一、回归分析预测法概述

合集下载

回归分析预测方法

回归分析预测方法
预测通常有两种情况,一是点预测,就是所求的预测值为一个 数值;另一是区间预测,所求的预测值有一个数值范围。通常 用正态分布的原理测算其估计标准误差,求得预测值的置信区 间。
市场预测方法
6
二、一元线性回归预测方法 (一)一元线性回归预测的含义 (二)一元线性回归预测的实例
市场预测方法
7
回归分析预测方法
一、回归预测的一般步骤 (一)回归分析预测法的具体步骤 1、确定预测目标和影响因素 2、进行相关分析
r (x x )( y y) (x x)2 (y y)2
市场预测方法
2
相关系数的取值范围为:,-1≤r≤1即
r ≤1。当变量与呈线性相关时, r越接近l, 表明变量间的线性相关程度愈高;
y a bx
市场预测方法Biblioteka 44、回归预测模型的检验
建立回归方程的根本目的在于预测,将方程用于预测之 前需要检验回归方程的拟合优度和回归参数的显著性, 只有通过了有关的检验后,回归方程方可用于经济预测,
常用的检验方法有相关系数检验、F检验、t检验和D—w 检验等。
市场预测方法
5
5、进行实际预测
运用通过检验的回归方程,将需要预测的自变量x代入方程并计 算,即可取得所求的预测值。
r 越接近0,表明变量间的线性相关程度愈 低。r>0表明为正相关,r<0表明为负相 关。
市场预测方法
3
3、建立回归预测模型 线性回归方程的一般表达式为:
y a b1x1 b2 x2 bn xn
当线性回归只有一个自变量与一个因变量间的回归,称为 一元线性回归或简单线性回归、直线回归,可简写为:

回归分析方法

回归分析方法

回归分析方法
回归分析是统计学中一种重要的数据分析方法,它用于研究自
变量和因变量之间的关系。

回归分析方法可以帮助我们预测和解释
变量之间的关系,从而更好地理解数据的特征和趋势。

在本文中,
我们将介绍回归分析的基本概念、常见的回归模型以及如何进行回
归分析。

首先,回归分析的基本概念包括自变量和因变量。

自变量是研
究者可以控制或观察到的变量,而因变量是研究者希望预测或解释
的变量。

回归分析旨在通过自变量的变化来预测或解释因变量的变化,从而揭示它们之间的关系。

常见的回归模型包括线性回归、多元线性回归、逻辑回归等。

线性回归是最简单的回归模型之一,它假设自变量和因变量之间的
关系是线性的。

多元线性回归则允许多个自变量对因变量产生影响,逻辑回归则用于因变量是二元变量的情况,例如成功与失败、生存
与死亡等。

进行回归分析时,我们需要收集数据、建立模型、进行拟合和
检验模型的拟合优度。

在收集数据时,我们需要确保数据的质量和
完整性,避免因为数据缺失或异常值而影响分析结果。

建立模型时,我们需要选择合适的自变量和因变量,并根据实际情况选择合适的
回归模型。

进行拟合和检验模型的拟合优度时,我们需要根据实际
情况选择合适的统计指标和方法,例如残差分析、R方值等。

总之,回归分析方法是一种重要的数据分析方法,它可以帮助
我们预测和解释变量之间的关系。

通过本文的介绍,相信读者对回
归分析有了更深入的了解,希望能够在实际工作中灵活运用回归分
析方法,为决策提供更可靠的依据。

回归预测

回归预测

回归预测法回归预测法回归预测法是指根据预测的相关性原则,找出影响预测目标的各因素,并用数学方法找出这些因素与预测目标之间的函数关系的近似表达,再利用样本数据对其模型估计参数及对模型进行误差检验,一旦模型确定,就可利用模型,根据因素的变化值进行预测。

回归预测法一元线性回归预测法(最小二乘法)公式:Y = a + b XX----自变量Y----因变量或预测量a,b----回归系数根据已有的历史数据Xi Yi i = 1,2,3,...n ( n 为实际数据点数目),求出回归系数 a , b为了简化计算,令 ( X1 + X2 + ... + Xn ) = 0,可以得出a , b 的计算公式如下:a = ( Y1 + Y2 +... + Yn ) / nb = ( X1 Y1 + X2 Y2 + ... + Xn Yn ) / ( X12 + X22 + ... + Xn2 )回归分析预测法的概念回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。

它是一种具体的、行之有效的、实用价值很高的常用市场预测方法。

回归分析预测法的分类回归分析预测法有多种类型。

依据相关关系中自变量的个数不同分类,可分为一元回归分析预测法和多元回归分析预测法。

在一元回归分析预测法中,自变量只有一个,而在多元回归分析预测法中,自变量有两个以上。

依据自变量和因变量之间的相关关系不同,可分为线性回归预测和非线性回归预测。

回归分析预测法的步骤1.根据预测目标,确定自变量和因变量明确预测的具体目标,也就确定了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。

统计学中的回归分析方法解析

统计学中的回归分析方法解析

统计学中的回归分析方法解析统计学中的回归分析是一种重要的数据分析方法,它可以帮助我们理解变量之间的关系,并进行预测和解释。

本文将对回归分析的基本概念、回归模型、模型评估以及一些常用的扩展方法进行解析。

通过深入探讨回归分析的应用方式和原理,希望读者能够更好地理解和运用这一方法。

一、回归分析概述回归分析是一种基于样本数据分析方法,用于研究因变量与自变量之间的关系。

在回归分析中,我们将自变量的取值代入回归方程中,以得出因变量的预测值。

回归分析可以分为简单线性回归和多元线性回归两种情况。

1.1 简单线性回归简单线性回归是回归分析中最基础的一种情形。

它假设因变量与自变量之间存在着线性关系,通过拟合一条直线来解释数据的变化趋势。

简单线性回归模型的表达式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

1.2 多元线性回归当我们需要考虑多个自变量对因变量的影响时,就需要使用多元线性回归模型。

多元线性回归模型的表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn是回归系数,ε是误差项。

二、回归模型的建立与评估在回归分析中,我们需要建立合适的回归模型,并评估模型的拟合优度和统计显著性。

2.1 模型建立模型建立是回归分析的核心部分。

在建立模型时,我们需要选择合适的自变量,并进行模型的参数估计。

常用的参数估计方法有最小二乘法、最大似然估计等。

2.2 模型评估为了评估回归模型的拟合优度,我们可以使用各种统计指标,如决定系数R²、调整决定系数adj R²、F统计量等。

同时,我们还需要检验模型的显著性,即回归系数是否显著不为零。

三、回归分析的扩展方法除了简单线性回归和多元线性回归之外,回归分析还有许多扩展方法,包括非线性回归、逐步回归、岭回归等。

第九章 时间序列预测法和回归分析预测法

第九章 时间序列预测法和回归分析预测法

9.1 时间序列预测法
2、时间序列预测法的步骤 ① 收集历史资料 ② 分析时间序列 ③ 求时间序列的长期趋势变动(T)、季节变动 (S)和不规则变动(I)的值。 利用时间序列资料求出长期趋势、季节变 动和不规则变动的数学模型后,就可以利 用它来预测未来的长期趋势值T和季节变动 值S。
3、时间序列预测法的基本特征 ⑴ 时间序列分析法 ① 事情的过去会延续到未来这个假设前提包含两层 含义: ② 不会发生突然的跳跃变化,是以相对小的步伐前 进; ③ 过去和当前的现象可能表明现在和将来活动的发 展变化趋向。 因此时间序列分析法,对短期、近期的预测比较显著。 ⑵ 时间序列数据变动存在着规律性与不确定性 ① 趋势性; ② 周期性; ③ 随机性; ④ 综合性。
•Leabharlann •⑴ 增减量预测法。这种方法是以上一期的实 际观察值与上两期之间的增减量之和,作为 本期预测值的一种预测方法。 ⑵ 平均增减量预测法。先计算出整个事件序 列筑起增减量的平均数,再与上期实际数相 加,从而确定预测值的方法。
9.1.5 季节指数预测法

9.2 回归分析预测法
回归分析预测法,是在分析市场现象自变量和因变量 自检相关关系的基础上,建立变量之间的回归方程, 并将回归方程作为预测模型,根据自变量在预测其的 数量变化来预测因变量,关系大多表现为相关关系。 1、一元线性回归分析预测法 是在考虑预测对象发展变化本质的基础上,分 析因变量随一个自变量变化而变化的关联形态,借助 回归分析建立它们之间因果关系的回归方程,描述它 们之间的平均变化数量关系,据此进行预测或控制 。 Y=a+bx
9.1.2 平均预测法


9.1.3 指数平滑预测法


9.1.4趋势延伸法

第8章--回归分析预测法概要

第8章--回归分析预测法概要

其表达F式 S余 为 ( /S回 n /m : m1)
20
❖ 将通过上式计算F的值,与F分布表查到的Fc 临界值比较,从而判断回归方程是否具有显 著性。
❖ ①当 F> Fc (α,m,n-m-1),则回归方程与实际 直线方程拟和的程度好,x和y之间的变化是 符合回归模型;
❖ ②当F ≤ FC(α,m,n-m-1)时,则回归模型与 实际直线方程拟和程度不好,x和y之间的变 化不符合实际直线的变化,预测模型无效。
i1
i1
i1
min (3)
即对(3)求极值,有:
Q
a
2
n i1
(
yi
a
bxi
)
0
Q
b
n
2
i1
( yi
a
bxi )xi
0
(4) (5)
15
由( 4 )得:
n
n
n
y i a bx i 0
i1
i1
i1
y i na b x i
由( 5)得:
n
n
n
x i y i ax i x i bx i 0
❖ ②确定变量之间的相关密切程度,这是相关 分析的主要目的和主要内容。
7
3、建立回归预测模型 ❖ 就是依据变量之间的相关关系,用恰当的数
学表达式表示出来。 4、回归方程模型检验 ❖ 建立回归方程的目的是预测,但方程用于预
测之前需要检验回归方程的拟合程度和回归 参数的显著性,只有通过了有关的检验后, 回归方程才可用于预测。常用的检验方法有 相关系数r检验、F检验、t检验等。
36
二、多元线性回归预测法 ❖ 一般形式:ŷi=a+b1X1+b2X2+……+bnXn ❖ 其中: X1,X2,……,Xn 为自变量, ❖ a, b1, b2, ……, bn为回归方程的参数 ❖ 存在两个自变量条件下的多元线性回归方程

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

第三章回归分析预测方法

第三章回归分析预测方法

1984
539
7136
1992
769
8683
1985
577
7658
1993
801
9317
1986
613
7784
1994
855
9675
1987
644
8108
2019
842
8542
1988
670
7583
2019
860
8584
1989
695
8002
2019
890
9612
1990
713
8442
2019
920
x
相关但无
线性关系
-3
-2
-1
0
1
2
3
x
2、回归分析与相关分析
研究和测度两个或两个以上变量之间关系的方 法有回归分析和相关分析。
相关分析。研究两个或两个以上随机变量之 间线性依存关系的紧密程度。通常用相关系 数表示,多元相关时用复相关系数表示。
回归分析。研究某一随机变量(因变量)与 其他一个或几个普通变量(自变量)之间的 数量变动的关系。
回本章目录
一、一元线性回归模型
一元线性回归(Linear regression),只研究一个 自变量与一个因变量之间的统计关系。
对于只涉及一个自变量的简单线性回归模型可表
示为: yb0b1xe
其中,b0和b1称为模型的参数;e是随机误差项,
又称随机干扰项,有 e N0,2
在线性回归模型中加入随机误差项是基于 以下原因:
第一节 引言
本章学习目的与要求:
通过本章的学习,了解回归分析预测法 的概念,掌握回归分析中各系数的计算方法 及回归预测方法,能够运用Excel工具来进行 预测。

回归分析预测法

回归分析预测法

一元线性回归样本函数
ˆ b ˆX ˆ b Y i 0 1 i ˆ 为E(Y )的估计式; 式中 , Y
i i
ˆ 为b 的估计式; b 0 0 ˆ 为b 的估计式。 b
1 1
回归模型

对于样本中每一个与Xi相对的观测值Yi与由样 本回归函数得到的估计值有一随机偏差,这个 偏差称为随机误差,记为ei。
如此以来,高的伸进了天,低的缩入了地。他百思 不得其解,同时又发现某人种的平均身高是相当稳 定的。最后得到结论:儿子们的身高回复于全体男 子的平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。 后人将此种方法普遍用于寻找变量之间的规律


二、回归分析与相关分析
相关分析:是研究两个或两个以上随机
2 2222R =1 2
n2
(1 R )
2
3、变量的显著性检验(t检验)
主要对多元线性回归模型而言,在方程的总体 线性关系呈显著性时,并不能说明每个解释变 量对被解释变量的影响是显著的,必须对每个 解释变量进行显著性检验,以决定是否作为解 释变量保留在模型中。其检验的思路与方程显 著性检验相似,用以检验的方法主要有三种: F检验、t检验、z检验。它们区别于方程显著性 检验在于构造统计量不同,其中应用最为普遍 的为t检验。


意义:拟合优度越大,自变量对因变量的解释程度越 高,自变量引起的变动占总变动的百分比高。观察点 在回归直线附近越密集。 取值范围:0-1
修正的
R ,记为R
2
2
在应用过程中,如果在模型中增加一个解释变 量,模型的解释功能增强了,回归平方和增大 R ,记为R R R 2 也增大了。从而给人一个错觉:要使得模 了, 型拟合得好,就必须增加解释变量,但是在样 本容量一定的情况下,增加解释变量必定使得 自由度减少,于是实际应用中引进修正的决定 2 R 系数 ,具体表达式为(其中 n是样本容量,n-k n 1 R =1 (1 R ) n2 =n-2为残差平方和的自由度, n-1为总体平方和 的自由度): n 1

回归分析预测法

回归分析预测法
▪ (3)按回归模型是否带虚拟变量划分,回归分析预测法分为普通回归模型和虚拟
变量回归模型。
2020/12/14
回归分析预测法
(二)应用回归分析预测法的条件
▪ 回归预测法是一种实用价值很高的预测方法,但必须在一定的条件下应用。应用 回归预测法要满足以下几方面的条件:
▪ 1.经济现象之间关系密切 ▪ 2.自变量的预测值必须比因变量的预测值精确或容易求得 ▪ 3.要正确地选择回归方程的形式
2020/12/14回Fra bibliotek分析预测法▪ 2.回归分析预测法的种类
▪ 应用回归模型进行市场预测,有很多种类,根据不同的条件可进行不同的分类。 主要的分类有:
▪ (1)按包含自变量个数的多少划分,回归分析预测法分为一元回归分析预测法和 多元回归分析预测法。
▪ (2)按自变量和因变量之间是否存在线性关系划分,回归分析预测法分为线性回 归分析预测法和非线性回归分析预测法。
市场调查与预测
回归分析预测法
2020/12/14
回归分析预测法
一、回归分析预测法概述
▪ 回归分析预测法的含义与种类 ▪ 应用回归分析预测法的条件 ▪ 回归分析预测法的程序
2020/12/14
回归分析预测法
(一)回归分析预测法的含义与种类
▪ 1.回归分析预测法的含义
▪ 回归分析预测法就是从各种经济现象之间的相互关系出发,通过对与预测对象有 联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测法。所 谓回归分析,就是研究某一个随机变量(因变量)与其他一个或几个变量(自变量)之 间的数量变动关系,由回归分析求出的关系式通常称为回归模型(或回归方程)。
2020/12/14
2020/12/14

回归分析预测法介绍

回归分析预测法介绍

回归分析预测法回归分析预测法就是从各种经济现象之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测法。

所谓回归分析就是研究某一个随机变量(因变量)与其他一或几个变量(自变量)之间的数量变动关系,由回归分析分析求出的关系式通常称为回归模型。

1、回归模型的分类(1)根据自变量个数的多少,回归模型可以分为一元回归模型和多元回归模型。

(2)根据回归模型是否线性,回归模型可以分为线性回归模型和非线性回归模型。

所谓线性回归模型就是指因变量和自变量之间的关系是直线型的。

(3)根据回归模型是否带虚拟变量,回归模型可以分为普通回归模型和虚拟变量回归模型。

普通回归模型的自变量都是数量变量,而虚拟变量回归模型的自变量既有数量变量也有品质变量。

在运用回归模型进行预测时,正确判断两个变量之间的相互关系,选择预测目标的主要影响因素做模型的自变量是只关重要的。

2、一元线性回归模型一元线性回归模型形式:┄,。

其中,称为因变量,为自变量,代表对因变量的主要影响因素,代表各种随机因素对因变量的影响总和。

在实际应用中,通常假定服从正态分布,即。

称为回归系数。

回归系数的估计:在用一元线性回归模型进行预测时,首先必须对模型回归系数进行估计。

一般说来,估计的方法有多种,其中使用最广泛的是最小平方法(OLS估计法)。

估计结果是:和(┄,)均是我们已有的历史数据。

这里,模型的显著性检验:建立的一元线性回归模型是否符合实际,所选的变量之间是否具有显著的线性相关关系?这就需要对建立的回归模型进行显著性检验,通常用的检验法是相关系数检验法。

相关系数是一元回归模型中用来衡量两个变量之间相关程度的一个指标,其计算公式是:其中,一般说,相关系数愈大说明所选的两个变量之间的相关程度愈高。

模型预测值:在回归模型通过显著性检验性后,就可以用模型来进行预测,代入回归模型,就可以求得一个对应的了。

对于自变量的每一个给定值回归预测值,称为模型的点估计值。

回归分析预测法

回归分析预测法

回归分析预测法(Regression Analysis Prediction Method)回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,成立变量之间的回归方程,并将回归方程作为预测模型,依照自变量在预测期的数量转变来预测因变对市场现象以后进展状况和水平进行预测时,若是能将阻碍市场预测对象的要紧因素找到,而且能够取得其数量资料,就能够够采纳回归分析预测法进行预测。

它是一种具体的、行之有效的、有效价值很高的经常使用市场预测方式。

[编辑]1.依照预测目标,确信自变量和因变量明确预测的具体目标,也就确信了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y确实是因变量。

通过市场调查和查阅资料,寻觅与预测目标的相关阻碍因素,即自变量,并从当选出要紧的阻碍因素。

2.成立回归预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上成立回归分析方程,即回归分析预测模型。

3.进行相关分析回归分析是对具有因果关系的阻碍因素(自变量)和预测对象(因变量)所进行的数理统计分析处置。

只有当变量与因变量确实存在某种关系时,成立的回归方程才成心义。

因此,作为自变量的因素与作为因变量的预测对象是不是有关,相关程度如何,和判定这种相关程度的把握性多大,就成为进行回归分析必需要解决的问题。

进行相关分析,一样要求出相关关系,以相关系数的大小来判定自变量和因变量的相关的程度。

4.查验回归预测模型,计算预测误差回归预测模型是不是可用于实际预测,取决于对回归预测模型的查验和对预测误差的计算。

回归方程只有通过各类查验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5.计算并确信预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确信最后的预测值。

[编辑]应用回归预测法时应第一确信变量之间是不是存在相关关系。

若是变量之间不存在相关关系,对这些变量应用回归预测法就会得犯错误的结果。

正确应用回归分析预测时应注意:①用定性分析判定现象之间的依存关系;②幸免回归预测的任意外推;③应用适合的数据资料;[编辑][编辑]案例一:回归分析预测法预测新田公司销售[1]一、新田公司的进展现状新田公司全称为新田摩托车制造,成立于1992年3月,那时的锡山市(那时还叫无锡县)有两个生产摩托车的乡镇企业:查桥镇的捷达摩托车厂和洛社镇的雅西摩托车厂。

第三章 回归分析预测法 《统计预测与决策》PPT课件

第三章  回归分析预测法  《统计预测与决策》PPT课件
• 回归古典假设检验(见第四节)
残差分析; 异方差及自相关检验(DW)
24
拟合优度
• 拟合优度是指样本回归直线对观测数据 拟合的优劣程度。
• 如果全部观测值都在回归直线上,我们 就获得“完全的”拟合,但这是罕见的 情况,通常都存在一些正ei或负ei。我们 所希望的就是围绕回归直线的剩余尽可 能的小。
(基本假定)
1) 误差项ε是一个期望值为0的随机变量,即 E(ε)=0。对于一个给定的 x 值,y 的期望值
为E ( y ) =b 0+ b 1 x
2) 对于所有的 x 值,ε的方差σ2 都相同
3) 误差项ε是一个服从正态分布的随机变量,且 相互独立。即ε~N( 0 ,σ2 )
a. 独立性意味着对于一个特定的 x 值,它所对应 的ε与其他 x 值所对应的ε不相关
y
(xn ,yn)
yˆ bˆ0 + bˆ1x
(x2 ,y2)

ei = yi^-yi
(x1 ,y1) (xi , yi)
17
x
最小二乘估计式
• 根据最小二乘准则建立样本回归函数的 过程为最小二乘估计,简记OLS估计。
• 由此得到的估计值得计算式称为最小二 乘估计式。
18
双变量线性回归模型的最小二乘估计
36
▪ 包含在y里面但不能被p个自变量的线性关系
所解释的变异性
多元回归模型
(基本假定)
1. 误差项ε是一个期望值为0的随机变量,即
E()=0 2. 对于自变量x1,x2,…,xp的所有值,的
方差2都相同 3. 误差项ε是一个服从正态分布的随机变量,
即ε~N(0,2),且相互独立
37
多元回归方程

第十二章 回归分析预测法

第十二章 回归分析预测法

全面分析影响预测对象的相关因素, 全面分析影响预测对象的相关因素,确定自变量 1、首先对所有影响因素进行分析 2、比较相关因素,找出最主要的影响因素 比较相关因素, 选择回归预测模型, 选择回归预测模型,确定模型参数 实际预测 检验预测模型和预测结果的可靠性程度
三、随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
回归分析预测法 从各种经济现象之间的相关关系出发, 从各种经济现象之间的相关关系出发, 通过对与预测对象有联系的现象变动趋势的 分析, 分析,推算预测对象未来状态数量表现的一 种预测法。 种预测法。
回归分析预测法的基本步骤 (一)根据预测的目的,选择确定自变量和 根据预测的目的, 因变量 (二)收集历史统计资料 分析.计算并建立回归 (二)收集历史统计资料,分析.计算并建立回归 收集历史统计资料,分析 预测模型 (三)进行相关分析 (四)检验回归预测模型 计算预测误差 检验回归预测模型,计算预测误差 回归预测模型 (五)计算并确定预测值
回归模型 定义:
回归分析是对具有相关关系的变量之间的 数量变化规律进行测定, 数量变化规律进行测定,研究某一随机变量 因变量)与其他一个或几个普通变量( (因变量)与其他一个或几个普通变量(自变 之间的数量变动关系, 量)之间的数量变动关系,并据此对因变量进 行估计和预测的分析方法。 行估计和预测的分析方法。由回归分析求出的 关系式, 关系式,称为回归模型
P( − t α < t < t α ) = 1 − α
2 2

P( −t α <
2
ɵ βi − βi sβɵ
i
i
< tα ) = 1− α
2
ɵ ɵ P ( βi − t α × sβɵ < βi < βi + t α × sβɵ ) = 1 − α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、回归分析预测法概述二、一元线性回归分析预测法三、多元线性回归分析预测法第九章回归分析预测法和马尔可夫预测法第一节回归分析预测法一、回归分析预测法概述要了解回归分析预测法的基本思想,必须先了解市场现象之间的两类因果关系。

(一)市场现象之间两类因果关系客观世界中许多事物、现象、因素彼此关联,它们的发展变化由多种因素决定。

市场活动中的许多现象也不例外,也都有其产生的原因,都要受一定因素的制约,都是一定原因的必然结果。

例如,市场是国民经济的综合反映,国民经济的任何变化,诸如国民经济发展速度、积累和消费比例关系的调整、人口增长和劳动就业状况、居民收入变化、消费者购买心理的变化,都会引起市场商品供需关系变化。

又如商品价格的变化、广告的宣传等也会引起消费者消费态度和消费行为的变化。

这些市场现象之间就形成了因果关系。

在研究市场现象之间因素关系时,一般将引起某一市场现象变化的各种因素(或原因)称为自变量,将被引起变化的市场现象(即结果)称为因变量。

如人口增长是自变量,商品需求量就是因变量。

居民收入水平变化是自变量,市场消费需求就是因变量。

自变量变了,因变量也随之发生变化。

自变量和因变量的依存关系是市场现象之间相互关联的必然反映,是市场现象之间因果关系的表现。

市场现象之间的因果关系可以分为两类:函数关系和相关关系。

所谓函数关系是指现象之间确定的数量依存关系,即自变量取一个数值,因变量必然有一个对应的确定数值;自变量发生某种变化,因变量必然会发生相应程度的变化。

函数关系是确定性的数量关系。

如某企业每销售一件产品,可获利a元,那么,产品销售量x与总利润Y之间就有确定性的函数关系。

即Y=ax。

所谓相关关系则是指现象之间确定存在的不确定的数量依存关系,即自变量取一个数值时,因变量必在存在与它对应的数值,但这个对应值是不确定的;自变量发生某种变化时,因变量也必然发生变化,但变化的程度是不确定的。

如婴儿出生数和奶粉需求量就属于相关关系。

婴儿出生数增加了,奶粉需求量肯定也会增加,但究竟增加多少是无法确定的。

对于函数关系的依存关系,用一个函数表达式来描述。

对于相关关系的数量依存关系,用相关关系分析和回归方程的方法加以研究,即用统计分析的方法来研究现象之间的数量相关关系,找出其发展变化规律的关系式。

(二)回归分析预测法的含义回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。

它是一种具体的、行之有效的、实用价值很高的常用市场预测方法。

回归分析预测法有多种类型。

依据相关关系中自变量的个数不同分类,可分为一元回归分析预测法和多元回归分析预测法。

在一元回归分析预测法中,自变量只有一个,而在多元回归分析预测法中,自变量有两个以上。

依据自变量和因变量之间的相关关系不同,可分为线性回归预测和非线性回归预测。

(三)回归分析预测法的步骤1.根据预测目标,确定自变量和因变量明确预测的具体目标,也就确定了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。

通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2.建立回归预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3.进行相关分析回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。

只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。

进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4.检验回归预测模型,计算预测误差回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。

回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5.计算并确定预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

二、一元线性回归分析预测法一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。

由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。

所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。

只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。

一元线性回归分析法的预测模型为:(9-1)式中,代表期自变量的值;代表期因变量的值;代表一元线性回归方程的参数。

参数由下列公式求得(用代表):为简便计算,我们作以下定义:式中:这样定义后,参数由下列公式求得:将代入一元线性回归方程,就可以建立预测模型,那么,只要给定值,即可求出预测值。

在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:或相关系数的特征有:①相关系数取值范围为:。

②与符合相同。

当,称正线性相关,上升,呈线性增加。

当,称负线性相关,上升,呈线性减少。

③,X与Y无线性相关关系;,完全确定的线性相关关系;,X与Y存在一定的线性相关关系;,为高度线性相关;,为中度线性相关;,为低度线性相关。

(9-4)[例9-1]某企业从有关资料中发现广告投入和产品销售有较密切的关系。

近年该企业广告费和销售额资料见表9-1,若2003年广告费为120万元,请用一元线性回归分析法预测2003年产品销售额。

表9-1具体步骤如下:1.列表(见表9-1)计算等数值。

依据公式(9-2)2.计算参数,建立一元线性回归预测模型依据式(9-3)有:一元线性回归方程(即预测模型)为3.求相关系数,作相关分析和检验相关系数相关系数为0.986,说明企业广告费和销售额之间是高度线性相关的。

由于相关系数是用观察样本资料计算得到的,它所说明的线性密切程度对总体是具有5%还是10%的显著性,即有95%或90%的可信度(置信度),需要进行相关系数检验。

相关系数检验步骤如下:①选择显著性水平,通常市场预测问题选择5%或10%;②根据值和为变量数量。

从本书附录B相关系数临界值;③比较和,当,表明两变量量的线性相关具有显著性,有的可信度,适用于预测;当时,只能说计算值纯属偶然,建立的回归方程不宜应用,需要重新选择变量或重新收集数据,重新建立模型。

出现这种。

情况的原因很多,其中主要有三点:定性分析选择的各变量之间并不存在因果关系,原定性分析设想不正确;选择的变量间虽然存在因果关系,但还有其他起着更主要作用的变量尚未列入到模型之中;选择的变量之间因果关系是非线性关系。

本题选择,从书中附录B,查得,因此,。

这说明,有5%显著水平,回归预测模型达到95%的置信度,可以用于预测。

4.对回归预测模型作F检验F检验的目的,主要是说明回归预测模型中自变量的变化能否完全解释因变量的变化,回归预测模型是否有效。

F的计算公式如下:(9-4)式中:m代表自变量个数;n代表资料数据的个数;F检验的步骤为:①选择检验的显著性水平;②根据以及自由度m和自由度n-m-1,查F分布表(附录C)的临界值;③将计算的F与作比较判断。

若,则认为回归预测模型具有显著水平,回归预测模型所含自变量的变化足够解释因变量的变化。

在选择显著水平上,从总体看回归预测模型的有效的;若,则认为回归预测模型达不到显著水平,回归预测模型所含自变量的变化不足以解释因变量的变化。

在选择显著水平上,从总体上看回归预测模型无效。

显然,只有在选择的一定显著水平上,回归预测模型有效,才能应用于预测;反之,则不能应用于预测。

本题中,利用前面已经计算的的值代入(9-4)式有:若选择显著水平,考虑和,从附录C表查得F分布临界值。

因为,所以可以认为从总体上讲,该企业年度广告费与销售额两变量间线性关系具有5%显著水平,回归分析建立回归方程对总体而言,预测的有效性达95%。

需要提出,检验和F检验是两种不同形式的统计检验方法,可以证明F和数量之间具有如下关系:显然,F是的单调递增函数,越大,则F也就越大,因而F检验和检验可以等价,在具体应用中采用哪种检验都可以。

5.对回归预测模型作标准差检验为了把握线性回归方程应用于预测的精确度,还要作回归标准差检验。

回归标准差用S表示,计算公式如下:显然,回归标准误差S越大,观察值在回归直线周围分布离散程度越大,线性回归方程应用的精确度越低;反之,S越小,在回归直线周围分布离散程度越小,线性回归方程应用的精确度越高。

一般认为,若,说明线性回归方程应用精确度高,若,说明线性回归方程应用精确度低。

本题中,所以,可以断定线性回归方程实际应用的精确度高,让人满意。

6.利用回归预测模型,计算预测值本题中,2003年广告费将达120万元,即,代入回归方程,即;以上预测结果为点值预测。

一般学习预测方法,作出点预测就可以了。

若要进行区间预测,就要确定因变量的置信区间,其公式为(9-6)如在小样本条件下,置信度为95%时,其置信区间的上下限为:其中,为(即置信度为95%),时,由分布表查得(见附录D)在式9-6中的,称为回归标准差的调整值。

具体公式如下:式中,S:回归标准差;:预测期自变量的值。

以本题来说,要计算,就先要计算和。

①列表计算表9-2注:②计算③计算当广告费为120万元,置信度为95%时,销售额预测值的置信区间有:三、多元线性回归分析预测法在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。

而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。

例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。

这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。

多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。

当自变量与因变量之间存在线性关系时,称为多元线性回归分析。

多元线性回归预测模型一般公式为:多元线性回归模型中最简单的是只有两个自变量(n=2)的二元线性回归模型,其一般形式为:下面我们以二元线性回归分析预测法为例,说明多元线性回归分析预测法的应用。

二元线性回归分析预测法,是根据两上自变量与一个因变量相关关系进行预测的方法。

相关文档
最新文档