与系统的处理361 第10章多神经网络集成386 第11章反馈网络与联想存储器424 第12章神经网络用于优化计算441 第13章神经网络中的动力学问题463 第14章误差函数与参数优化方法487 第15章贝叶斯方法505 第16章神经网络在信号处理中的应用552 第17章进化计算概论与进化策略575 第18章遗传算法及其理论分析596 第19章遗传算法的设计与实现619 第20章遗传算法在神经网络中的应用626 第21章遗传算法在作业调度中的应用636 第22章分布估计算法660 索引30.人工神经网络与盲信号处理主要责任者:杨行竣; 郑君里主题词:人工神经元网络; 信号处理; 应用; 人工神经元网络出版者:清华大学出版社ISBN:7-302-05880-6出版地:北京出版日期:200301页数:3997 目录11 第1章绪论33 第2章前向多层神经网络与递归神经网络123 第3章自组织神经网络163 第4章Hopfield神经网络244 第5章模糊神经网络311 第6章遗传算法及其在人工神经网络中的应用337 第7章盲信号处理31.人工神经网络理论、设计及应用(第二版)主要责任者:韩力群主题词:人工神经元网络; 高等学校; 教材出版者:化学工业出版社ISBN:978-7-5025-9523-4出版地:北京出版日期:2000709页数:2437 前9 目录15 1 绪论34 2 神经网络基础知识52 3 监督学习神经网络85 4 竞争学习神经网络121 5 组合学习神经网络133 6 反馈神经网络168 7 小脑模型神经网络178 8 基于数学原理的神经网络207 9 神经网络的系统设计与软件实现220 10 神经网络研究展望223 附录1 常用神经网络C语言源程序254 附录2 神经网络常用术语英汉对照256 参考文献。
现设2010第四章 反馈网络
连 续 型 的 Hopfield 网 络 ( Continuous Hopfield Neural Network,简称 CHNN ),CHNN的激活函数f (·) 的输入与输出之间的关系为一个连续可微的单调上升的 有界函数,图4. 2(b)中所示为一个具有饱和线性激活函 数,它满足连续单调上升的有界函数的条件,常作为连
4. 2. 1 离散型Hopfield网络
1. 基本结构
在DHNN模型中,每个神经元的输出是一个两值状 态,状态为0或1 ( - l 或1 ),其输出类似于MP神经 元的输出,可表示为:
⎧1 ⎪ ai = ⎨ ⎪0 ⎩
∑ w ji ai + bi > 0
j ≠i
∑ w ji ai + bi ≤ 0
Δ ei = − n i Δ p i
式中:
n i = ∑ w ij p j + bi
j≠i
中国矿业大学(北京)
神经网络
导致上述变化的神经元i 的能量可以定义为:
ei = − ( ∑ w ij p j + bi ) p i
j≠i
由此,Hopfield定义了DHNN的整体能量E, 它是对所有ei(i =1,2,…,r )求和得到, 表示为:
中国矿业大学(北京)
神经网络
4. 2 Hopfield网络
根据其激活函数的选取不 同,可将Hopfield网络分为: 离散型的Hopfield网络 连续型的Hopfield网络
中国矿业大学(北京)神经网络源自离散型的Hopfield网络
(a) DHNN中的激活函数
(b) CHNN中的激活函数
图4. 2
j ≠i
(4.2.1)
式中,权 wij = wji 且wii = 0,即 DHNN采用对称连接、 中国矿业大学(北京) 无自身反馈。
人工神经网络学习总结笔记
人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。
我认为这是人工神经网络研究的前身。
形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。
离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。
其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
人工神经网络原理第4章习题参考答案
1. 试比较BP 学习算法与感知机学习算法的异同。
同:两种学习算法均基于纠错学习规则,采用有指导的学习方式,根据来自输出节点的外部反馈(期望输出)调整连接权,使得网络输出节点的实际输出与外部的期望输出一致。
异:感知机学习算法中,隐含层处理单元不具备学习能力,其模式分类能力仍然非常有限;而BP 学习算法采用非线性连续变换函数,使隐含层神经元具有了学习能力。
BP 学习算法基于最小均方误差准则,采用误差函数按梯度下降的方法进行学习,其学习过程分为模式顺传播,误差逆传播、记忆训练、学习收敛4个阶段。
2. 试述BP 神经网络有哪些优点和缺点。
优点:具有良好的非线性映射能力、泛化能力和容错能力。
缺点:学习算法的收敛速度慢;存在局部极小点;隐含层层数及节点数的选取缺乏理论指导;训练时学习新样本有遗忘旧样本的趋势。
3. 试举例说明BP 神经网络擅长解决哪些问题,并针对一个具体应用实例,描述BP 神经网络解决该问题的具体方案。
擅长解决函数拟合问题(例如,拟合多项式函数),线性与非线性的分类问题(例如,疾病病例分类),预测问题(例如,房屋价格预测),模式识别问题(例如,手写数字识别)。
具体应用实例及解决方案略。
4. 请给出一个BP 神经网络的具体应用实例。
略。
5. 什么是BP 神经网络的泛化能力?如何提高BP 神经网络的泛化能力?BP 神经网络的泛化能力是指BP 神经网络对未训练样本的逼近程度或对于未知数据的预测能力。
即:BP 神经网络学习训练完成后会将所提取的样本模式对中的非线性映射关系存储在网络连接权向量中,在其后的正常工作阶段,当向BP 神经网络输入训练时未曾见过的数据时,BP 神经网络也能够完成由输入模式到输出模式的正确映射。
提高BP 神经网络泛化能力的方法包括: 1) 增加训练集中的样本数; 2) 适当减少隐藏节点个数;3) 增加网络结构中的因子数(考虑更多可能影响结果的因子作为额外的输入项); 4) 对于选取的数据样本,要尽量保证包含拐点处的数据样本,同时尽可能保证相邻样本的变化率小于误差精度要求。
智能控制简明教程-神经网络原理
①单层感知器
感知器模型是由美国学者 F.Rosenblatt于
1957年建立的,它是一个具有单层处理单元的 神经网络。
Hale Waihona Puke 知器的输出:学习规则:向量形式:
下面讨论单层感知器实现逻辑运算问题: a.单层感知器的逻辑“与”运算
0 0 0 -1.5 0 o 0 0 1 -0.5 0 o 0 1 0 -0.5 0 o 1 1 1 0.5 1 *
b.单层感知器的逻辑“或”运算
0 0 0 -0.5 0 o 1 0 1 0.5 1 * 1 1 0 0.5 1 * 1 1 1 1.5 1 *
c.“异或”运算线性不可分
000 011 101 110
①Hebb学习规则(无导师学习)
在Hebb学习规则中,取神经元的输出为学习 信号:
神经网络调整权值的原则: 若第i个与第j个神经元同时处于兴奋状态,则它们之间 的连接权应加强。符合心理学中条件反射的机理两 个神经元同时兴奋(输出同时为‘1’态)时w加强,
否
则应削弱。
4.3 感知器(perceptron) 感知器是模拟人的视觉,接受环境信息,
前向网络特点
1. 神经元分层排列,可多层 2. 层间无连接 3. 方向由入到出 感知网络(perceptron即为此) 应用最为广泛
注意:构成多层网络时,各层间的转移函数应 是非线性的,否则多层等价一个单层网络。
另外,隐层的加入大大提高NN对信息的处理能 力,经过训练的多层网络,具有较好的性能, 可实现X→Y的任意非线性映射的能力。
5.神经网络的学习功能
a.学习方法
学习是NN最重要的特征,学习learning,训练 training。
人工神经网络基础_ANN课程笔记 4、随机型神经网络
第四章随机型神经网络1、随机型神经网络的基本思想对于BP神经网络和Hopfield神经网络的网络误差容易陷入局部极小值,而达不到全局最小点,主要原因为:结构上:存在着输入与输出之间的非线性函数关系,从而使网络误差或能量函数所构成的空间是一个含有多极点的非线性空间;算法上:网络的误差或能量函数只能按单方向减小而不能有丝毫的上升趋势。
对于第一点,是为保证网络具有非线性映射能力而必不可少的。
解决网络收敛问题的途径就只能从第二点入手,即不但让网络的误差或能量函数向减小的方向变化,而且,还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部极小值而向全局最小点收敛。
这就是随机型神经网络算法的基本思想。
2、模拟退火算法在模拟退火算法中,有两点是算法的关键:①控制参数T;②能量由低向高变化的可能性。
这两点必须结合起来考虑,当T大时,可能性也大,T小时,可能性也小,把“可能性”当作参数T的函数。
“可能性”用数学模型来表示就是概率。
由此可以得到模拟退火算法如下:上式表明:在模拟退火算法中,某神经元的输出不象Hopfield 算法中那样,是由以内部状态Hi 为输入的非线性函数的输出(阶跃函数)所决定的,而是由Hi 为变量的概率(1)Hi P 或(0)Hi P 所决定的。
不同的Hi 对应不同的概率(1)Hi P 或(0)Hi P 来决定输出为兴奋或者抑制。
反复进行网络的状态更新,且更新次数N 足够大以后,网络某状态出现的概率将服从分布:式中,Ei 为状态{ui}所对应的网络能量。
这一概率分布就是Boltzmann分布。
式中的Z是为使分布归一化而设置的常数(网络所有状态的能量之和为常数)。
由这分布可以看出:状态的能量越小,这一状态出现的概率就越大。
这是Boltzmann分布的一大特点,即“最小能量状态以最大的概率出现”。
3、Boltzmann机20世纪80年代,Hinton、Ackley和Sejnowski等以模拟退火思想为基础,对Hopfield网络模型引入了随机机制,提出了一种统计神经网络模型-Boltzman 机。
第四章人工神经网络讲义
4.1 概述——人工神经网络研究与发展
1986年Rumelhart等人在多层神经网络模型的基础上,提出了 多层神经网络模型的反向传播学习算法(BP算法),解决了多层 前向神经网络的学习问题,证明了多层神经网络具有很强的学 习能力,它可以完成许多学习任务,解决许多实际问题。 近十几年来,许多具备不同信息处理能力的神经网络已被提出 来并应用于许多信息处理领域,如模式识别、自动控制、信号 处理、决策辅助、人工智能等方面。 神经计算机的研究也为神经网络的理论研究提供了许多有利条 件,各种神经网络模拟软件包、神经网络芯片及电子神经计算 机的出现,体现了神经网络领域的各项研究均取得长足进展。 同时,相应的神经网络学术会议和神经网络学术刊物的大量出 现,给神经网络的研究者们提供了许多讨论交流的机会。
第 四 章
人工神经网络
2019/2/15
1
4.1 概述
2019/2/15
2
4.1 概述——人工神经网络研究与发展
人工神经网络(简称神经网络)是利用物理器件来模拟生物神经网 络的某些结构和功能。 40年代初,美国Mc Culloch和Pitts从信息处理的角度,研究神 经细胞行为的数学模型表达,并提出了二值神经元模型。
2019/2/15 9
4.1 概述—人脑信息处理机制
生物神经系统,包括中枢神经系统和大脑,均是由各类神经元 组成。 其独立性是指每一个神经元均有自己的核和自己的分界线或原 生质膜。 生物神经元之间的相互连接从而让信息传递的部位被称为突触 (Synapse) 。突触按其传递信息的不同机制,可分为化学突触和 电突触。其中化学突触占大多数,其神经冲动传递借助于化学 递质的作用。 生物神经元的结构大致描述如下图所示。
2019/2/15 8
AI翻转课堂教案-第4章 人工神经网络与深度学习教案
第四章人工神经网络与深度学习课题名称:人工神经网络与深度学习学习过程:络曾历经质疑、批判与冷落,同时也几度繁荣并取得了许多瞩目的成就。
从20世纪40年代的M-P神经元和Hebb学习规则,到50年代的Hodykin-Huxley方程感知器模型与自适应滤波器,再到60年代的自组织映射网络、神经认知机、自适应共振网络,许多神经计算模型都发展成为信号处理、计算机视觉、自然语言处理与优化计算等领域的经典方法,为该领域带来了里程碑式的影响。
目前模拟人脑复杂的层次化认知特点的深度学习已经成为类脑智能中的一个重要研究方向。
通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究和应用的一个新高潮。
(三)神经元人脑中的信息处理单元是神经细胞,而人工神经网络的计算单元就是人工神经元,,一个人工神经元的结构如图所示。
(1)来自其他神经元的输入信号为(x1, x2, ..., xn)。
(2)每一个输入信号都有一个与之对应的突触权重(w1, w2, ..., wn),权重(weight)的高低反映了输入信号对神经元的重要性。
(3)线性聚合器(∑)将经过加权的输入信号相加,生成一个“激活电压”(activation voltage)。
(4)激活阈值(activation threshold)或bias(θ)给神经元的输出设置一个阈值。
(5)激活电位(activation potential)u是线性聚合器和激活阈值之差,如果u≥0,神经元产生的就是兴奋信号,如果u<0,神经元产生的是抑制信号。
(6)激活函数(activation function)g将神经元的输出限制在一个合理的范围内。
(7)神经元产生的输出信号(y),可以传递给与之相连的其他神经元。
将上述信息用公式可表示为:(四)归纳总结整体了解人工神经网络的发展概况以及神经元的相关工作原理,同时通过案例导读了解人工神经网络的当前应用情况。
小波变换及人工神经网络
• • • • • • •
第三章 信号处理的一般方法
应用实例
心音信号的计算机分析
一例正常人的心音图
第三章 信号处理的一般方法
一例正常人的心音时频分布图
第三章 信号处理的一般方法
一例室间隔缺损病人的心音图
第三章 信号处理的一般方法
一例室间隔缺损病人的心音时频分布图
stftar谱阵wigner分布小波变换等第三章信号处理的一般方法一例正常人的心音图?应用实例?心音信号的计算机分析第三章信号处理的一般方法一例正常人的心音时频分布图第三章信号处理的一般方法一例室间隔缺损病人的心音图第三章信号处理的一般方法一例室间隔缺损病人的心音时频分布图
第四章 小波变换及人工神经网络
第三章 信号处理的一般方法
应用实例
心电信号的计算机分析
②采用高斯函数一阶导数导出的小波,对y1(n)进 行尺度S=22的小波变换,突出信号特征点,消除基线 漂移,得y2(n);
第三章 信号处理的一般方法
应用实例
心电信号的计算机分析
③对y2(n)计算差分,取绝对值,并进行三点平滑, 得y3(n);
⑥进行阈值检测:取连续前3秒内的待检测信号 y5(n)的振幅P(可自适应调整),设检测阈值 d1=0.25P,d2=0.15P,对超过d1的信号再降低阈值 以d2作双向检测,大于d2则赋值为1,得QRS模板信号 y6(n),并记录每个模板区内y5(n)的峰值时刻和峰值;
第三章 信号处理的一般方法
应用实例
第三章 信号处理的一般方法
应用实例
心电信号的计算机分析
④对y3(n)再计算差分,取绝对值、平滑,得 y4(n);
第三章 信号处理的一般方法
应用实例
智能控制技术 第四章——人工神经元网络模型
机械结构力学及控制国家重点实验室
18
4.1 引言
4.1.1 神经元模型
人工神经元:回顾历史
1982年,美国加州理工学院物理学家Hopfield提出了HNN神经 网络模型,对神经网络理论的发展产生了深远的影响。他引入了 “能量函数”的概念,使得网络稳定性研究有了明确的判决,并 应用与一些计算复杂度为NP完全型的问题,如著名的“巡回推销 员问题(TSP)”。 1984年,Hinton等人对Hopfield模型引入模拟退火方法,提出 了Boltzmann机模型。 1986年,Rumelhart提出了反向传播学习方法(BP算法),解 决了多层前向神经网络的学习问题,证明了多层前向网络具有很 强的学习能力。
4.1.2 神经网络的模型分类
目前,人工神经元网络模型的种类已经相当丰富,其中典型的有:
多层前向传播网络(BP神经网络)
Hopfield神经网络 CMAC小脑模型
BAM双向联系记忆
SOM自组织网络 Blotzman机构网络
Madaline网络
机械结构力学及控制国家重点实验室
前向网络的特点
xi
…
yk
…
从学习的观点来看,前馈网络是一种强有力的学习系统,其 结构简单而易于编程; 从系统的观点看,前馈网络是一静态非线性映射,通过简单 非线性处理单元的复合映射,可获得复杂的非线性处理能力。
机械结构力学及控制国家重点实验室
10
4.1 引言
4.1.1 神经元模型 生物学的神经网络——大脑 处理信息的效率极高
神经细胞之间电-化学信号的传递,与一台数字计算机中CPU的 数据传输相比,速度是非常慢的,但因神经细胞采用了并行的 工作方式,使得大脑能够同时处理大量的数据。例如,大脑视 觉皮层在处理通过我们的视网膜输入的一幅图象信号时,大约 只要100ms的时间就能完成。考虑到你的神经细胞的平均工作 频率只有100Hz,100ms的时间就意味只能完成10个计算步骤! 想一想通过我们眼睛的数据量有多大,你就可以看到这真是一 个难以置信的伟大工程了。
人工神经网络及应用智慧树知到课后章节答案2023年下长安大学
人工神经网络及应用智慧树知到课后章节答案2023年下长安大学长安大学第一章测试1.Synapse is the place where neurons connect in function. It is composed ofpresynaptic membrane, synaptic space and postsynaptic membrane.()A:对 B:错答案:对2.Biological neurons can be divided into sensory neurons, motor neurons and()according to their functions.A:multipolar neurons B:interneuronsC:Pseudo unipolar neural networks D:bipolar neurons答案:interneurons3.Neurons and glial cells are the two major parts of the nervous system. ()A:错 B:对答案:对4.Neurons are highly polarized cells, which are mainly composed of two parts:the cell body and the synapse. ()A:错 B:对答案:对5.The human brain is an important part of the nervous system, which containsmore than 86 billion neurons. It is the central information processingorganization of human beings. ()A:对 B:错答案:对第二章测试1.In 1989, Mead, the father of VLSI, published his monograph "( )", in which agenetic neural network model based on evolutionary system theory wasproposed.A:Learning MachinesB:Journal Neural NetworksC:Analog VLSI and Neural SystemsD:Perceptrons: An Introduction to Computational Geometry答案:Analog VLSI and Neural Systems2.In 1989, Yann Lecun proposed convolutional neural network and applied itto image processing, which should be the earliest application field of deeplearning algorithm. ()A:对 B:错答案:对3.In 1954, Eccles, a neurophysiologist at the University of Melbourne,summarized the principle of Dale, a British physiologist, that "each neuronsecretes only one kind of transmitter ".()A:错 B:对答案:对4.In 1972, Professor Kohonen of Finland proposed a self-organizing featuremap (SOFM) neural network model. ()A:对 B:错答案:对5.Prediction and evaluation is an activity of scientific calculation andevaluation of some characteristics and development status of things orevents in the future according to the known information of objective objects.()A:对 B:错答案:对第三章测试1.The function of transfer function in neurons is to get a new mapping outputof summer according to the specified function relationship, and thencompletes the training of artificial neural network. ()A:对 B:错答案:对2.The determinant changes sign when two rows (or two columns) areexchanged. The value of determinant is zero when two rows (or two columns) are same. ()A:对 B:错答案:对3.There are two kinds of phenomena in the objective world. The first is thephenomenon that will happen under certain conditions, which is calledinevitable phenomenon. The second kind is the phenomenon that may ormay not happen under certain conditions, which is called randomphenomenon. ()A:错 B:对答案:对4.Logarithmic S-type transfer function, namely Sigmoid function, is also calledS-shaped growth curve in biology. ()A:错 B:对答案:对5.Rectified linear unit (ReLU), similar to the slope function in mathematics, isthe most commonly used transfer function of artificial neural network. ()A:错 B:对答案:对第四章测试1.The perceptron learning algorithm is driven by misclassification, so thestochastic gradient descent method is used to optimize the loss function. ()A:misclassification B:maximum C:minimumD:correct答案:misclassification2.Perceptron is a single-layer neural network, or neuron, which is the smallestunit of neural network. ()A:错 B:对答案:对3.When the perceptron is learning, each sample will be input into the neuronas a stimulus. The input signal is the feature of each sample, and the expected output is the category of the sample. When the output is different from the category, we can adjust the synaptic weight and bias value until the output of each sample is the same as the category. ()A:对 B:错答案:对4.If the symmetric hard limit function is selected for the transfer function, theoutput can be expressed as . If the inner product of the row vector and the input vector in the weight matrix is greater than or equal to -b, the output is 1, otherwise the output is -1. ()A:错 B:对答案:对5.The basic idea of perceptron learning algorithm is to input samples into thenetwork step by step, and adjust the weight matrix of the network according to the difference between the output result and the ideal output, that is tosolve the optimization problem of loss function L(w,b). ()A:错 B:对答案:对第五章测试1.The output of BP neural network is ()of neural network.A:the output of the last layer B:the input of the last layerC:the output of the second layer D:the input of the second layer答案:the output of the last layer2.BP neural network has become one of the most representative algorithms inthe field of artificial intelligence. It has been widely used in signal processing, pattern recognition, machine control (expert system, data compression) and other fields. ()A:对 B:错答案:对3.In 1974, Paul Werbos of the natural science foundation of the United Statesfirst proposed the use of error back propagation algorithm to train artificialneural networks in his doctoral dissertation of Harvard University, anddeeply analyzed the possibility of applying it to neural networks, effectivelysolving the XOR loop problem that single sensor cannot handle. ()A:对 B:错答案:对4.In the standard BP neural network algorithm and momentum BP algorithm,the learning rate is a constant that remains constant throughout the training process, and the performance of the learning algorithm is very sensitive tothe selection of the learning rate. ()答案:对5.L-M algorithm is mainly proposed for super large scale neural network, andit is very effective in practical application. ()A:对 B:错答案:错第六章测试1.RBF neural network is a novel and effective feedforward neural network,which has the best local approximation and global optimal performance. ()A:对 B:错答案:对2.At present, RBF neural network has been successfully applied in nonlinearfunction approximation, time series analysis, data classification, patternrecognition, information processing, image processing, system modeling,control and fault diagnosis. ()A:对 B:错答案:对3.The basic idea of RBF neural network is to use radial basis function as the"basis" of hidden layer hidden unit to form hidden layer space, and hiddenlayer transforms input vector. The input data transformation of lowdimensional space is mapped into high-dimensional space, so that theproblem of linear separability in low-dimensional space can be realized inhigh-dimensional space. ()答案:对4.For the learning algorithm of RBF neural network, the key problem is todetermine the center parameters of the output layer node reasonably. ()A:对 B:错答案:错5.The method of selecting the center of RBF neural network by self-organizinglearning is to select the center of RBF neural network by k-means clustering method, which belongs to supervised learning method. ()A:错 B:对答案:错第七章测试1.In terms of algorithm, ADALINE neural network adopts W-H learning rule,also known as the least mean square (LMS) algorithm. It is developed fromthe perceptron algorithm, and its convergence speed and accuracy have been greatly improved. ()A:错 B:对答案:对2.ADALINE neural network has simple structure and multi-layer structure. It isflexible in practical application and widely used in signal processing, system identification, pattern recognition and intelligent control. ()A:对 B:错答案:对3.When there are multiple ADALINE in the network, the adaptive linear neuralnetwork is also called Madaline which means many Adaline neural networks.()A:对 B:错答案:对4.The algorithm used in single-layer ADALINE network is LMS algorithm,which is similar to the algorithm of perceptron, and also belongs tosupervised learning algorithm. ()A:对 B:错答案:对5.In practical application, the inverse of the correlation matrix and thecorrelation coefficient are not easy to obtain, so the approximate steepestdescent method is needed in the algorithm design. The core idea is that theactual mean square error of the network is replaced by the mean squareerror of the k-th iteration.()A:错 B:对答案:对第八章测试1.Hopfield neural network is a kind of neural network which combines storagesystem and binary system. It not only provides a model to simulate humanmemory, but also guarantees the convergence to ().A:local minimum B:local maximumC:minimumD:maximum答案:local minimum2.At present, researchers have successfully applied Hopfield neural network tosolve the traveling salesman problem (TSP), which is the most representative of optimization combinatorial problems. ()A:错 B:对答案:对3.In 1982, American scientist John Joseph Hopfield put forward a kind offeedback neural network "Hopfield neural network" in his paper NeuralNetworks and Physical Systems with Emergent Collective ComputationalAbilities. ()A:对 B:错答案:对4.Under the excitation of input x, DHNN enters a dynamic change process, untilthe state of each neuron is no longer changed, it reaches a stable state. This process is equivalent to the process of network learning and memory, and the final output of the network is the value of each neuron in the stable state.()A:错 B:对答案:对5.The order in which neurons adjust their states is not unique. It can beconsidered that a certain order can be specified or selected randomly. The process of neuron state adjustment includes three situations: from 0 to 1, and1 to 0 and unchanged. ()A:错 B:对答案:对第九章测试pared with GPU, CPU has higher processing speed, and has significantadvantages in processing repetitive tasks. ()A:对 B:错答案:错2.At present, DCNN has become one of the core algorithms in the field of imagerecognition, but it is unstable when there is a small amount of learning data.()A:对 B:错答案:错3.In the field of target detection and classification, the task of the last layer ofneural network is to classify. ()A:对 B:错答案:对4.In AlexNet, there are 650000 neurons with more than 600000 parametersdistributed in five convolution layers and three fully connected layers andSoftmax layers with 1000 categories. ()A:对 B:错答案:错5.VGGNet is composed of two parts: the convolution layer and the fullconnection layer, which can be regarded as the deepened version of AlexNet.()A:错 B:对答案:对第十章测试1.The essence of the optimization process of D and G is to find the().A:maximum B:minimax C:local maximaD:minimum答案:minimax2.In the artificial neural network, the quality of modeling will directly affect theperformance of the generative model, but a small amount of prior knowledge is needed for the actual case modeling.()A:对 B:错答案:错3. A GAN mainly includes a generator G and a discriminator D. ()A:对 B:错答案:对4.Because the generative adversarial network does not need to distinguish thelower bound and approximate inference, it avoids the partition functioncalculation problem caused by the traditional repeated application of Markov chain learning mechanism, and improves the network efficiency. ()A:对 B:错答案:对5.From the perspective of artificial intelligence, GAN uses neural network toguide neural network, and the idea is very strange. ()A:对 B:错答案:对第十一章测试1.The characteristic of Elman neural network is that the output of the hiddenlayer is delayed and stored by the feedback layer, and the feedback isconnected to the input of the hidden layer, which has the function ofinformation storage. ()A:对 B:错答案:对2.In Elman network, the transfer function of feedback layer is nonlinearfunction, and the transfer function of output layer islinear function.()A:对 B:错答案:对3.The feedback layer is used to memorize the output value of the previous timeof the hidden layer unit and return it to the input. Therefore, Elman neuralnetwork has dynamic memory function.()A:对 B:错答案:对4.The neurons in the hidden layer of Elman network adopt the tangent S-typetransfer function, while the output layer adopts the linear transfer function. If there are enough neurons in the feedback layer, the combination of thesetransfer functions can make Elman neural network approach any functionwith arbitrary precision in finite time.()A:对 B:错答案:对5.Elman neural network is a kind of dynamic recurrent network, which can bedivided into full feedback and partial feedback. In the partial recurrentnetwork, the feedforward connection weight can be modified, and thefeedback connection is composed of a group of feedback units, and theconnection weight cannot be modified. ()A:错 B:对答案:对第十二章测试1.The loss function of AdaBoost algorithm is().A:exponential functionB:nonlinear function C:linear functionD:logarithmic function答案:exponential function2.Boosting algorithm is the general name of a class of algorithms. Theircommon ground is to construct a strong classifier by using a group of weakclassifiers. Weak classifier mainly refers to the classifier whose predictionaccuracy is not high and far below the ideal classification effect. Strongclassifier mainly refers to the classifier with high prediction accuracy. ()A:错 B:对答案:对3.Among the many improved boosting algorithms, the most successful one isthe AdaBoost (adaptive boosting) algorithm proposed by Yoav Freund ofUniversity of California San Diego and Robert Schapire of PrincetonUniversity in 1996. ()A:错 B:对答案:对4.The most basic property of AdaBoost is that it reduces the training errorcontinuously in the learning process, that is, the classification error rate onthe training data set until each weak classifier is combined into the final ideal classifier. ()A:错 B:对答案:对5.The main purpose of adding regularization term into the formula ofcalculating strong classifier is to prevent the over fitting of AdaBoostalgorithm, which is usually called step size in algorithm. ()A:错 B:对答案:对第十三章测试1.The core layer of SOFM neural network is().A:input layer B:hidden layerC:output layer D:competition layer答案:competition layer2.In order to divide the input patterns into several classes, the distancebetween input pattern vectors should be measured according to thesimilarity. ()are usually used.A:Euclidean distance method B:Cosine methodC:Sine method D:Euclidean distance method and cosine method答案:Euclidean distance method and cosine method3.SOFM neural networks are different from other artificial neural networks inthat they adopt competitive learning rather than backward propagationerror correction learning method similar to gradient descent, and in a sense, they use neighborhood functions to preserve topological properties of input space. ()A:对 B:错答案:对4.For SOFM neural network, the competitive transfer function (CTF) responseis 0 for the winning neurons, and 1 for other neurons.()A:错 B:对答案:错5.When the input pattern to the network does not belong to any pattern in thenetwork training samples, SOFM neural network can only classify it into the closest mode. ()A:对 B:错答案:对第十四章测试1.The neural network toolbox contains()module libraries.A:three B:sixC:five D:four答案:five2.The "netprod" in the network input module can be used for().A:dot multiplication B:dot divisionC:addition or subtractionD:dot multiplication or dot division答案:dot multiplication or dot division3.The "dotrod" in the weight setting module is a normal dot product weightfunction.()A:错 B:对答案:错4.The mathematical model of single neuron is y=f(wx+b).()A:错 B:对答案:对5.The neuron model can be divided into three parts: input module, transferfunction and output module. ()A:对 B:错答案:对第十五章测试1.In large-scale system software design, we need to consider the logicalstructure and physical structure of software architecture. ()A:对 B:错答案:对2.The menu property bar has "label" and "tag". The label is equivalent to thetag value of the menu item, and the tag is the name of the menu display.()A:对 B:错答案:错3.It is necessary to determine the structure and parameters of the neuralnetwork, including the number of hidden layers, the number of neurons inthe hidden layer and the training function.()A:对 B:错答案:对4.The description of the property "tooltipstring" is the prompt that appearswhen the mouse is over the object. ()A:对 B:错答案:对5.The description of the property "string" is: the text displayed on the object.()A:错 B:对答案:对第十六章测试1.The description of the parameter "validator" of the wx.TextCtrl class is: the().A:size of controlB:style of control C:validator of controlD:position of control答案:validator of control2.The description of the parameter "defaultDir" of class wx.FileDialog is: ().A:open the file B:default file nameC:default path D:save the file答案:default path3.In the design of artificial neural network software based on wxPython,creating GUI means building a framework in which various controls can beadded to complete the design of software functions. ()A:对 B:错答案:对4.When the window event occurs, the main event loop will respond and assignthe appropriate event handler to the window event. ()A:对 B:错答案:对5.From the user's point of view, the wxPython program is idle for a large partof the time, but when the user or the internal action of the system causes the event, and then the event will drive the wxPython program to produce the corresponding action.()A:对 B:错答案:对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需要讨论的几点问题:
(1) 仿真时,可能会出现两个初始值 yi (0) = y j (0) 且是最大值的情况,这
时就会产生竞争,竞争的结果是所有输出都变为零或者两个最大值同时达到最大
值。解决办法是加一个小的扰动:
∑ y j (t +1) =
ft
⎛ ⎜
y
j
(
t
)
−
ε
yk
(
t
)
+
εi
⎞ ⎟
,
⎝
k≠ j
⎠
(1) 人脑的学习方式是自主的,人可以在一个复杂的、非平稳的、有“干 扰”的环境中学习。人脑在大多数情况下是无监督的、无导师的“自学”,而且 学习和工作分不开,是“半工半读”的;
(2) 人脑的工作方式和信息存储方式具有明显的自组织的特点。人在与环境 交互作用的过程中逐渐建立起大脑的信息处理能力(信息的存储、检索等),这 种建立方式是自组织的,外界不可能对脑神经系统进行干预;
Hale Waihona Puke bji (n + 1) =
t ji (n + 1)
N
∑ 0.5 + t ji (n) xi
i =1
i = 1, 2, ", N j = 1, 2, ", M
2004-8-8
《神经网络导论》--自组织神经网络
4-13
§4.3 ART1的工作原理
XI’AN JIAOTONG UNIVERSITY
4. 这里的特殊模型只适用于 {1, −1} 二值矢量模式的聚类,而且只是其中的
但是,有时我们需要发现模式集合在模式空间中的分布情况,假如这些模式 在空间中以某种明显的集群状分布,确定各集群的位置与分布的方法是有意义 的。
所谓聚类,就是要按照某种度量准则,自动地发现、划分模式类别,并将观 测样本分类。下面要讨论的ART1就可以用于聚类。
2004-8-8
《神经网络导论》--自组织神经网络
4-5
§4.2 横向抑制网络MAXNET
XI’AN JIAOTONG UNIVERSITY
在横向抑制子网络中,设t jk 是从第 j个节点到第 k个节点的连接权,我们可
以取:
t jk
=
⎧1 ⎨⎩−ε
j=k j≠k
· · · · · · · · · · · · · · · EQ4.1Z
ε < 1 , k, j = 1, 2, ", M
M
∑ ( ) 子网络中各节点的迭代公式如下: 初值 y j 0 = xiu ji
i
∑ y j (t +1) =
( ) ⎛
ft
⎜ ⎜⎜⎝
y
j
t
M
−ε
k =1 k≠ j
⎞
yk
(
t
)
⎟ ⎟⎟⎠
j = 1, 2, ", M
· · · · · EQ4.2Z
其中 2004-8-8
ft
(α
)
=
⎧Cα ⎨⎩0
α >0 C ≥1 α ≤0
εi
≤
i N3
(2) ft (α )的函数形式,如果 α > 0 时采用线性函数且C = 1 ,那么会发生收
敛较慢并且很难达到一个饱和值。 建议采用:
2004-8-8
⎧A α ≥ A C
ft (α ) = ⎪⎨Cα 0 < α < A C
⎪⎩0
α ≤0
《神经网络导论》--自组织神经网络
More...
(4) 网络分类的类别数要事先确定,超出这个类别数,学习不可能给出正 确结果;
2004-8-8
《神经网络导论》--自组织神经网络
4-2
§4.1 引言
XI’AN JIAOTONG UNIVERSITY
(4) 人对外界的输入信号响应时有两种渠道:“由底向上”(bottom-up)和 “由顶向下”(top-down)。其中“由顶向下”涉及到人的集中注意力和忽略能 力。人脑在一定的环境下会估计到可能出现的情况,预期会遇到、听到或看到的 各种内容。
别的典型样本 U j 之间的汉明距离确定这一模式是否属于 C j类。即确定 X ∈ C j
( ) 的充要条件为:
Hamming distance X, U j < Hamming distance (X, Uk )
k = 1, 2, ", M 且 k ≠ j
2004-8-8
《神经网络导论》--自组织神经网络
(6) 对于模式分类,这种汉明网络明显优于Hopfield网络。当码元误差随机独
立时,汉明网络是一种最佳的最小误差分类器。同时,汉明网络连接权少。当模
式矢量维数为100,类别数为10时,汉明网络需1000个连接权,而Hopfield网络
需要10000个。
2004-8-8
《神经网络导论》--自组织神经网络
一种。对于连续取值的矢量模式聚类,要用ART2型网络。
5. 对未启用的输出端要加标志位,在第一次启用时不用警戒参量 ρ。
2004-8-8
《神经网络导论》--自组织神经网络
4-15
西安交通大学电信学院信通系
第四章 自组织神经网络
§4.3 ART1的工作原理
XI’AN JIAOTONG UNIVERSITY
4-9
§4.3 ART1的工作原理
XI’AN JIAOTONG UNIVERSITY
二、ART1神经网络
−ε
ART1的网络结构有多种 形式,这里讨论的只是其中 的一种。网络结构如右图所
y1
−ε
1 −ε
y2
−ε
1"
−ε
yM 1
示。输入应该为二值矢量模
−ε
式,bji 是“由底向上”的连接 t ji 权,t ji是“自顶向下”的连接
《神经网络导论》--自组织神经网络
More...
4-7
西安交通大学电信学院信通系
第四章 自组织神经网络
§4.2 横向抑制网络MAXNET
XI’AN JIAOTONG UNIVERSITY
其中,U j 是第 j 类的典型样本(样板),也具有二值特征。 N
∑ ( ) { } 实际上, −1, 1 N 的汉明距离定义式中的第二项 fh xiu ji 就表示
j 类。计算
N
∑t ji xi
i =1
如果
N
∑t ji xi
∑i=1
>ρ
xi
则
X 属于第
j
i
类,转第 ⑤步;否则转第
⑥步。其中
ρ
是警戒参量。
2004-8-8
《神经网络导论》--自组织神经网络
4-12
4-3
《神经网络导论》讲义
§4.3 ART1的工作原理
XI’AN JIAOTONG UNIVERSITY
(4) 自反馈系数应该大于等于1,这样可以确保收敛较快。可以看出,该网络 具有“中心激励、侧向抑制”的功能,这种现象称为中心分离效应(On center, off surround)。
(5) MAXNET 在 使 用 过 程 中 , 时 间 十 分 重 要 。 汉 明 网 络 运 算 时 间 快 , 而 MAXNET需要的处理时间较长,必须在结构上保证,只有MAXNET收敛并已经为 新的输入做好准备后,才能允许汉明网络开始输出。
(5) 有可能陷入局部极小点,从而给出错误的结果;
(6) 误差准则是固定的,不能随环境的变化而进行相应的调整或改变。
相比之下,人脑的优越性就极其明显了。人脑神经系统既能够牢固地记住所 学得的各种知识又能适应各种复杂多变的环境,能够通过“自学”来认识未学习 过的新事物并解决不熟悉的新问题。人脑神经系统有如下主要特点:
(3) 人脑的学习和记忆能力既有很大的刚性,又有很大的弹性和可塑性;
2004-8-8
《神经网络导论》--自组织神经网络
4-3
西安交通大学电信学院信通系
第四章 自组织神经网络
§4.1 引言
XI’AN JIAOTONG UNIVERSITY
前两章讨论的前向网络和反馈网络是应用最广泛,研究最多的两类典型网 络。但在某些方面也存在着一些共同的问题,这两种网络在构成网络时未能充 分借鉴人脑工作的特点。对前向网络来说,这些缺点和不足主要体现在以下几 个方面:
《神经网络导论》讲义
第四章 自组织神经网络
¾ 引言 ¾ 横向抑制网络MAXNET ¾ ART1的工作原理 ¾ 竞争学习机制和自稳学习机制 ¾ ART2神经网络 ¾ 小结
XI’AN JIAOTONG UNIVERSITY
2004-8-8
《神经网络导论》--自组织神经网络
4-1
§4.1 引言
XI’AN JIAOTONG UNIVERSITY
⑤ 对于第 j 类,更新 bji 和 t ji ,i = 1, 2, ", N 。返回第①步。 ⑥ X不属于第 j 类,所以要抑制该节点,然后返回第②步,执行另一个聚类中心
的处理过程。
ART1中的初值和更新计算公式如下:
t ji (0) = 1
b ji
(0)
=
1
1 +N
t ji (n + 1) = t ji (n) − αt ji (n) sgn ⎡⎣−t ji xi ⎤⎦
计算
∑相似度 u11 xiu ji
i
输入 x1
u1N u12
x2
−ε "
uM 1
uM 2
uMN
"
xN
图4-1Z 横向抑制网络MAXNET的结构
2004-8-8
《神经网络导论》--自组织神经网络
4-6