人教版八年级上册数学 第十二章 全等三角形 解答题专题提高训练 (17)(有解析)

合集下载

人教版八年级上册第12章《全等三角形》综合专项基础与提高练习(含答案)

人教版八年级上册第12章《全等三角形》综合专项基础与提高练习(含答案)

人教版八年级上册第12章《全等三角形》综合专项基础与提高练习姓名学号(含答案)基础型(一):1.如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=28°,求∠CAO的度数.2.如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF=EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.3.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P放在射线OM上,两直角边分别与OA,OB交于点C,D.(1)证明:PC=PD.(2)若OP=4,求OC+OD的长度.5.已知:如图,∠ACB=∠DCE,AC=BC,CD=CE,AD交BC于点F,连结BE.(1)求证:△ACD≌△BCE.(2)延长AD交BE于点H,若∠ACB=30°,求∠BHF的度数.6.在△ABC中,AD为△ABC的角平分线.(1)如图1,∠C=90°,∠B=45°,点E在边AB上,AE=AC,请直接写出图中所有与BE相等的线段.(2)如图2,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD.7.如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.(1)求证:△AEF≌△CEB.(2)猜想:AF与CD之间存在怎样的数量关系?请说明理由.8.如图,在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:BC=AD.(2)若AC=6,BC=8,求△ACE的周长.9.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD 向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.10.如图,点B、E、C、F在一条直线上,AC与DE交于点G,∠A=∠D=90°,AC=DF,BE =CF.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠F=30°,GE=2,求CE.提高型(一):1.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE,BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若BE⊥AF,求证:AB=BC+AD.2.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.3.如图,在△ACD中,E为边CD上一点,F为AD的中点,过点A作AB∥CD,交EF的延长线于点B.(1)求证:BF=EF;(2)若AB=6,DE=3CE,求CD的长.4.如图,在△ABC中,∠A=60°,∠ABC、∠ACB的平分线分别交AC、AB于点D、E,CE、BD相交于点F,连接DE.(1)若AC=BC=6,求DE的长;(2)求证:BE+CD=BC.5.如图,已知Rt△ABC≌Rt△ADE(对应顶点字母顺序相同),∠ABC=∠ADE=90°,BC 与DE交于F.(1)不添加辅助线,直接找出图中其他的全等三角形;(2)求证:CF=EF.6.如图,AB∥CD,AB=CD,点E和点F在线段BC上,∠A=∠D.(1)求证:AE=DF.(2)若BC=16,EF=6,求BE的长.7.如图,AB=AD,AC=AE,∠BAD=∠CAE,点E在BC上,AB,DE相交于点F.(1)求证:△ABC≌△ADE;(2)求证:∠BEF=∠CAE.8.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.(1)求证:△ABC≌△EDF.(2)连结AD、BE,求证:AD=EB.9.如图,△ABC的高为AD.△A'B'C'的高为A'D',且A'D'=AD.现有①②③三个条件:①∠B=∠B',∠C=∠C';②∠B=∠B',AB=A'B';③BC=B'C',AB=A'B'.分别添加以上三个条件中的一个,如果能判定△ABC≌△A'B'C',写出序号,并画图证明;如果不能判定△ABC≌△A'B'C',写出序号,并画出相应的反例图形.10.阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:;②思路二的辅助线的作法是:.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).参考答案基础型:1.证明:(1)∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ACB和Rt△BDA中,AD=BC,AB=BA,∴Rt△ACB≌Rt△BDA(HL);(2)在Rt△ACB中,∵∠ABC=28°,∴∠CAB=90°﹣28°=62°,由(1)可知△ACB≌△BDA,∴∠BAD=∠ABC=28°,∴∠CAO=∠CAB﹣∠BAD=62°﹣28°=34°.2.解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.3.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.4.证明:(1)如图,过点P作PE⊥OA于点E,PF⊥OB于点F,∴∠PEC=∠PFD=90°.∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°.而∠PDO+∠PDF=180°,∴∠PCE=∠PDF在△PCE和△PDF中∴△PCE≌△PDF(AAS)∴PC=PD;(2)∵∠AOB=90°,OM平分∠AOB,∴△POE与△POF为等腰直角三角形,∴OE=PE=PF=OF,∵OP=4,∴OE=2,由(1)知△PCE≌△PDF∴CE=DF∴OC+OD=OE+OF=2OE=4.5.证明:(1)∵∠ACB=∠DCE,∴∠ACB+∠DCB=∠DCE+∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS);(2)∵△ACD≌△BCE,∴∠A=∠B,∵∠BFH=∠AFC,∴∠BHF=∠ACB,∵∠ACB=30°,∴∠BHF=30°.6.解:(1)与BE相等的线段是DE和DC,理由:∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在△AED和△ACD中∴△AED≌△ACD(SAS),∴DE=DC,∠DEA=∠C=90°,∴∠DEB=90°,∵∠B=45°,∴∠B=∠BDE,∴BE=DE,∴BE=DE=DC,即与BE相等的线段是DE和DC;(2)在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠C=∠AED,CD=ED,∵∠C=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB,∴EB=CD,∵AB=AE+EB,∴AB=AC+CD.7.(1)证明:∵AD⊥BC,CE⊥AB,∴∠AEF=∠BEC=∠ADB=90°,∴∠EAF+∠B=∠B+∠BCE=90°,即∠EAF=∠BCE.在△AEF和△CEB中,,∴△AEF≌△CEB(ASA).(2)解:AF=2CD.理由:由(1)得AF=BC.∵AB=AC,AD⊥BC,∴BC=2CD,∴AF=2CD.8.(1)证明:∵∠C=∠D=90°,∴△ABC与△ABD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD;(2)解:由(1)知Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD,∴AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=6+8=14.9.解:(1)BP=2t,则PC=10﹣2t;故答案为(10﹣2t);(2)存在.分两种情况讨论:①当BP=CQ,AB=PC时,△ABP≌△PCQ.因为AB=6,所以PC=6.所以BP﹣10﹣6=4,即2t=4.解得t=2.因为CQ=BP=4,v×2=4,所以v=2.②当BA=CQ,PB=PC时,△ABP≌△QCP.因为PB=PC,所以BP=PC=BC=5,即2t=5.解得t=2.5.因为CQ=BA=6,即v×2.5=6,解得v=2.4.综上所述,当v=2.4或2时,△ABP与△PQC全等.10.(1)∵BE=BF∴BE+CE=CF+CE即BC=EF在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)(2)∵Rt△ABC≌Rt△DEF∴∠ACE=∠F∵∠F=30°∴∠ACE=30°∴AC∥DF∴∠CGE=∠D∵∠D=90°∴∠CGE=90°∵在Rt△CGE中,∠ACB=30°,GE=2∴CE=2GE=4提高型:1.解:(1)∵AD∥BC,∴∠D=∠ECF,∠DAE=∠F,∵点E为CD的中点,∴ED=EC,∴△DAE≌△CFE(AAS);(2)∵△DAE≌△CFE,∴AE=EF,AD=CF,∵BE⊥AF,∴AB=BF,∵BF=BC+CF,CF=AD,∴AB=BC+AD.2.证明:(1)∵AB=AC,AD⊥BC,∴BC=2BD,∠1+∠C=90°,∵BE⊥AC,∴∠2+∠C=90°,∴∠1=∠2,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),(2)∵△AEH≌△BEC∴AH=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴AH=2BD.3.(1)证明:∵AB∥CD,∴∠ABF=∠DEF,∠BAF=∠D,∵∴△AFB≌△DFE(AAS),∴BF=EF;(2)解:∵△AFB≌△DFE,∴AB=DE=6,∵DE=3CE,∴CE=2.∴CD=CE+DE=2+6=8.4.解:(1)∵AC=BC,∠A=60°,∴△ABC为等边三角形,∴AC=AB,又∵BD、CE分别是∠ABC、∠ACB的平分线,∴D、E分别是AC、AB的中点,∴AD=AE,∴△ADE为等边三角形,∴DE=AE=3;(2)证明:在BC上截取BH=BE,∵BD平分∠ABC,∴∠ABD=∠CBD,∵BF=BF∴△EBF≌△HBF(SAS),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD,∠ACE=∠BCE,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∴∠CFH=∠CFD=60°,∵CF=CF,∴△CDF≌△CHF(ASA).∴CD=CH,∵CH+BH=BC,∴BE+CD=BC.5.解:(1)其它的全等三角形有△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB,∴∠CAD=∠EAB,∴△ACD≌△AEB,∴CD=EB,∠ADC=∠ABE,又∵∠ADE=∠ABC,∴∠CDF=∠EBF,又∵∠DFC=∠BFE,∴△DCF≌△BEF(AAS),∴CE=EF.6.(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴AE=DF.(2)解:∵△ABE≌△DCF,∴BE=CF,BF=CE,∵BF+CE=BC﹣EF=16﹣6=10,∴2BF=10,∴BF=5,∴BE=BF+EF=5+6=11.7.证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠BAE=∠CAE+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴∠B=∠D,∵∠BFE=∠DFA,∴∠BEF=∠BAD,∴∠BEF=∠CAE.8.证明:(1)∵AC⊥BD,EF⊥BD∴△ABC和△DEF是直角三角形又∵CD=BF∴CD+CF=BF+CF,即DF=BC,在Rt△DEF和Rt△BAC中∴Rt△ABC≌Rt△EDF.(2)∵△ABC≌△EDF,∴AC=EF∵AC⊥BD,EF⊥BD∴∠ACD=∠EFB,在△ACD和△EFB中.∴△ACD≌△EFB(SAS)∴AD=BE.9.解:①能判定△ABC≌△A'B'C',证明如下:如图1,∵AD=A'D',∠B=∠B',∠ADB=∠A'D'B',∴△ABD≌△A'B'D'(AAS),∴AB=A'B',又∠B=∠B',∠C=∠C',∴△ABC≌△A'B'C'(AAS);②不能判定△ABC≌△A'B'C',对应的反例如图2所示.(只要C'在射线B'D'上,且B'C'≠BC均可)③不能判定△ABC≌△A'B'C',对应的反例如图3所示.10.解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠EFA,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.。

八年级上册数学第十二章全等三角形解答题 专题训练 12916含解析.docx

八年级上册数学第十二章全等三角形解答题 专题训练 12916含解析.docx

第十二章《全等三角形》解答题专题训练(12)一、解答题1.如图,点、B , F , C , E在一条直线上,FB = CE, AB = DE, AC = DF,求证:AB//DE.2.如图所示,已知ZDCE=90°, ZDAC=90°,BE±AC于B,且DC=EC,请找出与AB+AD相等的线段,并说明理由.3.如图,RtAABC中,AB=AC, ZBAC=90°,直线AE®是经过点AIS的任一直线,BD丄AE于D, CE±AE 于E,若BD>CE,试解答:(1) AD与CE的大小关系如何?请说明理由;(2) 若BD=5,CE=2,求DE 的长.5.如图,CD是ZACB的平分线,EFXCD于H,交AC于F,交BC于G.16.如图,四边形ABCD 中,BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做 "筝形",其对角线AC 、BD 交于点M,请你猜想关于筝形的对角线的一条性质,并加以证 明.猜想:证明:7.如图,在锐角△ABC 中,AB=2cm, AC=3cm.(1) 尺规作图:作BC 边的垂直平分线分别交4C, BC 于点D 、E (保留作图痕迹,不要求 写作法);(2) 在(1)的条件下,连结BD,求AABD 的周长.&如图,两车从路段AB 的两端同吋出发,沿平行路线以相同的速度行驶,相同吋间后分 别到达C 、D 两地,CEXAB, DFXAB, C 、D 两地到路段AB 的距离相等吗?为什么? £ d f 9.如图所示,△ABC 是等腰直角三角形,ZA = 90° , AB=AC, D 是斜边BC 的中点,E,F 分别是AB 、AC 边上的点,且DE 丄DF,若BE=15, CF=8,求ZX/IEF 的面积.求证:®ZCFG=ZCGF ; ®ACFE = -^BAC + Z4BC). 乙 D B10.如图,要测量河流AB的长,因为无法测河流附近的点4,可以在AB线外任取一点D,在AB的延长线上任取一点E,连结ED和B£>,并且延长BD到点G,使DG = BD ;延长ED到点F,使= 连结FG ,并延长FG到点H,使点H.D, 4在同一直线上•证明:测量出线段HG的长就是河流AB的长.ZA = 60°, ZC= 40°, DE 垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到B/», BC的距离相等.12.如图,BD,CE是ZkABC的高,S.AE = AD,求证:AB = AC.A13.已知:如图,AE〃BF, ZE=ZF, DE=CF,(1)求证:AC=BD;(2)请你探索线段DE与CF的位置关系,并证明你的结论.'B14.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(D若固定三根木条AB, BC, AD不动,AB = AD = 2cm, BC = 5cm,如图,量得第四根木条CD= 5cm,判断此时与是否相等,并说明理由.(2)若固定二根木条AB,不动,AB = 2cm, BC = 5cm,量得木条CD = 5cnz,ZB = 90,写出木条4D的长度可能取到的一个值(直接写出一个即可).⑶若固定一根木条4B不动,AB = 2cm,量得木条CD = 5c〃.如果木条AD,BC的长度不变,当点£>移到B4的延长线上时,点C也在的延长线上;当点C移到AB的延长线上时,点4,C, D 能构成周长为30c加的三角形,求出木条A£>, BC的长度.15.如图,点O在AABC的内部,且在ZBAC的角平分线上,OM丄AB,垂足为M;ON丄AC,垂足为N,并且OB=OC.求证:AB=AC.16.如图,点E在长方形ABCD的边BC上,AE丄EF,点F在边CD上,已知EC=AB=3cm,BC=5cm.求四边形AEFD的面积.17.已知:如图,CD丄AB 于D, BE±AC 于E, Z1=Z2.求证:OB = OC.18.如图,在口ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP〃BC, 交DC的延长线于点P.(1)求证:△ABE9Z\DCF;(2)当ZP满足什么条件时,四边形BECF是菱形?证明你的结论.19. (1)如图1,在四边形ABCD 中,AB = AD, ZB=ZD = 90°, E、F 分别是边BC、CD上的点,且ZEAF=丄ZBAD.求证:EF=BE + FD;2(2) 如图2在四边形ABCD中,AB = AD, ZB+ZD = 180°, E、F分别是边BC、CD ±的点,且ZEAF=fzBAD,⑴中的结论是否仍然成立?不用证明.(3) 如图3在四边形ABCD中,AB = AD, ZB+ZADC= 180°, E、F分别是边BC、CD延长线上的点,且ZEAF=丄ZBAD,⑴中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.B, C, D 在同一条直线上,EAXAD, FDXAD, AE=DF, AB=DC.A图1 图2 图3试说明:ZACE=ZDBF. 20.如图,点A,【答案与解析】一、解答题1. 见详解由EB = CE得到BC = FE,利用SSS证明△ ABC^ADEF,得到ZB=ZE,即可得到AB//DE.解:•: FB = CE ,:.FB+FC^CE+CF,即BC = FE,V AB = DE, AC^DF,A AABC^ADEF,.\ZB=ZE,AB//DE-【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS, ASA, AAS, SSS.2. AC和BE,理由见解析.根据题意通过“角角边”证明厶DAC处CBE,得到AD=BC, AC=BE,贝ljAB+AD=AB+BC=AC=BE.解:与AB+AD相等的线段有AC、BE.理由:V BE±AC,:.ZACE+ZACD=90°,':ZDAC=90°,.•.ZD+Z4CD=90°,.I ZACE=ZD,在△D4C 与ZiCBE 中,\z.A = ^EBCZD =厶BCEI DC = EC ':.厶DAC竺"BE (AAS),:.AD=BC, AC=BE,:.AB+AD=AB+BC=AC=BE.【点睛】本题考点:全等三角形的判定与性质.3. (1) AD=CE,理由见解析;(2) 3.试题分析:(1)利用角角边证ABD^ACAE;得出BD=AE, AD=CE;(2)证法同上,从而得出BD=DE+CE.试题解析:(8分)(1) AD = CE因为ZBAC = 90°, BD1AE,所以ZABD=ZCAE,又因为AB = AC, ZADB=ZAEC = 90°,根据"AAS"可得Z\ABD竺ACAE,所以AD = CE.(2)因为△ ABD^ACAE,所以BD = AE,所以DE=AE-AD = BD-CE=5 — 2=3.考点:全等三角形的判定.4•证明见解析.先证明AADC竺△AEC,贝IJZACD=ZACE,再由AB〃DC,得至IJZACD=ZBAC,于是ZACB=ZBAC.证明:TAB 〃DC.•.ZACD=ZBACTAE 丄BCAZAEC=90°在RtAACE 和RtAACD 中AC = ACCE = CD:.RtAACE^RtAACD (HL).・.ZACB=ZACD..•.ZACB=ZBAC,【点睛】本题主要考查了全等三角形的判定与性质以及平行线的性质,熟练掌握全等三角形的判定方法是解决问题的关键.5.见解析(1)根据角平分线的性质以及全等三角形的判定得出ACFH^ACGH,进而得出ZCFG=ZCGF;(2)根据外角的性质以及(1)中结论得出ZBAC+ZABC=ZCFG+ZCGF,即可得出答案. 证明:①TCD是ZACB的平分线,EF±CD于H,:.ZFCH=ZGCH,•.•在ACFH和ACGH 中,Z.FCH =厶GCH CH = CHIzCHF =厶CHG:.ACFH^^CGH(ASA),:.ZCFG=ZCGF;②':ZE+ZBGE=ZABC,:.Z BAC+ ZABC= Z BAC+ ZE+ZBGE,•: ZCGF=ZBGE,:.Z BAC+ ZABC= ZBAC+ ZE+ZCGF,•: ZBAC+ZE=ZCFG,:.Z BAC+ ZABC= ZCFG+ ZCGF,•: ZCFG=ZCGF,1:.^CFE = -^BAC + Z/1BC).【点睛】考查全等三角形的判定与性质,三角形外角的性质等,掌握全等三角形的判定定理是解题的关键.6.筝形有一条对角线平分一组对角,即BD平分ZABC且BD平分ZADC;证明见解析利用SSS 定理证明厶ABD^ACBD,可得ZABD=ZCBD, ZADB=ZCDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.解:筝形有一条对角线平分一组对角,即BD平分ZABC且BD平分ZADC证明:•.•在AABD和ACBD中BA=BC, DA=DC, BD=BD.•.AABD^ACBD(SSS).•.ZABD=ZCBD, ZADB=ZCDB即BD平分ZABC,且BD平分ZADC.A【点睛】本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.7. (1)作图见解析;(2)ABD的周长为5cm.分析:(1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分BC;(2)利用线段垂直平分线的性质得到DB=DC,贝闲用等量代换得到AABD的周长=AB+AC,然后把AB=2cm, AC=3cm代入计算计算.详解:(1)如图,DE为所作;(2) VDE垂直平分BC,.・.DB=DC,.'.△ABD 的周长=AB+BD+AD=AB+CD+AD=AB+AC=2+3=5 (cm).点睛:本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8 . CE=DF,理由见解析.根据题意可得ZAEC=ZBFD=90° , AC=BD,再根据平行线的性质可得ZCAE=ZDBF, 然后再利用AAS 判定△ AEC竺△BFD,进而可得CE=DF.解:AC=BD又T AC〃DB.・.ZCAE=ZDBF又TZDFB=ZCEA=90°;在AOBF和Z\CAE中ACEA = ZDFB<ZCAE = ZDBFAC = BDA ADBF^ACAE (AAS)CE=DFAC, D两地到路段AB的距离相等.【点睛】此题主要考查了全等三角形的应用,关键是正确理解题意,找出证明三角形全等的条件.9. 60由"ASA"可证△ AED^ACFD,可得AE = CF = 8,可得AF = BE = 15,即可求解.解:I•在RtAABC中,AB = AC, AD为BC边的中线,.•.ZDAC=ZBAD=ZC=45°, AD丄BC, AD = DC,又TDE丄DF, ADXDC,.•.ZEDA+ZADF=ZCDF+ZFDA=90°,.\ZEDA=ZCDF在Z\AED 与ACFD 中,/EDA = ZCDF<AD = CDZEAD = ZCAAAED^ACFD (ASA)..・.AE = CF = 8,/.AB - AE=AC - CF,.•.AF = BE=15,VZEAF = 90°,1:.S AAEF —— xAExAF = 60.2【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,求AE=CF是本题的关键.10.见解析.利用全等三角形的判定得出△ BED^AGFD (SAS),结合题意,根据全等三角形的性质得到△ ABD 竺△HGD (ASA),根据利用全等三角形的性质对应边相等,进而得出答案. •.•在ABED 和Z:\GFD 中BD = DG< ZBDE = ZGDF ,DE = FD.'.△BED 竺△GFD(SAS),.•.ZE=ZF, ZEBD=ZFGD,.•.ZABD=ZHGD,在ZkABD 和Z\HGD 中ZABD = ZHGD•: <BD = DG ,ZBDA = ZGDH.-.AABD^AHGD(ASA),根据利用全等三角形的性质对应边相等..\HG=AB.【点睛】本题考查全等三角形的判定(ASA、SAS)与性质,解题的关键是掌握全等三角形的判定(ASA、SAS)与性质.11. (1)如图所示,DF即为所求,见解析;(2)见解析.(1) 直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2) 根据角平分线的性质解答即可.(2) '.•△ABC 中,Z4 = 60°, ZC=40°,ZABC=80°,T DE垂直平分BC,:.BD = DC,.•.ZDBC=ZC= 40°,Z4BD=ZDBC=40°,即BD是ZABC的平分线,":DF±AB, DE±BC,:.DF=DE,即点D到BA, BC的距离相等.【点睛】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.12. 详见解析直接利用已知得出ZADB=ZAEC,进而利用全等三角形的判定与性质得出答案.BD, CE是AABC 的咼,ZADB = ZAEC = 90°,在AABD和AACE中,= ZA< AD = AEZADB = ZAEC:.ABD^ ACE (ASA).AB=AC.【点睛】本题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.13. (1)见解析⑵见解析试题分析:⑴先根据两直线平行,内错角相等证得ZA=ZB,再根据,A=,B,ZE=ZF,DE=CF可证得△4ED竺ZXBFC,再根据全等三角形的性质可得AD=BC,根据线段和差关系得:AC=BD,⑵因为(1)中厶AED竺“BFC,所以ZEDA=ZFCB,根据内错角相等,两直线平行,可证DE//CF.(1)TAE〃BF, .I ZA=ZB,,ZA=ZB在AADE 和ZkBCF 中,< AE=BF ,ZE=ZFLA A ADE^A BCF, .・.AD=BC,...AD - DC=BC - CD,即:AC=BD .(2)DE/7CF.V AADE^ABCF,.•.ZADE=ZBCF,.・.DE〃CF.14. (1)相等,理由见解析;(2) A/29-5<AD<A/29+5;(3) AD = 13, BC^IO或AD=8, BC=15试题分析:(1)相等.连接AC,根据SSS 证明两个三角形全等即可.(2) 由勾股定理求出AC,再根据三角形三边的关系求出AD 的取值范围.(3) 分两种情形①当点C 在点D 右侧时,②当点C 在点D 左侧时,分别列出方程组即可 解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.试题解析:⑴解:相等.理由如下:连结AC,如图所示:AD^AB,BC = CD,AC^AC.-.AABC = AA£>C:.ZB = ZD(2)解:连结AC,ZB = 90:.AC = 7AB 2+BC 2 = V29.•.A /29-5< AD<>/29 + 5(只要直接写出一个符合要求的值即可,如:1, 2等)⑶设= BC = y,AD = 13,BC = 10. ①当点C 在点D 右侧时,< x+2=y+5 2 + y + 5 + x = 30 解得: x = 13 y = io②当点C 在点D 左侧时,<解得:V 卜=15AD = &BC = 15.【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质、二元一次方程组、三角形三边关系定理等知识,解题的关键是学会分类讨论,考虑问题要全面.15•证明见解析试题分析:利用斜边直角边定理证明ABOM和ACON全等,根据全等三角形对应角相等得到ZMBO=ZNCO,再根据等角对等边的性质即可得到AB=AC;试题解析:证明:•.•点0在ZBAC的角平分线上,0M丄AB, ON±AC.•.OM=ON,又VOB=OC,在RtABOM 与RtACON 中OM = ONOB = OCRtABOM ^RtACON,.•.ZMBO=ZNCO,又VOB=OC,.•.ZOBC=ZOCB,/.ZABC=ZACB,.・.AB=AC.16. {解析}根据ASA可证明A ABE= AECF,利用S HWAEFD=S长方形ABCD-2S AABE即可得答案.•.•ZCEF+ZAEB=90°, ZAEB+ZBAE=90°,.•.ZBAE=ZCEF,又TAB=CE, ZABE=ZECF=90°, .'.AABE^AECF,•'•S H边JKAEFD=S出方)BABCD-2S AABE=3X5-2X——x (5-3 ) x3=9.2【点睛】本题考查全等三角形的判定及长方形、三角形面积公式,利用ASA证明AABE^AECF是解题关键.17. 证明见解析试题分析:又CD丄AB, BE丄AC, Z1=Z2,可得OE=OD, ZBDO=ZCEO=90°,再由Z BOD=ZCOE,可得△ BOD竺△COE,从而0B = OC.试题解析:TCD丄AB, BE丄AC, Z1=Z2, .•.OE=OD, ZBDO=ZCEO=90°,又VZBOD=ZCOE, .'.△BOD 竺△COE, /.OB = OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.18. (1)证明详见解析;(2) ZP=90。

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:1.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS 2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均错误3.如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C .∠1=∠2,∠3=∠4D .∠1=∠2, ∠B=∠D5.如图,AD 是ABC 的中线,//CE AB 交AD 的延长于点E ,AB=5,AC=7,则AD 的取值可能是( )A .3B .6C .8D .126.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC||AB ,AB=5,BD=1,则CF 的长度为( )A .2B .2.5C .4D .57.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .208.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE=EF ,AB ∥EF ,AD 平分∠BAE ,CE=3,AB=13,则CF=( )A .10B .8C .7D .6二、填空题: 9.如图,在 ACB 中 ACB 90︒∠= , AC BC = 点 C 的坐标为 ()2,0- ,点 A 的坐标为 ()8,3- ,点 B 的坐标是 .10.如图,在ABC 中45ABC ∠=︒,F 是高AD 和BE 的交点8AC =cm ,则线段BF 的长度为 .11.如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为 cm .12.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,若∠A=60°,则∠BMN 的度数是 .三、解答题:13.已知,如图,∠C =∠D =90°,E 是CD 的中点,AE 平分∠DAB.求证:BE 平分∠ABC.14.如图,要测量池塘两岸相对的两点A,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C,D,使BC=CD,再画出BF 的垂线DE,使E 与A,C 在一条直线上,这时测得DE 的长就是AB 的长。

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列判断正确的个数是()①两个正三角形一定是全等图形;②三角形的一个外角一定大于与它不相邻的一个内角;③三角形的三条高一定交于同一点;④两边和一角对应相等的两个三角形全等.A.3个B.2个C.1个D.0个2.如图,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED 的长就是AB的长(如图),判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL3.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对4.如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A.3 B.4 C.5 D.65.如图,∠ACB=900,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm6.如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于B ,且PB=5cm ,AC=12,则△APC 的面积是( )A .30cm 2B .40cm 2C .50cm 2D .60cm 27.如图所示AB AC =,AD AE =和BAC DAE ∠=∠,点B ,D ,E 在一条直线上,若3CE = 5DE = 则BE 的长为( )A .2B .5C .8D .158.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA二、填空题:(本题共5小题,每小题3分,共15分.)9.下列说法中,①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等,其中正确的是 (填序号)10.如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x= .11.已知:如图,△ABC 中,点D ,E 分别在AB ,AC 上,CF ∥AB 交DE 的延长线于点F ,DE=EF ,DB=3,CF=5,则AB= .12.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =3 cm ,则△DEB 的周长为 cm.13.如图ABE ADC ABC ≌≌,若1150∠=︒,则α∠的度数为 .三、解答题:(本题共5题,共45分)14.如图,在Rt △ABC 中,∠A =90°,点D 为斜边BC 上一点,且BD =BA ,过点D 作BC 的垂线交AC 于点E .求证:点E 在∠ABC 的角平分线上.15.如图,线段AD 上有两点E ,B ,且AE =DB ,分别以AB ,DE 为直角边在线段AD 同侧作Rt △ABC 和Rt △DEF ,∠A =∠D =90°,BC =EF .求证:∠AEG =∠DBG .16.已知:BE ⊥CD ,BE=DE ,BC=DA求证:①△BEC ≌△DEA ;②DF ⊥BC .17.图,在平面直角坐标系中,已知DA ⊥x 轴于点A ,CB ⊥x 轴于点B ,∠COD =90°,CO 平分∠BCD ,CD 交y 轴于点E .(1)求证:DO 平分∠ADC .(2)若点A 的坐标是()30-,,求点B 的坐标.18.如图,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠,DE AB ⊥于点E .(1)若40ABC ∠=︒,70ACB ∠=︒求BDC ∠的度数;(2)若4DE =,9BC =求BCD 的面积.参考答案:1.C 2.B 3.D 4.A 5.B 6.A 7.C 8.D9.①②③10.60°11.812.313.60°14.证明:连接BE ,∵ED ⊥BC∴∠BDE =∠A =90°.在Rt △ABE 和Rt △DBE 中∵{BE =BE BA =BD∴Rt △ABE ≌Rt △DBE (HL ).∴∠ABE =∠DBE .∴点E 在∠ABC 的角平分线上.15.证明:∵AE=DB∴AE+EB=DB+EB ,即AB=DE∵∠A=∠D=90°在Rt △ABC 和Rt △DEF 中AB DE BC EF =⎧⎨=⎩∴Rt △ABC ≌Rt △DEF(HL)∴∠ABC=∠DEF∴∠AEG=∠DBG16.证明:∵BE ⊥CD ,BE=DE ,BC=DA∴△BEC ≌△DEA (HL );∵△BEC ≌△DEA∴∠B=∠D .∵∠D+∠DAE=90°,∠DAE=∠BAF∴∠BAF+∠B=90°.即DF ⊥BC .17.(1)证明:DA x ⊥轴,CB x ⊥轴∴//DA CB∴180ADC BCD ∠+∠=︒CO 平分BCD ∠∴2BCD OCD ∠=∠∴2180ADC OCD ∠+∠=︒90COD∠=︒∴90ODC OCD∠+∠=︒∴18022(90)2ADC OCD OCD ODC∠=︒-∠=︒-∠=∠∴DO平分ADC∠.(2)解:作OF CD⊥于F(30)A-,∴3OA=.DO平分ADC∠OA DA⊥OF DC⊥∴3OF OA==.CO平分BCD∠OB BC⊥,OF CD⊥∴3OB OF==∴(30)B,.18.(1)解:∵BD平分ABC∠,CD平分ACB∠∴12DBC ABC∠=∠12DCB ACB∠=∠∵40ABC∠=︒70ACB∠=︒∴140202DBC∠=⨯︒=︒170352DCB∠=⨯︒=︒∴在BCD中1802035125BDC∠=︒-︒-︒=︒(2)解:过点D作DF BC⊥于点F∵BD平分ABC∠DE AB⊥DF BC⊥∴DE DF=∵4DE=,∴4DF=∵9BC=,∴11S941822BCDBC DF=⨯⨯=⨯⨯=。

人教版八年级上册数学第十二章 全等三角形的有关证明专题训练(解答题)

人教版八年级上册数学第十二章 全等三角形的有关证明专题训练(解答题)

人教版八年级上册数学第十二章全等三角形的有关证明专题训练(解答题)1.如图在四边形中,AB=CB,AD=CD.求证:∠A=∠C.2.如图,在四边形OACB中,对角线OC平分∠BOA,∠A+∠OBC=180°.求证:BC=AC.3.如图,P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点.求证:PM=PN.4.如图,已知BE,CF是△ABC的边AC和AB上的高,Q为CF的延长线上的一点,P为BE和CF的交点,△PAB≌△AQC.求证:AP⊥AQ.5.如图,已知AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上.求证:BC=AB+CD.6.如图,已知∠BAC=90°,AB=AC,M为AC边的中点,AD⊥BM于点E,交BC于点D,连接DM.求证:∠AMB=∠CMD.7.如图,已知CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.8.如图,点B,C,E在同一条直线上,CD平分∠ACE,DB=DA,DM⊥BE于点M.求证:AC=BM+CM.9.如图,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.求证:AC=BF.10.如图,在△ABC中,∠ACB=90,D是BC边的中点,点F在AC边上,DE与CF平行且相等,求证:AE=DF.11.如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE于点E.求证:AC-AB=2BE.12.如图,在等腰RT△ABC中,∠ACB=90°,M为BC的中点,CD⊥AM交AC于D.求证:∠AMC=∠DMB.13.如图,在等腰直角△ABC中,∠ACB=90°,D为BC的中点,过点C作CG⊥AD于点B,过点B作FB⊥CB于点B,交CG的延长线于点F,连接DF交AB于点E.(1).求证:△ACD≌△CBF;(2)求证:AB垂直平分DF;(3)连接AF,试判断△AC F的形状,并说明理由.14.如图①,在RT△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系,并证明你的结论;(2)如图②,如果∠ACB不是直角,,其他条件不变,(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理。

人教版八年级上册数学中考真题分类(解答题)专练:第12章 全等三角形 综合 (含答案)

人教版八年级上册数学中考真题分类(解答题)专练:第12章 全等三角形 综合 (含答案)

人教版八年级上册数学中考真题分类(解答题)专练:第12章全等三角形综合1.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.2.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.3.(2020•大连)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.4.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.5.(2020•吉林)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.6.(2020•镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.7.(2020•昆明)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.8.(2020•黄石)如图,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.9.(2020•广州)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.10.(2020•云南)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.11.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.12.(2020•宜宾)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE =AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.13.(2020•常州)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.14.(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.15.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.16.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.17.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.18.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.19.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.20.(2020•内江)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE =DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.参考答案1.证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.2.证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.3.证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).4.(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.5.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).6.证明:(1)在△BEF和△CDA中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.7.证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,,∴△BAC≌△DAE(AAS),∴BC=DE.8.解(1)∵AB∥DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,,∴△ADE≌△BCA(ASA),∴AD=BC.9.解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.10.证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.11.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.12.证明:(1)∵D是BC中点,∴BD=CD,在△ABD与△CED中,∴△ABD≌△ECD(SAS);(2)在△ABC中,D是边BC的中点,∴S△ABD =S△ADC,∵△ABD≌△ECD,∴S△ABD =S△ECD,∵S△ABD=5,∴S△ACE =S△ACD+S△ECD=5+5=10,答:△ACE的面积为10.13.证明:(1)∵EA∥FB,∴∠A=∠FBD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.14.解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=BC,∴CF=BF=b,∵CE=AE=a,∴EF=;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,在△ADE和△BDM中,,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.15.证明:∵ED⊥AB,∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.16.证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.17.证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AB=CD.18.证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.19.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).20.(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.。

人教版八年级上册数学 第十二章 全等三角形 单元检测题 (17)(有解析)

人教版八年级上册数学 第十二章 全等三角形 单元检测题 (17)(有解析)

第十二章 全等三角形 单元检测题 (17)一、单选题1.如图,△ABC ≌△DEF ,点A 与点D 对应,点C 与点F 对应,则图中相等的线段有( )A .1组B .2组C .3组D .4组2.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,CD ,BE 相交于点O ,BE =CD ,则图中全等的三角形共有( )A .0对B .1对C .2对D .3对3.如图,用“AAS ”直接判定△ACD ≌△ABE ,需要添加的条件是( )A .∠ADC =∠AEB ,∠C =∠BB .∠ADC =∠AEB , CD =BEC .AC =AB ,AD =AED .AC =AB ,∠C =∠B4.如图,B 、E 、C 、F 在同一直线上,BE CF =,AB DE =,添加下列哪个条件,可以证明ABC △≌DEF ( )A .BC =EFB .∠A =∠DC .AC ∥DFD .AC =DF5.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.④全等三角形的所有边相等.其中正确的有( )A .0个B .1个C .2个D .3个 6.在ABC △内部取一点P ,使得点P 到ABC △的的三边距离相等,则点P 是ABC △的( ).A .三条高的交点B .三条角平分线的交点C .三条中线的交点D .三边的垂直平凡线的交点7.已知如图,直线AC ,BD 相交于点O ,且OA OD =,添加一个条件后,仍不能判定ABO DCO △≌△的是( ).A .BO CO =B .A D ∠=∠C .AB DC =D .B C ∠=∠8.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 9.如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是BC 的中点,则BE+CF 与EF 的大小关系是( )A .BE+CF >EFB .BE+CF =EFC .BE+CF <EFD .无法确定10.如图,在△ABC 中,AB =AC ,D 、E 分别为BC 、AC 的中点,F 为AD 上一点,当EF ⊥AC 时,图中的全等三角形的对数是( )A .1对B .2对C .3对D .4对11.如图,AB CD ∥,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直。

2022-2023学年人教版八年级数学上册《第12章全等三角形》解答题专题训练(附答案)

2022-2023学年人教版八年级数学上册《第12章全等三角形》解答题专题训练(附答案)

2022-2023学年人教版八年级数学上册《第12章全等三角形》解答题专题训练(附答案)1.如图,已知:AB=BC,∠BAD=∠BCD,试说明BD平分∠ABC的理由.2.如图,已知△DEF的顶点E在△ABC的边BC上,F在BC的延长线上,且BE=CF,∠ABC=∠DEF,请你再添加一个条件,使得△ABC≌△DEF,并说明理由(不再添加其他线条和字母).3.如图,在△ABC中,AB=AC,点D、E在BC上,延长BA至F使AF=AB,连接EF;延长CA至G使AG=AC,连接DG,当∠G=∠F时,猜想线段BD与线段CE的数量关系?并说明理由.4.如图,∠ABC=90°,F A⊥AB于点A,点D在直线AB上,AD=BC,AF=BD.(1)如图1,若点D在线段AB上,判断DF与DC的数量关系和位置关系,并说明理由;(2)如图2,若点D在线段AB的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.5.如图,在△ABC中,BE平分∠ABC,点D是BC边上的中点,AB=BC.(1)说明△ABE≌△BDE的理由;(2)若∠ABC=2∠C,求∠BAC的度数.6.如图,AD=BC,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AB=AE.7.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.求证:(1)AB=DC;(2)△ABC≌△DCB.8..如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF,求证CF=DE.9.如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=DE.(1)求证:BC=CD;(2)连接BD,求证:∠ABD=∠EBD.10.如图,AB=AE,AD=AC,∠1=∠2.求证:BC=ED.11.如图,已知点E,D,A,B在一条直线上,BC∥EF,∠C=∠F,AD=1,AE=2.5,AB=1.5.(1)△ABC和△DEF全等吗?请说明理由.(2)小颗同学认为DF与AC相等,而小亮同学认为DF与AC平行,你认为谁的说法正确,并说明理由.12.如图,△ABC和△ADE中,AB=AD,AC=AE,BC=DE,点E在BC上,求证:∠EAC =∠DEB.13.已知:AB=CD,AF⊥BC,DE⊥BC.垂足分别为F、E,CF=BE.(1)如图1,求证:∠A=∠D;(2)如图2,连接AC、AE、BD,若CE=2BE,在不添加任何辅助线的情况下,请直接写出四个三角形、使每一个三角形的面积都等于△DCE面积的一半.14.在△ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图①,连接BE、EF,若∠ABE=∠EFC,求证:BE=EF;(2)如图②,若B、E、F在一条直线上,且∠ABE=∠BAC=45°,探究BD与AE的数量之间有何等量关系,并说明理由.15.如图在△ABC和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE,连接AD,BE交于点M.(1)如图1,当点B,C,D在同一条直线上,且∠ACB=∠DCE=45°时,可以得到图中的一对全等三角形,即≌;(2)当点D不在直线BC上时,如图2位置,且∠ACB=∠DCE=α.①试说明AD=BE;②直接写出∠EMD的大小(用含α的代数式表示).16.如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿着堤岸走到电线杆B旁,接着再往前走相同的距离,达到C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点,量得CD 的距离是35米.你知道在点A处小明与游艇的距离吗?请说出他这样做的理由.17.如图,在△ABC中,AB=AC,D为线段BC的延长线上一点,且DB=DA,BE⊥AD 于点E,点F为BE上一点,连接AF.(1)试说明∠BAC+∠EBD=90°;(2)过C作CG⊥BD,与AD交于点G,若∠BAC=∠DAF,则AF=AG吗?请说明理由.18.如图,M是线段AB上的一点,ED是过点M的一条线段,连接AE、BD,过点B作BF ∥AE交ED于点F,且EM=FM.(1)求证:AE=BF.(2)连接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的长.19.已知:如图,CD=BE,DG⊥BC于点G,EF⊥BC于点F,且DG=EF.(1)求证:△DGC≌△EFB;(2)连接BD,CE.求证:BD=CE.20.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)若∠DCE=120°,求∠CDE的度数,(3)求证:CF平分∠DCE.参考答案1.解:∵AB=BC,∴∠BAC=∠BCA,∵∠BAD=∠BCD,∴∠DAC=∠DCA,∴DA=DC,又∵BD=BD,∴△BAD≌△BCD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.2.证明:添加条件:∠A=∠D;理由如下:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).3.解:BD=CE.理由:∵AF=AB,AG=AC,AB=AC,∴AF=AG,∴AB+AF=AC+AG,∴BF=CG,∵AB=AC,∴∠B=∠C,又∵∠G=∠F,∴△BEF≌△CDG(ASA),∴BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE.4.解:(1)DF=CD,CD⊥DF.理由:∵AF⊥AB,∴∠DAF=90°,在△ADF和△BCD中,,∴△ADF≌△BCD(SAS),∴DF=CD,∠ADF=∠BCD,∵∠BCD+∠CDB=90°,∴∠ADF+∠CDB=90°,即∠CDF=90°,∴CD⊥DF.(2)成立,理由如下:∵AF⊥AB,∴∠DAF=90°,在△ADF和△BCD中,,∴△ADF≌△BCD(SAS),∴DF=CD,∠ADF=∠BCD,∵∠BCD+∠CDB=90°,∴∠ADF+∠CDB=90°,即∠CDF=90°,∴CD⊥DF.5.解:(1)∵D为BC的中点,∴BD=BC,∵AB=BC,∴BD=AB,∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS);(2)∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ABC=2∠C,∴∠C=∠EBC,∴BE=EC,∵D为BC的中点,∴ED⊥BC,∴∠EDB=90°,∵△ABE≌△DBE,∴∠BAE=∠BDE=90°,即∠BAC=90°.6.解:(1)∵AB∥DE,∠E=40°,∴∠EAB=∠E=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,,∴△ADE≌△BCA(ASA),∴AB=AE.7.证明:(1)在△ABO和△DCO中,,∴△ABO≌△DCO(ASA),∴AB=DC;(2)∵△ABO≌△DCO,∴OB=OC,∴OA+OC=OD+OB,即AC=DB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS).8.证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥BF,∴∠A=∠B,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴DE=CF,即CF=DE.9.证明:(1)∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴BC=CD;(2)如图,连接BD,∵BC=CD,∴∠CBD=∠CDB,∵AB∥CD,∴∠ABD+∠CDB=180°,又∵∠CBD+∠EBD=180°,∴∠ABD=∠EBD.10.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴BC=DE.11.解:(1)△ABC≌△DEF,理由:∵BC∥EF,∴∠B=∠E,∵AD=1,AE=2.5,∴DE=AE﹣AD=2.5﹣1=1.5,∵AB=1.5,∴AB=DE,∵∠C=∠F,∴△ABC≌△DEF(AAS);(2)两人说的都正确,DF=AC,DF∥AC.理由:∵△ABC≌△DEF,∴DF=AC,∠BAC=∠EDF,∵∠BAC+∠DAC=∠EDF+∠ADF=180°,∴∠DAC=∠ADF,∴DF∥AC.12.证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠C=∠AED,又∵∠EAC=180°﹣∠AEC﹣∠C,∠DEB=180°﹣∠AEC﹣∠AED,∴∠EAC=∠DEB.13.(1)证明:∵CF=BE,∴CE=BF,∵AF⊥BC,DE⊥BC,∴∠DEC=∠AFB=90°,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴∠A=∠D;(2)∵CE=2BE,∴CE=2CF,S△BED=S△DCE,∴CF=EF=BE,∴S△AEB=S△AEF=S△ACF=S△ABF,∵Rt△ABF≌Rt△DCE,∴S△ABF=S△DCE,∴S△AEB=S△AEF=S△ACF=S△DCE.14.(1)证明:连接CE,∵AB=AC,D是BC边的中点,∴∠ABC=∠ACB,AD垂直平分BC,∴BE=CE,∴∠EBC=∠ECB,∴∠ABC﹣∠EBC=∠ACB﹣∠ECB,即∠ABE=∠ACE,∵∠ABE=∠EFC,∴∠ACE=∠EFC,∴EF=CE,∴BE=EF;(2)AE=2BD,理由如下:连接CE,由(1)得,∠ABE=∠ACE,∵∠ABE=∠BAC=45°,∴△ABF和△CEF都是等腰直角三角形,∴AF=BF,CF=EF,在△CBF和△EAF中,,∴△CBF≌△EAF(SAS),∴BC=AE,∵BC=2BD,∴AE=2BD.15.(1)解:∵∠ACB=∠DCE=45°,∴∠ACD=∠BCE,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),故答案为:△BCE,△ACD;(2)①证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;②解:∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴∠AMB=∠EMD=180°﹣(180°﹣α)=α.16.解:在A点处小明与游艇的距离为35米,理由:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD,∵CD=35米,∴AS=CD=35米,答:在A点处小明与游艇的距离为35米,17.解:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°﹣2∠ABC,∵DA=DB,∴∠DAB=∠DBA,∴∠BDE=180°﹣2∠ABC,∴∠BAC=∠BDE,∵BE⊥AD,∴∠BDE+∠DBE=90°,∴∠BAC+∠EBD=90°.(2)AF=AG.理由如下:∵∠BAC=∠DAF,∴∠BAF=∠CAG,∵∠BAC=∠BDE,∴∠DAF=∠BDE,∵∠CGD=90°﹣∠BDG,∠AFE=90°﹣∠DAF,∴∠AFE=∠CGD,∴∠AFB=∠AGC,又∵AB=AC,∠BAF=∠CAG,∴△ABF≌△ACG(AAS),∴AF=AG.18.(1)证明:∵BF∥AE,∴∠EAM=∠FBM,在△AME和△BMF中,,∴△AME≌△BMF(AAS),∴AE=BF;(2)解:∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,在△AEC和△BFD中,,∴△AEC≌△BFD(ASA),∴EC=FD,∴EC﹣CF=FD﹣CF,即EF=CD=4,∴EM=EF=2.19.(1)证明:∵DG⊥BC,EF⊥BG∴∠DGC=∠EFB=90°.在Rt△DGC和Rt△EFB中,∴Rt△DGC≌Rt△EFB(HL);(2)∵Rt△DGC≌Rt△EFB,∴∠BCD=∠CBE,∵BC=CB,CD=BE,∴△BDC≌△CEB(SAS),∴BD=CE.20.(1)证明:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,,∴△ACD≌△BEC(SAS);(2)解:∵△ACD≌△BEC,∴CD=EC,∵∠DCE=120°,∴∠CDE=(180°﹣∠DCE)=30°;(3)证明:∵△ACD≌△BEC,∴CD=EC,又∵CF⊥DE,∴CF平分∠DCE.。

(必考题)初中八年级数学上册第十二章《全等三角形》提高练习(答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》提高练习(答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3D解析:D【分析】 设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°A 解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .4B解析:B【分析】 根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A.3cm B.6cm C.9cm D.12cm B解析:B【分析】过点O作MN,MN⊥AB于M,证明MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=3cm,∴OM=OE=3cm,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=3cm,∴MN=OM+ON=6cm,即AB与CD之间的距离是6cm,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.6.如图所示,下面甲、乙、丙三个三角形和ABC全等的图形是()A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA A解析:A【分析】 利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD C解析:C【分析】 在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.10.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP=⎧⎨=⎩ , ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题11.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC ∠C=∠C 所以添加∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD 在一条直线上∵∴△ABD 是等边三角形∴△ABD 的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和 解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.15.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .【分析】如图延长CD 交AB 于E 由题意得AP平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A 解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______5【分析】根据角平分线的性质求出DE 根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ∵AD 平分∠BAC ∠C=90°DE ⊥AB ∴DE=DC=2∵AB=5∴△ABD 的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE ,根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ,∵AD 平分∠BAC ,∠C=90°,DE ⊥AB ,∵AB=5∴△ABD 的面积=12×AB×DE=5, 故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 17.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒.【详解】解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.3【分析】过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意可以得到△BAD ≌△BED 从而得到DE 的长度【详解】解:如图过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意知在△BAD 和△BED 中∴△BA解析:3【分析】过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意可以得到△BAD ≌△BED ,从而得到DE 的长度.【详解】解:如图,过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意知在△BAD 和△BED 中,A DEB ABD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△BED ,∴ED=AD=3,故答案为3.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定和性质是解题关键.19.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.三、解答题21.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.解析:(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.22.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.解析:(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.23.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.解析:见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .24.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.解析:(1)证明见解析;(2)证明见解析【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.25.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.解析:(1)证明见解析;(2)120︒.【分析】(1)先根据角平分线的定义可得ACB FCE ∠=∠,再根据三角形全等的判定定理与性质即可得证;(2)先根据平行线的性质可得B FCE ∠=∠,从而可得E FCE B ACB ∠∠=∠=∠=,再根据直角三角形的性质可得30ACB ∠=︒,然后根据三角形的内角和定理即可得.【详解】(1)CB 为ACE ∠的角平分线,ACB FCE ∴∠=∠, 在ABC 和FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC FEC AAS ∴≅,AB FE ∴=;(2)//AB CE ,F E B C ∴∠=∠,E FCE B B AC ∠=∴∠=∠∠=,ED AC ⊥,即90CDE ∠=︒,90E FCE ACB ∠∠+∠∴+=︒,即390ACB ∠=︒,解得30ACB ∠=︒,30B ∴∠=︒,180120B A ACB ∠=︒-∠=∴∠-︒.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.27.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B . 求证:△ABC ≌△CDE .解析:见解析.【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△CDE .【详解】证明:∵AC ∥DE ,∴ACD D ∠=∠,BCA E ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠,又∵AC CE =,∴()ABC CDE AAS ≌.【点睛】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.28.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度解析:(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

人教版八年级上册数学 第十二章 全等三角形解答题 专项训练

人教版八年级上册数学   第十二章   全等三角形解答题    专项训练

人教版八年级上册数学第十二章全等三角形解答题专项训练1.如图,在四边形ABCD中,AD=BC,AC与BD相交于点E.求证:∠DAC=∠CBD.2.如图,点A,D,B,E在一条直线上,AC=DF,AC∥DF.求证:BC=EF.3.如图,在四边形ABCD中,AD∥BC,连接AE、BE,BE⊥AE(1)请判断FC与AD的数量关系,并说明理由;(2)若AB=6,AD=2,求BC的长度.4.如图,在△ABC中,AC=BC,AE⊥CD于点E,BF⊥CD于点F,试判断AC与BC的位置关系,并说明理由.5.如图,点A、B、D、E在同一条直线上,AB=DE,BC∥EF.求证:△ABC≌△DEF.6.已知:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AE=AD.7.如图,AB=AE,AB∥DE,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.8.如图,AC是四边形ABCD的对角线,∠1=∠B,BE=CD,BF=CA(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.9.如图所示,AC垂直BC于C,AD垂直BD于D,CE垂直AB,DF垂直AB,F.求证:△BCE≌△ADF.10.已知:△ABC中,AC⊥BC,CE⊥AB于点E,过F作FD∥BC交AB于D.求证:AC=AD.11.如图所示,在四边形ABCD中,AD∥BC,连接AE、BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?12.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接FA,小颖对该图形进行探究,请给出证明;若不正确13.(1)如图1,四边形ABCD中,∠A=∠C=90°,AB=BC,E、F分别在AD、CD上,求证:EF=AE+CF.(2)如图2,在题(1)中,若E、F分别在AD、DC的延长线上,求证:AE=EF+CF.14.如图1,在△ABC中,∠BAC=90°,AE是过A的一条直线,且B,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.15.将两块含45°角大小不同的直角三角板△COD和△AOB如图1摆放,连AC、BD.(1)求证:AC=BD;(2)将图1中的△COD绕点O顺时针旋转一定的角度到△C1OD1的位置(如图2),连接AC1,BD1,直线AC1与BD1,存在着什么样的位置关系,请下结论并说明理由.16.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,求证:EF=BE+DF.解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,可证△ABE≌△ADG再证明△AFG≌△AFE,得EF=FG=DG+FD=BE+DF问题(1):如图2,在四边形ABCD中,∠B=∠D=90°,E、F分别是边BC、CD上的点∠BAD.求证:EF=BE+FD;问题(2):如图3,在四边形ABCD中,∠BAD=120°,AB=AD=1,且∠EAF=60°,求此时△CEF的周长.17.已知在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°)(点D不与B,C重合),以AD为边在AD右侧作等腰Rt△ADF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为;②线段BC,CD,CF之间的数量关系为;(将结论直接写在横线上)(2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,请给予证明;若不成立。

人教版八年级上册数学第十二章全等三角形知能提升训练(含答案)

人教版八年级上册数学第十二章全等三角形知能提升训练(含答案)

与 △ DCE全等( ).
A. 5
B. 或3 5
C. 或3 8
D. 或5 8
10.如图是一块三角形的草坪, 现要在草坪上建一凉亭供大家休息, 要使凉亭到草坪三条边的距离相等, 凉
亭的位置应选在(

A. △ABC 的三条中线的交点 C. △ ABC 三条角平分线的交点
B. △ ABC 三边的中垂线的交点 D△. ABC 三条高所在直线的交点
11.如图,在三角形
中,

平分

于点 ,且

,则点 到
的距离为( )
A.
B.
C.
D.
12.如图,在 △ ABC中,∠ C=90°, BE 平分∠ ABC, DE⊥AB 于 D,如果 AC=2cm,那么 AE+DE等于( )
A. 2cm
二、填空题
B. 3cm
C. 4cm
D. 5cm
13.已知: △ABC≌△ A′ B′,C∠′A=∠ A′,∠ B=∠ B′,∠ C=60° , AB=16cm,则∠ C′ =________, ° A′ B′ =________cm. 14.如图,已知 △ ABC≌△ DEC,∠ E=40°,∠ ACB=110°,则∠ D 的度数为 ________.
第十二章 全等三角形
一、选择题
1. 下列图形是全等图形的是(

A.
B.
C.
D.
2.如右图, △ABC≌△ CDA, AB=4, BC=5, AC=6,则 AD 的长为( )
A. 4
B. 5
C. 6
3.如图, △ ABC≌△ CDA,并且 BC=DA,那么下列结论错误的是(
D. 不能确定 )

初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质-章节测试习题(17)

初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质-章节测试习题(17)

章节测试题1.【题文】如图所示,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.【答案】见解答.【分析】过P作PE⊥OA于E,PF⊥OB于F,证△PEA≌△PFB,得出PE=PF,再根据角平分线判定即可得出.【解答】解:过点P作PE⊥AO,PF⊥BO,垂足分别为E,F,则∠AEP=∠BFP=90°.∵∠1+∠2=180°,∠2+∠PBF=180°,∴∠1=∠PBF.在△APE与△BPF中,∠1=∠PBF,∠AEP=∠BFP,PA=PB,∴△APE≌△BPF,∴PE=PF.∴点P在∠AOB的平分线上,即OP平分∠AOB.2.【题文】如图所示,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE与BD相交于点C.求证:AC=BC.【答案】见解答.【分析】先根据角平分线的性质可以得到CD=CE,然后再证明Rt△ACD≌Rt△BCE 便可得答案.【解答】解:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE.∵CD⊥OA,CE⊥OB,∴∠ADC=∠BEC=90°.在△ADC与△BEC中,∠ADC=∠BEC,CD=CE,∠3=∠4.∴△ADC≌△BEC.∴AC=BC.3.【题文】三角形中的角平分线的性质与一个角的平分线性质相同.如题:如图,△ABC中,AD是∠BAC的角平分线,且BD=CD,DE,DF分别垂直于AB,AC,垂足为E,F.请你结合条件认真研究,然后写出三个正确的结论.【答案】如:(1)△BDE≌△CDF,(2)BE=CF,(3)∠B=∠C.【分析】此题答案不唯一,如先利用角平分线的性质,可得DE=DF;在Rt△BDE 和Rt△CDF中,再结合已知条件,可证出Rt△BDE≌Rt△CDF,那么就有BE=CF,∠B=∠C.【解答】解:答案不唯一,如:(1)△BDE≌△CDF;(2)BE=CF;(3)∠B=∠C.证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,又∵BD=CD,∴Rt△BDE≌Rt△CDF,∴BE=CF,∠B=∠C.4.【题文】如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.【答案】6【分析】作BC边上的垂线,DE长等于ABC,BC边的高.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S△ABC=AB•DE+BC•DF=90,即×18•DE+×12•DE=90,解得DE=6.5.【题文】如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【答案】见解答.【分析】(1)利用角平分线的性质.(2)证明△BDE≌△FDC.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC,(2)在△BDE和△FDC中,BE=CF,∠C=∠DEB=90°,DE=DC,∴△BDE≌△FDC(SAS),∴BD=DF.6.【题文】如图,∠AOB=30度,OC平分∠AOB,P为OC上一点,PD∥OA交OB 于D,PE垂直OA于E,若OD=4cm,求PE的长.【答案】2【分析】本题考查了角平分线的性质、平行线的性质.【解答】如图,过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.7.【题文】如图,在∠AOB内找一点P,使得点P到∠AOB的两边距离相等,且使点P到点C的距离最短(尺规作图,请保留作图痕迹).【答案】见解答.【分析】先利用角平分线的性质求作满足到∠AOB的两边距离相等的点所在直线,再根据直线外一点到直线的垂线段距离最短,求出满足条件的点P.【解答】如图,以O为圆心,单位长度为半径画圆弧,交OA,OB分别于两点,再以圆弧与OA,OB两个交点为圆心,相同单位长度为半径画圆弧,两圆弧相交于一点,连接O与圆弧的交点,即为∠AOB的角平分线过点C作角平分线的垂线,垂足为点P,即P为所求作点.8.【题文】如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求△BDC的面积.【答案】△BDC的面积=45cm2.【分析】根据角平分线的性质得到DE=AD=6cm,根据三角形的面积公式计算即可.【解答】∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=6cm,∴△BDC的面积=×BC×DE=×15×6=45cm2.9.【题文】如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明理由.【答案】没有偏离航线【分析】只要证明轮船与O点的连线平分∠AOB就说明轮船没有偏离航线,也就是证明∠AOP=∠BOP,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【解答】此时轮船没有偏离航线.理由:由题意知:OA=OB,OP=OP,PA=PB∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP.∴此时轮船没有偏离航线.10.【题文】已知,如图,AB=AC,DE=DF,DE⊥AB于点E,DF⊥AC于点F,求证:DB=DC.【答案】见解答【分析】由角平分线的判定得出∠EAD=∠FAD,再由边角边证得△ACD≌△ABD,进而得到DC=DB.【解答】证明:连接AD,∵DE=DF,DE⊥AE,DF⊥AF,∴∠EAD=∠FAD,,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴DC=DB.11.【题文】已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)(2)连接DE,求证:△ADE≌△BDE.【答案】(1)作图见解答;(2)证明见解答.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC 于D,线段BD就是∠B的平分线.②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点.(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【解答】解:(1)作图如下:(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A.∴AD=BD.又∵AE=BE,∴△ADE≌△BDE(SAS).12.【题文】如图,在△ABC中,BD=DC,∠1=∠2,求证:AD是∠BAC的平分线.【答案】证明见解答.【分析】根据BD=DC得出∠DBC=∠DCB,进而利用全等三角形的判定和性质证明即可.【解答】∵BD=DC,∴∠DBC=∠DCB,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,在△ABD与△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD是∠BAC的平分线.13.【题文】如图,在△ABC中,∠A=90°,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.【答案】6.【分析】根据角平分线的性质定理可得DE=AD=3,根据三角形的面积公式即可求解.【解答】∵∠A=90°∴DA⊥AB又BD是角平分线,且DE⊥BC于点E∴DE=AD=3,∴易得△BDC的面积为6.14.【答题】如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列结论中错误的是()A. DE=DFB. AD上任意一点到E,F两点的距离相等C. AE=AFD. BD=DC【答案】D【分析】根据角的平分线的性质解答即可.【解答】A.正确,角平分线上的点到角的两边的距离相等;B.正确,角平分线上的点到角的两边的距离相等;C.正确,∵DE⊥AB,DF⊥AC,AD=AD,DE=DF,∴△AED≌△AFD(HL),∴AE=AF;D错误.选D.15.【答题】如图,BE⊥AC于E,CF⊥AB于F,AE=AF,BE与CF交于点D,则:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A. ①B. ②C. ①②D. ①②③【答案】D【分析】本题考查全等三角形的判定和性质以及角平分线的性质,在判定三角形全等时,关键是选择恰当的判定条件.【解答】∵BE⊥AC,CF⊥AB,∴∠BEA=∠CFA=90°,在△ABE与△ACF中,∵,∴△ABE≌△ACF(AAS)①正确,∴∠B=∠C,AB=AC(全等三角形对应角和对应边相等),∴BF=CE,在△BDF与△CDE中,∵,∴△BDF≌△CDE(AAS)②正确,∴DF=DE(全等三角形对应边相等),∴点D在∠BAC的平分线上(到角的两边距离相等的点,在这个角的平分线上)③正确;故①②③都正确.选D.16.【答题】如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③【答案】A【分析】连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.【解答】连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.选A.17.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离是______.【答案】3【分析】利用角平分线的性质作答即可.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为3.18.【答题】如图所示,在直线l上找一点,使这点到∠AOB的两边OA,OB的距离相等,则这个点是______.【答案】∠AOB的平分线与直线l的交点【分析】本题考查角平分线的性质:角平分线上的点到角的两边距离相等.【解答】根据角平分线上的点到角的两边距离相等,∴取角平分线与直线l的交点.故答案为∠AOB的平分线与直线l的交点.19.【答题】如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=20cm,DB=17cm,则D点到AB的距离是______ cm.【答案】3【分析】利用角平分线的性质作答即可.【解答】∵BC=20cm,DB=17cm,∴DC=BC-DB=20-17=3(cm),∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC=3(cm).故答案为3.20.【答题】如图所示,已知O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC于E,若OE=2,则点O到AB的距离与点O到CD的距离的和是______.【答案】4【分析】利用角平分线的性质作答即可.【解答】如图作OF⊥AB于F,OG⊥CD于G,∵O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC,∴OF=OE=2,OG=OE=2,则点O到AB的距离与点O到CD的距离的和为OF+OG=2+2=4.故答案为4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章全等三角形解答题专题提高训练 (17)1.如图,点D在BC上,∠1=∠2,AE=AC, BC=DE;证明:AB=AD.2.如图,B,C,E,F在同一条直线上,BF=CE,∠B=∠C, AE∥DF,那么AB=CD吗?请说明理由.3.综合与实践:如图1,已知△ABC为等边三角形,点D,E分别在边AB、AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:在图1中,线段PM与PN的数量关系是,∠MPN的度数是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,①判断△PMN的形状,并说明理由;②求∠MPN的度数;(3)拓展延伸:若△ABC为直角三角形,∠BAC=90°,AB=AC=10,点DE分别在边AB,AC 上,AD=AE=4,连接DC,点M,P,N分别为DE,DC,BC的中点.把△ADE绕点A在平面内自由旋转,如图3,请直接写出△PMN面积的最大值.4.如图,在△ABC中,AD是中线,CE⊥AD于点E,BF⊥AD,交AD的延长线于点F,求证:BF=CE.5.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.(1)求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .6.已知ACD ABE △≌△,且BE 交AD 于点F ,交CD 于点H ,AE 交DC 于点G .求证:ACG ABF △≌△.7.如图所示,BE AD ⊥,CF AD ⊥,且DE DF =,请你判断AD 是ABC 的中线,还是角平分线?请说明理由.8.如图,在△ABC 中,点D 、E 分别在边AC 、AB 上,BD =CE ,∠DBC =∠ECB .求证:AB =AC .9.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.10.如图,四边形ABCD 中,//,AD BC DE EC =,连接AE 并延长交BC 的延长线于点F ,连接BE ;(1)求证:AE EF =;(2)若BE AF ⊥,求证:BC AB AD =-11.如图,ABC ∆中,90A ∠=,AB AC =.(1)请用尺规作图的方法在边AC 上确定点P ,使得BP 平分ABC ∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BC AB AP =+.12.完成下面的说理过程.已知:如图,OA =OB ,AC =BC .试说明:∠AOC =∠BOC .解:在△AOC 和△BOC 中,因为OA =______,AC =______,OC =______,所以________≌________(SSS ),所以∠AOC =∠BOC(__________________).13.如图,△ABC 中,D 是BC 边的中点, AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F . 求证:(1)DE= DF ;(2)∠B =∠C .14.(1)如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC .(2)如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =5,tanC =,求腰AB 的长.15.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且 AE ∥BC .试问:EF 与CD 的关系?并加以证明.BF D A E16.如图,已知△ABC。

(1)作图:试过点C作直线CD∥AB.(用尺规作图法,保留作图痕迹,不要求写作法);(2)请你写出(1)的作图依据: .17.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF(2)若AB=17,AD=9,求AE的长.18.如图,OB是∠AOC的平分线,OD是∠COE的平分线,∠AOE=150°,∠AOB=35°,求∠AOD的度数.19.已知:∠AOB=50 ,∠AOC=12∠AOB,反向延长OC至D.(1)请用半圆仪(量角器)和直尺画出图形;(2)求∠BOD的度数.20.如图,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:BE=CF.【答案与解析】1.证明见解析试题分析:利用三角形内角和定理得出∠E=∠C ,再利用全等三角形的判定与性质得出答案.试题解析:∵∠1=∠2,∠AOE=∠COD ,∴∠E=∠C ,在△ADE 和△ABC 中,AE AC E C DE BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△ABC (SAS ),∴AB=AD .2.相等,理由见解析.试题分析:根据BF=CE 可得BE=CF ,由AE ∥DF 可得∠AEB=∠DFC ,再根据∠B=∠C ,利用ASA 证明△ABE ≌△DCF 即可得.试题解析:相等 ,理由如下:∵BF=CE ,∴BF+EF=CE+EF ,∴BE=CF ,∵AE ∥DF ,∴∠AEB=∠DFC ,在△ABE 和△DCF 中 B C BE CF AEB DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△DCF (ASA ),∴AB=CD.3.(1)PM=PN ;120°;(2)①△PMN 是等腰三角形,理由见解析;②120°;(3)492; (1)根据三角形中位线的性质可证明PN ∥BD ,PM ∥EC ,PN=12BD ,PM=12CE ,由AD=AE 即可证明PM=PN ,根据平行线性质及外角性质可证明∠MPN=∠B+∠ACB=120°;(2)①连接BD 、CE ,可证明△BAD ≌△CAE ,可知BD=CE ,∠ABD=∠ACE ,根据三角形中位线可知PN∥BD,PM∥EC,PN=12BD,PM=12CE,可知PN=PM即可判断△PMN是等腰三角形.②由平行线的性质可知∠PNC=∠DBC,∠DPM=∠A=ECD,进而可求出∠MPN=120°,(3)由旋转知,∠BAD=∠CAE,可证明△ABD≌△ACE(SAS),可知∠ABD=∠ACE,BD=CE,通过(2)的方法可证PM=PN,∠DPM=∠DCE,∠PNC=∠DBC根据外角性质可证明∠MPN=∠ABC+∠ACB,进而可知△PMN是等腰直角三角形,求△PMN 面积的最大值即可.(1)如图1中,∵AB=AC=BC,AD=AE,∴BD=CE,∠B=∠ACB=60°,∵点M,P,N分别为DE,DC,BC的中点,∴PN∥BD,PM∥EC,PN=12BD,PM=12CE,∴PN=PM,∠PNC=∠B,∠DPM=∠ACD,∴∠MPN=∠MPD+∠DPN=∠ACD+∠PNC+∠DCB=∠ACD+∠DCB+∠B=∠ACB+∠B=120°,故答案为PM=PN,120°.(2)如图2中,连接BD、EC.①∵∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∵BA=CA,DA=EA,∴△BAD≌△CAE,∴BD=CE,∠ABD=∠ACE,∵点M,P,N分别为DE,DC,BC的中点,∴PN∥BD,PM∥EC,PN=12BD,PM=12CE,∴PN=PM,∴△PMN是等腰三角形.②∵PN∥BD,PM∥EC∴∠PNC=∠DBC,∠DPM=∠A=ECD,∴∠MPN=∠MPD+∠DPN=∠ECD+∠PNC+∠DCB=∠ECD+∠DCB+∠DBC=∠ACE+ACD+∠DCB+∠DBC=∠ABD+∠ACB+∠DBC=∠ACB+∠ABC=120°.(3)如图3中,由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(2)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,同(2)的方法得,PM∥CE,∴∠DPM=∠DCE,同(2)的方法得,PN∥BD,∴∠PNC=∠DBC∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∵PM=PN=12 BD,∴BD最大时,PM最大,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.【点睛】本题考查旋转的性质,三角形中位线性质、全等三角形的判定,三角形的中位线平行于底边且等于底边的一半,熟练掌握全等三角形的判定定理是解题关键.4.见解析.根据AAS 证明△CED ≌△BFD 即可解决问题.∵CE ⊥AD ,BF ⊥AD ,∴∠CED =∠BFD =90°,∵AD 是中线,∴BD =CD ,在△CED 和△BFD 中,CED BFD CDE BDFCD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CED ≌△BFD (AAS ),∴BF =CE .【点睛】本题考查全等三角形的判定和性质,三角形的中线的定义等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.(1)详见解析;(2)详见解析.(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB =∠EAC ,再利用三角形内角和定理求出∠DEB =∠DAB ,即可说明∠EAC =∠DEB .解:(1)在△ABC 和△ADE 中AB AD AC AE BC DE ⎧⎪⎨⎪⎩=,=,=,∴△ABC ≌△ADE (SSS );(2)由△ABC ≌△ADE ,则∠D =∠B ,∠DAE =∠BAC .∴∠DAE ﹣∠ABE =∠BAC ﹣∠BAE ,即∠DAB =∠EAC .设AB 和DE 交于点O ,∵∠DOA =BOE ,∠D =∠B ,∴∠DEB =∠DAB .∴∠EAC =∠DEB .【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.6.见解析.。

相关文档
最新文档